1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Dynamic DMA mapping support.
4 *
5 * This implementation is a fallback for platforms that do not support
6 * I/O TLBs (aka DMA address translation hardware).
7 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
8 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
9 * Copyright (C) 2000, 2003 Hewlett-Packard Co
10 * David Mosberger-Tang <davidm@hpl.hp.com>
11 *
12 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
13 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
14 * unnecessary i-cache flushing.
15 * 04/07/.. ak Better overflow handling. Assorted fixes.
16 * 05/09/10 linville Add support for syncing ranges, support syncing for
17 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
18 * 08/12/11 beckyb Add highmem support
19 */
20
21 #define pr_fmt(fmt) "software IO TLB: " fmt
22
23 #include <linux/cache.h>
24 #include <linux/cc_platform.h>
25 #include <linux/ctype.h>
26 #include <linux/debugfs.h>
27 #include <linux/dma-direct.h>
28 #include <linux/dma-map-ops.h>
29 #include <linux/export.h>
30 #include <linux/gfp.h>
31 #include <linux/highmem.h>
32 #include <linux/io.h>
33 #include <linux/iommu-helper.h>
34 #include <linux/init.h>
35 #include <linux/memblock.h>
36 #include <linux/mm.h>
37 #include <linux/pfn.h>
38 #include <linux/scatterlist.h>
39 #include <linux/set_memory.h>
40 #include <linux/spinlock.h>
41 #include <linux/string.h>
42 #include <linux/swiotlb.h>
43 #include <linux/types.h>
44 #ifdef CONFIG_DMA_RESTRICTED_POOL
45 #include <linux/of.h>
46 #include <linux/of_fdt.h>
47 #include <linux/of_reserved_mem.h>
48 #include <linux/slab.h>
49 #endif
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/swiotlb.h>
53
54 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
55
56 /*
57 * Minimum IO TLB size to bother booting with. Systems with mainly
58 * 64bit capable cards will only lightly use the swiotlb. If we can't
59 * allocate a contiguous 1MB, we're probably in trouble anyway.
60 */
61 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
62
63 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
64
65 struct io_tlb_slot {
66 phys_addr_t orig_addr;
67 size_t alloc_size;
68 unsigned int list;
69 };
70
71 static bool swiotlb_force_bounce;
72 static bool swiotlb_force_disable;
73
74 struct io_tlb_mem io_tlb_default_mem;
75
76 phys_addr_t swiotlb_unencrypted_base;
77
78 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
79 static unsigned long default_nareas;
80
81 /**
82 * struct io_tlb_area - IO TLB memory area descriptor
83 *
84 * This is a single area with a single lock.
85 *
86 * @used: The number of used IO TLB block.
87 * @index: The slot index to start searching in this area for next round.
88 * @lock: The lock to protect the above data structures in the map and
89 * unmap calls.
90 */
91 struct io_tlb_area {
92 unsigned long used;
93 unsigned int index;
94 spinlock_t lock;
95 };
96
97 /*
98 * Round up number of slabs to the next power of 2. The last area is going
99 * be smaller than the rest if default_nslabs is not power of two.
100 * The number of slot in an area should be a multiple of IO_TLB_SEGSIZE,
101 * otherwise a segment may span two or more areas. It conflicts with free
102 * contiguous slots tracking: free slots are treated contiguous no matter
103 * whether they cross an area boundary.
104 *
105 * Return true if default_nslabs is rounded up.
