1 /*
2 * arch/parisc/kernel/firmware.c - safe PDC access routines
3 *
4 * PDC == Processor Dependent Code
5 *
6 * See http://www.parisc-linux.org/documentation/index.html
7 * for documentation describing the entry points and calling
8 * conventions defined below.
9 *
10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 *
21 */
22
23 /* I think it would be in everyone's best interest to follow this
24 * guidelines when writing PDC wrappers:
25 *
26 * - the name of the pdc wrapper should match one of the macros
27 * used for the first two arguments
28 * - don't use caps for random parts of the name
29 * - use the static PDC result buffers and "copyout" to structs
30 * supplied by the caller to encapsulate alignment restrictions
31 * - hold pdc_lock while in PDC or using static result buffers
32 * - use __pa() to convert virtual (kernel) pointers to physical
33 * ones.
34 * - the name of the struct used for pdc return values should equal
35 * one of the macros used for the first two arguments to the
36 * corresponding PDC call
37 * - keep the order of arguments
38 * - don't be smart (setting trailing NUL bytes for strings, return
39 * something useful even if the call failed) unless you are sure
40 * it's not going to affect functionality or performance
41 *
42 * Example:
43 * int pdc_cache_info(struct pdc_cache_info *cache_info )
44 * {
45 * int retval;
46 *
47 * spin_lock_irq(&pdc_lock);
48 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49 * convert_to_wide(pdc_result);
50 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
51 * spin_unlock_irq(&pdc_lock);
52 *
53 * return retval;
54 * }
55 * prumpf 991016
56 */
57
58 #include <stdarg.h>
59
60 #include <linux/delay.h>
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/spinlock.h>
66
67 #include <asm/page.h>
68 #include <asm/pdc.h>
69 #include <asm/pdcpat.h>
70 #include <asm/system.h>
71 #include <asm/processor.h> /* for boot_cpu_data */
72
73 static DEFINE_SPINLOCK(pdc_lock);
74 extern unsigned long pdc_result[NUM_PDC_RESULT];
75 extern unsigned long pdc_result2[NUM_PDC_RESULT];
76
77 #ifdef CONFIG_64BIT
78 #define WIDE_FIRMWARE 0x1
79 #define NARROW_FIRMWARE 0x2
80
81 /* Firmware needs to be initially set to narrow to determine the
82 * actual firmware width. */
83 int parisc_narrow_firmware __read_mostly = 1;
84 #endif
85
86 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
87 * and MEM_PDC calls are always the same width as the OS.
88 * Some PAT boxes may have 64-bit IODC I/O.
89 *
90 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
91 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
92 * This allowed wide kernels to run on Cxxx boxes.
93 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
94 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
95 */
96
97 #ifdef CONFIG_64BIT
98 long real64_call(unsigned long function, ...);
99 #endif
100 long real32_call(unsigned long function, ...);
101
102 #ifdef CONFIG_64BIT
103 # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
104 # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
105 #else
106 # define MEM_PDC (unsigned long)PAGE0->mem_pdc
107 # define mem_pdc_call(args...) real32_call(MEM_PDC, args)
108 #endif
109
110
111 /**
112 * f_extend - Convert PDC addresses to kernel addresses.
113 * @address: Address returned from PDC.
114 *
115 * This function is used to convert PDC addresses into kernel addresses
116 * when the PDC address size and kernel address size are different.
117 */
f_extend(unsigned long address)118 static unsigned long f_extend(unsigned long address)
119 {
120 #ifdef CONFIG_64BIT
121 if(unlikely(parisc_narrow_firmware)) {
122 if((address & 0xff000000) == 0xf0000000)
123 return 0xf0f0f0f000000000UL | (u32)address;
124
125 if((address & 0xf0000000) == 0xf0000000)
126 return 0xffffffff00000000UL | (u32)address;
127 }
128 #endif
129 return address;
130 }
131
132 /**
133 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
134 * @address: The return buffer from PDC.
135 *
136 * This function is used to convert the return buffer addresses retrieved from PDC
137 * into kernel addresses when the PDC address size and kernel address size are
138 * different.
139 */
convert_to_wide(unsigned long * addr)140 static void convert_to_wide(unsigned long *addr)
141 {
142 #ifdef CONFIG_64BIT
143 int i;
144 unsigned int *p = (unsigned int *)addr;
145
146 if(unlikely(parisc_narrow_firmware)) {
147 for(i = 31; i >= 0; --i)
148 addr[i] = p[i];
149 }
150 #endif
151 }
152
153 #ifdef CONFIG_64BIT
set_firmware_width_unlocked(void)154 void __cpuinit set_firmware_width_unlocked(void)
155 {
156 int ret;
157
158 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
159 __pa(pdc_result), 0);
160 convert_to_wide(pdc_result);
161 if (pdc_result[0] != NARROW_FIRMWARE)
162 parisc_narrow_firmware = 0;
163 }
164
165 /**
166 * set_firmware_width - Determine if the firmware is wide or narrow.
167 *
168 * This function must be called before any pdc_* function that uses the
169 * convert_to_wide function.
170 */
set_firmware_width(void)171 void __cpuinit set_firmware_width(void)
172 {
173 unsigned long flags;
174 spin_lock_irqsave(&pdc_lock, flags);
175 set_firmware_width_unlocked();
176 spin_unlock_irqrestore(&pdc_lock, flags);
177 }
178 #else
set_firmware_width_unlocked(void)179 void __cpuinit set_firmware_width_unlocked(void) {
180 return;
181 }
182
set_firmware_width(void)183 void __cpuinit set_firmware_width(void) {
184 return;
185 }
186 #endif /*CONFIG_64BIT*/
187
188 /**
189 * pdc_emergency_unlock - Unlock the linux pdc lock
190 *
191 * This call unlocks the linux pdc lock in case we need some PDC functions
192 * (like pdc_add_valid) during kernel stack dump.
193 */
pdc_emergency_unlock(void)194 void pdc_emergency_unlock(void)
195 {
196 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
197 if (spin_is_locked(&pdc_lock))
198 spin_unlock(&pdc_lock);
199 }
200
201
202 /**
203 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
204 * @address: Address to be verified.
