1 /*
2  *  linux/mm/swap_state.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  *
7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8  */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/buffer_head.h>
18 #include <linux/backing-dev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/page_cgroup.h>
22 
23 #include <asm/pgtable.h>
24 
25 /*
26  * swapper_space is a fiction, retained to simplify the path through
27  * vmscan's shrink_page_list.
28  */
29 static const struct address_space_operations swap_aops = {
30 	.writepage	= swap_writepage,
31 	.set_page_dirty	= __set_page_dirty_nobuffers,
32 	.migratepage	= migrate_page,
33 };
34 
35 static struct backing_dev_info swap_backing_dev_info = {
36 	.name		= "swap",
37 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
38 };
39 
40 struct address_space swapper_space = {
41 	.page_tree	= RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
42 	.tree_lock	= __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
43 	.a_ops		= &swap_aops,
44 	.i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
45 	.backing_dev_info = &swap_backing_dev_info,
46 };
47 
48 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
49 
50 static struct {
51 	unsigned long add_total;
52 	unsigned long del_total;
53 	unsigned long find_success;
54 	unsigned long find_total;
55 } swap_cache_info;
56 
show_swap_cache_info(void)57 void show_swap_cache_info(void)
58 {
59 	printk("%lu pages in swap cache\n", total_swapcache_pages);
60 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
61 		swap_cache_info.add_total, swap_cache_info.del_total,
62 		swap_cache_info.find_success, swap_cache_info.find_total);
63 	printk("Free swap  = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
64 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
65 }
66 
67 /*
68  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
69  * but sets SwapCache flag and private instead of mapping and index.
70  */
__add_to_swap_cache(struct page * page,swp_entry_t entry)71 static int __add_to_swap_cache(struct page *page, swp_entry_t entry)
72 {
73 	int error;
74 
75 	VM_BUG_ON(!PageLocked(page));
76 	VM_BUG_ON(PageSwapCache(page));
77 	VM_BUG_ON(!PageSwapBacked(page));
78 
79 	page_cache_get(page);
80 	SetPageSwapCache(page);
81 	set_page_private(page, entry.val);
82 
83 	spin_lock_irq(&swapper_space.tree_lock);
84 	error = radix_tree_insert(&swapper_space.page_tree, entry.val, page);
85 	if (likely(!error)) {
86 		total_swapcache_pages++;
87 		__inc_zone_page_state(page, NR_FILE_PAGES);
88 		INC_CACHE_INFO(add_total);
89 	}
90 	spin_unlock_irq(&swapper_space.tree_lock);
91 
92 	if (unlikely(error)) {
93 		/*
94 		 * Only the context which have set SWAP_HAS_CACHE flag
95 		 * would call add_to_swap_cache().
96 		 * So add_to_swap_cache() doesn't returns -EEXIST.
97 		 */
98 		VM_BUG_ON(error == -EEXIST);
99 		set_page_private(page, 0UL);
100 		ClearPageSwapCache(page);
101 		page_cache_release(page);
102 	}
103 
104 	return error;
105 }
106 
107 
add_to_swap_cache(struct page * page,swp_entry_t entry,gfp_t gfp_mask)108 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
109 {
110 	int error;
111 
112 	error = radix_tree_preload(gfp_mask);
113 	if (!error) {
114 		error = __add_to_swap_cache(page, entry);
115 		radix_tree_preload_end();
116 	}
117 	return error;
118 }
119 
120 /*
121  * This must be called only on pages that have
122  * been verified to be in the swap cache.
123  */
__delete_from_swap_cache(struct page * page)124 void __delete_from_swap_cache(struct page *page)
125 {
126 	VM_BUG_ON(!PageLocked(page));
127 	VM_BUG_ON(!PageSwapCache(page));
128 	VM_BUG_ON(PageWriteback(page));
129 
130 	radix_tree_delete(&swapper_space.page_tree, page_private(page));
131 	set_page_private(page, 0);
132 	ClearPageSwapCache(page);
133 	total_swapcache_pages--;
134 	__dec_zone_page_state(page, NR_FILE_PAGES);
135 	INC_CACHE_INFO(del_total);
136 }
137 
138 /**
139  * add_to_swap - allocate swap space for a page
140  * @page: page we want to move to swap
141  *
142  * Allocate swap space for the page and add the page to the
143  * swap cache.  Caller needs to hold the page lock.