106 */
round_up_default_nslabs(void)107 static bool round_up_default_nslabs(void)
108 {
109 if (!default_nareas)
110 return false;
111
112 if (default_nslabs < IO_TLB_SEGSIZE * default_nareas)
113 default_nslabs = IO_TLB_SEGSIZE * default_nareas;
114 else if (is_power_of_2(default_nslabs))
115 return false;
116 default_nslabs = roundup_pow_of_two(default_nslabs);
117 return true;
118 }
119
swiotlb_adjust_nareas(unsigned int nareas)120 static void swiotlb_adjust_nareas(unsigned int nareas)
121 {
122 /* use a single area when non is specified */
123 if (!nareas)
124 nareas = 1;
125 else if (!is_power_of_2(nareas))
126 nareas = roundup_pow_of_two(nareas);
127
128 default_nareas = nareas;
129
130 pr_info("area num %d.\n", nareas);
131 if (round_up_default_nslabs())
132 pr_info("SWIOTLB bounce buffer size roundup to %luMB",
133 (default_nslabs << IO_TLB_SHIFT) >> 20);
134 }
135
136 static int __init
setup_io_tlb_npages(char * str)137 setup_io_tlb_npages(char *str)
138 {
139 if (isdigit(*str)) {
140 /* avoid tail segment of size < IO_TLB_SEGSIZE */
141 default_nslabs =
142 ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
143 }
144 if (*str == ',')
145 ++str;
146 if (isdigit(*str))
147 swiotlb_adjust_nareas(simple_strtoul(str, &str, 0));
148 if (*str == ',')
149 ++str;
150 if (!strcmp(str, "force"))
151 swiotlb_force_bounce = true;
152 else if (!strcmp(str, "noforce"))
153 swiotlb_force_disable = true;
154
155 return 0;
156 }
157 early_param("swiotlb", setup_io_tlb_npages);
158
swiotlb_max_segment(void)159 unsigned int swiotlb_max_segment(void)
160 {
161 if (!io_tlb_default_mem.nslabs)
162 return 0;
163 return rounddown(io_tlb_default_mem.nslabs << IO_TLB_SHIFT, PAGE_SIZE);
164 }
165 EXPORT_SYMBOL_GPL(swiotlb_max_segment);
166
swiotlb_size_or_default(void)167 unsigned long swiotlb_size_or_default(void)
168 {
169 return default_nslabs << IO_TLB_SHIFT;
170 }
171
swiotlb_adjust_size(unsigned long size)172 void __init swiotlb_adjust_size(unsigned long size)
173 {
174 /*
175 * If swiotlb parameter has not been specified, give a chance to
176 * architectures such as those supporting memory encryption to
177 * adjust/expand SWIOTLB size for their use.
178 */
179 if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
180 return;
181
182 size = ALIGN(size, IO_TLB_SIZE);
183 default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
184 if (round_up_default_nslabs())
185 size = default_nslabs << IO_TLB_SHIFT;
186 pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
187 }
188
swiotlb_print_info(void)189 void swiotlb_print_info(void)
190 {
191 struct io_tlb_mem *mem = &io_tlb_default_mem;
192
193 if (!mem->nslabs) {
194 pr_warn("No low mem\n");
195 return;
196 }
197
198 pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
199 (mem->nslabs << IO_TLB_SHIFT) >> 20);
200 }
201
io_tlb_offset(unsigned long val)202 static inline unsigned long io_tlb_offset(unsigned long val)
203 {
204 return val & (IO_TLB_SEGSIZE - 1);
205 }
206
nr_slots(u64 val)207 static inline unsigned long nr_slots(u64 val)
208 {
209 return DIV_ROUND_UP(val, IO_TLB_SIZE);
210 }
211
212 /*
213 * Remap swioltb memory in the unencrypted physical address space
214 * when swiotlb_unencrypted_base is set. (e.g. for Hyper-V AMD SEV-SNP
215 * Isolation VMs).
216 */
217 #ifdef CONFIG_HAS_IOMEM
swiotlb_mem_remap(struct io_tlb_mem * mem,unsigned long bytes)218 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes)
219 {
220 void *vaddr = NULL;
221
222 if (swiotlb_unencrypted_base) {
223 phys_addr_t paddr = mem->start + swiotlb_unencrypted_base;
224
225 vaddr = memremap(paddr, bytes, MEMREMAP_WB);
226 if (!vaddr)
227 pr_err("Failed to map the unencrypted memory %pa size %lx.\n",
228 &paddr, bytes);
229 }
230
231 return vaddr;
232 }
233 #else
swiotlb_mem_remap(struct io_tlb_mem * mem,unsigned long bytes)234 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes)
235 {
236 return NULL;
237 }
238 #endif
239
240 /*
241 * Early SWIOTLB allocation may be too early to allow an architecture to
242 * perform the desired operations. This function allows the architecture to
243 * call SWIOTLB when the operations are possible. It needs to be called
244 * before the SWIOTLB memory is used.