205 *
206 * This PDC call attempts to read from the specified address and verifies
207 * if the address is valid.
208 *
209 * The return value is PDC_OK (0) in case accessing this address is valid.
210 */
pdc_add_valid(unsigned long address)211 int pdc_add_valid(unsigned long address)
212 {
213 int retval;
214 unsigned long flags;
215
216 spin_lock_irqsave(&pdc_lock, flags);
217 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
218 spin_unlock_irqrestore(&pdc_lock, flags);
219
220 return retval;
221 }
222 EXPORT_SYMBOL(pdc_add_valid);
223
224 /**
225 * pdc_chassis_info - Return chassis information.
226 * @result: The return buffer.
227 * @chassis_info: The memory buffer address.
228 * @len: The size of the memory buffer address.
229 *
230 * An HVERSION dependent call for returning the chassis information.
231 */
pdc_chassis_info(struct pdc_chassis_info * chassis_info,void * led_info,unsigned long len)232 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
233 {
234 int retval;
235 unsigned long flags;
236
237 spin_lock_irqsave(&pdc_lock, flags);
238 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
239 memcpy(&pdc_result2, led_info, len);
240 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
241 __pa(pdc_result), __pa(pdc_result2), len);
242 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
243 memcpy(led_info, pdc_result2, len);
244 spin_unlock_irqrestore(&pdc_lock, flags);
245
246 return retval;
247 }
248
249 /**
250 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
251 * @retval: -1 on error, 0 on success. Other value are PDC errors
252 *
253 * Must be correctly formatted or expect system crash
254 */
255 #ifdef CONFIG_64BIT
pdc_pat_chassis_send_log(unsigned long state,unsigned long data)256 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
257 {
258 int retval = 0;
259 unsigned long flags;
260
261 if (!is_pdc_pat())
262 return -1;
263
264 spin_lock_irqsave(&pdc_lock, flags);
265 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
266 spin_unlock_irqrestore(&pdc_lock, flags);
267
268 return retval;
269 }
270 #endif
271
272 /**
273 * pdc_chassis_disp - Updates chassis code
274 * @retval: -1 on error, 0 on success
275 */
pdc_chassis_disp(unsigned long disp)276 int pdc_chassis_disp(unsigned long disp)
277 {
278 int retval = 0;
279 unsigned long flags;
280
281 spin_lock_irqsave(&pdc_lock, flags);
282 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
283 spin_unlock_irqrestore(&pdc_lock, flags);
284
285 return retval;
286 }
287
288 /**
289 * pdc_chassis_warn - Fetches chassis warnings
290 * @retval: -1 on error, 0 on success
291 */
pdc_chassis_warn(unsigned long * warn)292 int pdc_chassis_warn(unsigned long *warn)
293 {
294 int retval = 0;
295 unsigned long flags;
296
297 spin_lock_irqsave(&pdc_lock, flags);
298 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
299 *warn = pdc_result[0];
300 spin_unlock_irqrestore(&pdc_lock, flags);
301
302 return retval;
303 }
304
pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg * pdc_coproc_info)305 int __cpuinit pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
306 {
307 int ret;
308
309 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
310 convert_to_wide(pdc_result);
311 pdc_coproc_info->ccr_functional = pdc_result[0];
312 pdc_coproc_info->ccr_present = pdc_result[1];
313 pdc_coproc_info->revision = pdc_result[17];
314 pdc_coproc_info->model = pdc_result[18];
315
316 return ret;
317 }
318
319 /**
320 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
321 * @pdc_coproc_info: Return buffer address.
322 *
323 * This PDC call returns the presence and status of all the coprocessors
324 * attached to the processor.
325 */
pdc_coproc_cfg(struct pdc_coproc_cfg * pdc_coproc_info)326 int __cpuinit pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
327 {
328 int ret;
329 unsigned long flags;
330
331 spin_lock_irqsave(&pdc_lock, flags);
332 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
333 spin_unlock_irqrestore(&pdc_lock, flags);
334
335 return ret;
336 }
337
338 /**
339 * pdc_iodc_read - Read data from the modules IODC.
340 * @actcnt: The actual number of bytes.
341 * @hpa: The HPA of the module for the iodc read.
342 * @index: The iodc entry point.
343 * @iodc_data: A buffer memory for the iodc options.
344 * @iodc_data_size: Size of the memory buffer.
345 *
346 * This PDC call reads from the IODC of the module specified by the hpa
347 * argument.
348 */
pdc_iodc_read(unsigned long * actcnt,unsigned long hpa,unsigned int index,void * iodc_data,unsigned int iodc_data_size)349 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
350 void *iodc_data, unsigned int iodc_data_size)
351 {
352 int retval;
353 unsigned long flags;
354
355 spin_lock_irqsave(&pdc_lock, flags);
356 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
357 index, __pa(pdc_result2), iodc_data_size);
358 convert_to_wide(pdc_result);
359 *actcnt = pdc_result[0];
360 memcpy(iodc_data, pdc_result2, iodc_data_size);
361 spin_unlock_irqrestore(&pdc_lock, flags);
362
363 return retval;
364 }
365 EXPORT_SYMBOL(pdc_iodc_read);
366
367 /**
368 * pdc_system_map_find_mods - Locate unarchitected modules.
369 * @pdc_mod_info: Return buffer address.
370 * @mod_path: pointer to dev path structure.
371 * @mod_index: fixed address module index.
372 *
373 * To locate and identify modules which reside at fixed I/O addresses, which
374 * do not self-identify via architected bus walks.
375 */
pdc_system_map_find_mods(struct pdc_system_map_mod_info * pdc_mod_info,struct pdc_module_path * mod_path,long mod_index)376 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
377 struct pdc_module_path *mod_path, long mod_index)
378 {
379 int retval;
380 unsigned long flags;
381
382 spin_lock_irqsave(&pdc_lock, flags);
383 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
384 __pa(pdc_result2), mod_index);
385 convert_to_wide(pdc_result);
386 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
387 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
388 spin_unlock_irqrestore(&pdc_lock, flags);
389
390 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
391 return retval;
392 }
393
394 /**
395 * pdc_system_map_find_addrs - Retrieve additional address ranges.
