1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45
46 #include <asm/tlbflush.h>
47 #include <linux/swapops.h>
48 #include <linux/swap_cgroup.h>
49 #include "internal.h"
50 #include "swap.h"
51
52 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
53 unsigned char);
54 static void free_swap_count_continuations(struct swap_info_struct *);
55
56 static DEFINE_SPINLOCK(swap_lock);
57 static unsigned int nr_swapfiles;
58 atomic_long_t nr_swap_pages;
59 /*
60 * Some modules use swappable objects and may try to swap them out under
61 * memory pressure (via the shrinker). Before doing so, they may wish to
62 * check to see if any swap space is available.
63 */
64 EXPORT_SYMBOL_GPL(nr_swap_pages);
65 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
66 long total_swap_pages;
67 static int least_priority = -1;
68 unsigned long swapfile_maximum_size;
69 #ifdef CONFIG_MIGRATION
70 bool swap_migration_ad_supported;
71 #endif /* CONFIG_MIGRATION */
72
73 static const char Bad_file[] = "Bad swap file entry ";
74 static const char Unused_file[] = "Unused swap file entry ";
75 static const char Bad_offset[] = "Bad swap offset entry ";
76 static const char Unused_offset[] = "Unused swap offset entry ";
77
78 /*
79 * all active swap_info_structs
80 * protected with swap_lock, and ordered by priority.
81 */
82 static PLIST_HEAD(swap_active_head);
83
84 /*
85 * all available (active, not full) swap_info_structs
86 * protected with swap_avail_lock, ordered by priority.
87 * This is used by folio_alloc_swap() instead of swap_active_head
88 * because swap_active_head includes all swap_info_structs,
89 * but folio_alloc_swap() doesn't need to look at full ones.
90 * This uses its own lock instead of swap_lock because when a
91 * swap_info_struct changes between not-full/full, it needs to
92 * add/remove itself to/from this list, but the swap_info_struct->lock
93 * is held and the locking order requires swap_lock to be taken
94 * before any swap_info_struct->lock.
95 */
96 static struct plist_head *swap_avail_heads;
97 static DEFINE_SPINLOCK(swap_avail_lock);
98
99 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
100
101 static DEFINE_MUTEX(swapon_mutex);
102
103 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
104 /* Activity counter to indicate that a swapon or swapoff has occurred */
105 static atomic_t proc_poll_event = ATOMIC_INIT(0);
106
107 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
108
swap_type_to_swap_info(int type)109 static struct swap_info_struct *swap_type_to_swap_info(int type)
110 {
111 if (type >= MAX_SWAPFILES)
112 return NULL;
113
114 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
115 }
116
swap_count(unsigned char ent)117 static inline unsigned char swap_count(unsigned char ent)
118 {
119 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
120 }
121
122 /* Reclaim the swap entry anyway if possible */
123 #define TTRS_ANYWAY 0x1
124 /*
125 * Reclaim the swap entry if there are no more mappings of the
126 * corresponding page
127 */
128 #define TTRS_UNMAPPED 0x2
129 /* Reclaim the swap entry if swap is getting full*/
130 #define TTRS_FULL 0x4
131
132 /* returns 1 if swap entry is freed */
__try_to_reclaim_swap(struct swap_info_struct * si,unsigned long offset,unsigned long flags)133 static int __try_to_reclaim_swap(struct swap_info_struct *si,
134 unsigned long offset, unsigned long flags)
135 {
136 swp_entry_t entry = swp_entry(si->type, offset);
137 struct folio *folio;
138 int ret = 0;
139
140 folio = filemap_get_folio(swap_address_space(entry), offset);
141 if (IS_ERR(folio))
142 return 0;
143 /*
144 * When this function is called from scan_swap_map_slots() and it's
145 * called by vmscan.c at reclaiming folios. So we hold a folio lock
146 * here. We have to use trylock for avoiding deadlock. This is a special
147 * case and you should use folio_free_swap() with explicit folio_lock()
148 * in usual operations.
149 */
150 if (folio_trylock(folio)) {
151 if ((flags & TTRS_ANYWAY) ||
152 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
153 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
154 ret = folio_free_swap(folio);
155 folio_unlock(folio);
156 }
157 folio_put(folio);
158 return ret;
159 }
160
first_se(struct swap_info_struct * sis)161 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
162 {
163 struct rb_node *rb = rb_first(&sis->swap_extent_root);
164 return rb_entry(rb, struct swap_extent, rb_node);
165 }
166
next_se(struct swap_extent * se)167 static inline struct swap_extent *next_se(struct swap_extent *se)
168 {
169 struct rb_node *rb = rb_next(&se->rb_node);
170 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
171 }
172
173 /*
174 * swapon tell device that all the old swap contents can be discarded,
175 * to allow the swap device to optimize its wear-levelling.
176 */
discard_swap(struct swap_info_struct * si)177 static int discard_swap(struct swap_info_struct *si)
178 {
179 struct swap_extent *se;
180 sector_t start_block;
181 sector_t nr_blocks;
182 int err = 0;
183
184 /* Do not discard the swap header page! */
185 se = first_se(si);
186 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
187 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
188 if (nr_blocks) {
189 err = blkdev_issue_discard(si->bdev, start_block,
190 nr_blocks, GFP_KERNEL);
191 if (err)
192 return err;
193 cond_resched();
194 }
195
196 for (se = next_se(se); se; se = next_se(se)) {
197 start_block = se->start_block << (PAGE_SHIFT - 9);
198 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
199
200 err = blkdev_issue_discard(si->bdev, start_block,
201 nr_blocks, GFP_KERNEL);
202 if (err)
203 break;
204
205 cond_resched();
206 }
207 return err; /* That will often be -EOPNOTSUPP */
208 }
209
210 static struct swap_extent *
offset_to_swap_extent(struct swap_info_struct * sis,unsigned long offset)211 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
212 {
213 struct swap_extent *se;
214 struct rb_node *rb;
215
216 rb = sis->swap_extent_root.rb_node;
217 while (rb) {
218 se = rb_entry(rb, struct swap_extent, rb_node);
219 if (offset < se->start_page)
220 rb = rb->rb_left;
221 else if (offset >= se->start_page + se->nr_pages)
222 rb = rb->rb_right;
223 else
224 return se;
225 }
226 /* It *must* be present */
227 BUG();
228 }
229
swap_page_sector(struct page * page)230 sector_t swap_page_sector(struct page *page)
231 {
232 struct swap_info_struct *sis = page_swap_info(page);
233 struct swap_extent *se;
234 sector_t sector;
235 pgoff_t offset;
236
237 offset = __page_file_index(page);
238 se = offset_to_swap_extent(sis, offset);
239 sector = se->start_block + (offset - se->start_page);
240 return sector << (PAGE_SHIFT - 9);
241 }
242
243 /*
244 * swap allocation tell device that a cluster of swap can now be discarded,
245 * to allow the swap device to optimize its wear-levelling.
246 */
discard_swap_cluster(struct swap_info_struct * si,pgoff_t start_page,pgoff_t nr_pages)247 static void discard_swap_cluster(struct swap_info_struct *si,
248 pgoff_t start_page, pgoff_t nr_pages)
249 {
250 struct swap_extent *se = offset_to_swap_extent(si, start_page);
251
252 while (nr_pages) {
253 pgoff_t offset = start_page - se->start_page;
254 sector_t start_block = se->start_block + offset;
255 sector_t nr_blocks = se->nr_pages - offset;
256
257 if (nr_blocks > nr_pages)
258 nr_blocks = nr_pages;
259 start_page += nr_blocks;
260 nr_pages -= nr_blocks;
261
262 start_block <<= PAGE_SHIFT - 9;
263 nr_blocks <<= PAGE_SHIFT - 9;
264 if (blkdev_issue_discard(si->bdev, start_block,
265 nr_blocks, GFP_NOIO))
266 break;
267
268 se = next_se(se);
269 }
270 }
271
272 #ifdef CONFIG_THP_SWAP
273 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
274
275 #define swap_entry_size(size) (size)
276 #else
277 #define SWAPFILE_CLUSTER 256
278
279 /*
280 * Define swap_entry_size() as constant to let compiler to optimize
281 * out some code if !CONFIG_THP_SWAP
282 */
283 #define swap_entry_size(size) 1
284 #endif
285 #define LATENCY_LIMIT 256
286
cluster_set_flag(struct swap_cluster_info * info,unsigned int flag)287 static inline void cluster_set_flag(struct swap_cluster_info *info,
288 unsigned int flag)
289 {
290 info->flags = flag;
291 }
292
cluster_count(struct swap_cluster_info * info)293 static inline unsigned int cluster_count(struct swap_cluster_info *info)
294 {
295 return info->data;
296 }
297
cluster_set_count(struct swap_cluster_info * info,unsigned int c)298 static inline void cluster_set_count(struct swap_cluster_info *info,
299 unsigned int c)
300 {
301 info->data = c;
302 }
303
cluster_set_count_flag(struct swap_cluster_info * info,unsigned int c,unsigned int f)304 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
305 unsigned int c, unsigned int f)
306 {
307 info->flags = f;
308 info->data = c;
309 }
310
cluster_next(struct swap_cluster_info * info)311 static inline unsigned int cluster_next(struct swap_cluster_info *info)
312 {
313 return info->data;
314 }
315
cluster_set_next(struct swap_cluster_info * info,unsigned int n)316 static inline void cluster_set_next(struct swap_cluster_info *info,
317 unsigned int n)
318 {
319 info->data = n;
320 }
321
cluster_set_next_flag(struct swap_cluster_info * info,unsigned int n,unsigned int f)322 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
323 unsigned int n, unsigned int f)
324 {
325 info->flags = f;
326 info->data = n;
327 }
328
cluster_is_free(struct swap_cluster_info * info)329 static inline bool cluster_is_free(struct swap_cluster_info *info)
330 {
331 return info->flags & CLUSTER_FLAG_FREE;
332 }
333
cluster_is_null(struct swap_cluster_info * info)334 static inline bool cluster_is_null(struct swap_cluster_info *info)
335 {
336 return info->flags & CLUSTER_FLAG_NEXT_NULL;
337 }
338
cluster_set_null(struct swap_cluster_info * info)339 static inline void cluster_set_null(struct swap_cluster_info *info)
340 {
341 info->flags = CLUSTER_FLAG_NEXT_NULL;
342 info->data = 0;
343 }
344
cluster_is_huge(struct swap_cluster_info * info)345 static inline bool cluster_is_huge(struct swap_cluster_info *info)
346 {
347 if (IS_ENABLED(CONFIG_THP_SWAP))
348 return info->flags & CLUSTER_FLAG_HUGE;
349 return false;
350 }
351
cluster_clear_huge(struct swap_cluster_info * info)352 static inline void cluster_clear_huge(struct swap_cluster_info *info)
353 {
354 info->flags &= ~CLUSTER_FLAG_HUGE;
355 }
356
lock_cluster(struct swap_info_struct * si,unsigned long offset)357 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
358 unsigned long offset)
359 {
360 struct swap_cluster_info *ci;
361
362 ci = si->cluster_info;
363 if (ci) {
364 ci += offset / SWAPFILE_CLUSTER;
365 spin_lock(&ci->lock);
366 }
367 return ci;
368 }
369
unlock_cluster(struct swap_cluster_info * ci)370 static inline void unlock_cluster(struct swap_cluster_info *ci)
371 {
372 if (ci)
373 spin_unlock(&ci->lock);
374 }
375
376 /*
377 * Determine the locking method in use for this device. Return
378 * swap_cluster_info if SSD-style cluster-based locking is in place.
379 */
lock_cluster_or_swap_info(struct swap_info_struct * si,unsigned long offset)380 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
381 struct swap_info_struct *si, unsigned long offset)
382 {
383 struct swap_cluster_info *ci;
384
385 /* Try to use fine-grained SSD-style locking if available: */
386 ci = lock_cluster(si, offset);
387 /* Otherwise, fall back to traditional, coarse locking: */
388 if (!ci)
389 spin_lock(&si->lock);
390
391 return ci;
392 }
393
unlock_cluster_or_swap_info(struct swap_info_struct * si,struct swap_cluster_info * ci)394 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
395 struct swap_cluster_info *ci)
396 {
397 if (ci)
398 unlock_cluster(ci);
399 else
400 spin_unlock(&si->lock);
401 }
402
cluster_list_empty(struct swap_cluster_list * list)403 static inline bool cluster_list_empty(struct swap_cluster_list *list)
404 {
405 return cluster_is_null(&list->head);
406 }
407
cluster_list_first(struct swap_cluster_list * list)408 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
409 {
410 return cluster_next(&list->head);
411 }
412
cluster_list_init(struct swap_cluster_list * list)413 static void cluster_list_init(struct swap_cluster_list *list)
414 {
415 cluster_set_null(&list->head);
416 cluster_set_null(&list->tail);
417 }
418
cluster_list_add_tail(struct swap_cluster_list * list,struct swap_cluster_info * ci,unsigned int idx)419 static void cluster_list_add_tail(struct swap_cluster_list *list,
420 struct swap_cluster_info *ci,
421 unsigned int idx)
422 {
423 if (cluster_list_empty(list)) {
424 cluster_set_next_flag(&list->head, idx, 0);
425 cluster_set_next_flag(&list->tail, idx, 0);
426 } else {
427 struct swap_cluster_info *ci_tail;
428 unsigned int tail = cluster_next(&list->tail);
429
430 /*
431 * Nested cluster lock, but both cluster locks are
432 * only acquired when we held swap_info_struct->lock
433 */
434 ci_tail = ci + tail;
435 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
436 cluster_set_next(ci_tail, idx);
437 spin_unlock(&ci_tail->lock);
438 cluster_set_next_flag(&list->tail, idx, 0);
439 }
440 }
441
cluster_list_del_first(struct swap_cluster_list * list,struct swap_cluster_info * ci)442 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
443 struct swap_cluster_info *ci)
444 {
445 unsigned int idx;
446
447 idx = cluster_next(&list->head);
448 if (cluster_next(&list->tail) == idx) {
449 cluster_set_null(&list->head);
450 cluster_set_null(&list->tail);
451 } else
452 cluster_set_next_flag(&list->head,
453 cluster_next(&ci[idx]), 0);
454
455 return idx;
456 }
457
458 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct * si,unsigned int idx)459 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
460 unsigned int idx)
461 {
462 /*
463 * If scan_swap_map_slots() can't find a free cluster, it will check
464 * si->swap_map directly. To make sure the discarding cluster isn't
465 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
466 * It will be cleared after discard
467 */
468 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
469 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
470
471 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
472
473 schedule_work(&si->discard_work);
474 }
475
__free_cluster(struct swap_info_struct * si,unsigned long idx)476 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
477 {
478 struct swap_cluster_info *ci = si->cluster_info;
479
480 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
481 cluster_list_add_tail(&si->free_clusters, ci, idx);
482 }
483
484 /*
485 * Doing discard actually. After a cluster discard is finished, the cluster
486 * will be added to free cluster list. caller should hold si->lock.
