1 /*
2 * linux/net/sunrpc/svcsock.c
3 *
4 * These are the RPC server socket internals.
5 *
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_xprt_enqueue procedure...
9 *
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
18 *
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/fcntl.h>
27 #include <linux/net.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/udp.h>
31 #include <linux/tcp.h>
32 #include <linux/unistd.h>
33 #include <linux/slab.h>
34 #include <linux/netdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/file.h>
37 #include <linux/freezer.h>
38 #include <net/sock.h>
39 #include <net/checksum.h>
40 #include <net/ip.h>
41 #include <net/ipv6.h>
42 #include <net/tcp.h>
43 #include <net/tcp_states.h>
44 #include <asm/uaccess.h>
45 #include <asm/ioctls.h>
46
47 #include <linux/sunrpc/types.h>
48 #include <linux/sunrpc/clnt.h>
49 #include <linux/sunrpc/xdr.h>
50 #include <linux/sunrpc/msg_prot.h>
51 #include <linux/sunrpc/svcsock.h>
52 #include <linux/sunrpc/stats.h>
53 #include <linux/sunrpc/xprt.h>
54
55 #include "sunrpc.h"
56
57 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
58
59
60 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
61 int *errp, int flags);
62 static void svc_udp_data_ready(struct sock *, int);
63 static int svc_udp_recvfrom(struct svc_rqst *);
64 static int svc_udp_sendto(struct svc_rqst *);
65 static void svc_sock_detach(struct svc_xprt *);
66 static void svc_tcp_sock_detach(struct svc_xprt *);
67 static void svc_sock_free(struct svc_xprt *);
68
69 static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
70 struct net *, struct sockaddr *,
71 int, int);
72 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
73 static struct svc_xprt *svc_bc_create_socket(struct svc_serv *, int,
74 struct net *, struct sockaddr *,
75 int, int);
76 static void svc_bc_sock_free(struct svc_xprt *xprt);
77 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
78
79 #ifdef CONFIG_DEBUG_LOCK_ALLOC
80 static struct lock_class_key svc_key[2];
81 static struct lock_class_key svc_slock_key[2];
82
svc_reclassify_socket(struct socket * sock)83 static void svc_reclassify_socket(struct socket *sock)
84 {
85 struct sock *sk = sock->sk;
86 BUG_ON(sock_owned_by_user(sk));
87 switch (sk->sk_family) {
88 case AF_INET:
89 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
90 &svc_slock_key[0],
91 "sk_xprt.xpt_lock-AF_INET-NFSD",
92 &svc_key[0]);
93 break;
94
95 case AF_INET6:
96 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
97 &svc_slock_key[1],
98 "sk_xprt.xpt_lock-AF_INET6-NFSD",
99 &svc_key[1]);
100 break;
101
102 default:
103 BUG();
104 }
105 }
106 #else
svc_reclassify_socket(struct socket * sock)107 static void svc_reclassify_socket(struct socket *sock)
108 {
109 }
110 #endif
111
112 /*
113 * Release an skbuff after use
114 */
svc_release_skb(struct svc_rqst * rqstp)115 static void svc_release_skb(struct svc_rqst *rqstp)
116 {
117 struct sk_buff *skb = rqstp->rq_xprt_ctxt;
118
119 if (skb) {
120 struct svc_sock *svsk =
121 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
122 rqstp->rq_xprt_ctxt = NULL;
123
124 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
125 skb_free_datagram_locked(svsk->sk_sk, skb);
126 }
127 }
128
129 union svc_pktinfo_u {
130 struct in_pktinfo pkti;
131 struct in6_pktinfo pkti6;
132 };
133 #define SVC_PKTINFO_SPACE \
134 CMSG_SPACE(sizeof(union svc_pktinfo_u))
135
svc_set_cmsg_data(struct svc_rqst * rqstp,struct cmsghdr * cmh)136 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
137 {
138 struct svc_sock *svsk =
139 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
140 switch (svsk->sk_sk->sk_family) {
141 case AF_INET: {
142 struct in_pktinfo *pki = CMSG_DATA(cmh);
143
144 cmh->cmsg_level = SOL_IP;
145 cmh->cmsg_type = IP_PKTINFO;