245 */
swiotlb_update_mem_attributes(void)246 void __init swiotlb_update_mem_attributes(void)
247 {
248 struct io_tlb_mem *mem = &io_tlb_default_mem;
249 void *vaddr;
250 unsigned long bytes;
251
252 if (!mem->nslabs || mem->late_alloc)
253 return;
254 vaddr = phys_to_virt(mem->start);
255 bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
256 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
257
258 mem->vaddr = swiotlb_mem_remap(mem, bytes);
259 if (!mem->vaddr)
260 mem->vaddr = vaddr;
261 }
262
swiotlb_init_io_tlb_mem(struct io_tlb_mem * mem,phys_addr_t start,unsigned long nslabs,unsigned int flags,bool late_alloc,unsigned int nareas)263 static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start,
264 unsigned long nslabs, unsigned int flags,
265 bool late_alloc, unsigned int nareas)
266 {
267 void *vaddr = phys_to_virt(start);
268 unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
269
270 mem->nslabs = nslabs;
271 mem->start = start;
272 mem->end = mem->start + bytes;
273 mem->late_alloc = late_alloc;
274 mem->nareas = nareas;
275 mem->area_nslabs = nslabs / mem->nareas;
276
277 mem->force_bounce = swiotlb_force_bounce || (flags & SWIOTLB_FORCE);
278
279 for (i = 0; i < mem->nareas; i++) {
280 spin_lock_init(&mem->areas[i].lock);
281 mem->areas[i].index = 0;
282 mem->areas[i].used = 0;
283 }
284
285 for (i = 0; i < mem->nslabs; i++) {
286 mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i);
287 mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
288 mem->slots[i].alloc_size = 0;
289 }
290
291 /*
292 * If swiotlb_unencrypted_base is set, the bounce buffer memory will
293 * be remapped and cleared in swiotlb_update_mem_attributes.
294 */
295 if (swiotlb_unencrypted_base)
296 return;
297
298 memset(vaddr, 0, bytes);
299 mem->vaddr = vaddr;
300 return;
301 }
302
303 /*
304 * Statically reserve bounce buffer space and initialize bounce buffer data
305 * structures for the software IO TLB used to implement the DMA API.
306 */
swiotlb_init_remap(bool addressing_limit,unsigned int flags,int (* remap)(void * tlb,unsigned long nslabs))307 void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags,
308 int (*remap)(void *tlb, unsigned long nslabs))
309 {
310 struct io_tlb_mem *mem = &io_tlb_default_mem;
311 unsigned long nslabs;
312 size_t alloc_size;
313 size_t bytes;
314 void *tlb;
315
316 if (!addressing_limit && !swiotlb_force_bounce)
317 return;
318 if (swiotlb_force_disable)
319 return;
320
321 /*
322 * default_nslabs maybe changed when adjust area number.
323 * So allocate bounce buffer after adjusting area number.
324 */
325 if (!default_nareas)
326 swiotlb_adjust_nareas(num_possible_cpus());
327
328 nslabs = default_nslabs;
329 /*
330 * By default allocate the bounce buffer memory from low memory, but
331 * allow to pick a location everywhere for hypervisors with guest
332 * memory encryption.
333 */
334 retry:
335 bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT);
336 if (flags & SWIOTLB_ANY)
337 tlb = memblock_alloc(bytes, PAGE_SIZE);
338 else
339 tlb = memblock_alloc_low(bytes, PAGE_SIZE);
340 if (!tlb) {
341 pr_warn("%s: failed to allocate tlb structure\n", __func__);
342 return;
343 }
344
345 if (remap && remap(tlb, nslabs) < 0) {
346 memblock_free(tlb, PAGE_ALIGN(bytes));
347
348 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
349 if (nslabs >= IO_TLB_MIN_SLABS)
350 goto retry;
351
352 pr_warn("%s: Failed to remap %zu bytes\n", __func__, bytes);
353 return;
354 }
355
356 alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
357 mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
358 if (!mem->slots) {
359 pr_warn("%s: Failed to allocate %zu bytes align=0x%lx\n",
360 __func__, alloc_size, PAGE_SIZE);
361 return;
362 }
363
364 mem->areas = memblock_alloc(array_size(sizeof(struct io_tlb_area),
365 default_nareas), SMP_CACHE_BYTES);
366 if (!mem->areas) {
367 pr_warn("%s: Failed to allocate mem->areas.\n", __func__);
368 return;
369 }
370
371 swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, flags, false,
372 default_nareas);
373
374 if (flags & SWIOTLB_VERBOSE)
375 swiotlb_print_info();
376 }
377
swiotlb_init(bool addressing_limit,unsigned int flags)378 void __init swiotlb_init(bool addressing_limit, unsigned int flags)
379 {
380 swiotlb_init_remap(addressing_limit, flags, NULL);
381 }
382
383 /*
384 * Systems with larger DMA zones (those that don't support ISA) can
385 * initialize the swiotlb later using the slab allocator if needed.
386 * This should be just like above, but with some error catching.