487 */
swap_do_scheduled_discard(struct swap_info_struct * si)488 static void swap_do_scheduled_discard(struct swap_info_struct *si)
489 {
490 struct swap_cluster_info *info, *ci;
491 unsigned int idx;
492
493 info = si->cluster_info;
494
495 while (!cluster_list_empty(&si->discard_clusters)) {
496 idx = cluster_list_del_first(&si->discard_clusters, info);
497 spin_unlock(&si->lock);
498
499 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
500 SWAPFILE_CLUSTER);
501
502 spin_lock(&si->lock);
503 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
504 __free_cluster(si, idx);
505 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
506 0, SWAPFILE_CLUSTER);
507 unlock_cluster(ci);
508 }
509 }
510
swap_discard_work(struct work_struct * work)511 static void swap_discard_work(struct work_struct *work)
512 {
513 struct swap_info_struct *si;
514
515 si = container_of(work, struct swap_info_struct, discard_work);
516
517 spin_lock(&si->lock);
518 swap_do_scheduled_discard(si);
519 spin_unlock(&si->lock);
520 }
521
swap_users_ref_free(struct percpu_ref * ref)522 static void swap_users_ref_free(struct percpu_ref *ref)
523 {
524 struct swap_info_struct *si;
525
526 si = container_of(ref, struct swap_info_struct, users);
527 complete(&si->comp);
528 }
529
alloc_cluster(struct swap_info_struct * si,unsigned long idx)530 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
531 {
532 struct swap_cluster_info *ci = si->cluster_info;
533
534 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
535 cluster_list_del_first(&si->free_clusters, ci);
536 cluster_set_count_flag(ci + idx, 0, 0);
537 }
538
free_cluster(struct swap_info_struct * si,unsigned long idx)539 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
540 {
541 struct swap_cluster_info *ci = si->cluster_info + idx;
542
543 VM_BUG_ON(cluster_count(ci) != 0);
544 /*
545 * If the swap is discardable, prepare discard the cluster
546 * instead of free it immediately. The cluster will be freed
547 * after discard.
548 */
549 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
550 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
551 swap_cluster_schedule_discard(si, idx);
552 return;
553 }
554
555 __free_cluster(si, idx);
556 }
557
558 /*
559 * The cluster corresponding to page_nr will be used. The cluster will be
560 * removed from free cluster list and its usage counter will be increased.
561 */
inc_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)562 static void inc_cluster_info_page(struct swap_info_struct *p,
563 struct swap_cluster_info *cluster_info, unsigned long page_nr)
564 {
565 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
566
567 if (!cluster_info)
568 return;
569 if (cluster_is_free(&cluster_info[idx]))
570 alloc_cluster(p, idx);
571
572 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
573 cluster_set_count(&cluster_info[idx],
574 cluster_count(&cluster_info[idx]) + 1);
575 }
576
577 /*
578 * The cluster corresponding to page_nr decreases one usage. If the usage
579 * counter becomes 0, which means no page in the cluster is in using, we can
580 * optionally discard the cluster and add it to free cluster list.
581 */
dec_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)582 static void dec_cluster_info_page(struct swap_info_struct *p,
583 struct swap_cluster_info *cluster_info, unsigned long page_nr)
584 {
585 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
586
587 if (!cluster_info)
588 return;
589
590 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
591 cluster_set_count(&cluster_info[idx],
592 cluster_count(&cluster_info[idx]) - 1);
593
594 if (cluster_count(&cluster_info[idx]) == 0)
595 free_cluster(p, idx);
596 }
597
598 /*
599 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
600 * cluster list. Avoiding such abuse to avoid list corruption.
601 */
602 static bool
scan_swap_map_ssd_cluster_conflict(struct swap_info_struct * si,unsigned long offset)603 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
604 unsigned long offset)
605 {
606 struct percpu_cluster *percpu_cluster;
607 bool conflict;
608
609 offset /= SWAPFILE_CLUSTER;
610 conflict = !cluster_list_empty(&si->free_clusters) &&
611 offset != cluster_list_first(&si->free_clusters) &&
612 cluster_is_free(&si->cluster_info[offset]);
613
614 if (!conflict)
615 return false;
616
617 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
618 cluster_set_null(&percpu_cluster->index);
619 return true;
620 }
621
622 /*
623 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
624 * might involve allocating a new cluster for current CPU too.
625 */
scan_swap_map_try_ssd_cluster(struct swap_info_struct * si,unsigned long * offset,unsigned long * scan_base)626 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
627 unsigned long *offset, unsigned long *scan_base)
628 {
629 struct percpu_cluster *cluster;
630 struct swap_cluster_info *ci;
631 unsigned long tmp, max;
632
633 new_cluster:
634 cluster = this_cpu_ptr(si->percpu_cluster);
635 if (cluster_is_null(&cluster->index)) {
636 if (!cluster_list_empty(&si->free_clusters)) {
637 cluster->index = si->free_clusters.head;
638 cluster->next = cluster_next(&cluster->index) *
639 SWAPFILE_CLUSTER;
640 } else if (!cluster_list_empty(&si->discard_clusters)) {
641 /*
642 * we don't have free cluster but have some clusters in
643 * discarding, do discard now and reclaim them, then
644 * reread cluster_next_cpu since we dropped si->lock
645 */
646 swap_do_scheduled_discard(si);
647 *scan_base = this_cpu_read(*si->cluster_next_cpu);
648 *offset = *scan_base;
649 goto new_cluster;
650 } else
651 return false;
652 }
653
654 /*
655 * Other CPUs can use our cluster if they can't find a free cluster,
656 * check if there is still free entry in the cluster
657 */
658 tmp = cluster->next;
659 max = min_t(unsigned long, si->max,
660 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
661 if (tmp < max) {
662 ci = lock_cluster(si, tmp);
663 while (tmp < max) {
664 if (!si->swap_map[tmp])
665 break;
666 tmp++;
667 }
668 unlock_cluster(ci);
669 }
670 if (tmp >= max) {
671 cluster_set_null(&cluster->index);
672 goto new_cluster;
673 }
674 cluster->next = tmp + 1;
675 *offset = tmp;
676 *scan_base = tmp;
677 return true;
678 }
679
__del_from_avail_list(struct swap_info_struct * p)680 static void __del_from_avail_list(struct swap_info_struct *p)
681 {
682 int nid;
683
684 assert_spin_locked(&p->lock);
685 for_each_node(nid)
686 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
687 }
688
del_from_avail_list(struct swap_info_struct * p)689 static void del_from_avail_list(struct swap_info_struct *p)
690 {
691 spin_lock(&swap_avail_lock);
692 __del_from_avail_list(p);
693 spin_unlock(&swap_avail_lock);
694 }
695
swap_range_alloc(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)696 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
697 unsigned int nr_entries)
698 {
699 unsigned int end = offset + nr_entries - 1;
700
701 if (offset == si->lowest_bit)
702 si->lowest_bit += nr_entries;
703 if (end == si->highest_bit)
704 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
705 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
706 if (si->inuse_pages == si->pages) {
707 si->lowest_bit = si->max;
708 si->highest_bit = 0;
709 del_from_avail_list(si);
710 }
711 }
712
add_to_avail_list(struct swap_info_struct * p)713 static void add_to_avail_list(struct swap_info_struct *p)
714 {
715 int nid;
716
717 spin_lock(&swap_avail_lock);
718 for_each_node(nid)
719 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
720 spin_unlock(&swap_avail_lock);
721 }
722
swap_range_free(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)723 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
724 unsigned int nr_entries)
725 {
726 unsigned long begin = offset;
727 unsigned long end = offset + nr_entries - 1;
728 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
729
730 if (offset < si->lowest_bit)
731 si->lowest_bit = offset;
732 if (end > si->highest_bit) {
733 bool was_full = !si->highest_bit;
734
735 WRITE_ONCE(si->highest_bit, end);
736 if (was_full && (si->flags & SWP_WRITEOK))
737 add_to_avail_list(si);
738 }
739 atomic_long_add(nr_entries, &nr_swap_pages);
740 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
741 if (si->flags & SWP_BLKDEV)
742 swap_slot_free_notify =
743 si->bdev->bd_disk->fops->swap_slot_free_notify;
744 else
745 swap_slot_free_notify = NULL;
746 while (offset <= end) {
747 arch_swap_invalidate_page(si->type, offset);
748 zswap_invalidate(si->type, offset);
749 if (swap_slot_free_notify)
750 swap_slot_free_notify(si->bdev, offset);
751 offset++;
752 }
753 clear_shadow_from_swap_cache(si->type, begin, end);
754 }
755
set_cluster_next(struct swap_info_struct * si,unsigned long next)756 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
757 {
758 unsigned long prev;
759
760 if (!(si->flags & SWP_SOLIDSTATE)) {
761 si->cluster_next = next;
762 return;
763 }
764
765 prev = this_cpu_read(*si->cluster_next_cpu);
766 /*
767 * Cross the swap address space size aligned trunk, choose
768 * another trunk randomly to avoid lock contention on swap
769 * address space if possible.
770 */
771 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
772 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
773 /* No free swap slots available */
774 if (si->highest_bit <= si->lowest_bit)
775 return;
776 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
777 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
778 next = max_t(unsigned int, next, si->lowest_bit);
779 }
780 this_cpu_write(*si->cluster_next_cpu, next);
781 }
782
swap_offset_available_and_locked(struct swap_info_struct * si,unsigned long offset)783 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
784 unsigned long offset)
785 {
786 if (data_race(!si->swap_map[offset])) {
787 spin_lock(&si->lock);
788 return true;
789 }
790
791 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
792 spin_lock(&si->lock);
793 return true;
794 }
795
796 return false;
797 }
798
scan_swap_map_slots(struct swap_info_struct * si,unsigned char usage,int nr,swp_entry_t slots[])799 static int scan_swap_map_slots(struct swap_info_struct *si,
800 unsigned char usage, int nr,
801 swp_entry_t slots[])
802 {
803 struct swap_cluster_info *ci;
804 unsigned long offset;
805 unsigned long scan_base;
806 unsigned long last_in_cluster = 0;
807 int latency_ration = LATENCY_LIMIT;
808 int n_ret = 0;
809 bool scanned_many = false;
810
811 /*
812 * We try to cluster swap pages by allocating them sequentially
813 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
814 * way, however, we resort to first-free allocation, starting
815 * a new cluster. This prevents us from scattering swap pages
816 * all over the entire swap partition, so that we reduce
817 * overall disk seek times between swap pages. -- sct
818 * But we do now try to find an empty cluster. -Andrea
819 * And we let swap pages go all over an SSD partition. Hugh
820 */
821
822 si->flags += SWP_SCANNING;
823 /*
824 * Use percpu scan base for SSD to reduce lock contention on
825 * cluster and swap cache. For HDD, sequential access is more
826 * important.
827 */
828 if (si->flags & SWP_SOLIDSTATE)
829 scan_base = this_cpu_read(*si->cluster_next_cpu);
830 else
831 scan_base = si->cluster_next;
832 offset = scan_base;
833
834 /* SSD algorithm */
835 if (si->cluster_info) {
836 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
837 goto scan;
838 } else if (unlikely(!si->cluster_nr--)) {
839 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
840 si->cluster_nr = SWAPFILE_CLUSTER - 1;
841 goto checks;
842 }
843
844 spin_unlock(&si->lock);
845
846 /*
847 * If seek is expensive, start searching for new cluster from
848 * start of partition, to minimize the span of allocated swap.
849 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
850 * case, just handled by scan_swap_map_try_ssd_cluster() above.
851 */
852 scan_base = offset = si->lowest_bit;
853 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
854
855 /* Locate the first empty (unaligned) cluster */
856 for (; last_in_cluster <= si->highest_bit; offset++) {
857 if (si->swap_map[offset])
858 last_in_cluster = offset + SWAPFILE_CLUSTER;
859 else if (offset == last_in_cluster) {
860 spin_lock(&si->lock);
861 offset -= SWAPFILE_CLUSTER - 1;
862 si->cluster_next = offset;
863 si->cluster_nr = SWAPFILE_CLUSTER - 1;
864 goto checks;
865 }
866 if (unlikely(--latency_ration < 0)) {
867 cond_resched();
868 latency_ration = LATENCY_LIMIT;
869 }
870 }
871
872 offset = scan_base;
873 spin_lock(&si->lock);
874 si->cluster_nr = SWAPFILE_CLUSTER - 1;
875 }
876
877 checks:
878 if (si->cluster_info) {
879 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
880 /* take a break if we already got some slots */
881 if (n_ret)
882 goto done;
883 if (!scan_swap_map_try_ssd_cluster(si, &offset,
884 &scan_base))
885 goto scan;
886 }
887 }
888 if (!(si->flags & SWP_WRITEOK))
889 goto no_page;
890 if (!si->highest_bit)
891 goto no_page;
892 if (offset > si->highest_bit)
893 scan_base = offset = si->lowest_bit;
894
895 ci = lock_cluster(si, offset);
896 /* reuse swap entry of cache-only swap if not busy. */
897 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
898 int swap_was_freed;
899 unlock_cluster(ci);
900 spin_unlock(&si->lock);
901 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
902 spin_lock(&si->lock);
903 /* entry was freed successfully, try to use this again */
904 if (swap_was_freed)
905 goto checks;
906 goto scan; /* check next one */
907 }
908
909 if (si->swap_map[offset]) {
910 unlock_cluster(ci);
911 if (!n_ret)
912 goto scan;
913 else
914 goto done;
915 }
916 WRITE_ONCE(si->swap_map[offset], usage);
917 inc_cluster_info_page(si, si->cluster_info, offset);
918 unlock_cluster(ci);
919
920 swap_range_alloc(si, offset, 1);
921 slots[n_ret++] = swp_entry(si->type, offset);
922
923 /* got enough slots or reach max slots? */
924 if ((n_ret == nr) || (offset >= si->highest_bit))
925 goto done;
926
927 /* search for next available slot */
928
929 /* time to take a break? */
930 if (unlikely(--latency_ration < 0)) {
931 if (n_ret)
932 goto done;
933 spin_unlock(&si->lock);
934 cond_resched();
935 spin_lock(&si->lock);
936 latency_ration = LATENCY_LIMIT;
937 }
938
939 /* try to get more slots in cluster */
940 if (si->cluster_info) {
941 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
942 goto checks;
943 } else if (si->cluster_nr && !si->swap_map[++offset]) {
944 /* non-ssd case, still more slots in cluster? */
945 --si->cluster_nr;
946 goto checks;
947 }
948
949 /*
950 * Even if there's no free clusters available (fragmented),
951 * try to scan a little more quickly with lock held unless we
952 * have scanned too many slots already.