396 * @pdc_addr_info: Return buffer address.
397 * @mod_index: Fixed address module index.
398 * @addr_index: Address range index.
399 *
400 * Retrieve additional information about subsequent address ranges for modules
401 * with multiple address ranges.
402 */
pdc_system_map_find_addrs(struct pdc_system_map_addr_info * pdc_addr_info,long mod_index,long addr_index)403 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
404 long mod_index, long addr_index)
405 {
406 int retval;
407 unsigned long flags;
408
409 spin_lock_irqsave(&pdc_lock, flags);
410 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
411 mod_index, addr_index);
412 convert_to_wide(pdc_result);
413 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
414 spin_unlock_irqrestore(&pdc_lock, flags);
415
416 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
417 return retval;
418 }
419
420 /**
421 * pdc_model_info - Return model information about the processor.
422 * @model: The return buffer.
423 *
424 * Returns the version numbers, identifiers, and capabilities from the processor module.
425 */
pdc_model_info(struct pdc_model * model)426 int pdc_model_info(struct pdc_model *model)
427 {
428 int retval;
429 unsigned long flags;
430
431 spin_lock_irqsave(&pdc_lock, flags);
432 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
433 convert_to_wide(pdc_result);
434 memcpy(model, pdc_result, sizeof(*model));
435 spin_unlock_irqrestore(&pdc_lock, flags);
436
437 return retval;
438 }
439
440 /**
441 * pdc_model_sysmodel - Get the system model name.
442 * @name: A char array of at least 81 characters.
443 *
444 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
445 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
446 * on HP/UX.
447 */
pdc_model_sysmodel(char * name)448 int pdc_model_sysmodel(char *name)
449 {
450 int retval;
451 unsigned long flags;
452
453 spin_lock_irqsave(&pdc_lock, flags);
454 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
455 OS_ID_HPUX, __pa(name));
456 convert_to_wide(pdc_result);
457
458 if (retval == PDC_OK) {
459 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
460 } else {
461 name[0] = 0;
462 }
463 spin_unlock_irqrestore(&pdc_lock, flags);
464
465 return retval;
466 }
467
468 /**
469 * pdc_model_versions - Identify the version number of each processor.
470 * @cpu_id: The return buffer.
471 * @id: The id of the processor to check.
472 *
473 * Returns the version number for each processor component.
474 *
475 * This comment was here before, but I do not know what it means :( -RB
476 * id: 0 = cpu revision, 1 = boot-rom-version
477 */
pdc_model_versions(unsigned long * versions,int id)478 int pdc_model_versions(unsigned long *versions, int id)
479 {
480 int retval;
481 unsigned long flags;
482
483 spin_lock_irqsave(&pdc_lock, flags);
484 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
485 convert_to_wide(pdc_result);
486 *versions = pdc_result[0];
487 spin_unlock_irqrestore(&pdc_lock, flags);
488
489 return retval;
490 }
491
492 /**
493 * pdc_model_cpuid - Returns the CPU_ID.
494 * @cpu_id: The return buffer.
495 *
496 * Returns the CPU_ID value which uniquely identifies the cpu portion of
497 * the processor module.
498 */
pdc_model_cpuid(unsigned long * cpu_id)499 int pdc_model_cpuid(unsigned long *cpu_id)
500 {
501 int retval;
502 unsigned long flags;
503
504 spin_lock_irqsave(&pdc_lock, flags);
505 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
506 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
507 convert_to_wide(pdc_result);
508 *cpu_id = pdc_result[0];
509 spin_unlock_irqrestore(&pdc_lock, flags);
510
511 return retval;
512 }
513
514 /**
515 * pdc_model_capabilities - Returns the platform capabilities.
516 * @capabilities: The return buffer.
517 *
518 * Returns information about platform support for 32- and/or 64-bit
519 * OSes, IO-PDIR coherency, and virtual aliasing.
520 */
pdc_model_capabilities(unsigned long * capabilities)521 int pdc_model_capabilities(unsigned long *capabilities)
522 {
523 int retval;
524 unsigned long flags;
525
526 spin_lock_irqsave(&pdc_lock, flags);
527 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
528 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
529 convert_to_wide(pdc_result);
530 if (retval == PDC_OK) {
531 *capabilities = pdc_result[0];
532 } else {
533 *capabilities = PDC_MODEL_OS32;
534 }
535 spin_unlock_irqrestore(&pdc_lock, flags);
536
537 return retval;
538 }
539
540 /**
541 * pdc_cache_info - Return cache and TLB information.
542 * @cache_info: The return buffer.
543 *
544 * Returns information about the processor's cache and TLB.
545 */
pdc_cache_info(struct pdc_cache_info * cache_info)546 int pdc_cache_info(struct pdc_cache_info *cache_info)
547 {
548 int retval;
549 unsigned long flags;
550
551 spin_lock_irqsave(&pdc_lock, flags);
552 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
553 convert_to_wide(pdc_result);
554 memcpy(cache_info, pdc_result, sizeof(*cache_info));
555 spin_unlock_irqrestore(&pdc_lock, flags);
556
557 return retval;
558 }
559
560 /**
561 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
562 * @space_bits: Should be 0, if not, bad mojo!
563 *
564 * Returns information about Space ID hashing.
565 */
pdc_spaceid_bits(unsigned long * space_bits)566 int pdc_spaceid_bits(unsigned long *space_bits)
567 {
568 int retval;
569 unsigned long flags;
570
571 spin_lock_irqsave(&pdc_lock, flags);
572 pdc_result[0] = 0;
573 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
574 convert_to_wide(pdc_result);
575 *space_bits = pdc_result[0];
576 spin_unlock_irqrestore(&pdc_lock, flags);
577
578 return retval;
579 }
580
581 #ifndef CONFIG_PA20
582 /**
583 * pdc_btlb_info - Return block TLB information.