146 pki->ipi_ifindex = 0;
147 pki->ipi_spec_dst.s_addr =
148 svc_daddr_in(rqstp)->sin_addr.s_addr;
149 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
150 }
151 break;
152
153 case AF_INET6: {
154 struct in6_pktinfo *pki = CMSG_DATA(cmh);
155 struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp);
156
157 cmh->cmsg_level = SOL_IPV6;
158 cmh->cmsg_type = IPV6_PKTINFO;
159 pki->ipi6_ifindex = daddr->sin6_scope_id;
160 pki->ipi6_addr = daddr->sin6_addr;
161 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
162 }
163 break;
164 }
165 }
166
167 /*
168 * send routine intended to be shared by the fore- and back-channel
169 */
svc_send_common(struct socket * sock,struct xdr_buf * xdr,struct page * headpage,unsigned long headoffset,struct page * tailpage,unsigned long tailoffset)170 int svc_send_common(struct socket *sock, struct xdr_buf *xdr,
171 struct page *headpage, unsigned long headoffset,
172 struct page *tailpage, unsigned long tailoffset)
173 {
174 int result;
175 int size;
176 struct page **ppage = xdr->pages;
177 size_t base = xdr->page_base;
178 unsigned int pglen = xdr->page_len;
179 unsigned int flags = MSG_MORE;
180 int slen;
181 int len = 0;
182
183 slen = xdr->len;
184
185 /* send head */
186 if (slen == xdr->head[0].iov_len)
187 flags = 0;
188 len = kernel_sendpage(sock, headpage, headoffset,
189 xdr->head[0].iov_len, flags);
190 if (len != xdr->head[0].iov_len)
191 goto out;
192 slen -= xdr->head[0].iov_len;
193 if (slen == 0)
194 goto out;
195
196 /* send page data */
197 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
198 while (pglen > 0) {
199 if (slen == size)
200 flags = 0;
201 result = kernel_sendpage(sock, *ppage, base, size, flags);
202 if (result > 0)
203 len += result;
204 if (result != size)
205 goto out;
206 slen -= size;
207 pglen -= size;
208 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
209 base = 0;
210 ppage++;
211 }
212
213 /* send tail */
214 if (xdr->tail[0].iov_len) {
215 result = kernel_sendpage(sock, tailpage, tailoffset,
216 xdr->tail[0].iov_len, 0);
217 if (result > 0)
218 len += result;
219 }
220
221 out:
222 return len;
223 }
224
225
226 /*
227 * Generic sendto routine
228 */
svc_sendto(struct svc_rqst * rqstp,struct xdr_buf * xdr)229 static int svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
230 {
231 struct svc_sock *svsk =
232 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
233 struct socket *sock = svsk->sk_sock;
234 union {
235 struct cmsghdr hdr;
236 long all[SVC_PKTINFO_SPACE / sizeof(long)];
237 } buffer;
238 struct cmsghdr *cmh = &buffer.hdr;
239 int len = 0;
240 unsigned long tailoff;
241 unsigned long headoff;
242 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
243
244 if (rqstp->rq_prot == IPPROTO_UDP) {
245 struct msghdr msg = {
246 .msg_name = &rqstp->rq_addr,
247 .msg_namelen = rqstp->rq_addrlen,
248 .msg_control = cmh,
249 .msg_controllen = sizeof(buffer),
250 .msg_flags = MSG_MORE,
251 };
252
253 svc_set_cmsg_data(rqstp, cmh);
254
255 if (sock_sendmsg(sock, &msg, 0) < 0)
256 goto out;
257 }
258
259 tailoff = ((unsigned long)xdr->tail[0].iov_base) & (PAGE_SIZE-1);
260 headoff = 0;
261 len = svc_send_common(sock, xdr, rqstp->rq_respages[0], headoff,
262 rqstp->rq_respages[0], tailoff);
263
264 out:
265 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
266 svsk, xdr->head[0].iov_base, xdr->head[0].iov_len,
267 xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
268
269 return len;
270 }
271
272 /*
273 * Report socket names for nfsdfs
274 */
svc_one_sock_name(struct svc_sock * svsk,char * buf,int remaining)275 static int svc_one_sock_name(struct svc_sock *svsk, char *buf, int remaining)
276 {
277 const struct sock *sk = svsk->sk_sk;
278 const char *proto_name = sk->sk_protocol == IPPROTO_UDP ?