387 */
swiotlb_init_late(size_t size,gfp_t gfp_mask,int (* remap)(void * tlb,unsigned long nslabs))388 int swiotlb_init_late(size_t size, gfp_t gfp_mask,
389 int (*remap)(void *tlb, unsigned long nslabs))
390 {
391 struct io_tlb_mem *mem = &io_tlb_default_mem;
392 unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
393 unsigned char *vstart = NULL;
394 unsigned int order, area_order;
395 bool retried = false;
396 int rc = 0;
397
398 if (swiotlb_force_disable)
399 return 0;
400
401 retry:
402 order = get_order(nslabs << IO_TLB_SHIFT);
403 nslabs = SLABS_PER_PAGE << order;
404
405 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
406 vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
407 order);
408 if (vstart)
409 break;
410 order--;
411 nslabs = SLABS_PER_PAGE << order;
412 retried = true;
413 }
414
415 if (!vstart)
416 return -ENOMEM;
417
418 if (remap)
419 rc = remap(vstart, nslabs);
420 if (rc) {
421 free_pages((unsigned long)vstart, order);
422
423 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
424 if (nslabs < IO_TLB_MIN_SLABS)
425 return rc;
426 retried = true;
427 goto retry;
428 }
429
430 if (retried) {
431 pr_warn("only able to allocate %ld MB\n",
432 (PAGE_SIZE << order) >> 20);
433 }
434
435 if (!default_nareas)
436 swiotlb_adjust_nareas(num_possible_cpus());
437
438 area_order = get_order(array_size(sizeof(*mem->areas),
439 default_nareas));
440 mem->areas = (struct io_tlb_area *)
441 __get_free_pages(GFP_KERNEL | __GFP_ZERO, area_order);
442 if (!mem->areas)
443 goto error_area;
444
445 mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
446 get_order(array_size(sizeof(*mem->slots), nslabs)));
447 if (!mem->slots)
448 goto error_slots;
449
450 set_memory_decrypted((unsigned long)vstart,
451 (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT);
452 swiotlb_init_io_tlb_mem(mem, virt_to_phys(vstart), nslabs, 0, true,
453 default_nareas);
454
455 swiotlb_print_info();
456 return 0;
457
458 error_slots:
459 free_pages((unsigned long)mem->areas, area_order);
460 error_area:
461 free_pages((unsigned long)vstart, order);
462 return -ENOMEM;
463 }
464
swiotlb_exit(void)465 void __init swiotlb_exit(void)
466 {
467 struct io_tlb_mem *mem = &io_tlb_default_mem;
468 unsigned long tbl_vaddr;
469 size_t tbl_size, slots_size;
470 unsigned int area_order;
471
472 if (swiotlb_force_bounce)
473 return;
474
475 if (!mem->nslabs)
476 return;
477
478 pr_info("tearing down default memory pool\n");
479 tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
480 tbl_size = PAGE_ALIGN(mem->end - mem->start);
481 slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
482
483 set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
484 if (mem->late_alloc) {
485 area_order = get_order(array_size(sizeof(*mem->areas),
486 mem->nareas));
487 free_pages((unsigned long)mem->areas, area_order);
488 free_pages(tbl_vaddr, get_order(tbl_size));
489 free_pages((unsigned long)mem->slots, get_order(slots_size));
490 } else {
491 memblock_free_late(__pa(mem->areas),
492 array_size(sizeof(*mem->areas), mem->nareas));
493 memblock_free_late(mem->start, tbl_size);
494 memblock_free_late(__pa(mem->slots), slots_size);
495 }
496
497 memset(mem, 0, sizeof(*mem));
498 }
499
500 /*
501 * Return the offset into a iotlb slot required to keep the device happy.