584 * @btlb: The return buffer.
585 *
586 * Returns information about the hardware Block TLB.
587 */
pdc_btlb_info(struct pdc_btlb_info * btlb)588 int pdc_btlb_info(struct pdc_btlb_info *btlb)
589 {
590 int retval;
591 unsigned long flags;
592
593 spin_lock_irqsave(&pdc_lock, flags);
594 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
595 memcpy(btlb, pdc_result, sizeof(*btlb));
596 spin_unlock_irqrestore(&pdc_lock, flags);
597
598 if(retval < 0) {
599 btlb->max_size = 0;
600 }
601 return retval;
602 }
603
604 /**
605 * pdc_mem_map_hpa - Find fixed module information.
606 * @address: The return buffer
607 * @mod_path: pointer to dev path structure.
608 *
609 * This call was developed for S700 workstations to allow the kernel to find
610 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
611 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
612 * call.
613 *
614 * This call is supported by all existing S700 workstations (up to Gecko).
615 */
pdc_mem_map_hpa(struct pdc_memory_map * address,struct pdc_module_path * mod_path)616 int pdc_mem_map_hpa(struct pdc_memory_map *address,
617 struct pdc_module_path *mod_path)
618 {
619 int retval;
620 unsigned long flags;
621
622 spin_lock_irqsave(&pdc_lock, flags);
623 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
624 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
625 __pa(pdc_result2));
626 memcpy(address, pdc_result, sizeof(*address));
627 spin_unlock_irqrestore(&pdc_lock, flags);
628
629 return retval;
630 }
631 #endif /* !CONFIG_PA20 */
632
633 /**
634 * pdc_lan_station_id - Get the LAN address.
635 * @lan_addr: The return buffer.
636 * @hpa: The network device HPA.
637 *
638 * Get the LAN station address when it is not directly available from the LAN hardware.
639 */
pdc_lan_station_id(char * lan_addr,unsigned long hpa)640 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
641 {
642 int retval;
643 unsigned long flags;
644
645 spin_lock_irqsave(&pdc_lock, flags);
646 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
647 __pa(pdc_result), hpa);
648 if (retval < 0) {
649 /* FIXME: else read MAC from NVRAM */
650 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
651 } else {
652 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
653 }
654 spin_unlock_irqrestore(&pdc_lock, flags);
655
656 return retval;
657 }
658 EXPORT_SYMBOL(pdc_lan_station_id);
659
660 /**
661 * pdc_stable_read - Read data from Stable Storage.
662 * @staddr: Stable Storage address to access.
663 * @memaddr: The memory address where Stable Storage data shall be copied.
664 * @count: number of bytes to transfer. count is multiple of 4.
665 *
666 * This PDC call reads from the Stable Storage address supplied in staddr
667 * and copies count bytes to the memory address memaddr.
668 * The call will fail if staddr+count > PDC_STABLE size.
669 */
pdc_stable_read(unsigned long staddr,void * memaddr,unsigned long count)670 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
671 {
672 int retval;
673 unsigned long flags;
674
675 spin_lock_irqsave(&pdc_lock, flags);
676 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
677 __pa(pdc_result), count);
678 convert_to_wide(pdc_result);
679 memcpy(memaddr, pdc_result, count);
680 spin_unlock_irqrestore(&pdc_lock, flags);
681
682 return retval;
683 }
684 EXPORT_SYMBOL(pdc_stable_read);
685
686 /**
687 * pdc_stable_write - Write data to Stable Storage.
688 * @staddr: Stable Storage address to access.
689 * @memaddr: The memory address where Stable Storage data shall be read from.
690 * @count: number of bytes to transfer. count is multiple of 4.
691 *
692 * This PDC call reads count bytes from the supplied memaddr address,
693 * and copies count bytes to the Stable Storage address staddr.
694 * The call will fail if staddr+count > PDC_STABLE size.
695 */
pdc_stable_write(unsigned long staddr,void * memaddr,unsigned long count)696 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
697 {
698 int retval;
699 unsigned long flags;
700
701 spin_lock_irqsave(&pdc_lock, flags);
702 memcpy(pdc_result, memaddr, count);
703 convert_to_wide(pdc_result);
704 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
705 __pa(pdc_result), count);
706 spin_unlock_irqrestore(&pdc_lock, flags);
707
708 return retval;
709 }
710 EXPORT_SYMBOL(pdc_stable_write);
711
712 /**
713 * pdc_stable_get_size - Get Stable Storage size in bytes.
714 * @size: pointer where the size will be stored.
715 *
716 * This PDC call returns the number of bytes in the processor's Stable
717 * Storage, which is the number of contiguous bytes implemented in Stable
718 * Storage starting from staddr=0. size in an unsigned 64-bit integer
719 * which is a multiple of four.
720 */
pdc_stable_get_size(unsigned long * size)721 int pdc_stable_get_size(unsigned long *size)
722 {
723 int retval;
724 unsigned long flags;
725
726 spin_lock_irqsave(&pdc_lock, flags);
727 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
728 *size = pdc_result[0];
729 spin_unlock_irqrestore(&pdc_lock, flags);
730
731 return retval;
732 }
733 EXPORT_SYMBOL(pdc_stable_get_size);
734
735 /**
736 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
737 *
738 * This PDC call is meant to be used to check the integrity of the current
739 * contents of Stable Storage.
740 */
pdc_stable_verify_contents(void)741 int pdc_stable_verify_contents(void)
742 {
743 int retval;
744 unsigned long flags;
745
746 spin_lock_irqsave(&pdc_lock, flags);
747 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
748 spin_unlock_irqrestore(&pdc_lock, flags);
749
750 return retval;
751 }
752 EXPORT_SYMBOL(pdc_stable_verify_contents);
753
754 /**
755 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
756 * the validity indicator.
757 *
758 * This PDC call will erase all contents of Stable Storage. Use with care!