279 "udp" : "tcp";
280 int len;
281
282 switch (sk->sk_family) {
283 case PF_INET:
284 len = snprintf(buf, remaining, "ipv4 %s %pI4 %d\n",
285 proto_name,
286 &inet_sk(sk)->inet_rcv_saddr,
287 inet_sk(sk)->inet_num);
288 break;
289 case PF_INET6:
290 len = snprintf(buf, remaining, "ipv6 %s %pI6 %d\n",
291 proto_name,
292 &inet6_sk(sk)->rcv_saddr,
293 inet_sk(sk)->inet_num);
294 break;
295 default:
296 len = snprintf(buf, remaining, "*unknown-%d*\n",
297 sk->sk_family);
298 }
299
300 if (len >= remaining) {
301 *buf = '\0';
302 return -ENAMETOOLONG;
303 }
304 return len;
305 }
306
307 /**
308 * svc_sock_names - construct a list of listener names in a string
309 * @serv: pointer to RPC service
310 * @buf: pointer to a buffer to fill in with socket names
311 * @buflen: size of the buffer to be filled
312 * @toclose: pointer to '\0'-terminated C string containing the name
313 * of a listener to be closed
314 *
315 * Fills in @buf with a '\n'-separated list of names of listener
316 * sockets. If @toclose is not NULL, the socket named by @toclose
317 * is closed, and is not included in the output list.
318 *
319 * Returns positive length of the socket name string, or a negative
320 * errno value on error.
321 */
svc_sock_names(struct svc_serv * serv,char * buf,const size_t buflen,const char * toclose)322 int svc_sock_names(struct svc_serv *serv, char *buf, const size_t buflen,
323 const char *toclose)
324 {
325 struct svc_sock *svsk, *closesk = NULL;
326 int len = 0;
327
328 if (!serv)
329 return 0;
330
331 spin_lock_bh(&serv->sv_lock);
332 list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) {
333 int onelen = svc_one_sock_name(svsk, buf + len, buflen - len);
334 if (onelen < 0) {
335 len = onelen;
336 break;
337 }
338 if (toclose && strcmp(toclose, buf + len) == 0) {
339 closesk = svsk;
340 svc_xprt_get(&closesk->sk_xprt);
341 } else
342 len += onelen;
343 }
344 spin_unlock_bh(&serv->sv_lock);
345
346 if (closesk) {
347 /* Should unregister with portmap, but you cannot
348 * unregister just one protocol...
349 */
350 svc_close_xprt(&closesk->sk_xprt);
351 svc_xprt_put(&closesk->sk_xprt);
352 } else if (toclose)
353 return -ENOENT;
354 return len;
355 }
356 EXPORT_SYMBOL_GPL(svc_sock_names);
357
358 /*
359 * Check input queue length
360 */
svc_recv_available(struct svc_sock * svsk)361 static int svc_recv_available(struct svc_sock *svsk)
362 {
363 struct socket *sock = svsk->sk_sock;
364 int avail, err;
365
366 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
367
368 return (err >= 0)? avail : err;
369 }
370
371 /*
372 * Generic recvfrom routine.