953 */
954 if (!scanned_many) {
955 unsigned long scan_limit;
956
957 if (offset < scan_base)
958 scan_limit = scan_base;
959 else
960 scan_limit = si->highest_bit;
961 for (; offset <= scan_limit && --latency_ration > 0;
962 offset++) {
963 if (!si->swap_map[offset])
964 goto checks;
965 }
966 }
967
968 done:
969 set_cluster_next(si, offset + 1);
970 si->flags -= SWP_SCANNING;
971 return n_ret;
972
973 scan:
974 spin_unlock(&si->lock);
975 while (++offset <= READ_ONCE(si->highest_bit)) {
976 if (unlikely(--latency_ration < 0)) {
977 cond_resched();
978 latency_ration = LATENCY_LIMIT;
979 scanned_many = true;
980 }
981 if (swap_offset_available_and_locked(si, offset))
982 goto checks;
983 }
984 offset = si->lowest_bit;
985 while (offset < scan_base) {
986 if (unlikely(--latency_ration < 0)) {
987 cond_resched();
988 latency_ration = LATENCY_LIMIT;
989 scanned_many = true;
990 }
991 if (swap_offset_available_and_locked(si, offset))
992 goto checks;
993 offset++;
994 }
995 spin_lock(&si->lock);
996
997 no_page:
998 si->flags -= SWP_SCANNING;
999 return n_ret;
1000 }
1001
swap_alloc_cluster(struct swap_info_struct * si,swp_entry_t * slot)1002 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1003 {
1004 unsigned long idx;
1005 struct swap_cluster_info *ci;
1006 unsigned long offset;
1007
1008 /*
1009 * Should not even be attempting cluster allocations when huge
1010 * page swap is disabled. Warn and fail the allocation.
1011 */
1012 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1013 VM_WARN_ON_ONCE(1);
1014 return 0;
1015 }
1016
1017 if (cluster_list_empty(&si->free_clusters))
1018 return 0;
1019
1020 idx = cluster_list_first(&si->free_clusters);
1021 offset = idx * SWAPFILE_CLUSTER;
1022 ci = lock_cluster(si, offset);
1023 alloc_cluster(si, idx);
1024 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1025
1026 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1027 unlock_cluster(ci);
1028 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1029 *slot = swp_entry(si->type, offset);
1030
1031 return 1;
1032 }
1033
swap_free_cluster(struct swap_info_struct * si,unsigned long idx)1034 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1035 {
1036 unsigned long offset = idx * SWAPFILE_CLUSTER;
1037 struct swap_cluster_info *ci;
1038
1039 ci = lock_cluster(si, offset);
1040 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1041 cluster_set_count_flag(ci, 0, 0);
1042 free_cluster(si, idx);
1043 unlock_cluster(ci);
1044 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1045 }
1046
get_swap_pages(int n_goal,swp_entry_t swp_entries[],int entry_size)1047 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1048 {
1049 unsigned long size = swap_entry_size(entry_size);
1050 struct swap_info_struct *si, *next;
1051 long avail_pgs;
1052 int n_ret = 0;
1053 int node;
1054
1055 /* Only single cluster request supported */
1056 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1057
1058 spin_lock(&swap_avail_lock);
1059
1060 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1061 if (avail_pgs <= 0) {
1062 spin_unlock(&swap_avail_lock);
1063 goto noswap;
1064 }
1065
1066 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1067
1068 atomic_long_sub(n_goal * size, &nr_swap_pages);
1069
1070 start_over:
1071 node = numa_node_id();
1072 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1073 /* requeue si to after same-priority siblings */
1074 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1075 spin_unlock(&swap_avail_lock);
1076 spin_lock(&si->lock);
1077 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1078 spin_lock(&swap_avail_lock);
1079 if (plist_node_empty(&si->avail_lists[node])) {
1080 spin_unlock(&si->lock);
1081 goto nextsi;
1082 }
1083 WARN(!si->highest_bit,
1084 "swap_info %d in list but !highest_bit\n",
1085 si->type);
1086 WARN(!(si->flags & SWP_WRITEOK),
1087 "swap_info %d in list but !SWP_WRITEOK\n",
1088 si->type);
1089 __del_from_avail_list(si);
1090 spin_unlock(&si->lock);
1091 goto nextsi;
1092 }
1093 if (size == SWAPFILE_CLUSTER) {
1094 if (si->flags & SWP_BLKDEV)
1095 n_ret = swap_alloc_cluster(si, swp_entries);
1096 } else
1097 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1098 n_goal, swp_entries);
1099 spin_unlock(&si->lock);
1100 if (n_ret || size == SWAPFILE_CLUSTER)
1101 goto check_out;
1102 cond_resched();
1103
1104 spin_lock(&swap_avail_lock);
1105 nextsi:
1106 /*
1107 * if we got here, it's likely that si was almost full before,
1108 * and since scan_swap_map_slots() can drop the si->lock,
1109 * multiple callers probably all tried to get a page from the
1110 * same si and it filled up before we could get one; or, the si
1111 * filled up between us dropping swap_avail_lock and taking
1112 * si->lock. Since we dropped the swap_avail_lock, the
1113 * swap_avail_head list may have been modified; so if next is
1114 * still in the swap_avail_head list then try it, otherwise
1115 * start over if we have not gotten any slots.
1116 */
1117 if (plist_node_empty(&next->avail_lists[node]))
1118 goto start_over;
1119 }
1120
1121 spin_unlock(&swap_avail_lock);
1122
1123 check_out:
1124 if (n_ret < n_goal)
1125 atomic_long_add((long)(n_goal - n_ret) * size,
1126 &nr_swap_pages);
1127 noswap:
1128 return n_ret;
1129 }
1130
_swap_info_get(swp_entry_t entry)1131 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1132 {
1133 struct swap_info_struct *p;
1134 unsigned long offset;
1135
1136 if (!entry.val)
1137 goto out;
1138 p = swp_swap_info(entry);
1139 if (!p)
1140 goto bad_nofile;
1141 if (data_race(!(p->flags & SWP_USED)))
1142 goto bad_device;
1143 offset = swp_offset(entry);
1144 if (offset >= p->max)
1145 goto bad_offset;
1146 if (data_race(!p->swap_map[swp_offset(entry)]))
1147 goto bad_free;
1148 return p;
1149
1150 bad_free:
1151 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1152 goto out;
1153 bad_offset:
1154 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1155 goto out;
1156 bad_device:
1157 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1158 goto out;
1159 bad_nofile:
1160 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1161 out:
1162 return NULL;
1163 }
1164
swap_info_get_cont(swp_entry_t entry,struct swap_info_struct * q)1165 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1166 struct swap_info_struct *q)
1167 {
1168 struct swap_info_struct *p;
1169
1170 p = _swap_info_get(entry);
1171
1172 if (p != q) {
1173 if (q != NULL)
1174 spin_unlock(&q->lock);
1175 if (p != NULL)
1176 spin_lock(&p->lock);
1177 }
1178 return p;
1179 }
1180
__swap_entry_free_locked(struct swap_info_struct * p,unsigned long offset,unsigned char usage)1181 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1182 unsigned long offset,
1183 unsigned char usage)
1184 {
1185 unsigned char count;
1186 unsigned char has_cache;
1187
1188 count = p->swap_map[offset];
1189
1190 has_cache = count & SWAP_HAS_CACHE;
1191 count &= ~SWAP_HAS_CACHE;
1192
1193 if (usage == SWAP_HAS_CACHE) {
1194 VM_BUG_ON(!has_cache);
1195 has_cache = 0;
1196 } else if (count == SWAP_MAP_SHMEM) {
1197 /*
1198 * Or we could insist on shmem.c using a special
1199 * swap_shmem_free() and free_shmem_swap_and_cache()...
1200 */
1201 count = 0;
1202 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1203 if (count == COUNT_CONTINUED) {
1204 if (swap_count_continued(p, offset, count))
1205 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1206 else
1207 count = SWAP_MAP_MAX;
1208 } else
1209 count--;
1210 }
1211
1212 usage = count | has_cache;
1213 if (usage)
1214 WRITE_ONCE(p->swap_map[offset], usage);
1215 else
1216 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1217
1218 return usage;
1219 }
1220
1221 /*
1222 * When we get a swap entry, if there aren't some other ways to
1223 * prevent swapoff, such as the folio in swap cache is locked, page
1224 * table lock is held, etc., the swap entry may become invalid because
1225 * of swapoff. Then, we need to enclose all swap related functions
1226 * with get_swap_device() and put_swap_device(), unless the swap
1227 * functions call get/put_swap_device() by themselves.
1228 *
1229 * Check whether swap entry is valid in the swap device. If so,
1230 * return pointer to swap_info_struct, and keep the swap entry valid
1231 * via preventing the swap device from being swapoff, until
1232 * put_swap_device() is called. Otherwise return NULL.
1233 *
1234 * Notice that swapoff or swapoff+swapon can still happen before the
1235 * percpu_ref_tryget_live() in get_swap_device() or after the
1236 * percpu_ref_put() in put_swap_device() if there isn't any other way
1237 * to prevent swapoff. The caller must be prepared for that. For
1238 * example, the following situation is possible.
1239 *
1240 * CPU1 CPU2
1241 * do_swap_page()
1242 * ... swapoff+swapon
1243 * __read_swap_cache_async()
1244 * swapcache_prepare()
1245 * __swap_duplicate()
1246 * // check swap_map
1247 * // verify PTE not changed
1248 *
1249 * In __swap_duplicate(), the swap_map need to be checked before
1250 * changing partly because the specified swap entry may be for another
1251 * swap device which has been swapoff. And in do_swap_page(), after
1252 * the page is read from the swap device, the PTE is verified not
1253 * changed with the page table locked to check whether the swap device
1254 * has been swapoff or swapoff+swapon.
1255 */
get_swap_device(swp_entry_t entry)1256 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1257 {
1258 struct swap_info_struct *si;
1259 unsigned long offset;
1260
1261 if (!entry.val)
1262 goto out;
1263 si = swp_swap_info(entry);
1264 if (!si)
1265 goto bad_nofile;
1266 if (!percpu_ref_tryget_live(&si->users))
1267 goto out;
1268 /*
1269 * Guarantee the si->users are checked before accessing other
1270 * fields of swap_info_struct.
1271 *
1272 * Paired with the spin_unlock() after setup_swap_info() in
1273 * enable_swap_info().
1274 */
1275 smp_rmb();
1276 offset = swp_offset(entry);
1277 if (offset >= si->max)
1278 goto put_out;
1279
1280 return si;
1281 bad_nofile:
1282 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1283 out:
1284 return NULL;
1285 put_out:
1286 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1287 percpu_ref_put(&si->users);
1288 return NULL;
1289 }
1290
__swap_entry_free(struct swap_info_struct * p,swp_entry_t entry)1291 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1292 swp_entry_t entry)
1293 {
1294 struct swap_cluster_info *ci;
1295 unsigned long offset = swp_offset(entry);
1296 unsigned char usage;
1297
1298 ci = lock_cluster_or_swap_info(p, offset);
1299 usage = __swap_entry_free_locked(p, offset, 1);
1300 unlock_cluster_or_swap_info(p, ci);
1301 if (!usage)
1302 free_swap_slot(entry);
1303
1304 return usage;
1305 }
1306
swap_entry_free(struct swap_info_struct * p,swp_entry_t entry)1307 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1308 {
1309 struct swap_cluster_info *ci;
1310 unsigned long offset = swp_offset(entry);
1311 unsigned char count;
1312
1313 ci = lock_cluster(p, offset);
1314 count = p->swap_map[offset];
1315 VM_BUG_ON(count != SWAP_HAS_CACHE);
1316 p->swap_map[offset] = 0;
1317 dec_cluster_info_page(p, p->cluster_info, offset);
1318 unlock_cluster(ci);
1319
1320 mem_cgroup_uncharge_swap(entry, 1);
1321 swap_range_free(p, offset, 1);
1322 }
1323
1324 /*
1325 * Caller has made sure that the swap device corresponding to entry
1326 * is still around or has not been recycled.
1327 */
swap_free(swp_entry_t entry)1328 void swap_free(swp_entry_t entry)
1329 {
1330 struct swap_info_struct *p;
1331
1332 p = _swap_info_get(entry);
1333 if (p)
1334 __swap_entry_free(p, entry);
1335 }
1336
1337 /*
1338 * Called after dropping swapcache to decrease refcnt to swap entries.
1339 */
put_swap_folio(struct folio * folio,swp_entry_t entry)1340 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1341 {
1342 unsigned long offset = swp_offset(entry);
1343 unsigned long idx = offset / SWAPFILE_CLUSTER;
1344 struct swap_cluster_info *ci;
1345 struct swap_info_struct *si;
1346 unsigned char *map;
1347 unsigned int i, free_entries = 0;
1348 unsigned char val;
1349 int size = swap_entry_size(folio_nr_pages(folio));
1350
1351 si = _swap_info_get(entry);
1352 if (!si)
1353 return;
1354
1355 ci = lock_cluster_or_swap_info(si, offset);
1356 if (size == SWAPFILE_CLUSTER) {
1357 VM_BUG_ON(!cluster_is_huge(ci));
1358 map = si->swap_map + offset;
1359 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1360 val = map[i];
1361 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1362 if (val == SWAP_HAS_CACHE)
1363 free_entries++;
1364 }
1365 cluster_clear_huge(ci);
1366 if (free_entries == SWAPFILE_CLUSTER) {
1367 unlock_cluster_or_swap_info(si, ci);
1368 spin_lock(&si->lock);
1369 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1370 swap_free_cluster(si, idx);
1371 spin_unlock(&si->lock);
1372 return;
1373 }
1374 }
1375 for (i = 0; i < size; i++, entry.val++) {
1376 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1377 unlock_cluster_or_swap_info(si, ci);
1378 free_swap_slot(entry);
1379 if (i == size - 1)
1380 return;
1381 lock_cluster_or_swap_info(si, offset);
1382 }
1383 }
1384 unlock_cluster_or_swap_info(si, ci);
1385 }
1386
1387 #ifdef CONFIG_THP_SWAP
split_swap_cluster(swp_entry_t entry)1388 int split_swap_cluster(swp_entry_t entry)
1389 {
1390 struct swap_info_struct *si;
1391 struct swap_cluster_info *ci;
1392 unsigned long offset = swp_offset(entry);
1393
1394 si = _swap_info_get(entry);
1395 if (!si)
1396 return -EBUSY;
1397 ci = lock_cluster(si, offset);
1398 cluster_clear_huge(ci);
1399 unlock_cluster(ci);
1400 return 0;
1401 }
1402 #endif
1403
swp_entry_cmp(const void * ent1,const void * ent2)1404 static int swp_entry_cmp(const void *ent1, const void *ent2)
1405 {
1406 const swp_entry_t *e1 = ent1, *e2 = ent2;
1407
1408 return (int)swp_type(*e1) - (int)swp_type(*e2);
1409 }
1410
swapcache_free_entries(swp_entry_t * entries,int n)1411 void swapcache_free_entries(swp_entry_t *entries, int n)
1412 {
1413 struct swap_info_struct *p, *prev;
1414 int i;
1415
1416 if (n <= 0)
1417 return;
1418
1419 prev = NULL;
1420 p = NULL;
1421
1422 /*
1423 * Sort swap entries by swap device, so each lock is only taken once.