759 */
pdc_stable_initialize(void)760 int pdc_stable_initialize(void)
761 {
762 int retval;
763 unsigned long flags;
764
765 spin_lock_irqsave(&pdc_lock, flags);
766 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
767 spin_unlock_irqrestore(&pdc_lock, flags);
768
769 return retval;
770 }
771 EXPORT_SYMBOL(pdc_stable_initialize);
772
773 /**
774 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
775 * @hwpath: fully bc.mod style path to the device.
776 * @initiator: the array to return the result into
777 *
778 * Get the SCSI operational parameters from PDC.
779 * Needed since HPUX never used BIOS or symbios card NVRAM.
780 * Most ncr/sym cards won't have an entry and just use whatever
781 * capabilities of the card are (eg Ultra, LVD). But there are
782 * several cases where it's useful:
783 * o set SCSI id for Multi-initiator clusters,
784 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
785 * o bus width exported is less than what the interface chip supports.
786 */
pdc_get_initiator(struct hardware_path * hwpath,struct pdc_initiator * initiator)787 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
788 {
789 int retval;
790 unsigned long flags;
791
792 spin_lock_irqsave(&pdc_lock, flags);
793
794 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
795 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
796 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
797
798 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
799 __pa(pdc_result), __pa(hwpath));
800 if (retval < PDC_OK)
801 goto out;
802
803 if (pdc_result[0] < 16) {
804 initiator->host_id = pdc_result[0];
805 } else {
806 initiator->host_id = -1;
807 }
808
809 /*
810 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
811 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
812 */
813 switch (pdc_result[1]) {
814 case 1: initiator->factor = 50; break;
815 case 2: initiator->factor = 25; break;
816 case 5: initiator->factor = 12; break;
817 case 25: initiator->factor = 10; break;
818 case 20: initiator->factor = 12; break;
819 case 40: initiator->factor = 10; break;
820 default: initiator->factor = -1; break;
821 }
822
823 if (IS_SPROCKETS()) {
824 initiator->width = pdc_result[4];
825 initiator->mode = pdc_result[5];
826 } else {
827 initiator->width = -1;
828 initiator->mode = -1;
829 }
830
831 out:
832 spin_unlock_irqrestore(&pdc_lock, flags);
833
834 return (retval >= PDC_OK);
835 }
836 EXPORT_SYMBOL(pdc_get_initiator);
837
838
839 /**
840 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
841 * @num_entries: The return value.
842 * @hpa: The HPA for the device.
843 *
844 * This PDC function returns the number of entries in the specified cell's
845 * interrupt table.
846 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
847 */
pdc_pci_irt_size(unsigned long * num_entries,unsigned long hpa)848 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
849 {
850 int retval;
851 unsigned long flags;
852
853 spin_lock_irqsave(&pdc_lock, flags);
854 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
855 __pa(pdc_result), hpa);
856 convert_to_wide(pdc_result);
857 *num_entries = pdc_result[0];
858 spin_unlock_irqrestore(&pdc_lock, flags);
859
860 return retval;
861 }
862
863 /**
864 * pdc_pci_irt - Get the PCI interrupt routing table.
865 * @num_entries: The number of entries in the table.
866 * @hpa: The Hard Physical Address of the device.
867 * @tbl:
868 *
869 * Get the PCI interrupt routing table for the device at the given HPA.
870 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
871 */
pdc_pci_irt(unsigned long num_entries,unsigned long hpa,void * tbl)872 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
873 {
874 int retval;
875 unsigned long flags;
876
877 BUG_ON((unsigned long)tbl & 0x7);
878
879 spin_lock_irqsave(&pdc_lock, flags);
880 pdc_result[0] = num_entries;
881 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
882 __pa(pdc_result), hpa, __pa(tbl));
883 spin_unlock_irqrestore(&pdc_lock, flags);
884
885 return retval;
886 }
887
888
889 #if 0 /* UNTEST CODE - left here in case someone needs it */
890
891 /**
892 * pdc_pci_config_read - read PCI config space.
893 * @hpa token from PDC to indicate which PCI device
894 * @pci_addr configuration space address to read from
895 *
896 * Read PCI Configuration space *before* linux PCI subsystem is running.
897 */
898 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
899 {
900 int retval;
901 unsigned long flags;
902
903 spin_lock_irqsave(&pdc_lock, flags);
904 pdc_result[0] = 0;
905 pdc_result[1] = 0;
906 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
907 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
908 spin_unlock_irqrestore(&pdc_lock, flags);
909
910 return retval ? ~0 : (unsigned int) pdc_result[0];
911 }
912
913
914 /**
915 * pdc_pci_config_write - read PCI config space.
916 * @hpa token from PDC to indicate which PCI device
917 * @pci_addr configuration space address to write
918 * @val value we want in the 32-bit register
919 *
920 * Write PCI Configuration space *before* linux PCI subsystem is running.
921 */
922 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
923 {
924 int retval;
925 unsigned long flags;
926
927 spin_lock_irqsave(&pdc_lock, flags);
928 pdc_result[0] = 0;
929 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
930 __pa(pdc_result), hpa,
931 cfg_addr&~3UL, 4UL, (unsigned long) val);
932 spin_unlock_irqrestore(&pdc_lock, flags);
933
934 return retval;
935 }
936 #endif /* UNTESTED CODE */
937
938 /**
939 * pdc_tod_read - Read the Time-Of-Day clock.
940 * @tod: The return buffer:
941 *
942 * Read the Time-Of-Day clock
943 */
pdc_tod_read(struct pdc_tod * tod)944 int pdc_tod_read(struct pdc_tod *tod)
945 {
946 int retval;
947 unsigned long flags;
948
949 spin_lock_irqsave(&pdc_lock, flags);
950 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
951 convert_to_wide(pdc_result);
952 memcpy(tod, pdc_result, sizeof(*tod));
953 spin_unlock_irqrestore(&pdc_lock, flags);
954
955 return retval;
956 }
957 EXPORT_SYMBOL(pdc_tod_read);
958
959 /**
960 * pdc_tod_set - Set the Time-Of-Day clock.
961 * @sec: The number of seconds since epoch.
962 * @usec: The number of micro seconds.
963 *
964 * Set the Time-Of-Day clock.