373 */
svc_recvfrom(struct svc_rqst * rqstp,struct kvec * iov,int nr,int buflen)374 static int svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr,
375 int buflen)
376 {
377 struct svc_sock *svsk =
378 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
379 struct msghdr msg = {
380 .msg_flags = MSG_DONTWAIT,
381 };
382 int len;
383
384 rqstp->rq_xprt_hlen = 0;
385
386 len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
387 msg.msg_flags);
388
389 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
390 svsk, iov[0].iov_base, iov[0].iov_len, len);
391 return len;
392 }
393
svc_partial_recvfrom(struct svc_rqst * rqstp,struct kvec * iov,int nr,int buflen,unsigned int base)394 static int svc_partial_recvfrom(struct svc_rqst *rqstp,
395 struct kvec *iov, int nr,
396 int buflen, unsigned int base)
397 {
398 size_t save_iovlen;
399 void *save_iovbase;
400 unsigned int i;
401 int ret;
402
403 if (base == 0)
404 return svc_recvfrom(rqstp, iov, nr, buflen);
405
406 for (i = 0; i < nr; i++) {
407 if (iov[i].iov_len > base)
408 break;
409 base -= iov[i].iov_len;
410 }
411 save_iovlen = iov[i].iov_len;
412 save_iovbase = iov[i].iov_base;
413 iov[i].iov_len -= base;
414 iov[i].iov_base += base;
415 ret = svc_recvfrom(rqstp, &iov[i], nr - i, buflen);
416 iov[i].iov_len = save_iovlen;
417 iov[i].iov_base = save_iovbase;
418 return ret;
419 }
420
421 /*
422 * Set socket snd and rcv buffer lengths
423 */
svc_sock_setbufsize(struct socket * sock,unsigned int snd,unsigned int rcv)424 static void svc_sock_setbufsize(struct socket *sock, unsigned int snd,
425 unsigned int rcv)
426 {
427 #if 0
428 mm_segment_t oldfs;
429 oldfs = get_fs(); set_fs(KERNEL_DS);
430 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
431 (char*)&snd, sizeof(snd));
432 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
433 (char*)&rcv, sizeof(rcv));
434 #else
435 /* sock_setsockopt limits use to sysctl_?mem_max,
436 * which isn't acceptable. Until that is made conditional
437 * on not having CAP_SYS_RESOURCE or similar, we go direct...
438 * DaveM said I could!
439 */
440 lock_sock(sock->sk);
441 sock->sk->sk_sndbuf = snd * 2;
442 sock->sk->sk_rcvbuf = rcv * 2;
443 sock->sk->sk_write_space(sock->sk);
444 release_sock(sock->sk);
445 #endif
446 }
447 /*
448 * INET callback when data has been received on the socket.
449 */
svc_udp_data_ready(struct sock * sk,int count)450 static void svc_udp_data_ready(struct sock *sk, int count)
451 {
452 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
453 wait_queue_head_t *wq = sk_sleep(sk);
454
455 if (svsk) {
456 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
457 svsk, sk, count,
458 test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
459 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
460 svc_xprt_enqueue(&svsk->sk_xprt);
461 }
462 if (wq && waitqueue_active(wq))
463 wake_up_interruptible(wq);
464 }
465
466 /*
467 * INET callback when space is newly available on the socket.