1424 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1425 * so low that it isn't necessary to optimize further.
1426 */
1427 if (nr_swapfiles > 1)
1428 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1429 for (i = 0; i < n; ++i) {
1430 p = swap_info_get_cont(entries[i], prev);
1431 if (p)
1432 swap_entry_free(p, entries[i]);
1433 prev = p;
1434 }
1435 if (p)
1436 spin_unlock(&p->lock);
1437 }
1438
__swap_count(swp_entry_t entry)1439 int __swap_count(swp_entry_t entry)
1440 {
1441 struct swap_info_struct *si = swp_swap_info(entry);
1442 pgoff_t offset = swp_offset(entry);
1443
1444 return swap_count(si->swap_map[offset]);
1445 }
1446
1447 /*
1448 * How many references to @entry are currently swapped out?
1449 * This does not give an exact answer when swap count is continued,
1450 * but does include the high COUNT_CONTINUED flag to allow for that.
1451 */
swap_swapcount(struct swap_info_struct * si,swp_entry_t entry)1452 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1453 {
1454 pgoff_t offset = swp_offset(entry);
1455 struct swap_cluster_info *ci;
1456 int count;
1457
1458 ci = lock_cluster_or_swap_info(si, offset);
1459 count = swap_count(si->swap_map[offset]);
1460 unlock_cluster_or_swap_info(si, ci);
1461 return count;
1462 }
1463
1464 /*
1465 * How many references to @entry are currently swapped out?
1466 * This considers COUNT_CONTINUED so it returns exact answer.
1467 */
swp_swapcount(swp_entry_t entry)1468 int swp_swapcount(swp_entry_t entry)
1469 {
1470 int count, tmp_count, n;
1471 struct swap_info_struct *p;
1472 struct swap_cluster_info *ci;
1473 struct page *page;
1474 pgoff_t offset;
1475 unsigned char *map;
1476
1477 p = _swap_info_get(entry);
1478 if (!p)
1479 return 0;
1480
1481 offset = swp_offset(entry);
1482
1483 ci = lock_cluster_or_swap_info(p, offset);
1484
1485 count = swap_count(p->swap_map[offset]);
1486 if (!(count & COUNT_CONTINUED))
1487 goto out;
1488
1489 count &= ~COUNT_CONTINUED;
1490 n = SWAP_MAP_MAX + 1;
1491
1492 page = vmalloc_to_page(p->swap_map + offset);
1493 offset &= ~PAGE_MASK;
1494 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1495
1496 do {
1497 page = list_next_entry(page, lru);
1498 map = kmap_atomic(page);
1499 tmp_count = map[offset];
1500 kunmap_atomic(map);
1501
1502 count += (tmp_count & ~COUNT_CONTINUED) * n;
1503 n *= (SWAP_CONT_MAX + 1);
1504 } while (tmp_count & COUNT_CONTINUED);
1505 out:
1506 unlock_cluster_or_swap_info(p, ci);
1507 return count;
1508 }
1509
swap_page_trans_huge_swapped(struct swap_info_struct * si,swp_entry_t entry)1510 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1511 swp_entry_t entry)
1512 {
1513 struct swap_cluster_info *ci;
1514 unsigned char *map = si->swap_map;
1515 unsigned long roffset = swp_offset(entry);
1516 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1517 int i;
1518 bool ret = false;
1519
1520 ci = lock_cluster_or_swap_info(si, offset);
1521 if (!ci || !cluster_is_huge(ci)) {
1522 if (swap_count(map[roffset]))
1523 ret = true;
1524 goto unlock_out;
1525 }
1526 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1527 if (swap_count(map[offset + i])) {
1528 ret = true;
1529 break;
1530 }
1531 }
1532 unlock_out:
1533 unlock_cluster_or_swap_info(si, ci);
1534 return ret;
1535 }
1536
folio_swapped(struct folio * folio)1537 static bool folio_swapped(struct folio *folio)
1538 {
1539 swp_entry_t entry = folio->swap;
1540 struct swap_info_struct *si = _swap_info_get(entry);
1541
1542 if (!si)
1543 return false;
1544
1545 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1546 return swap_swapcount(si, entry) != 0;
1547
1548 return swap_page_trans_huge_swapped(si, entry);
1549 }
1550
1551 /**
1552 * folio_free_swap() - Free the swap space used for this folio.
1553 * @folio: The folio to remove.
1554 *
1555 * If swap is getting full, or if there are no more mappings of this folio,
1556 * then call folio_free_swap to free its swap space.
1557 *
1558 * Return: true if we were able to release the swap space.
1559 */
folio_free_swap(struct folio * folio)1560 bool folio_free_swap(struct folio *folio)
1561 {
1562 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1563
1564 if (!folio_test_swapcache(folio))
1565 return false;
1566 if (folio_test_writeback(folio))
1567 return false;
1568 if (folio_swapped(folio))
1569 return false;
1570
1571 /*
1572 * Once hibernation has begun to create its image of memory,
1573 * there's a danger that one of the calls to folio_free_swap()
1574 * - most probably a call from __try_to_reclaim_swap() while
1575 * hibernation is allocating its own swap pages for the image,
1576 * but conceivably even a call from memory reclaim - will free
1577 * the swap from a folio which has already been recorded in the
1578 * image as a clean swapcache folio, and then reuse its swap for
1579 * another page of the image. On waking from hibernation, the
1580 * original folio might be freed under memory pressure, then
1581 * later read back in from swap, now with the wrong data.
1582 *
1583 * Hibernation suspends storage while it is writing the image
1584 * to disk so check that here.
1585 */
1586 if (pm_suspended_storage())
1587 return false;
1588
1589 delete_from_swap_cache(folio);
1590 folio_set_dirty(folio);
1591 return true;
1592 }
1593
1594 /*
1595 * Free the swap entry like above, but also try to
1596 * free the page cache entry if it is the last user.
1597 */
free_swap_and_cache(swp_entry_t entry)1598 int free_swap_and_cache(swp_entry_t entry)
1599 {
1600 struct swap_info_struct *p;
1601 unsigned char count;
1602
1603 if (non_swap_entry(entry))
1604 return 1;
1605
1606 p = _swap_info_get(entry);
1607 if (p) {
1608 count = __swap_entry_free(p, entry);
1609 if (count == SWAP_HAS_CACHE &&
1610 !swap_page_trans_huge_swapped(p, entry))
1611 __try_to_reclaim_swap(p, swp_offset(entry),
1612 TTRS_UNMAPPED | TTRS_FULL);
1613 }
1614 return p != NULL;
1615 }
1616
1617 #ifdef CONFIG_HIBERNATION
1618
get_swap_page_of_type(int type)1619 swp_entry_t get_swap_page_of_type(int type)
1620 {
1621 struct swap_info_struct *si = swap_type_to_swap_info(type);
1622 swp_entry_t entry = {0};
1623
1624 if (!si)
1625 goto fail;
1626
1627 /* This is called for allocating swap entry, not cache */
1628 spin_lock(&si->lock);
1629 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1630 atomic_long_dec(&nr_swap_pages);
1631 spin_unlock(&si->lock);
1632 fail:
1633 return entry;
1634 }
1635
1636 /*
1637 * Find the swap type that corresponds to given device (if any).
1638 *
1639 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1640 * from 0, in which the swap header is expected to be located.
1641 *
1642 * This is needed for the suspend to disk (aka swsusp).
1643 */
swap_type_of(dev_t device,sector_t offset)1644 int swap_type_of(dev_t device, sector_t offset)
1645 {
1646 int type;
1647
1648 if (!device)
1649 return -1;
1650
1651 spin_lock(&swap_lock);
1652 for (type = 0; type < nr_swapfiles; type++) {
1653 struct swap_info_struct *sis = swap_info[type];
1654
1655 if (!(sis->flags & SWP_WRITEOK))
1656 continue;
1657
1658 if (device == sis->bdev->bd_dev) {
1659 struct swap_extent *se = first_se(sis);
1660
1661 if (se->start_block == offset) {
1662 spin_unlock(&swap_lock);
1663 return type;
1664 }
1665 }
1666 }
1667 spin_unlock(&swap_lock);
1668 return -ENODEV;
1669 }
1670
find_first_swap(dev_t * device)1671 int find_first_swap(dev_t *device)
1672 {
1673 int type;
1674
1675 spin_lock(&swap_lock);
1676 for (type = 0; type < nr_swapfiles; type++) {
1677 struct swap_info_struct *sis = swap_info[type];
1678
1679 if (!(sis->flags & SWP_WRITEOK))
1680 continue;
1681 *device = sis->bdev->bd_dev;
1682 spin_unlock(&swap_lock);
1683 return type;
1684 }
1685 spin_unlock(&swap_lock);
1686 return -ENODEV;
1687 }
1688
1689 /*
1690 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1691 * corresponding to given index in swap_info (swap type).
1692 */
swapdev_block(int type,pgoff_t offset)1693 sector_t swapdev_block(int type, pgoff_t offset)
1694 {
1695 struct swap_info_struct *si = swap_type_to_swap_info(type);
1696 struct swap_extent *se;
1697
1698 if (!si || !(si->flags & SWP_WRITEOK))
1699 return 0;
1700 se = offset_to_swap_extent(si, offset);
1701 return se->start_block + (offset - se->start_page);
1702 }
1703
1704 /*
1705 * Return either the total number of swap pages of given type, or the number
1706 * of free pages of that type (depending on @free)
1707 *
1708 * This is needed for software suspend
1709 */
count_swap_pages(int type,int free)1710 unsigned int count_swap_pages(int type, int free)
1711 {
1712 unsigned int n = 0;
1713
1714 spin_lock(&swap_lock);
1715 if ((unsigned int)type < nr_swapfiles) {
1716 struct swap_info_struct *sis = swap_info[type];
1717
1718 spin_lock(&sis->lock);
1719 if (sis->flags & SWP_WRITEOK) {
1720 n = sis->pages;
1721 if (free)
1722 n -= sis->inuse_pages;
1723 }
1724 spin_unlock(&sis->lock);
1725 }
1726 spin_unlock(&swap_lock);
1727 return n;
1728 }
1729 #endif /* CONFIG_HIBERNATION */
1730
pte_same_as_swp(pte_t pte,pte_t swp_pte)1731 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1732 {
1733 return pte_same(pte_swp_clear_flags(pte), swp_pte);
1734 }
1735
1736 /*
1737 * No need to decide whether this PTE shares the swap entry with others,
1738 * just let do_wp_page work it out if a write is requested later - to
1739 * force COW, vm_page_prot omits write permission from any private vma.
1740 */
unuse_pte(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,swp_entry_t entry,struct folio * folio)1741 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1742 unsigned long addr, swp_entry_t entry, struct folio *folio)
1743 {
1744 struct page *page = folio_file_page(folio, swp_offset(entry));
1745 struct page *swapcache;
1746 spinlock_t *ptl;
1747 pte_t *pte, new_pte, old_pte;
1748 bool hwpoisoned = PageHWPoison(page);
1749 int ret = 1;
1750
1751 swapcache = page;
1752 page = ksm_might_need_to_copy(page, vma, addr);
1753 if (unlikely(!page))
1754 return -ENOMEM;
1755 else if (unlikely(PTR_ERR(page) == -EHWPOISON))
1756 hwpoisoned = true;
1757
1758 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1759 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1760 swp_entry_to_pte(entry)))) {
1761 ret = 0;
1762 goto out;
1763 }
1764
1765 old_pte = ptep_get(pte);
1766
1767 if (unlikely(hwpoisoned || !PageUptodate(page))) {
1768 swp_entry_t swp_entry;
1769
1770 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1771 if (hwpoisoned) {
1772 swp_entry = make_hwpoison_entry(swapcache);
1773 page = swapcache;
1774 } else {
1775 swp_entry = make_poisoned_swp_entry();
1776 }
1777 new_pte = swp_entry_to_pte(swp_entry);
1778 ret = 0;
1779 goto setpte;
1780 }
1781
1782 /*
1783 * Some architectures may have to restore extra metadata to the page
1784 * when reading from swap. This metadata may be indexed by swap entry
1785 * so this must be called before swap_free().
1786 */
1787 arch_swap_restore(entry, page_folio(page));
1788
1789 /* See do_swap_page() */
1790 BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1791 BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1792
1793 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1794 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1795 get_page(page);
1796 if (page == swapcache) {
1797 rmap_t rmap_flags = RMAP_NONE;
1798
1799 /*
1800 * See do_swap_page(): PageWriteback() would be problematic.
1801 * However, we do a wait_on_page_writeback() just before this
1802 * call and have the page locked.