965 */
pdc_tod_set(unsigned long sec,unsigned long usec)966 int pdc_tod_set(unsigned long sec, unsigned long usec)
967 {
968 int retval;
969 unsigned long flags;
970
971 spin_lock_irqsave(&pdc_lock, flags);
972 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
973 spin_unlock_irqrestore(&pdc_lock, flags);
974
975 return retval;
976 }
977 EXPORT_SYMBOL(pdc_tod_set);
978
979 #ifdef CONFIG_64BIT
pdc_mem_mem_table(struct pdc_memory_table_raddr * r_addr,struct pdc_memory_table * tbl,unsigned long entries)980 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
981 struct pdc_memory_table *tbl, unsigned long entries)
982 {
983 int retval;
984 unsigned long flags;
985
986 spin_lock_irqsave(&pdc_lock, flags);
987 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
988 convert_to_wide(pdc_result);
989 memcpy(r_addr, pdc_result, sizeof(*r_addr));
990 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
991 spin_unlock_irqrestore(&pdc_lock, flags);
992
993 return retval;
994 }
995 #endif /* CONFIG_64BIT */
996
997 /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
998 * so I guessed at unsigned long. Someone who knows what this does, can fix
999 * it later. :)
1000 */
pdc_do_firm_test_reset(unsigned long ftc_bitmap)1001 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1002 {
1003 int retval;
1004 unsigned long flags;
1005
1006 spin_lock_irqsave(&pdc_lock, flags);
1007 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1008 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1009 spin_unlock_irqrestore(&pdc_lock, flags);
1010
1011 return retval;
1012 }
1013
1014 /*
1015 * pdc_do_reset - Reset the system.
1016 *
1017 * Reset the system.
1018 */
pdc_do_reset(void)1019 int pdc_do_reset(void)
1020 {
1021 int retval;
1022 unsigned long flags;
1023
1024 spin_lock_irqsave(&pdc_lock, flags);
1025 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1026 spin_unlock_irqrestore(&pdc_lock, flags);
1027
1028 return retval;
1029 }
1030
1031 /*
1032 * pdc_soft_power_info - Enable soft power switch.
1033 * @power_reg: address of soft power register
1034 *
1035 * Return the absolute address of the soft power switch register
1036 */
pdc_soft_power_info(unsigned long * power_reg)1037 int __init pdc_soft_power_info(unsigned long *power_reg)
1038 {
1039 int retval;
1040 unsigned long flags;
1041
1042 *power_reg = (unsigned long) (-1);
1043
1044 spin_lock_irqsave(&pdc_lock, flags);
1045 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1046 if (retval == PDC_OK) {
1047 convert_to_wide(pdc_result);
1048 *power_reg = f_extend(pdc_result[0]);
1049 }
1050 spin_unlock_irqrestore(&pdc_lock, flags);
1051
1052 return retval;
1053 }
1054
1055 /*
1056 * pdc_soft_power_button - Control the soft power button behaviour
1057 * @sw_control: 0 for hardware control, 1 for software control
1058 *
1059 *
1060 * This PDC function places the soft power button under software or
1061 * hardware control.
1062 * Under software control the OS may control to when to allow to shut
1063 * down the system. Under hardware control pressing the power button
1064 * powers off the system immediately.
1065 */
pdc_soft_power_button(int sw_control)1066 int pdc_soft_power_button(int sw_control)
1067 {
1068 int retval;
1069 unsigned long flags;
1070
1071 spin_lock_irqsave(&pdc_lock, flags);
1072 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1073 spin_unlock_irqrestore(&pdc_lock, flags);
1074
1075 return retval;
1076 }
1077
1078 /*
1079 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1080 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1081 * who knows what other platform firmware might do with this OS "hook".
1082 */
pdc_io_reset(void)1083 void pdc_io_reset(void)
1084 {
1085 unsigned long flags;
1086
1087 spin_lock_irqsave(&pdc_lock, flags);
1088 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1089 spin_unlock_irqrestore(&pdc_lock, flags);
1090 }
1091
1092 /*
1093 * pdc_io_reset_devices - Hack to Stop USB controller
1094 *
1095 * If PDC used the usb controller, the usb controller
1096 * is still running and will crash the machines during iommu
1097 * setup, because of still running DMA. This PDC call
1098 * stops the USB controller.
1099 * Normally called after calling pdc_io_reset().
1100 */
pdc_io_reset_devices(void)1101 void pdc_io_reset_devices(void)
1102 {
1103 unsigned long flags;
1104
1105 spin_lock_irqsave(&pdc_lock, flags);
1106 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1107 spin_unlock_irqrestore(&pdc_lock, flags);
1108 }
1109
1110 /* locked by pdc_console_lock */
1111 static int __attribute__((aligned(8))) iodc_retbuf[32];
1112 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1113
1114 /**
1115 * pdc_iodc_print - Console print using IODC.
1116 * @str: the string to output.
1117 * @count: length of str
1118 *
1119 * Note that only these special chars are architected for console IODC io:
1120 * BEL, BS, CR, and LF. Others are passed through.
1121 * Since the HP console requires CR+LF to perform a 'newline', we translate
1122 * "\n" to "\r\n".
1123 */
pdc_iodc_print(const unsigned char * str,unsigned count)1124 int pdc_iodc_print(const unsigned char *str, unsigned count)
1125 {
1126 unsigned int i;
1127 unsigned long flags;
1128
1129 for (i = 0; i < count;) {
1130 switch(str[i]) {
1131 case '\n':
1132 iodc_dbuf[i+0] = '\r';
1133 iodc_dbuf[i+1] = '\n';
1134 i += 2;
1135 goto print;
1136 default:
1137 iodc_dbuf[i] = str[i];
1138 i++;
1139 break;
1140 }
1141 }
1142
1143 print:
1144 spin_lock_irqsave(&pdc_lock, flags);
1145 real32_call(PAGE0->mem_cons.iodc_io,
1146 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1147 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1148 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1149 spin_unlock_irqrestore(&pdc_lock, flags);
1150
1151 return i;
1152 }
1153
1154 /**
1155 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1156 *
1157 * Read a character (non-blocking) from the PDC console, returns -1 if
1158 * key is not present.