468 */
svc_write_space(struct sock * sk)469 static void svc_write_space(struct sock *sk)
470 {
471 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
472 wait_queue_head_t *wq = sk_sleep(sk);
473
474 if (svsk) {
475 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
476 svsk, sk, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
477 svc_xprt_enqueue(&svsk->sk_xprt);
478 }
479
480 if (wq && waitqueue_active(wq)) {
481 dprintk("RPC svc_write_space: someone sleeping on %p\n",
482 svsk);
483 wake_up_interruptible(wq);
484 }
485 }
486
svc_tcp_write_space(struct sock * sk)487 static void svc_tcp_write_space(struct sock *sk)
488 {
489 struct socket *sock = sk->sk_socket;
490
491 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && sock)
492 clear_bit(SOCK_NOSPACE, &sock->flags);
493 svc_write_space(sk);
494 }
495
496 /*
497 * See net/ipv6/ip_sockglue.c : ip_cmsg_recv_pktinfo
498 */
svc_udp_get_dest_address4(struct svc_rqst * rqstp,struct cmsghdr * cmh)499 static int svc_udp_get_dest_address4(struct svc_rqst *rqstp,
500 struct cmsghdr *cmh)
501 {
502 struct in_pktinfo *pki = CMSG_DATA(cmh);
503 struct sockaddr_in *daddr = svc_daddr_in(rqstp);
504
505 if (cmh->cmsg_type != IP_PKTINFO)
506 return 0;
507
508 daddr->sin_family = AF_INET;
509 daddr->sin_addr.s_addr = pki->ipi_spec_dst.s_addr;
510 return 1;
511 }
512
513 /*
514 * See net/ipv6/datagram.c : datagram_recv_ctl
515 */
svc_udp_get_dest_address6(struct svc_rqst * rqstp,struct cmsghdr * cmh)516 static int svc_udp_get_dest_address6(struct svc_rqst *rqstp,
517 struct cmsghdr *cmh)
518 {
519 struct in6_pktinfo *pki = CMSG_DATA(cmh);
520 struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp);
521
522 if (cmh->cmsg_type != IPV6_PKTINFO)
523 return 0;
524
525 daddr->sin6_family = AF_INET6;
526 daddr->sin6_addr = pki->ipi6_addr;
527 daddr->sin6_scope_id = pki->ipi6_ifindex;
528 return 1;
529 }
530
531 /*
532 * Copy the UDP datagram's destination address to the rqstp structure.
533 * The 'destination' address in this case is the address to which the
534 * peer sent the datagram, i.e. our local address. For multihomed
535 * hosts, this can change from msg to msg. Note that only the IP
536 * address changes, the port number should remain the same.
537 */
svc_udp_get_dest_address(struct svc_rqst * rqstp,struct cmsghdr * cmh)538 static int svc_udp_get_dest_address(struct svc_rqst *rqstp,
539 struct cmsghdr *cmh)
540 {
541 switch (cmh->cmsg_level) {
542 case SOL_IP:
543 return svc_udp_get_dest_address4(rqstp, cmh);
544 case SOL_IPV6:
545 return svc_udp_get_dest_address6(rqstp, cmh);
546 }
547
548 return 0;
549 }
550
551 /*
552 * Receive a datagram from a UDP socket.
553 */
svc_udp_recvfrom(struct svc_rqst * rqstp)554 static int svc_udp_recvfrom(struct svc_rqst *rqstp)
555 {
556 struct svc_sock *svsk =
557 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
558 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
559 struct sk_buff *skb;
560 union {
561 struct cmsghdr hdr;
562 long all[SVC_PKTINFO_SPACE / sizeof(long)];
563 } buffer;
564 struct cmsghdr *cmh = &buffer.hdr;
565 struct msghdr msg = {
566 .msg_name = svc_addr(rqstp),
567 .msg_control = cmh,
568 .msg_controllen = sizeof(buffer),
569 .msg_flags = MSG_DONTWAIT,
570 };
571 size_t len;
572 int err;
573
574 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
575 /* udp sockets need large rcvbuf as all pending
576 * requests are still in that buffer. sndbuf must
577 * also be large enough that there is enough space
578 * for one reply per thread. We count all threads
579 * rather than threads in a particular pool, which
580 * provides an upper bound on the number of threads
581 * which will access the socket.