1803 */
1804 VM_BUG_ON_PAGE(PageWriteback(page), page);
1805 if (pte_swp_exclusive(old_pte))
1806 rmap_flags |= RMAP_EXCLUSIVE;
1807
1808 page_add_anon_rmap(page, vma, addr, rmap_flags);
1809 } else { /* ksm created a completely new copy */
1810 page_add_new_anon_rmap(page, vma, addr);
1811 lru_cache_add_inactive_or_unevictable(page, vma);
1812 }
1813 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1814 if (pte_swp_soft_dirty(old_pte))
1815 new_pte = pte_mksoft_dirty(new_pte);
1816 if (pte_swp_uffd_wp(old_pte))
1817 new_pte = pte_mkuffd_wp(new_pte);
1818 setpte:
1819 set_pte_at(vma->vm_mm, addr, pte, new_pte);
1820 swap_free(entry);
1821 out:
1822 if (pte)
1823 pte_unmap_unlock(pte, ptl);
1824 if (page != swapcache) {
1825 unlock_page(page);
1826 put_page(page);
1827 }
1828 return ret;
1829 }
1830
unuse_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned int type)1831 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1832 unsigned long addr, unsigned long end,
1833 unsigned int type)
1834 {
1835 pte_t *pte = NULL;
1836 struct swap_info_struct *si;
1837
1838 si = swap_info[type];
1839 do {
1840 struct folio *folio;
1841 unsigned long offset;
1842 unsigned char swp_count;
1843 swp_entry_t entry;
1844 int ret;
1845 pte_t ptent;
1846
1847 if (!pte++) {
1848 pte = pte_offset_map(pmd, addr);
1849 if (!pte)
1850 break;
1851 }
1852
1853 ptent = ptep_get_lockless(pte);
1854
1855 if (!is_swap_pte(ptent))
1856 continue;
1857
1858 entry = pte_to_swp_entry(ptent);
1859 if (swp_type(entry) != type)
1860 continue;
1861
1862 offset = swp_offset(entry);
1863 pte_unmap(pte);
1864 pte = NULL;
1865
1866 folio = swap_cache_get_folio(entry, vma, addr);
1867 if (!folio) {
1868 struct page *page;
1869 struct vm_fault vmf = {
1870 .vma = vma,
1871 .address = addr,
1872 .real_address = addr,
1873 .pmd = pmd,
1874 };
1875
1876 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1877 &vmf);
1878 if (page)
1879 folio = page_folio(page);
1880 }
1881 if (!folio) {
1882 swp_count = READ_ONCE(si->swap_map[offset]);
1883 if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1884 continue;
1885 return -ENOMEM;
1886 }
1887
1888 folio_lock(folio);
1889 folio_wait_writeback(folio);
1890 ret = unuse_pte(vma, pmd, addr, entry, folio);
1891 if (ret < 0) {
1892 folio_unlock(folio);
1893 folio_put(folio);
1894 return ret;
1895 }
1896
1897 folio_free_swap(folio);
1898 folio_unlock(folio);
1899 folio_put(folio);
1900 } while (addr += PAGE_SIZE, addr != end);
1901
1902 if (pte)
1903 pte_unmap(pte);
1904 return 0;
1905 }
1906
unuse_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,unsigned int type)1907 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1908 unsigned long addr, unsigned long end,
1909 unsigned int type)
1910 {
1911 pmd_t *pmd;
1912 unsigned long next;
1913 int ret;
1914
1915 pmd = pmd_offset(pud, addr);
1916 do {
1917 cond_resched();
1918 next = pmd_addr_end(addr, end);
1919 ret = unuse_pte_range(vma, pmd, addr, next, type);
1920 if (ret)
1921 return ret;
1922 } while (pmd++, addr = next, addr != end);
1923 return 0;
1924 }
1925
unuse_pud_range(struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned int type)1926 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1927 unsigned long addr, unsigned long end,
1928 unsigned int type)
1929 {
1930 pud_t *pud;
1931 unsigned long next;
1932 int ret;
1933
1934 pud = pud_offset(p4d, addr);
1935 do {
1936 next = pud_addr_end(addr, end);
1937 if (pud_none_or_clear_bad(pud))
1938 continue;
1939 ret = unuse_pmd_range(vma, pud, addr, next, type);
1940 if (ret)
1941 return ret;
1942 } while (pud++, addr = next, addr != end);
1943 return 0;
1944 }
1945
unuse_p4d_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned int type)1946 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1947 unsigned long addr, unsigned long end,
1948 unsigned int type)
1949 {
1950 p4d_t *p4d;
1951 unsigned long next;
1952 int ret;
1953
1954 p4d = p4d_offset(pgd, addr);
1955 do {
1956 next = p4d_addr_end(addr, end);
1957 if (p4d_none_or_clear_bad(p4d))
1958 continue;
1959 ret = unuse_pud_range(vma, p4d, addr, next, type);
1960 if (ret)
1961 return ret;
1962 } while (p4d++, addr = next, addr != end);
1963 return 0;
1964 }
1965
unuse_vma(struct vm_area_struct * vma,unsigned int type)1966 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1967 {
1968 pgd_t *pgd;
1969 unsigned long addr, end, next;
1970 int ret;
1971
1972 addr = vma->vm_start;
1973 end = vma->vm_end;
1974
1975 pgd = pgd_offset(vma->vm_mm, addr);
1976 do {
1977 next = pgd_addr_end(addr, end);
1978 if (pgd_none_or_clear_bad(pgd))
1979 continue;
1980 ret = unuse_p4d_range(vma, pgd, addr, next, type);
1981 if (ret)
1982 return ret;
1983 } while (pgd++, addr = next, addr != end);
1984 return 0;
1985 }
1986
unuse_mm(struct mm_struct * mm,unsigned int type)1987 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1988 {
1989 struct vm_area_struct *vma;
1990 int ret = 0;
1991 VMA_ITERATOR(vmi, mm, 0);
1992
1993 mmap_read_lock(mm);
1994 for_each_vma(vmi, vma) {
1995 if (vma->anon_vma) {
1996 ret = unuse_vma(vma, type);
1997 if (ret)
1998 break;
1999 }
2000
2001 cond_resched();
2002 }
2003 mmap_read_unlock(mm);
2004 return ret;
2005 }
2006
2007 /*
2008 * Scan swap_map from current position to next entry still in use.
2009 * Return 0 if there are no inuse entries after prev till end of
2010 * the map.
2011 */
find_next_to_unuse(struct swap_info_struct * si,unsigned int prev)2012 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2013 unsigned int prev)
2014 {
2015 unsigned int i;
2016 unsigned char count;
2017
2018 /*
2019 * No need for swap_lock here: we're just looking
2020 * for whether an entry is in use, not modifying it; false
2021 * hits are okay, and sys_swapoff() has already prevented new
2022 * allocations from this area (while holding swap_lock).
2023 */
2024 for (i = prev + 1; i < si->max; i++) {
2025 count = READ_ONCE(si->swap_map[i]);
2026 if (count && swap_count(count) != SWAP_MAP_BAD)
2027 break;
2028 if ((i % LATENCY_LIMIT) == 0)
2029 cond_resched();
2030 }
2031
2032 if (i == si->max)
2033 i = 0;
2034
2035 return i;
2036 }
2037
try_to_unuse(unsigned int type)2038 static int try_to_unuse(unsigned int type)
2039 {
2040 struct mm_struct *prev_mm;
2041 struct mm_struct *mm;
2042 struct list_head *p;
2043 int retval = 0;
2044 struct swap_info_struct *si = swap_info[type];
2045 struct folio *folio;
2046 swp_entry_t entry;
2047 unsigned int i;
2048
2049 if (!READ_ONCE(si->inuse_pages))
2050 return 0;
2051
2052 retry:
2053 retval = shmem_unuse(type);
2054 if (retval)
2055 return retval;
2056
2057 prev_mm = &init_mm;
2058 mmget(prev_mm);
2059
2060 spin_lock(&mmlist_lock);
2061 p = &init_mm.mmlist;
2062 while (READ_ONCE(si->inuse_pages) &&
2063 !signal_pending(current) &&
2064 (p = p->next) != &init_mm.mmlist) {
2065
2066 mm = list_entry(p, struct mm_struct, mmlist);
2067 if (!mmget_not_zero(mm))
2068 continue;
2069 spin_unlock(&mmlist_lock);
2070 mmput(prev_mm);
2071 prev_mm = mm;
2072 retval = unuse_mm(mm, type);
2073 if (retval) {
2074 mmput(prev_mm);
2075 return retval;
2076 }
2077
2078 /*
2079 * Make sure that we aren't completely killing
2080 * interactive performance.
2081 */
2082 cond_resched();
2083 spin_lock(&mmlist_lock);
2084 }
2085 spin_unlock(&mmlist_lock);
2086
2087 mmput(prev_mm);
2088
2089 i = 0;
2090 while (READ_ONCE(si->inuse_pages) &&
2091 !signal_pending(current) &&
2092 (i = find_next_to_unuse(si, i)) != 0) {
2093
2094 entry = swp_entry(type, i);
2095 folio = filemap_get_folio(swap_address_space(entry), i);
2096 if (IS_ERR(folio))
2097 continue;
2098
2099 /*
2100 * It is conceivable that a racing task removed this folio from
2101 * swap cache just before we acquired the page lock. The folio
2102 * might even be back in swap cache on another swap area. But
2103 * that is okay, folio_free_swap() only removes stale folios.
2104 */
2105 folio_lock(folio);
2106 folio_wait_writeback(folio);
2107 folio_free_swap(folio);
2108 folio_unlock(folio);
2109 folio_put(folio);
2110 }
2111
2112 /*
2113 * Lets check again to see if there are still swap entries in the map.
2114 * If yes, we would need to do retry the unuse logic again.
2115 * Under global memory pressure, swap entries can be reinserted back
2116 * into process space after the mmlist loop above passes over them.
2117 *
2118 * Limit the number of retries? No: when mmget_not_zero()
2119 * above fails, that mm is likely to be freeing swap from
2120 * exit_mmap(), which proceeds at its own independent pace;
2121 * and even shmem_writepage() could have been preempted after
2122 * folio_alloc_swap(), temporarily hiding that swap. It's easy
2123 * and robust (though cpu-intensive) just to keep retrying.
2124 */
2125 if (READ_ONCE(si->inuse_pages)) {
2126 if (!signal_pending(current))
2127 goto retry;
2128 return -EINTR;
2129 }
2130
2131 return 0;
2132 }
2133
2134 /*
2135 * After a successful try_to_unuse, if no swap is now in use, we know
2136 * we can empty the mmlist. swap_lock must be held on entry and exit.
2137 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2138 * added to the mmlist just after page_duplicate - before would be racy.
2139 */
drain_mmlist(void)2140 static void drain_mmlist(void)
2141 {
2142 struct list_head *p, *next;
2143 unsigned int type;
2144
2145 for (type = 0; type < nr_swapfiles; type++)
2146 if (swap_info[type]->inuse_pages)
2147 return;
2148 spin_lock(&mmlist_lock);
2149 list_for_each_safe(p, next, &init_mm.mmlist)
2150 list_del_init(p);
2151 spin_unlock(&mmlist_lock);
2152 }
2153
2154 /*
2155 * Free all of a swapdev's extent information
2156 */
destroy_swap_extents(struct swap_info_struct * sis)2157 static void destroy_swap_extents(struct swap_info_struct *sis)
2158 {
2159 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2160 struct rb_node *rb = sis->swap_extent_root.rb_node;
2161 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2162
2163 rb_erase(rb, &sis->swap_extent_root);
2164 kfree(se);
2165 }
2166
2167 if (sis->flags & SWP_ACTIVATED) {
2168 struct file *swap_file = sis->swap_file;
2169 struct address_space *mapping = swap_file->f_mapping;
2170
2171 sis->flags &= ~SWP_ACTIVATED;
2172 if (mapping->a_ops->swap_deactivate)
2173 mapping->a_ops->swap_deactivate(swap_file);
2174 }
2175 }
2176
2177 /*
2178 * Add a block range (and the corresponding page range) into this swapdev's
2179 * extent tree.
2180 *
2181 * This function rather assumes that it is called in ascending page order.
2182 */
2183 int
add_swap_extent(struct swap_info_struct * sis,unsigned long start_page,unsigned long nr_pages,sector_t start_block)2184 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2185 unsigned long nr_pages, sector_t start_block)
2186 {
2187 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2188 struct swap_extent *se;
2189 struct swap_extent *new_se;
2190
2191 /*
2192 * place the new node at the right most since the
2193 * function is called in ascending page order.
2194 */
2195 while (*link) {
2196 parent = *link;
2197 link = &parent->rb_right;
2198 }
2199
2200 if (parent) {
2201 se = rb_entry(parent, struct swap_extent, rb_node);
2202 BUG_ON(se->start_page + se->nr_pages != start_page);
2203 if (se->start_block + se->nr_pages == start_block) {
2204 /* Merge it */
2205 se->nr_pages += nr_pages;
2206 return 0;
2207 }
2208 }
2209
2210 /* No merge, insert a new extent. */
2211 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2212 if (new_se == NULL)
2213 return -ENOMEM;
2214 new_se->start_page = start_page;
2215 new_se->nr_pages = nr_pages;
2216 new_se->start_block = start_block;
2217
2218 rb_link_node(&new_se->rb_node, parent, link);
2219 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2220 return 1;
2221 }
2222 EXPORT_SYMBOL_GPL(add_swap_extent);
2223
2224 /*
2225 * A `swap extent' is a simple thing which maps a contiguous range of pages
2226 * onto a contiguous range of disk blocks. A rbtree of swap extents is
2227 * built at swapon time and is then used at swap_writepage/swap_readpage
2228 * time for locating where on disk a page belongs.
2229 *
2230 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2231 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2232 * swap files identically.
2233 *
2234 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2235 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2236 * swapfiles are handled *identically* after swapon time.
2237 *
2238 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2239 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray
2240 * blocks are found which do not fall within the PAGE_SIZE alignment
2241 * requirements, they are simply tossed out - we will never use those blocks
2242 * for swapping.
2243 *
2244 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2245 * prevents users from writing to the swap device, which will corrupt memory.
2246 *
2247 * The amount of disk space which a single swap extent represents varies.
2248 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2249 * extents in the rbtree. - akpm.
2250 */
setup_swap_extents(struct swap_info_struct * sis,sector_t * span)2251 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2252 {
2253 struct file *swap_file = sis->swap_file;
2254 struct address_space *mapping = swap_file->f_mapping;
2255 struct inode *inode = mapping->host;
2256 int ret;
2257
2258 if (S_ISBLK(inode->i_mode)) {
2259 ret = add_swap_extent(sis, 0, sis->max, 0);
2260 *span = sis->pages;
2261 return ret;
2262 }
2263
2264 if (mapping->a_ops->swap_activate) {
2265 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2266 if (ret < 0)
2267 return ret;
2268 sis->flags |= SWP_ACTIVATED;
2269 if ((sis->flags & SWP_FS_OPS) &&
2270 sio_pool_init() != 0) {
2271 destroy_swap_extents(sis);
2272 return -ENOMEM;
2273 }
2274 return ret;
2275 }
2276
2277 return generic_swapfile_activate(sis, swap_file, span);
2278 }
2279
swap_node(struct swap_info_struct * p)2280 static int swap_node(struct swap_info_struct *p)
2281 {
2282 struct block_device *bdev;
2283
2284 if (p->bdev)
2285 bdev = p->bdev;
2286 else
2287 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2288
2289 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2290 }
2291
setup_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info)2292 static void setup_swap_info(struct swap_info_struct *p, int prio,
2293 unsigned char *swap_map,
2294 struct swap_cluster_info *cluster_info)
2295 {
2296 int i;
2297
2298 if (prio >= 0)
2299 p->prio = prio;
2300 else
2301 p->prio = --least_priority;
2302 /*
2303 * the plist prio is negated because plist ordering is
2304 * low-to-high, while swap ordering is high-to-low
2305 */
2306 p->list.prio = -p->prio;
2307 for_each_node(i) {
2308 if (p->prio >= 0)
2309 p->avail_lists[i].prio = -p->prio;
2310 else {
2311 if (swap_node(p) == i)
2312 p->avail_lists[i].prio = 1;
2313 else
2314 p->avail_lists[i].prio = -p->prio;
2315 }
2316 }
2317 p->swap_map = swap_map;
2318 p->cluster_info = cluster_info;
2319 }
2320
_enable_swap_info(struct swap_info_struct * p)2321 static void _enable_swap_info(struct swap_info_struct *p)
2322 {
2323 p->flags |= SWP_WRITEOK;
2324 atomic_long_add(p->pages, &nr_swap_pages);
2325 total_swap_pages += p->pages;
2326
2327 assert_spin_locked(&swap_lock);
2328 /*
2329 * both lists are plists, and thus priority ordered.