1159 */
pdc_iodc_getc(void)1160 int pdc_iodc_getc(void)
1161 {
1162 int ch;
1163 int status;
1164 unsigned long flags;
1165
1166 /* Bail if no console input device. */
1167 if (!PAGE0->mem_kbd.iodc_io)
1168 return 0;
1169
1170 /* wait for a keyboard (rs232)-input */
1171 spin_lock_irqsave(&pdc_lock, flags);
1172 real32_call(PAGE0->mem_kbd.iodc_io,
1173 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1174 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1175 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1176
1177 ch = *iodc_dbuf;
1178 status = *iodc_retbuf;
1179 spin_unlock_irqrestore(&pdc_lock, flags);
1180
1181 if (status == 0)
1182 return -1;
1183
1184 return ch;
1185 }
1186
pdc_sti_call(unsigned long func,unsigned long flags,unsigned long inptr,unsigned long outputr,unsigned long glob_cfg)1187 int pdc_sti_call(unsigned long func, unsigned long flags,
1188 unsigned long inptr, unsigned long outputr,
1189 unsigned long glob_cfg)
1190 {
1191 int retval;
1192 unsigned long irqflags;
1193
1194 spin_lock_irqsave(&pdc_lock, irqflags);
1195 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1196 spin_unlock_irqrestore(&pdc_lock, irqflags);
1197
1198 return retval;
1199 }
1200 EXPORT_SYMBOL(pdc_sti_call);
1201
1202 #ifdef CONFIG_64BIT
1203 /**
1204 * pdc_pat_cell_get_number - Returns the cell number.
1205 * @cell_info: The return buffer.
1206 *
1207 * This PDC call returns the cell number of the cell from which the call
1208 * is made.
1209 */
pdc_pat_cell_get_number(struct pdc_pat_cell_num * cell_info)1210 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1211 {
1212 int retval;
1213 unsigned long flags;
1214
1215 spin_lock_irqsave(&pdc_lock, flags);
1216 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1217 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1218 spin_unlock_irqrestore(&pdc_lock, flags);
1219
1220 return retval;
1221 }
1222
1223 /**
1224 * pdc_pat_cell_module - Retrieve the cell's module information.
1225 * @actcnt: The number of bytes written to mem_addr.
1226 * @ploc: The physical location.
1227 * @mod: The module index.
1228 * @view_type: The view of the address type.
1229 * @mem_addr: The return buffer.
1230 *
1231 * This PDC call returns information about each module attached to the cell
1232 * at the specified location.
1233 */
pdc_pat_cell_module(unsigned long * actcnt,unsigned long ploc,unsigned long mod,unsigned long view_type,void * mem_addr)1234 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1235 unsigned long view_type, void *mem_addr)
1236 {
1237 int retval;
1238 unsigned long flags;
1239 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1240
1241 spin_lock_irqsave(&pdc_lock, flags);
1242 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1243 ploc, mod, view_type, __pa(&result));
1244 if(!retval) {
1245 *actcnt = pdc_result[0];
1246 memcpy(mem_addr, &result, *actcnt);
1247 }
1248 spin_unlock_irqrestore(&pdc_lock, flags);
1249
1250 return retval;
1251 }
1252
1253 /**
1254 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1255 * @cpu_info: The return buffer.
1256 * @hpa: The Hard Physical Address of the CPU.
1257 *
1258 * Retrieve the cpu number for the cpu at the specified HPA.
1259 */
pdc_pat_cpu_get_number(struct pdc_pat_cpu_num * cpu_info,void * hpa)1260 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1261 {
1262 int retval;
1263 unsigned long flags;
1264
1265 spin_lock_irqsave(&pdc_lock, flags);
1266 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1267 __pa(&pdc_result), hpa);
1268 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1269 spin_unlock_irqrestore(&pdc_lock, flags);
1270
1271 return retval;
1272 }
1273
1274 /**
1275 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1276 * @num_entries: The return value.
1277 * @cell_num: The target cell.
1278 *
1279 * This PDC function returns the number of entries in the specified cell's
1280 * interrupt table.
1281 */
pdc_pat_get_irt_size(unsigned long * num_entries,unsigned long cell_num)1282 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1283 {
1284 int retval;
1285 unsigned long flags;
1286
1287 spin_lock_irqsave(&pdc_lock, flags);
1288 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1289 __pa(pdc_result), cell_num);
1290 *num_entries = pdc_result[0];
1291 spin_unlock_irqrestore(&pdc_lock, flags);
1292
1293 return retval;
1294 }
1295
1296 /**
1297 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1298 * @r_addr: The return buffer.
1299 * @cell_num: The target cell.
1300 *
1301 * This PDC function returns the actual interrupt table for the specified cell.
1302 */
pdc_pat_get_irt(void * r_addr,unsigned long cell_num)1303 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1304 {
1305 int retval;
1306 unsigned long flags;
1307
1308 spin_lock_irqsave(&pdc_lock, flags);
1309 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1310 __pa(r_addr), cell_num);
1311 spin_unlock_irqrestore(&pdc_lock, flags);
1312
1313 return retval;
1314 }
1315
1316 /**
1317 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1318 * @actlen: The return buffer.
1319 * @mem_addr: Pointer to the memory buffer.
1320 * @count: The number of bytes to read from the buffer.
1321 * @offset: The offset with respect to the beginning of the buffer.
1322 *
1323 */
pdc_pat_pd_get_addr_map(unsigned long * actual_len,void * mem_addr,unsigned long count,unsigned long offset)1324 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1325 unsigned long count, unsigned long offset)
1326 {
1327 int retval;
1328 unsigned long flags;
1329
1330 spin_lock_irqsave(&pdc_lock, flags);
1331 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1332 __pa(pdc_result2), count, offset);
1333 *actual_len = pdc_result[0];
1334 memcpy(mem_addr, pdc_result2, *actual_len);
1335 spin_unlock_irqrestore(&pdc_lock, flags);
1336
1337 return retval;
1338 }
1339
1340 /**
1341 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1342 * @pci_addr: PCI configuration space address for which the read request is being made.