502 */
swiotlb_align_offset(struct device * dev,u64 addr)503 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr)
504 {
505 return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1);
506 }
507
508 /*
509 * Bounce: copy the swiotlb buffer from or back to the original dma location
510 */
swiotlb_bounce(struct device * dev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir)511 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
512 enum dma_data_direction dir)
513 {
514 struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
515 int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
516 phys_addr_t orig_addr = mem->slots[index].orig_addr;
517 size_t alloc_size = mem->slots[index].alloc_size;
518 unsigned long pfn = PFN_DOWN(orig_addr);
519 unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start;
520 unsigned int tlb_offset, orig_addr_offset;
521
522 if (orig_addr == INVALID_PHYS_ADDR)
523 return;
524
525 tlb_offset = tlb_addr & (IO_TLB_SIZE - 1);
526 orig_addr_offset = swiotlb_align_offset(dev, orig_addr);
527 if (tlb_offset < orig_addr_offset) {
528 dev_WARN_ONCE(dev, 1,
529 "Access before mapping start detected. orig offset %u, requested offset %u.\n",
530 orig_addr_offset, tlb_offset);
531 return;
532 }
533
534 tlb_offset -= orig_addr_offset;
535 if (tlb_offset > alloc_size) {
536 dev_WARN_ONCE(dev, 1,
537 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n",
538 alloc_size, size, tlb_offset);
539 return;
540 }
541
542 orig_addr += tlb_offset;
543 alloc_size -= tlb_offset;
544
545 if (size > alloc_size) {
546 dev_WARN_ONCE(dev, 1,
547 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
548 alloc_size, size);
549 size = alloc_size;
550 }
551
552 if (PageHighMem(pfn_to_page(pfn))) {
553 unsigned int offset = orig_addr & ~PAGE_MASK;
554 struct page *page;
555 unsigned int sz = 0;
556 unsigned long flags;
557
558 while (size) {
559 sz = min_t(size_t, PAGE_SIZE - offset, size);
560
561 local_irq_save(flags);
562 page = pfn_to_page(pfn);
563 if (dir == DMA_TO_DEVICE)
564 memcpy_from_page(vaddr, page, offset, sz);
565 else
566 memcpy_to_page(page, offset, vaddr, sz);
567 local_irq_restore(flags);
568
569 size -= sz;
570 pfn++;
571 vaddr += sz;
572 offset = 0;
573 }
574 } else if (dir == DMA_TO_DEVICE) {
575 memcpy(vaddr, phys_to_virt(orig_addr), size);
576 } else {
577 memcpy(phys_to_virt(orig_addr), vaddr, size);
578 }
579 }
580
slot_addr(phys_addr_t start,phys_addr_t idx)581 static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx)
582 {
583 return start + (idx << IO_TLB_SHIFT);
584 }
585
586 /*
587 * Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
588 */
get_max_slots(unsigned long boundary_mask)589 static inline unsigned long get_max_slots(unsigned long boundary_mask)
590 {
591 if (boundary_mask == ~0UL)
592 return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
593 return nr_slots(boundary_mask + 1);
594 }
595
wrap_area_index(struct io_tlb_mem * mem,unsigned int index)596 static unsigned int wrap_area_index(struct io_tlb_mem *mem, unsigned int index)
597 {
598 if (index >= mem->area_nslabs)
599 return 0;
600 return index;
601 }
602
603 /*
604 * Find a suitable number of IO TLB entries size that will fit this request and
605 * allocate a buffer from that IO TLB pool.
606 */
swiotlb_do_find_slots(struct device * dev,int area_index,phys_addr_t orig_addr,size_t alloc_size,unsigned int alloc_align_mask)607 static int swiotlb_do_find_slots(struct device *dev, int area_index,
608 phys_addr_t orig_addr, size_t alloc_size,
609 unsigned int alloc_align_mask)
610 {
611 struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
612 struct io_tlb_area *area = mem->areas + area_index;
613 unsigned long boundary_mask = dma_get_seg_boundary(dev);
614 dma_addr_t tbl_dma_addr =
615 phys_to_dma_unencrypted(dev, mem->start) & boundary_mask;
616 unsigned long max_slots = get_max_slots(boundary_mask);
617 unsigned int iotlb_align_mask =
618 dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1);
619 unsigned int nslots = nr_slots(alloc_size), stride;
620 unsigned int index, wrap, count = 0, i;
621 unsigned int offset = swiotlb_align_offset(dev, orig_addr);
622 unsigned long flags;
623 unsigned int slot_base;
624 unsigned int slot_index;
625
626 BUG_ON(!nslots);
627 BUG_ON(area_index >= mem->nareas);
628
629 /*
630 * For mappings with an alignment requirement don't bother looping to
631 * unaligned slots once we found an aligned one. For allocations of
632 * PAGE_SIZE or larger only look for page aligned allocations.
633 */
634 stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1;
635 if (alloc_size >= PAGE_SIZE)
636 stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT));
637 stride = max(stride, (alloc_align_mask >> IO_TLB_SHIFT) + 1);
638
639 spin_lock_irqsave(&area->lock, flags);
640 if (unlikely(nslots > mem->area_nslabs - area->used))
641 goto not_found;
642
643 slot_base = area_index * mem->area_nslabs;
644 index = wrap = wrap_area_index(mem, ALIGN(area->index, stride));
645
646 do {
647 slot_index = slot_base + index;
648
649 if (orig_addr &&
650 (slot_addr(tbl_dma_addr, slot_index) &
651 iotlb_align_mask) != (orig_addr & iotlb_align_mask)) {
652 index = wrap_area_index(mem, index + 1);
653 continue;
654 }
655
656 /*
657 * If we find a slot that indicates we have 'nslots' number of
658 * contiguous buffers, we allocate the buffers from that slot
659 * and mark the entries as '0' indicating unavailable.