2330 * swap_active_head needs to be priority ordered for swapoff(),
2331 * which on removal of any swap_info_struct with an auto-assigned
2332 * (i.e. negative) priority increments the auto-assigned priority
2333 * of any lower-priority swap_info_structs.
2334 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2335 * which allocates swap pages from the highest available priority
2336 * swap_info_struct.
2337 */
2338 plist_add(&p->list, &swap_active_head);
2339
2340 /* add to available list iff swap device is not full */
2341 if (p->highest_bit)
2342 add_to_avail_list(p);
2343 }
2344
enable_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info)2345 static void enable_swap_info(struct swap_info_struct *p, int prio,
2346 unsigned char *swap_map,
2347 struct swap_cluster_info *cluster_info)
2348 {
2349 zswap_swapon(p->type);
2350
2351 spin_lock(&swap_lock);
2352 spin_lock(&p->lock);
2353 setup_swap_info(p, prio, swap_map, cluster_info);
2354 spin_unlock(&p->lock);
2355 spin_unlock(&swap_lock);
2356 /*
2357 * Finished initializing swap device, now it's safe to reference it.
2358 */
2359 percpu_ref_resurrect(&p->users);
2360 spin_lock(&swap_lock);
2361 spin_lock(&p->lock);
2362 _enable_swap_info(p);
2363 spin_unlock(&p->lock);
2364 spin_unlock(&swap_lock);
2365 }
2366
reinsert_swap_info(struct swap_info_struct * p)2367 static void reinsert_swap_info(struct swap_info_struct *p)
2368 {
2369 spin_lock(&swap_lock);
2370 spin_lock(&p->lock);
2371 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2372 _enable_swap_info(p);
2373 spin_unlock(&p->lock);
2374 spin_unlock(&swap_lock);
2375 }
2376
has_usable_swap(void)2377 bool has_usable_swap(void)
2378 {
2379 bool ret = true;
2380
2381 spin_lock(&swap_lock);
2382 if (plist_head_empty(&swap_active_head))
2383 ret = false;
2384 spin_unlock(&swap_lock);
2385 return ret;
2386 }
2387
SYSCALL_DEFINE1(swapoff,const char __user *,specialfile)2388 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2389 {
2390 struct swap_info_struct *p = NULL;
2391 unsigned char *swap_map;
2392 struct swap_cluster_info *cluster_info;
2393 struct file *swap_file, *victim;
2394 struct address_space *mapping;
2395 struct inode *inode;
2396 struct filename *pathname;
2397 int err, found = 0;
2398 unsigned int old_block_size;
2399
2400 if (!capable(CAP_SYS_ADMIN))
2401 return -EPERM;
2402
2403 BUG_ON(!current->mm);
2404
2405 pathname = getname(specialfile);
2406 if (IS_ERR(pathname))
2407 return PTR_ERR(pathname);
2408
2409 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2410 err = PTR_ERR(victim);
2411 if (IS_ERR(victim))
2412 goto out;
2413
2414 mapping = victim->f_mapping;
2415 spin_lock(&swap_lock);
2416 plist_for_each_entry(p, &swap_active_head, list) {
2417 if (p->flags & SWP_WRITEOK) {
2418 if (p->swap_file->f_mapping == mapping) {
2419 found = 1;
2420 break;
2421 }
2422 }
2423 }
2424 if (!found) {
2425 err = -EINVAL;
2426 spin_unlock(&swap_lock);
2427 goto out_dput;
2428 }
2429 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2430 vm_unacct_memory(p->pages);
2431 else {
2432 err = -ENOMEM;
2433 spin_unlock(&swap_lock);
2434 goto out_dput;
2435 }
2436 spin_lock(&p->lock);
2437 del_from_avail_list(p);
2438 if (p->prio < 0) {
2439 struct swap_info_struct *si = p;
2440 int nid;
2441
2442 plist_for_each_entry_continue(si, &swap_active_head, list) {
2443 si->prio++;
2444 si->list.prio--;
2445 for_each_node(nid) {
2446 if (si->avail_lists[nid].prio != 1)
2447 si->avail_lists[nid].prio--;
2448 }
2449 }
2450 least_priority++;
2451 }
2452 plist_del(&p->list, &swap_active_head);
2453 atomic_long_sub(p->pages, &nr_swap_pages);
2454 total_swap_pages -= p->pages;
2455 p->flags &= ~SWP_WRITEOK;
2456 spin_unlock(&p->lock);
2457 spin_unlock(&swap_lock);
2458
2459 disable_swap_slots_cache_lock();
2460
2461 set_current_oom_origin();
2462 err = try_to_unuse(p->type);
2463 clear_current_oom_origin();
2464
2465 if (err) {
2466 /* re-insert swap space back into swap_list */
2467 reinsert_swap_info(p);
2468 reenable_swap_slots_cache_unlock();
2469 goto out_dput;
2470 }
2471
2472 reenable_swap_slots_cache_unlock();
2473
2474 /*
2475 * Wait for swap operations protected by get/put_swap_device()
2476 * to complete.
2477 *
2478 * We need synchronize_rcu() here to protect the accessing to
2479 * the swap cache data structure.
2480 */
2481 percpu_ref_kill(&p->users);
2482 synchronize_rcu();
2483 wait_for_completion(&p->comp);
2484
2485 flush_work(&p->discard_work);
2486
2487 destroy_swap_extents(p);
2488 if (p->flags & SWP_CONTINUED)
2489 free_swap_count_continuations(p);
2490
2491 if (!p->bdev || !bdev_nonrot(p->bdev))
2492 atomic_dec(&nr_rotate_swap);
2493
2494 mutex_lock(&swapon_mutex);
2495 spin_lock(&swap_lock);
2496 spin_lock(&p->lock);
2497 drain_mmlist();
2498
2499 /* wait for anyone still in scan_swap_map_slots */
2500 p->highest_bit = 0; /* cuts scans short */
2501 while (p->flags >= SWP_SCANNING) {
2502 spin_unlock(&p->lock);
2503 spin_unlock(&swap_lock);
2504 schedule_timeout_uninterruptible(1);
2505 spin_lock(&swap_lock);
2506 spin_lock(&p->lock);
2507 }
2508
2509 swap_file = p->swap_file;
2510 old_block_size = p->old_block_size;
2511 p->swap_file = NULL;
2512 p->max = 0;
2513 swap_map = p->swap_map;
2514 p->swap_map = NULL;
2515 cluster_info = p->cluster_info;
2516 p->cluster_info = NULL;
2517 spin_unlock(&p->lock);
2518 spin_unlock(&swap_lock);
2519 arch_swap_invalidate_area(p->type);
2520 zswap_swapoff(p->type);
2521 mutex_unlock(&swapon_mutex);
2522 free_percpu(p->percpu_cluster);
2523 p->percpu_cluster = NULL;
2524 free_percpu(p->cluster_next_cpu);
2525 p->cluster_next_cpu = NULL;
2526 vfree(swap_map);
2527 kvfree(cluster_info);
2528 /* Destroy swap account information */
2529 swap_cgroup_swapoff(p->type);
2530 exit_swap_address_space(p->type);
2531
2532 inode = mapping->host;
2533 if (S_ISBLK(inode->i_mode)) {
2534 struct block_device *bdev = I_BDEV(inode);
2535
2536 set_blocksize(bdev, old_block_size);
2537 blkdev_put(bdev, p);
2538 }
2539
2540 inode_lock(inode);
2541 inode->i_flags &= ~S_SWAPFILE;
2542 inode_unlock(inode);
2543 filp_close(swap_file, NULL);
2544
2545 /*
2546 * Clear the SWP_USED flag after all resources are freed so that swapon
2547 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2548 * not hold p->lock after we cleared its SWP_WRITEOK.
2549 */
2550 spin_lock(&swap_lock);
2551 p->flags = 0;
2552 spin_unlock(&swap_lock);
2553
2554 err = 0;
2555 atomic_inc(&proc_poll_event);
2556 wake_up_interruptible(&proc_poll_wait);
2557
2558 out_dput:
2559 filp_close(victim, NULL);
2560 out:
2561 putname(pathname);
2562 return err;
2563 }
2564
2565 #ifdef CONFIG_PROC_FS
swaps_poll(struct file * file,poll_table * wait)2566 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2567 {
2568 struct seq_file *seq = file->private_data;
2569
2570 poll_wait(file, &proc_poll_wait, wait);
2571
2572 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2573 seq->poll_event = atomic_read(&proc_poll_event);
2574 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2575 }
2576
2577 return EPOLLIN | EPOLLRDNORM;
2578 }
2579
2580 /* iterator */
swap_start(struct seq_file * swap,loff_t * pos)2581 static void *swap_start(struct seq_file *swap, loff_t *pos)
2582 {
2583 struct swap_info_struct *si;
2584 int type;
2585 loff_t l = *pos;
2586
2587 mutex_lock(&swapon_mutex);
2588
2589 if (!l)
2590 return SEQ_START_TOKEN;
2591
2592 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2593 if (!(si->flags & SWP_USED) || !si->swap_map)
2594 continue;
2595 if (!--l)
2596 return si;
2597 }
2598
2599 return NULL;
2600 }
2601
swap_next(struct seq_file * swap,void * v,loff_t * pos)2602 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2603 {
2604 struct swap_info_struct *si = v;
2605 int type;
2606
2607 if (v == SEQ_START_TOKEN)
2608 type = 0;
2609 else
2610 type = si->type + 1;
2611
2612 ++(*pos);
2613 for (; (si = swap_type_to_swap_info(type)); type++) {
2614 if (!(si->flags & SWP_USED) || !si->swap_map)
2615 continue;
2616 return si;
2617 }
2618
2619 return NULL;
2620 }
2621
swap_stop(struct seq_file * swap,void * v)2622 static void swap_stop(struct seq_file *swap, void *v)
2623 {
2624 mutex_unlock(&swapon_mutex);
2625 }
2626
swap_show(struct seq_file * swap,void * v)2627 static int swap_show(struct seq_file *swap, void *v)
2628 {
2629 struct swap_info_struct *si = v;
2630 struct file *file;
2631 int len;
2632 unsigned long bytes, inuse;
2633
2634 if (si == SEQ_START_TOKEN) {
2635 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2636 return 0;
2637 }
2638
2639 bytes = K(si->pages);
2640 inuse = K(READ_ONCE(si->inuse_pages));
2641
2642 file = si->swap_file;
2643 len = seq_file_path(swap, file, " \t\n\\");
2644 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2645 len < 40 ? 40 - len : 1, " ",
2646 S_ISBLK(file_inode(file)->i_mode) ?
2647 "partition" : "file\t",
2648 bytes, bytes < 10000000 ? "\t" : "",
2649 inuse, inuse < 10000000 ? "\t" : "",
2650 si->prio);
2651 return 0;
2652 }
2653
2654 static const struct seq_operations swaps_op = {
2655 .start = swap_start,
2656 .next = swap_next,
2657 .stop = swap_stop,
2658 .show = swap_show
2659 };
2660
swaps_open(struct inode * inode,struct file * file)2661 static int swaps_open(struct inode *inode, struct file *file)
2662 {
2663 struct seq_file *seq;
2664 int ret;
2665
2666 ret = seq_open(file, &swaps_op);
2667 if (ret)
2668 return ret;
2669
2670 seq = file->private_data;
2671 seq->poll_event = atomic_read(&proc_poll_event);
2672 return 0;
2673 }
2674
2675 static const struct proc_ops swaps_proc_ops = {
2676 .proc_flags = PROC_ENTRY_PERMANENT,
2677 .proc_open = swaps_open,
2678 .proc_read = seq_read,
2679 .proc_lseek = seq_lseek,
2680 .proc_release = seq_release,
2681 .proc_poll = swaps_poll,
2682 };
2683
procswaps_init(void)2684 static int __init procswaps_init(void)
2685 {
2686 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2687 return 0;
2688 }
2689 __initcall(procswaps_init);
2690 #endif /* CONFIG_PROC_FS */
2691
2692 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)2693 static int __init max_swapfiles_check(void)
2694 {
2695 MAX_SWAPFILES_CHECK();
2696 return 0;
2697 }
2698 late_initcall(max_swapfiles_check);
2699 #endif
2700
alloc_swap_info(void)2701 static struct swap_info_struct *alloc_swap_info(void)
2702 {
2703 struct swap_info_struct *p;
2704 struct swap_info_struct *defer = NULL;
2705 unsigned int type;
2706 int i;
2707
2708 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2709 if (!p)
2710 return ERR_PTR(-ENOMEM);
2711
2712 if (percpu_ref_init(&p->users, swap_users_ref_free,
2713 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2714 kvfree(p);
2715 return ERR_PTR(-ENOMEM);
2716 }
2717
2718 spin_lock(&swap_lock);
2719 for (type = 0; type < nr_swapfiles; type++) {
2720 if (!(swap_info[type]->flags & SWP_USED))
2721 break;
2722 }
2723 if (type >= MAX_SWAPFILES) {
2724 spin_unlock(&swap_lock);
2725 percpu_ref_exit(&p->users);
2726 kvfree(p);
2727 return ERR_PTR(-EPERM);
2728 }
2729 if (type >= nr_swapfiles) {
2730 p->type = type;
2731 /*
2732 * Publish the swap_info_struct after initializing it.
2733 * Note that kvzalloc() above zeroes all its fields.
2734 */
2735 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2736 nr_swapfiles++;
2737 } else {
2738 defer = p;
2739 p = swap_info[type];
2740 /*
2741 * Do not memset this entry: a racing procfs swap_next()
2742 * would be relying on p->type to remain valid.