1343 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1344 * @mem_addr: Pointer to return memory buffer.
1345 *
1346 */
pdc_pat_io_pci_cfg_read(unsigned long pci_addr,int pci_size,u32 * mem_addr)1347 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1348 {
1349 int retval;
1350 unsigned long flags;
1351
1352 spin_lock_irqsave(&pdc_lock, flags);
1353 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1354 __pa(pdc_result), pci_addr, pci_size);
1355 switch(pci_size) {
1356 case 1: *(u8 *) mem_addr = (u8) pdc_result[0];
1357 case 2: *(u16 *)mem_addr = (u16) pdc_result[0];
1358 case 4: *(u32 *)mem_addr = (u32) pdc_result[0];
1359 }
1360 spin_unlock_irqrestore(&pdc_lock, flags);
1361
1362 return retval;
1363 }
1364
1365 /**
1366 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1367 * @pci_addr: PCI configuration space address for which the write request is being made.
1368 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1369 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1370 * written to PCI Config space.
1371 *
1372 */
pdc_pat_io_pci_cfg_write(unsigned long pci_addr,int pci_size,u32 val)1373 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1374 {
1375 int retval;
1376 unsigned long flags;
1377
1378 spin_lock_irqsave(&pdc_lock, flags);
1379 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1380 pci_addr, pci_size, val);
1381 spin_unlock_irqrestore(&pdc_lock, flags);
1382
1383 return retval;
1384 }
1385 #endif /* CONFIG_64BIT */
1386
1387
1388 /***************** 32-bit real-mode calls ***********/
1389 /* The struct below is used
1390 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1391 * real32_call_asm() then uses this stack in narrow real mode
1392 */
1393
1394 struct narrow_stack {
1395 /* use int, not long which is 64 bits */
1396 unsigned int arg13;
1397 unsigned int arg12;
1398 unsigned int arg11;
1399 unsigned int arg10;
1400 unsigned int arg9;
1401 unsigned int arg8;
1402 unsigned int arg7;
1403 unsigned int arg6;
1404 unsigned int arg5;
1405 unsigned int arg4;
1406 unsigned int arg3;
1407 unsigned int arg2;
1408 unsigned int arg1;
1409 unsigned int arg0;
1410 unsigned int frame_marker[8];
1411 unsigned int sp;
1412 /* in reality, there's nearly 8k of stack after this */
1413 };
1414
real32_call(unsigned long fn,...)1415 long real32_call(unsigned long fn, ...)
1416 {
1417 va_list args;
1418 extern struct narrow_stack real_stack;
1419 extern unsigned long real32_call_asm(unsigned int *,
1420 unsigned int *,
1421 unsigned int);
1422
1423 va_start(args, fn);
1424 real_stack.arg0 = va_arg(args, unsigned int);
1425 real_stack.arg1 = va_arg(args, unsigned int);
1426 real_stack.arg2 = va_arg(args, unsigned int);
1427 real_stack.arg3 = va_arg(args, unsigned int);
1428 real_stack.arg4 = va_arg(args, unsigned int);
1429 real_stack.arg5 = va_arg(args, unsigned int);
1430 real_stack.arg6 = va_arg(args, unsigned int);
1431 real_stack.arg7 = va_arg(args, unsigned int);
1432 real_stack.arg8 = va_arg(args, unsigned int);
1433 real_stack.arg9 = va_arg(args, unsigned int);
1434 real_stack.arg10 = va_arg(args, unsigned int);
1435 real_stack.arg11 = va_arg(args, unsigned int);
1436 real_stack.arg12 = va_arg(args, unsigned int);
1437 real_stack.arg13 = va_arg(args, unsigned int);
1438 va_end(args);
1439
1440 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1441 }
1442
1443 #ifdef CONFIG_64BIT
1444 /***************** 64-bit real-mode calls ***********/
1445
1446 struct wide_stack {
1447 unsigned long arg0;
1448 unsigned long arg1;
1449 unsigned long arg2;
1450 unsigned long arg3;
1451 unsigned long arg4;
1452 unsigned long arg5;
1453 unsigned long arg6;
1454 unsigned long arg7;
1455 unsigned long arg8;
1456 unsigned long arg9;
1457 unsigned long arg10;
1458 unsigned long arg11;
1459 unsigned long arg12;
1460 unsigned long arg13;
1461 unsigned long frame_marker[2]; /* rp, previous sp */
1462 unsigned long sp;
1463 /* in reality, there's nearly 8k of stack after this */
1464 };
1465
real64_call(unsigned long fn,...)1466 long real64_call(unsigned long fn, ...)
1467 {
1468 va_list args;
1469 extern struct wide_stack real64_stack;
1470 extern unsigned long real64_call_asm(unsigned long *,
1471 unsigned long *,
1472 unsigned long);
1473
1474 va_start(args, fn);
1475 real64_stack.arg0 = va_arg(args, unsigned long);
1476 real64_stack.arg1 = va_arg(args, unsigned long);
1477 real64_stack.arg2 = va_arg(args, unsigned long);
1478 real64_stack.arg3 = va_arg(args, unsigned long);
1479 real64_stack.arg4 = va_arg(args, unsigned long);
1480 real64_stack.arg5 = va_arg(args, unsigned long);
1481 real64_stack.arg6 = va_arg(args, unsigned long);
1482 real64_stack.arg7 = va_arg(args, unsigned long);
1483 real64_stack.arg8 = va_arg(args, unsigned long);
1484 real64_stack.arg9 = va_arg(args, unsigned long);
1485 real64_stack.arg10 = va_arg(args, unsigned long);
1486 real64_stack.arg11 = va_arg(args, unsigned long);
1487 real64_stack.arg12 = va_arg(args, unsigned long);
1488 real64_stack.arg13 = va_arg(args, unsigned long);
1489 va_end(args);
1490
1491 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1492 }
1493
1494 #endif /* CONFIG_64BIT */
1495
1496