144  */
add_to_swap(struct page * page)145 int add_to_swap(struct page *page)
146 {
147 	swp_entry_t entry;
148 	int err;
149 
150 	VM_BUG_ON(!PageLocked(page));
151 	VM_BUG_ON(!PageUptodate(page));
152 
153 	entry = get_swap_page();
154 	if (!entry.val)
155 		return 0;
156 
157 	if (unlikely(PageTransHuge(page)))
158 		if (unlikely(split_huge_page(page))) {
159 			swapcache_free(entry, NULL);
160 			return 0;
161 		}
162 
163 	/*
164 	 * Radix-tree node allocations from PF_MEMALLOC contexts could
165 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
166 	 * stops emergency reserves from being allocated.
167 	 *
168 	 * TODO: this could cause a theoretical memory reclaim
169 	 * deadlock in the swap out path.
170 	 */
171 	/*
172 	 * Add it to the swap cache and mark it dirty
173 	 */
174 	err = add_to_swap_cache(page, entry,
175 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
176 
177 	if (!err) {	/* Success */
178 		SetPageDirty(page);
179 		return 1;
180 	} else {	/* -ENOMEM radix-tree allocation failure */
181 		/*
182 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
183 		 * clear SWAP_HAS_CACHE flag.
184 		 */
185 		swapcache_free(entry, NULL);
186 		return 0;
187 	}
188 }
189 
190 /*
191  * This must be called only on pages that have
192  * been verified to be in the swap cache and locked.
193  * It will never put the page into the free list,
194  * the caller has a reference on the page.
195  */
delete_from_swap_cache(struct page * page)196 void delete_from_swap_cache(struct page *page)
197 {
198 	swp_entry_t entry;
199 
200 	entry.val = page_private(page);
201 
202 	spin_lock_irq(&swapper_space.tree_lock);
203 	__delete_from_swap_cache(page);
204 	spin_unlock_irq(&swapper_space.tree_lock);
205 
206 	swapcache_free(entry, page);
207 	page_cache_release(page);
208 }
209 
210 /*
211  * If we are the only user, then try to free up the swap cache.
212  *
213  * Its ok to check for PageSwapCache without the page lock
214  * here because we are going to recheck again inside
215  * try_to_free_swap() _with_ the lock.
216  * 					- Marcelo
217  */
free_swap_cache(struct page * page)218 static inline void free_swap_cache(struct page *page)
219 {
220 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
221 		try_to_free_swap(page);
222 		unlock_page(page);
223 	}
224 }
225 
226 /*
227  * Perform a free_page(), also freeing any swap cache associated with
228  * this page if it is the last user of the page.
229  */
free_page_and_swap_cache(struct page * page)230 void free_page_and_swap_cache(struct page *page)
231 {
232 	free_swap_cache(page);
233 	page_cache_release(page);
234 }
235 
236 /*
237  * Passed an array of pages, drop them all from swapcache and then release
238  * them.  They are removed from the LRU and freed if this is their last use.
239  */
free_pages_and_swap_cache(struct page ** pages,int nr)240 void free_pages_and_swap_cache(struct page **pages, int nr)
241 {
242 	struct page **pagep = pages;
243 
244 	lru_add_drain();
245 	while (nr) {
246 		int todo = min(nr, PAGEVEC_SIZE);
247 		int i;
248 
249 		for (i = 0; i < todo; i++)
250 			free_swap_cache(pagep[i]);
251 		release_pages(pagep, todo, 0);
252 		pagep += todo;
253 		nr -= todo;
254 	}
255 }
256 
257 /*
258  * Lookup a swap entry in the swap cache. A found page will be returned
259  * unlocked and with its refcount incremented - we rely on the kernel
260  * lock getting page table operations atomic even if we drop the page
261  * lock before returning.
262  */
lookup_swap_cache(swp_entry_t entry)263 struct page * lookup_swap_cache(swp_entry_t entry)
264 {
265 	struct page *page;
266 
267 	page = find_get_page(&swapper_space, entry.val);
268 
269 	if (page)
270 		INC_CACHE_INFO(find_success);
271 
272 	INC_CACHE_INFO(find_total);
273 	return page;
274 }
275 
276 /*
277  * Locate a page of swap in physical memory, reserving swap cache space
278  * and reading the disk if it is not already cached.