2743 */
2744 }
2745 p->swap_extent_root = RB_ROOT;
2746 plist_node_init(&p->list, 0);
2747 for_each_node(i)
2748 plist_node_init(&p->avail_lists[i], 0);
2749 p->flags = SWP_USED;
2750 spin_unlock(&swap_lock);
2751 if (defer) {
2752 percpu_ref_exit(&defer->users);
2753 kvfree(defer);
2754 }
2755 spin_lock_init(&p->lock);
2756 spin_lock_init(&p->cont_lock);
2757 init_completion(&p->comp);
2758
2759 return p;
2760 }
2761
claim_swapfile(struct swap_info_struct * p,struct inode * inode)2762 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2763 {
2764 int error;
2765
2766 if (S_ISBLK(inode->i_mode)) {
2767 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2768 BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL);
2769 if (IS_ERR(p->bdev)) {
2770 error = PTR_ERR(p->bdev);
2771 p->bdev = NULL;
2772 return error;
2773 }
2774 p->old_block_size = block_size(p->bdev);
2775 error = set_blocksize(p->bdev, PAGE_SIZE);
2776 if (error < 0)
2777 return error;
2778 /*
2779 * Zoned block devices contain zones that have a sequential
2780 * write only restriction. Hence zoned block devices are not
2781 * suitable for swapping. Disallow them here.
2782 */
2783 if (bdev_is_zoned(p->bdev))
2784 return -EINVAL;
2785 p->flags |= SWP_BLKDEV;
2786 } else if (S_ISREG(inode->i_mode)) {
2787 p->bdev = inode->i_sb->s_bdev;
2788 }
2789
2790 return 0;
2791 }
2792
2793
2794 /*
2795 * Find out how many pages are allowed for a single swap device. There
2796 * are two limiting factors:
2797 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2798 * 2) the number of bits in the swap pte, as defined by the different
2799 * architectures.
2800 *
2801 * In order to find the largest possible bit mask, a swap entry with
2802 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2803 * decoded to a swp_entry_t again, and finally the swap offset is
2804 * extracted.
2805 *
2806 * This will mask all the bits from the initial ~0UL mask that can't
2807 * be encoded in either the swp_entry_t or the architecture definition
2808 * of a swap pte.
2809 */
generic_max_swapfile_size(void)2810 unsigned long generic_max_swapfile_size(void)
2811 {
2812 return swp_offset(pte_to_swp_entry(
2813 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2814 }
2815
2816 /* Can be overridden by an architecture for additional checks. */
arch_max_swapfile_size(void)2817 __weak unsigned long arch_max_swapfile_size(void)
2818 {
2819 return generic_max_swapfile_size();
2820 }
2821
read_swap_header(struct swap_info_struct * p,union swap_header * swap_header,struct inode * inode)2822 static unsigned long read_swap_header(struct swap_info_struct *p,
2823 union swap_header *swap_header,
2824 struct inode *inode)
2825 {
2826 int i;
2827 unsigned long maxpages;
2828 unsigned long swapfilepages;
2829 unsigned long last_page;
2830
2831 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2832 pr_err("Unable to find swap-space signature\n");
2833 return 0;
2834 }
2835
2836 /* swap partition endianness hack... */
2837 if (swab32(swap_header->info.version) == 1) {
2838 swab32s(&swap_header->info.version);
2839 swab32s(&swap_header->info.last_page);
2840 swab32s(&swap_header->info.nr_badpages);
2841 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2842 return 0;
2843 for (i = 0; i < swap_header->info.nr_badpages; i++)
2844 swab32s(&swap_header->info.badpages[i]);
2845 }
2846 /* Check the swap header's sub-version */
2847 if (swap_header->info.version != 1) {
2848 pr_warn("Unable to handle swap header version %d\n",
2849 swap_header->info.version);
2850 return 0;
2851 }
2852
2853 p->lowest_bit = 1;
2854 p->cluster_next = 1;
2855 p->cluster_nr = 0;
2856
2857 maxpages = swapfile_maximum_size;
2858 last_page = swap_header->info.last_page;
2859 if (!last_page) {
2860 pr_warn("Empty swap-file\n");
2861 return 0;
2862 }
2863 if (last_page > maxpages) {
2864 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2865 K(maxpages), K(last_page));
2866 }
2867 if (maxpages > last_page) {
2868 maxpages = last_page + 1;
2869 /* p->max is an unsigned int: don't overflow it */
2870 if ((unsigned int)maxpages == 0)
2871 maxpages = UINT_MAX;
2872 }
2873 p->highest_bit = maxpages - 1;
2874
2875 if (!maxpages)
2876 return 0;
2877 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2878 if (swapfilepages && maxpages > swapfilepages) {
2879 pr_warn("Swap area shorter than signature indicates\n");
2880 return 0;
2881 }
2882 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2883 return 0;
2884 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2885 return 0;
2886
2887 return maxpages;
2888 }
2889
2890 #define SWAP_CLUSTER_INFO_COLS \
2891 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2892 #define SWAP_CLUSTER_SPACE_COLS \
2893 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2894 #define SWAP_CLUSTER_COLS \
2895 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2896
setup_swap_map_and_extents(struct swap_info_struct * p,union swap_header * swap_header,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long maxpages,sector_t * span)2897 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2898 union swap_header *swap_header,
2899 unsigned char *swap_map,
2900 struct swap_cluster_info *cluster_info,
2901 unsigned long maxpages,
2902 sector_t *span)
2903 {
2904 unsigned int j, k;
2905 unsigned int nr_good_pages;
2906 int nr_extents;
2907 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2908 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2909 unsigned long i, idx;
2910
2911 nr_good_pages = maxpages - 1; /* omit header page */
2912
2913 cluster_list_init(&p->free_clusters);
2914 cluster_list_init(&p->discard_clusters);
2915
2916 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2917 unsigned int page_nr = swap_header->info.badpages[i];
2918 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2919 return -EINVAL;
2920 if (page_nr < maxpages) {
2921 swap_map[page_nr] = SWAP_MAP_BAD;
2922 nr_good_pages--;
2923 /*
2924 * Haven't marked the cluster free yet, no list
2925 * operation involved
2926 */
2927 inc_cluster_info_page(p, cluster_info, page_nr);
2928 }
2929 }
2930
2931 /* Haven't marked the cluster free yet, no list operation involved */
2932 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2933 inc_cluster_info_page(p, cluster_info, i);
2934
2935 if (nr_good_pages) {
2936 swap_map[0] = SWAP_MAP_BAD;
2937 /*
2938 * Not mark the cluster free yet, no list
2939 * operation involved
2940 */
2941 inc_cluster_info_page(p, cluster_info, 0);
2942 p->max = maxpages;
2943 p->pages = nr_good_pages;
2944 nr_extents = setup_swap_extents(p, span);
2945 if (nr_extents < 0)
2946 return nr_extents;
2947 nr_good_pages = p->pages;
2948 }
2949 if (!nr_good_pages) {
2950 pr_warn("Empty swap-file\n");
2951 return -EINVAL;
2952 }
2953
2954 if (!cluster_info)
2955 return nr_extents;
2956
2957
2958 /*
2959 * Reduce false cache line sharing between cluster_info and
2960 * sharing same address space.
2961 */
2962 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2963 j = (k + col) % SWAP_CLUSTER_COLS;
2964 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2965 idx = i * SWAP_CLUSTER_COLS + j;
2966 if (idx >= nr_clusters)
2967 continue;
2968 if (cluster_count(&cluster_info[idx]))
2969 continue;
2970 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2971 cluster_list_add_tail(&p->free_clusters, cluster_info,
2972 idx);
2973 }
2974 }
2975 return nr_extents;
2976 }
2977
SYSCALL_DEFINE2(swapon,const char __user *,specialfile,int,swap_flags)2978 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2979 {
2980 struct swap_info_struct *p;
2981 struct filename *name;
2982 struct file *swap_file = NULL;
2983 struct address_space *mapping;
2984 struct dentry *dentry;
2985 int prio;
2986 int error;
2987 union swap_header *swap_header;
2988 int nr_extents;
2989 sector_t span;
2990 unsigned long maxpages;
2991 unsigned char *swap_map = NULL;
2992 struct swap_cluster_info *cluster_info = NULL;
2993 struct page *page = NULL;
2994 struct inode *inode = NULL;
2995 bool inced_nr_rotate_swap = false;
2996
2997 if (swap_flags & ~SWAP_FLAGS_VALID)
2998 return -EINVAL;
2999
3000 if (!capable(CAP_SYS_ADMIN))
3001 return -EPERM;
3002
3003 if (!swap_avail_heads)
3004 return -ENOMEM;
3005
3006 p = alloc_swap_info();
3007 if (IS_ERR(p))
3008 return PTR_ERR(p);
3009
3010 INIT_WORK(&p->discard_work, swap_discard_work);
3011
3012 name = getname(specialfile);
3013 if (IS_ERR(name)) {
3014 error = PTR_ERR(name);
3015 name = NULL;
3016 goto bad_swap;
3017 }
3018 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3019 if (IS_ERR(swap_file)) {
3020 error = PTR_ERR(swap_file);
3021 swap_file = NULL;
3022 goto bad_swap;
3023 }
3024
3025 p->swap_file = swap_file;
3026 mapping = swap_file->f_mapping;
3027 dentry = swap_file->f_path.dentry;
3028 inode = mapping->host;
3029
3030 error = claim_swapfile(p, inode);
3031 if (unlikely(error))
3032 goto bad_swap;
3033
3034 inode_lock(inode);
3035 if (d_unlinked(dentry) || cant_mount(dentry)) {
3036 error = -ENOENT;
3037 goto bad_swap_unlock_inode;
3038 }
3039 if (IS_SWAPFILE(inode)) {
3040 error = -EBUSY;
3041 goto bad_swap_unlock_inode;
3042 }
3043
3044 /*
3045 * Read the swap header.
3046 */
3047 if (!mapping->a_ops->read_folio) {
3048 error = -EINVAL;
3049 goto bad_swap_unlock_inode;
3050 }
3051 page = read_mapping_page(mapping, 0, swap_file);
3052 if (IS_ERR(page)) {
3053 error = PTR_ERR(page);
3054 goto bad_swap_unlock_inode;
3055 }
3056 swap_header = kmap(page);
3057
3058 maxpages = read_swap_header(p, swap_header, inode);
3059 if (unlikely(!maxpages)) {
3060 error = -EINVAL;
3061 goto bad_swap_unlock_inode;
3062 }
3063
3064 /* OK, set up the swap map and apply the bad block list */
3065 swap_map = vzalloc(maxpages);
3066 if (!swap_map) {
3067 error = -ENOMEM;
3068 goto bad_swap_unlock_inode;
3069 }
3070
3071 if (p->bdev && bdev_stable_writes(p->bdev))
3072 p->flags |= SWP_STABLE_WRITES;
3073
3074 if (p->bdev && bdev_synchronous(p->bdev))
3075 p->flags |= SWP_SYNCHRONOUS_IO;
3076
3077 if (p->bdev && bdev_nonrot(p->bdev)) {
3078 int cpu;
3079 unsigned long ci, nr_cluster;
3080
3081 p->flags |= SWP_SOLIDSTATE;
3082 p->cluster_next_cpu = alloc_percpu(unsigned int);
3083 if (!p->cluster_next_cpu) {
3084 error = -ENOMEM;
3085 goto bad_swap_unlock_inode;
3086 }
3087 /*
3088 * select a random position to start with to help wear leveling
3089 * SSD
3090 */
3091 for_each_possible_cpu(cpu) {
3092 per_cpu(*p->cluster_next_cpu, cpu) =
3093 get_random_u32_inclusive(1, p->highest_bit);
3094 }
3095 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3096
3097 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3098 GFP_KERNEL);
3099 if (!cluster_info) {
3100 error = -ENOMEM;
3101 goto bad_swap_unlock_inode;
3102 }
3103
3104 for (ci = 0; ci < nr_cluster; ci++)
3105 spin_lock_init(&((cluster_info + ci)->lock));
3106
3107 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3108 if (!p->percpu_cluster) {
3109 error = -ENOMEM;
3110 goto bad_swap_unlock_inode;
3111 }
3112 for_each_possible_cpu(cpu) {
3113 struct percpu_cluster *cluster;
3114 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3115 cluster_set_null(&cluster->index);
3116 }
3117 } else {
3118 atomic_inc(&nr_rotate_swap);
3119 inced_nr_rotate_swap = true;
3120 }
3121
3122 error = swap_cgroup_swapon(p->type, maxpages);
3123 if (error)
3124 goto bad_swap_unlock_inode;
3125
3126 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3127 cluster_info, maxpages, &span);
3128 if (unlikely(nr_extents < 0)) {
3129 error = nr_extents;
3130 goto bad_swap_unlock_inode;
3131 }
3132
3133 if ((swap_flags & SWAP_FLAG_DISCARD) &&
3134 p->bdev && bdev_max_discard_sectors(p->bdev)) {
3135 /*
3136 * When discard is enabled for swap with no particular
3137 * policy flagged, we set all swap discard flags here in
3138 * order to sustain backward compatibility with older
3139 * swapon(8) releases.
3140 */
3141 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3142 SWP_PAGE_DISCARD);
3143
3144 /*
3145 * By flagging sys_swapon, a sysadmin can tell us to
3146 * either do single-time area discards only, or to just
3147 * perform discards for released swap page-clusters.
3148 * Now it's time to adjust the p->flags accordingly.
3149 */
3150 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3151 p->flags &= ~SWP_PAGE_DISCARD;
3152 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3153 p->flags &= ~SWP_AREA_DISCARD;
3154
3155 /* issue a swapon-time discard if it's still required */
3156 if (p->flags & SWP_AREA_DISCARD) {
3157 int err = discard_swap(p);
3158 if (unlikely(err))
3159 pr_err("swapon: discard_swap(%p): %d\n",
3160 p, err);
3161 }
3162 }
3163
3164 error = init_swap_address_space(p->type, maxpages);
3165 if (error)
3166 goto bad_swap_unlock_inode;
3167
3168 /*
3169 * Flush any pending IO and dirty mappings before we start using this
3170 * swap device.