582 */
583 svc_sock_setbufsize(svsk->sk_sock,
584 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
585 (serv->sv_nrthreads+3) * serv->sv_max_mesg);
586
587 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
588 skb = NULL;
589 err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
590 0, 0, MSG_PEEK | MSG_DONTWAIT);
591 if (err >= 0)
592 skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
593
594 if (skb == NULL) {
595 if (err != -EAGAIN) {
596 /* possibly an icmp error */
597 dprintk("svc: recvfrom returned error %d\n", -err);
598 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
599 }
600 return -EAGAIN;
601 }
602 len = svc_addr_len(svc_addr(rqstp));
603 if (len == 0)
604 return -EAFNOSUPPORT;
605 rqstp->rq_addrlen = len;
606 if (skb->tstamp.tv64 == 0) {
607 skb->tstamp = ktime_get_real();
608 /* Don't enable netstamp, sunrpc doesn't
609 need that much accuracy */
610 }
611 svsk->sk_sk->sk_stamp = skb->tstamp;
612 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
613
614 len = skb->len - sizeof(struct udphdr);
615 rqstp->rq_arg.len = len;
616
617 rqstp->rq_prot = IPPROTO_UDP;
618
619 if (!svc_udp_get_dest_address(rqstp, cmh)) {
620 if (net_ratelimit())
621 printk(KERN_WARNING
622 "svc: received unknown control message %d/%d; "
623 "dropping RPC reply datagram\n",
624 cmh->cmsg_level, cmh->cmsg_type);
625 skb_free_datagram_locked(svsk->sk_sk, skb);
626 return 0;
627 }
628 rqstp->rq_daddrlen = svc_addr_len(svc_daddr(rqstp));
629
630 if (skb_is_nonlinear(skb)) {
631 /* we have to copy */
632 local_bh_disable();
633 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
634 local_bh_enable();
635 /* checksum error */
636 skb_free_datagram_locked(svsk->sk_sk, skb);
637 return 0;
638 }
639 local_bh_enable();
640 skb_free_datagram_locked(svsk->sk_sk, skb);
641 } else {
642 /* we can use it in-place */
643 rqstp->rq_arg.head[0].iov_base = skb->data +
644 sizeof(struct udphdr);
645 rqstp->rq_arg.head[0].iov_len = len;
646 if (skb_checksum_complete(skb)) {
647 skb_free_datagram_locked(svsk->sk_sk, skb);
648 return 0;
649 }
650 rqstp->rq_xprt_ctxt = skb;
651 }
652
653 rqstp->rq_arg.page_base = 0;
654 if (len <= rqstp->rq_arg.head[0].iov_len) {
655 rqstp->rq_arg.head[0].iov_len = len;
656 rqstp->rq_arg.page_len = 0;
657 rqstp->rq_respages = rqstp->rq_pages+1;
658 } else {
659 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
660 rqstp->rq_respages = rqstp->rq_pages + 1 +
661 DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
662 }
663
664 if (serv->sv_stats)
665 serv->sv_stats->netudpcnt++;
666
667 return len;
668 }
669
670 static int
svc_udp_sendto(struct svc_rqst * rqstp)671 svc_udp_sendto(struct svc_rqst *rqstp)
672 {
673 int error;
674
675 error = svc_sendto(rqstp, &rqstp->rq_res);
676 if (error == -ECONNREFUSED)
677 /* ICMP error on earlier request. */
678 error = svc_sendto(rqstp, &rqstp->rq_res);
679
680 return error;
681 }
682
svc_udp_prep_reply_hdr(struct svc_rqst * rqstp)683 static void svc_udp_prep_reply_hdr(struct svc_rqst *rqstp)
684 {
685 }
686
svc_udp_has_wspace(struct svc_xprt * xprt)687 static int svc_udp_has_wspace(struct svc_xprt *xprt)
688 {
689 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
690 struct svc_serv *serv = xprt->xpt_server;
691 unsigned long required;
692
693 /*
694 * Set the SOCK_NOSPACE flag before checking the available
695 * sock space.