660 */
661 if (!iommu_is_span_boundary(slot_index, nslots,
662 nr_slots(tbl_dma_addr),
663 max_slots)) {
664 if (mem->slots[slot_index].list >= nslots)
665 goto found;
666 }
667 index = wrap_area_index(mem, index + stride);
668 } while (index != wrap);
669
670 not_found:
671 spin_unlock_irqrestore(&area->lock, flags);
672 return -1;
673
674 found:
675 for (i = slot_index; i < slot_index + nslots; i++) {
676 mem->slots[i].list = 0;
677 mem->slots[i].alloc_size = alloc_size - (offset +
678 ((i - slot_index) << IO_TLB_SHIFT));
679 }
680 for (i = slot_index - 1;
681 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
682 mem->slots[i].list; i--)
683 mem->slots[i].list = ++count;
684
685 /*
686 * Update the indices to avoid searching in the next round.
687 */
688 if (index + nslots < mem->area_nslabs)
689 area->index = index + nslots;
690 else
691 area->index = 0;
692 area->used += nslots;
693 spin_unlock_irqrestore(&area->lock, flags);
694 return slot_index;
695 }
696
swiotlb_find_slots(struct device * dev,phys_addr_t orig_addr,size_t alloc_size,unsigned int alloc_align_mask)697 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
698 size_t alloc_size, unsigned int alloc_align_mask)
699 {
700 struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
701 int start = raw_smp_processor_id() & (mem->nareas - 1);
702 int i = start, index;
703
704 do {
705 index = swiotlb_do_find_slots(dev, i, orig_addr, alloc_size,
706 alloc_align_mask);
707 if (index >= 0)
708 return index;
709 if (++i >= mem->nareas)
710 i = 0;
711 } while (i != start);
712
713 return -1;
714 }
715
mem_used(struct io_tlb_mem * mem)716 static unsigned long mem_used(struct io_tlb_mem *mem)
717 {
718 int i;
719 unsigned long used = 0;
720
721 for (i = 0; i < mem->nareas; i++)
722 used += mem->areas[i].used;
723 return used;
724 }
725
swiotlb_tbl_map_single(struct device * dev,phys_addr_t orig_addr,size_t mapping_size,size_t alloc_size,unsigned int alloc_align_mask,enum dma_data_direction dir,unsigned long attrs)726 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
727 size_t mapping_size, size_t alloc_size,
728 unsigned int alloc_align_mask, enum dma_data_direction dir,
729 unsigned long attrs)
730 {
731 struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
732 unsigned int offset = swiotlb_align_offset(dev, orig_addr);
733 unsigned int i;
734 int index;
735 phys_addr_t tlb_addr;
736
737 if (!mem || !mem->nslabs) {
738 dev_warn_ratelimited(dev,
739 "Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
740 return (phys_addr_t)DMA_MAPPING_ERROR;
741 }
742
743 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
744 pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
745
746 if (mapping_size > alloc_size) {
747 dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
748 mapping_size, alloc_size);
749 return (phys_addr_t)DMA_MAPPING_ERROR;
750 }
751
752 index = swiotlb_find_slots(dev, orig_addr,
753 alloc_size + offset, alloc_align_mask);
754 if (index == -1) {
755 if (!(attrs & DMA_ATTR_NO_WARN))
756 dev_warn_ratelimited(dev,
757 "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
758 alloc_size, mem->nslabs, mem_used(mem));
759 return (phys_addr_t)DMA_MAPPING_ERROR;
760 }
761
762 /*
763 * Save away the mapping from the original address to the DMA address.
764 * This is needed when we sync the memory. Then we sync the buffer if
765 * needed.
766 */
767 for (i = 0; i < nr_slots(alloc_size + offset); i++)
768 mem->slots[index + i].orig_addr = slot_addr(orig_addr, i);
769 tlb_addr = slot_addr(mem->start, index) + offset;
770 /*
771 * When dir == DMA_FROM_DEVICE we could omit the copy from the orig
772 * to the tlb buffer, if we knew for sure the device will
773 * overwrite the entire current content. But we don't. Thus
774 * unconditional bounce may prevent leaking swiotlb content (i.e.
775 * kernel memory) to user-space.