3171 */
3172 inode->i_flags |= S_SWAPFILE;
3173 error = inode_drain_writes(inode);
3174 if (error) {
3175 inode->i_flags &= ~S_SWAPFILE;
3176 goto free_swap_address_space;
3177 }
3178
3179 mutex_lock(&swapon_mutex);
3180 prio = -1;
3181 if (swap_flags & SWAP_FLAG_PREFER)
3182 prio =
3183 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3184 enable_swap_info(p, prio, swap_map, cluster_info);
3185
3186 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3187 K(p->pages), name->name, p->prio, nr_extents,
3188 K((unsigned long long)span),
3189 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3190 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3191 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3192 (p->flags & SWP_PAGE_DISCARD) ? "c" : "");
3193
3194 mutex_unlock(&swapon_mutex);
3195 atomic_inc(&proc_poll_event);
3196 wake_up_interruptible(&proc_poll_wait);
3197
3198 error = 0;
3199 goto out;
3200 free_swap_address_space:
3201 exit_swap_address_space(p->type);
3202 bad_swap_unlock_inode:
3203 inode_unlock(inode);
3204 bad_swap:
3205 free_percpu(p->percpu_cluster);
3206 p->percpu_cluster = NULL;
3207 free_percpu(p->cluster_next_cpu);
3208 p->cluster_next_cpu = NULL;
3209 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3210 set_blocksize(p->bdev, p->old_block_size);
3211 blkdev_put(p->bdev, p);
3212 }
3213 inode = NULL;
3214 destroy_swap_extents(p);
3215 swap_cgroup_swapoff(p->type);
3216 spin_lock(&swap_lock);
3217 p->swap_file = NULL;
3218 p->flags = 0;
3219 spin_unlock(&swap_lock);
3220 vfree(swap_map);
3221 kvfree(cluster_info);
3222 if (inced_nr_rotate_swap)
3223 atomic_dec(&nr_rotate_swap);
3224 if (swap_file)
3225 filp_close(swap_file, NULL);
3226 out:
3227 if (page && !IS_ERR(page)) {
3228 kunmap(page);
3229 put_page(page);
3230 }
3231 if (name)
3232 putname(name);
3233 if (inode)
3234 inode_unlock(inode);
3235 if (!error)
3236 enable_swap_slots_cache();
3237 return error;
3238 }
3239
si_swapinfo(struct sysinfo * val)3240 void si_swapinfo(struct sysinfo *val)
3241 {
3242 unsigned int type;
3243 unsigned long nr_to_be_unused = 0;
3244
3245 spin_lock(&swap_lock);
3246 for (type = 0; type < nr_swapfiles; type++) {
3247 struct swap_info_struct *si = swap_info[type];
3248
3249 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3250 nr_to_be_unused += READ_ONCE(si->inuse_pages);
3251 }
3252 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3253 val->totalswap = total_swap_pages + nr_to_be_unused;
3254 spin_unlock(&swap_lock);
3255 }
3256
3257 /*
3258 * Verify that a swap entry is valid and increment its swap map count.
3259 *
3260 * Returns error code in following case.
3261 * - success -> 0
3262 * - swp_entry is invalid -> EINVAL
3263 * - swp_entry is migration entry -> EINVAL
3264 * - swap-cache reference is requested but there is already one. -> EEXIST
3265 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3266 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3267 */
__swap_duplicate(swp_entry_t entry,unsigned char usage)3268 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3269 {
3270 struct swap_info_struct *p;
3271 struct swap_cluster_info *ci;
3272 unsigned long offset;
3273 unsigned char count;
3274 unsigned char has_cache;
3275 int err;
3276
3277 p = swp_swap_info(entry);
3278
3279 offset = swp_offset(entry);
3280 ci = lock_cluster_or_swap_info(p, offset);
3281
3282 count = p->swap_map[offset];
3283
3284 /*
3285 * swapin_readahead() doesn't check if a swap entry is valid, so the
3286 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3287 */
3288 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3289 err = -ENOENT;
3290 goto unlock_out;
3291 }
3292
3293 has_cache = count & SWAP_HAS_CACHE;
3294 count &= ~SWAP_HAS_CACHE;
3295 err = 0;
3296
3297 if (usage == SWAP_HAS_CACHE) {
3298
3299 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3300 if (!has_cache && count)
3301 has_cache = SWAP_HAS_CACHE;
3302 else if (has_cache) /* someone else added cache */
3303 err = -EEXIST;
3304 else /* no users remaining */
3305 err = -ENOENT;
3306
3307 } else if (count || has_cache) {
3308
3309 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3310 count += usage;
3311 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3312 err = -EINVAL;
3313 else if (swap_count_continued(p, offset, count))
3314 count = COUNT_CONTINUED;
3315 else
3316 err = -ENOMEM;
3317 } else
3318 err = -ENOENT; /* unused swap entry */
3319
3320 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3321
3322 unlock_out:
3323 unlock_cluster_or_swap_info(p, ci);
3324 return err;
3325 }
3326
3327 /*
3328 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3329 * (in which case its reference count is never incremented).
3330 */
swap_shmem_alloc(swp_entry_t entry)3331 void swap_shmem_alloc(swp_entry_t entry)
3332 {
3333 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3334 }
3335
3336 /*
3337 * Increase reference count of swap entry by 1.
3338 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3339 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3340 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3341 * might occur if a page table entry has got corrupted.
3342 */
swap_duplicate(swp_entry_t entry)3343 int swap_duplicate(swp_entry_t entry)
3344 {
3345 int err = 0;
3346
3347 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3348 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3349 return err;
3350 }
3351
3352 /*
3353 * @entry: swap entry for which we allocate swap cache.
3354 *
3355 * Called when allocating swap cache for existing swap entry,
3356 * This can return error codes. Returns 0 at success.
3357 * -EEXIST means there is a swap cache.
3358 * Note: return code is different from swap_duplicate().
3359 */
swapcache_prepare(swp_entry_t entry)3360 int swapcache_prepare(swp_entry_t entry)
3361 {
3362 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3363 }
3364
swapcache_clear(struct swap_info_struct * si,swp_entry_t entry)3365 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry)
3366 {
3367 struct swap_cluster_info *ci;
3368 unsigned long offset = swp_offset(entry);
3369 unsigned char usage;
3370
3371 ci = lock_cluster_or_swap_info(si, offset);
3372 usage = __swap_entry_free_locked(si, offset, SWAP_HAS_CACHE);
3373 unlock_cluster_or_swap_info(si, ci);
3374 if (!usage)
3375 free_swap_slot(entry);
3376 }
3377
swp_swap_info(swp_entry_t entry)3378 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3379 {
3380 return swap_type_to_swap_info(swp_type(entry));
3381 }
3382
page_swap_info(struct page * page)3383 struct swap_info_struct *page_swap_info(struct page *page)
3384 {
3385 swp_entry_t entry = page_swap_entry(page);
3386 return swp_swap_info(entry);
3387 }
3388
3389 /*
3390 * out-of-line methods to avoid include hell.
3391 */
swapcache_mapping(struct folio * folio)3392 struct address_space *swapcache_mapping(struct folio *folio)
3393 {
3394 return page_swap_info(&folio->page)->swap_file->f_mapping;
3395 }
3396 EXPORT_SYMBOL_GPL(swapcache_mapping);
3397
__page_file_index(struct page * page)3398 pgoff_t __page_file_index(struct page *page)
3399 {
3400 swp_entry_t swap = page_swap_entry(page);
3401 return swp_offset(swap);
3402 }
3403 EXPORT_SYMBOL_GPL(__page_file_index);
3404
3405 /*
3406 * add_swap_count_continuation - called when a swap count is duplicated
3407 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3408 * page of the original vmalloc'ed swap_map, to hold the continuation count
3409 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3410 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3411 *
3412 * These continuation pages are seldom referenced: the common paths all work
3413 * on the original swap_map, only referring to a continuation page when the
3414 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3415 *
3416 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3417 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3418 * can be called after dropping locks.
3419 */
add_swap_count_continuation(swp_entry_t entry,gfp_t gfp_mask)3420 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3421 {
3422 struct swap_info_struct *si;
3423 struct swap_cluster_info *ci;
3424 struct page *head;
3425 struct page *page;
3426 struct page *list_page;
3427 pgoff_t offset;
3428 unsigned char count;
3429 int ret = 0;
3430
3431 /*
3432 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3433 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3434 */
3435 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3436
3437 si = get_swap_device(entry);
3438 if (!si) {
3439 /*
3440 * An acceptable race has occurred since the failing
3441 * __swap_duplicate(): the swap device may be swapoff
3442 */
3443 goto outer;
3444 }
3445 spin_lock(&si->lock);
3446
3447 offset = swp_offset(entry);
3448
3449 ci = lock_cluster(si, offset);
3450
3451 count = swap_count(si->swap_map[offset]);
3452
3453 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3454 /*
3455 * The higher the swap count, the more likely it is that tasks
3456 * will race to add swap count continuation: we need to avoid
3457 * over-provisioning.
3458 */
3459 goto out;
3460 }
3461
3462 if (!page) {
3463 ret = -ENOMEM;
3464 goto out;
3465 }
3466
3467 head = vmalloc_to_page(si->swap_map + offset);
3468 offset &= ~PAGE_MASK;
3469
3470 spin_lock(&si->cont_lock);
3471 /*
3472 * Page allocation does not initialize the page's lru field,
3473 * but it does always reset its private field.
3474 */
3475 if (!page_private(head)) {
3476 BUG_ON(count & COUNT_CONTINUED);
3477 INIT_LIST_HEAD(&head->lru);
3478 set_page_private(head, SWP_CONTINUED);
3479 si->flags |= SWP_CONTINUED;
3480 }
3481
3482 list_for_each_entry(list_page, &head->lru, lru) {
3483 unsigned char *map;
3484
3485 /*
3486 * If the previous map said no continuation, but we've found
3487 * a continuation page, free our allocation and use this one.
3488 */
3489 if (!(count & COUNT_CONTINUED))
3490 goto out_unlock_cont;
3491
3492 map = kmap_atomic(list_page) + offset;
3493 count = *map;
3494 kunmap_atomic(map);
3495
3496 /*
3497 * If this continuation count now has some space in it,
3498 * free our allocation and use this one.
3499 */
3500 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3501 goto out_unlock_cont;
3502 }
3503
3504 list_add_tail(&page->lru, &head->lru);
3505 page = NULL; /* now it's attached, don't free it */
3506 out_unlock_cont:
3507 spin_unlock(&si->cont_lock);
3508 out:
3509 unlock_cluster(ci);
3510 spin_unlock(&si->lock);
3511 put_swap_device(si);
3512 outer:
3513 if (page)
3514 __free_page(page);
3515 return ret;
3516 }
3517
3518 /*
3519 * swap_count_continued - when the original swap_map count is incremented
3520 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3521 * into, carry if so, or else fail until a new continuation page is allocated;
3522 * when the original swap_map count is decremented from 0 with continuation,
3523 * borrow from the continuation and report whether it still holds more.
3524 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3525 * lock.
3526 */
swap_count_continued(struct swap_info_struct * si,pgoff_t offset,unsigned char count)3527 static bool swap_count_continued(struct swap_info_struct *si,
3528 pgoff_t offset, unsigned char count)
3529 {
3530 struct page *head;
3531 struct page *page;
3532 unsigned char *map;
3533 bool ret;
3534
3535 head = vmalloc_to_page(si->swap_map + offset);
3536 if (page_private(head) != SWP_CONTINUED) {
3537 BUG_ON(count & COUNT_CONTINUED);
3538 return false; /* need to add count continuation */
3539 }
3540
3541 spin_lock(&si->cont_lock);
3542 offset &= ~PAGE_MASK;
3543 page = list_next_entry(head, lru);
3544 map = kmap_atomic(page) + offset;
3545
3546 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3547 goto init_map; /* jump over SWAP_CONT_MAX checks */
3548
3549 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3550 /*
3551 * Think of how you add 1 to 999
3552 */
3553 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3554 kunmap_atomic(map);
3555 page = list_next_entry(page, lru);
3556 BUG_ON(page == head);
3557 map = kmap_atomic(page) + offset;
3558 }
3559 if (*map == SWAP_CONT_MAX) {
3560 kunmap_atomic(map);
3561 page = list_next_entry(page, lru);
3562 if (page == head) {
3563 ret = false; /* add count continuation */
3564 goto out;
3565 }
3566 map = kmap_atomic(page) + offset;
3567 init_map: *map = 0; /* we didn't zero the page */
3568 }
3569 *map += 1;
3570 kunmap_atomic(map);
3571 while ((page = list_prev_entry(page, lru)) != head) {
3572 map = kmap_atomic(page) + offset;
3573 *map = COUNT_CONTINUED;
3574 kunmap_atomic(map);
3575 }
3576 ret = true; /* incremented */
3577
3578 } else { /* decrementing */
3579 /*
3580 * Think of how you subtract 1 from 1000
3581 */
3582 BUG_ON(count != COUNT_CONTINUED);
3583 while (*map == COUNT_CONTINUED) {
3584 kunmap_atomic(map);
3585 page = list_next_entry(page, lru);
3586 BUG_ON(page == head);
3587 map = kmap_atomic(page) + offset;
3588 }
3589 BUG_ON(*map == 0);
3590 *map -= 1;
3591 if (*map == 0)
3592 count = 0;
3593 kunmap_atomic(map);
3594 while ((page = list_prev_entry(page, lru)) != head) {
3595 map = kmap_atomic(page) + offset;
3596 *map = SWAP_CONT_MAX | count;
3597 count = COUNT_CONTINUED;
3598 kunmap_atomic(map);
3599 }
3600 ret = count == COUNT_CONTINUED;
3601 }
3602 out:
3603 spin_unlock(&si->cont_lock);
3604 return ret;
3605 }
3606
3607 /*
3608 * free_swap_count_continuations - swapoff free all the continuation pages
3609 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3610 */
free_swap_count_continuations(struct swap_info_struct * si)3611 static void free_swap_count_continuations(struct swap_info_struct *si)
3612 {
3613 pgoff_t offset;
3614
3615 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3616 struct page *head;
3617 head = vmalloc_to_page(si->swap_map + offset);
3618 if (page_private(head)) {
3619 struct page *page, *next;
3620
3621 list_for_each_entry_safe(page, next, &head->lru, lru) {
3622 list_del(&page->lru);
3623 __free_page(page);
3624 }
3625 }
3626 }
3627 }
3628
3629 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
__folio_throttle_swaprate(struct folio * folio,gfp_t gfp)3630 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3631 {
3632 struct swap_info_struct *si, *next;
3633 int nid = folio_nid(folio);
3634
3635 if (!(gfp & __GFP_IO))
3636 return;
3637
3638 if (!blk_cgroup_congested())
3639 return;
3640
3641 /*
3642 * We've already scheduled a throttle, avoid taking the global swap
3643 * lock.
3644 */
3645 if (current->throttle_disk)
3646 return;
3647
3648 spin_lock(&swap_avail_lock);
3649 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3650 avail_lists[nid]) {
3651 if (si->bdev) {
3652 blkcg_schedule_throttle(si->bdev->bd_disk, true);
3653 break;
3654 }
3655 }
3656 spin_unlock(&swap_avail_lock);
3657 }
3658 #endif
3659
swapfile_init(void)3660 static int __init swapfile_init(void)
3661 {
3662 int nid;
3663
3664 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3665 GFP_KERNEL);
3666 if (!swap_avail_heads) {
3667 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3668 return -ENOMEM;
3669 }
3670
3671 for_each_node(nid)
3672 plist_head_init(&swap_avail_heads[nid]);
3673
3674 swapfile_maximum_size = arch_max_swapfile_size();
3675
3676 #ifdef CONFIG_MIGRATION
3677 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3678 swap_migration_ad_supported = true;
3679 #endif /* CONFIG_MIGRATION */
3680
3681 return 0;
3682 }
3683 subsys_initcall(swapfile_init);
3684