279  * A failure return means that either the page allocation failed or that
280  * the swap entry is no longer in use.
281  */
read_swap_cache_async(swp_entry_t entry,gfp_t gfp_mask,struct vm_area_struct * vma,unsigned long addr)282 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
283 			struct vm_area_struct *vma, unsigned long addr)
284 {
285 	struct page *found_page, *new_page = NULL;
286 	int err;
287 
288 	do {
289 		/*
290 		 * First check the swap cache.  Since this is normally
291 		 * called after lookup_swap_cache() failed, re-calling
292 		 * that would confuse statistics.
293 		 */
294 		found_page = find_get_page(&swapper_space, entry.val);
295 		if (found_page)
296 			break;
297 
298 		/*
299 		 * Get a new page to read into from swap.
300 		 */
301 		if (!new_page) {
302 			new_page = alloc_page_vma(gfp_mask, vma, addr);
303 			if (!new_page)
304 				break;		/* Out of memory */
305 		}
306 
307 		/*
308 		 * call radix_tree_preload() while we can wait.
309 		 */
310 		err = radix_tree_preload(gfp_mask & GFP_KERNEL);
311 		if (err)
312 			break;
313 
314 		/*
315 		 * Swap entry may have been freed since our caller observed it.
316 		 */
317 		err = swapcache_prepare(entry);
318 		if (err == -EEXIST) {	/* seems racy */
319 			radix_tree_preload_end();
320 			continue;
321 		}
322 		if (err) {		/* swp entry is obsolete ? */
323 			radix_tree_preload_end();
324 			break;
325 		}
326 
327 		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
328 		__set_page_locked(new_page);
329 		SetPageSwapBacked(new_page);
330 		err = __add_to_swap_cache(new_page, entry);
331 		if (likely(!err)) {
332 			radix_tree_preload_end();
333 			/*
334 			 * Initiate read into locked page and return.
335 			 */
336 			lru_cache_add_anon(new_page);
337 			swap_readpage(new_page);
338 			return new_page;
339 		}
340 		radix_tree_preload_end();
341 		ClearPageSwapBacked(new_page);
342 		__clear_page_locked(new_page);
343 		/*
344 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
345 		 * clear SWAP_HAS_CACHE flag.
346 		 */
347 		swapcache_free(entry, NULL);
348 	} while (err != -ENOMEM);
349 
350 	if (new_page)
351 		page_cache_release(new_page);
352 	return found_page;
353 }
354 
355 /**
356  * swapin_readahead - swap in pages in hope we need them soon
357  * @entry: swap entry of this memory
358  * @gfp_mask: memory allocation flags
359  * @vma: user vma this address belongs to
360  * @addr: target address for mempolicy
361  *
362  * Returns the struct page for entry and addr, after queueing swapin.
363  *
364  * Primitive swap readahead code. We simply read an aligned block of
365  * (1 << page_cluster) entries in the swap area. This method is chosen
366  * because it doesn't cost us any seek time.  We also make sure to queue
367  * the 'original' request together with the readahead ones...
368  *
369  * This has been extended to use the NUMA policies from the mm triggering
370  * the readahead.
371  *
372  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
373  */
swapin_readahead(swp_entry_t entry,gfp_t gfp_mask,struct vm_area_struct * vma,unsigned long addr)374 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
375 			struct vm_area_struct *vma, unsigned long addr)
376 {
377 	int nr_pages;
378 	struct page *page;
379 	unsigned long offset;
380 	unsigned long end_offset;
381 
382 	/*
383 	 * Get starting offset for readaround, and number of pages to read.
384 	 * Adjust starting address by readbehind (for NUMA interleave case)?
385 	 * No, it's very unlikely that swap layout would follow vma layout,
386 	 * more likely that neighbouring swap pages came from the same node:
387 	 * so use the same "addr" to choose the same node for each swap read.
388 	 */
389 	nr_pages = valid_swaphandles(entry, &offset);
390 	for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
391 		/* Ok, do the async read-ahead now */
392 		page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
393 						gfp_mask, vma, addr);
394 		if (!page)
395 			break;
396 		page_cache_release(page);
397 	}
398 	lru_add_drain();	/* Push any new pages onto the LRU now */
399 	return read_swap_cache_async(entry, gfp_mask, vma, addr);
400 }
401