776 */
777 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
778 return tlb_addr;
779 }
780
swiotlb_release_slots(struct device * dev,phys_addr_t tlb_addr)781 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr)
782 {
783 struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
784 unsigned long flags;
785 unsigned int offset = swiotlb_align_offset(dev, tlb_addr);
786 int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
787 int nslots = nr_slots(mem->slots[index].alloc_size + offset);
788 int aindex = index / mem->area_nslabs;
789 struct io_tlb_area *area = &mem->areas[aindex];
790 int count, i;
791
792 /*
793 * Return the buffer to the free list by setting the corresponding
794 * entries to indicate the number of contiguous entries available.
795 * While returning the entries to the free list, we merge the entries
796 * with slots below and above the pool being returned.
797 */
798 BUG_ON(aindex >= mem->nareas);
799
800 spin_lock_irqsave(&area->lock, flags);
801 if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
802 count = mem->slots[index + nslots].list;
803 else
804 count = 0;
805
806 /*
807 * Step 1: return the slots to the free list, merging the slots with
808 * superceeding slots
809 */
810 for (i = index + nslots - 1; i >= index; i--) {
811 mem->slots[i].list = ++count;
812 mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
813 mem->slots[i].alloc_size = 0;
814 }
815
816 /*
817 * Step 2: merge the returned slots with the preceding slots, if
818 * available (non zero)
819 */
820 for (i = index - 1;
821 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
822 i--)
823 mem->slots[i].list = ++count;
824 area->used -= nslots;
825 spin_unlock_irqrestore(&area->lock, flags);
826 }
827
828 /*
829 * tlb_addr is the physical address of the bounce buffer to unmap.
830 */
swiotlb_tbl_unmap_single(struct device * dev,phys_addr_t tlb_addr,size_t mapping_size,enum dma_data_direction dir,unsigned long attrs)831 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
832 size_t mapping_size, enum dma_data_direction dir,
833 unsigned long attrs)
834 {
835 /*
836 * First, sync the memory before unmapping the entry
837 */
838 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
839 (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
840 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
841
842 swiotlb_release_slots(dev, tlb_addr);
843 }
844
swiotlb_sync_single_for_device(struct device * dev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir)845 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
846 size_t size, enum dma_data_direction dir)
847 {
848 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
849 swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
850 else
851 BUG_ON(dir != DMA_FROM_DEVICE);
852 }
853
swiotlb_sync_single_for_cpu(struct device * dev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir)854 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
855 size_t size, enum dma_data_direction dir)
856 {
857 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
858 swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
859 else
860 BUG_ON(dir != DMA_TO_DEVICE);
861 }
862
863 /*
864 * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
865 * to the device copy the data into it as well.
866 */
swiotlb_map(struct device * dev,phys_addr_t paddr,size_t size,enum dma_data_direction dir,unsigned long attrs)867 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
868 enum dma_data_direction dir, unsigned long attrs)
869 {
870 phys_addr_t swiotlb_addr;
871 dma_addr_t dma_addr;
872
873 trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size);
874
875 swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir,
876 attrs);
877 if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
878 return DMA_MAPPING_ERROR;
879
880 /* Ensure that the address returned is DMA'ble */
881 dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
882 if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
883 swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
884 attrs | DMA_ATTR_SKIP_CPU_SYNC);
885 dev_WARN_ONCE(dev, 1,
886 "swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
887 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
888 return DMA_MAPPING_ERROR;
889 }
890
891 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
892 arch_sync_dma_for_device(swiotlb_addr, size, dir);
893 return dma_addr;
894 }
895
swiotlb_max_mapping_size(struct device * dev)896 size_t swiotlb_max_mapping_size(struct device *dev)
897 {
898 int min_align_mask = dma_get_min_align_mask(dev);
899 int min_align = 0;
900
901 /*
902 * swiotlb_find_slots() skips slots according to
903 * min align mask. This affects max mapping size.
904 * Take it into acount here.
905 */
906 if (min_align_mask)
907 min_align = roundup(min_align_mask, IO_TLB_SIZE);
908
909 return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align;
910 }
911
is_swiotlb_active(struct device * dev)912 bool is_swiotlb_active(struct device *dev)
913 {
914 struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
915
916 return mem && mem->nslabs;
917 }
918 EXPORT_SYMBOL_GPL(is_swiotlb_active);
919
io_tlb_used_get(void * data,u64 * val)920 static int io_tlb_used_get(void *data, u64 *val)
921 {
922 *val = mem_used(&io_tlb_default_mem);
923 return 0;
924 }
925 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_used, io_tlb_used_get, NULL, "%llu\n");
926
swiotlb_create_debugfs_files(struct io_tlb_mem * mem,const char * dirname)927 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
928 const char *dirname)
929 {
930 mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs);
931 if (!mem->nslabs)
932 return;
933
934 debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
935 debugfs_create_file("io_tlb_used", 0400, mem->debugfs, NULL,
936 &fops_io_tlb_used);
937 }
938
swiotlb_create_default_debugfs(void)939 static int __init __maybe_unused swiotlb_create_default_debugfs(void)
940 {
941 swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb");
942 return 0;
943 }
944
945 #ifdef CONFIG_DEBUG_FS
946 late_initcall(swiotlb_create_default_debugfs);
947 #endif
948
949 #ifdef CONFIG_DMA_RESTRICTED_POOL
950
swiotlb_alloc(struct device * dev,size_t size)951 struct page *swiotlb_alloc(struct device *dev, size_t size)
952 {
953 struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
954 phys_addr_t tlb_addr;
955 int index;
956
957 if (!mem)
958 return NULL;
959
960 index = swiotlb_find_slots(dev, 0, size, 0);
961 if (index == -1)
962 return NULL;
963
964 tlb_addr = slot_addr(mem->start, index);
965
966 return pfn_to_page(PFN_DOWN(tlb_addr));
967 }
968
swiotlb_free(struct device * dev,struct page * page,size_t size)969 bool swiotlb_free(struct device *dev, struct page *page, size_t size)
970 {
971 phys_addr_t tlb_addr = page_to_phys(page);
972
973 if (!is_swiotlb_buffer(dev, tlb_addr))
974 return false;
975
976 swiotlb_release_slots(dev, tlb_addr);
977
978 return true;
979 }
980
rmem_swiotlb_device_init(struct reserved_mem * rmem,struct device * dev)981 static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
982 struct device *dev)
983 {
984 struct io_tlb_mem *mem = rmem->priv;
985 unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
986
987 /* Set Per-device io tlb area to one */
988 unsigned int nareas = 1;
989
990 /*
991 * Since multiple devices can share the same pool, the private data,
992 * io_tlb_mem struct, will be initialized by the first device attached
993 * to it.
994 */
995 if (!mem) {
996 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
997 if (!mem)
998 return -ENOMEM;
999
1000 mem->slots = kcalloc(nslabs, sizeof(*mem->slots), GFP_KERNEL);
1001 if (!mem->slots) {
1002 kfree(mem);
1003 return -ENOMEM;
1004 }
1005
1006 mem->areas = kcalloc(nareas, sizeof(*mem->areas),
1007 GFP_KERNEL);
1008 if (!mem->areas) {
1009 kfree(mem->slots);
1010 kfree(mem);
1011 return -ENOMEM;
1012 }
1013
1014 set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
1015 rmem->size >> PAGE_SHIFT);
1016 swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, SWIOTLB_FORCE,
1017 false, nareas);
1018 mem->for_alloc = true;
1019
1020 rmem->priv = mem;
1021
1022 swiotlb_create_debugfs_files(mem, rmem->name);
1023 }
1024
1025 dev->dma_io_tlb_mem = mem;
1026
1027 return 0;
1028 }
1029
rmem_swiotlb_device_release(struct reserved_mem * rmem,struct device * dev)1030 static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
1031 struct device *dev)
1032 {
1033 dev->dma_io_tlb_mem = &io_tlb_default_mem;
1034 }
1035
1036 static const struct reserved_mem_ops rmem_swiotlb_ops = {
1037 .device_init = rmem_swiotlb_device_init,
1038 .device_release = rmem_swiotlb_device_release,
1039 };
1040
rmem_swiotlb_setup(struct reserved_mem * rmem)1041 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
1042 {
1043 unsigned long node = rmem->fdt_node;
1044
1045 if (of_get_flat_dt_prop(node, "reusable", NULL) ||
1046 of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
1047 of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
1048 of_get_flat_dt_prop(node, "no-map", NULL))
1049 return -EINVAL;
1050
1051 if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
1052 pr_err("Restricted DMA pool must be accessible within the linear mapping.");
1053 return -EINVAL;
1054 }
1055
1056 rmem->ops = &rmem_swiotlb_ops;
1057 pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
1058 &rmem->base, (unsigned long)rmem->size / SZ_1M);
1059 return 0;
1060 }
1061
1062 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
1063 #endif /* CONFIG_DMA_RESTRICTED_POOL */
1064