696 */
697 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
698 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
699 if (required*2 > sock_wspace(svsk->sk_sk))
700 return 0;
701 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
702 return 1;
703 }
704
svc_udp_accept(struct svc_xprt * xprt)705 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
706 {
707 BUG();
708 return NULL;
709 }
710
svc_udp_create(struct svc_serv * serv,struct net * net,struct sockaddr * sa,int salen,int flags)711 static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
712 struct net *net,
713 struct sockaddr *sa, int salen,
714 int flags)
715 {
716 return svc_create_socket(serv, IPPROTO_UDP, net, sa, salen, flags);
717 }
718
719 static struct svc_xprt_ops svc_udp_ops = {
720 .xpo_create = svc_udp_create,
721 .xpo_recvfrom = svc_udp_recvfrom,
722 .xpo_sendto = svc_udp_sendto,
723 .xpo_release_rqst = svc_release_skb,
724 .xpo_detach = svc_sock_detach,
725 .xpo_free = svc_sock_free,
726 .xpo_prep_reply_hdr = svc_udp_prep_reply_hdr,
727 .xpo_has_wspace = svc_udp_has_wspace,
728 .xpo_accept = svc_udp_accept,
729 };
730
731 static struct svc_xprt_class svc_udp_class = {
732 .xcl_name = "udp",
733 .xcl_owner = THIS_MODULE,
734 .xcl_ops = &svc_udp_ops,
735 .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
736 };
737
svc_udp_init(struct svc_sock * svsk,struct svc_serv * serv)738 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
739 {
740 int err, level, optname, one = 1;
741
742 svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_udp_class,
743 &svsk->sk_xprt, serv);
744 clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
745 svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
746 svsk->sk_sk->sk_write_space = svc_write_space;
747
748 /* initialise setting must have enough space to
749 * receive and respond to one request.
750 * svc_udp_recvfrom will re-adjust if necessary
751 */
752 svc_sock_setbufsize(svsk->sk_sock,
753 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
754 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
755
756 /* data might have come in before data_ready set up */
757 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
758 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
759
760 /* make sure we get destination address info */
761 switch (svsk->sk_sk->sk_family) {
762 case AF_INET:
763 level = SOL_IP;
764 optname = IP_PKTINFO;
765 break;
766 case AF_INET6:
767 level = SOL_IPV6;
768 optname = IPV6_RECVPKTINFO;
769 break;
770 default:
771 BUG();
772 }
773 err = kernel_setsockopt(svsk->sk_sock, level, optname,
774 (char *)&one, sizeof(one));
775 dprintk("svc: kernel_setsockopt returned %d\n", err);
776 }
777
778 /*
779 * A data_ready event on a listening socket means there's a connection
780 * pending. Do not use state_change as a substitute for it.
781 */
svc_tcp_listen_data_ready(struct sock * sk,int count_unused)782 static void svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
783 {
784 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
785 wait_queue_head_t *wq;
786
787 dprintk("svc: socket %p TCP (listen) state change %d\n",
788 sk, sk->sk_state);
789
790 /*
791 * This callback may called twice when a new connection
792 * is established as a child socket inherits everything
793 * from a parent LISTEN socket.
794 * 1) data_ready method of the parent socket will be called
795 * when one of child sockets become ESTABLISHED.
796 * 2) data_ready method of the child socket may be called
797 * when it receives data before the socket is accepted.
798 * In case of 2, we should ignore it silently.
799 */
800 if (sk->sk_state == TCP_LISTEN) {
801 if (svsk) {
802 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
803 svc_xprt_enqueue(&svsk->sk_xprt);
804 } else
805 printk("svc: socket %p: no user data\n", sk);
806 }
807
808 wq = sk_sleep(sk);
809 if (wq && waitqueue_active(wq))
810 wake_up_interruptible_all(wq);
811 }
812
813 /*
814 * A state change on a connected socket means it's dying or dead.
815 */
svc_tcp_state_change(struct sock * sk)816 static void svc_tcp_state_change(struct sock *sk)
817 {
818 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
819 wait_queue_head_t *wq = sk_sleep(sk);
820
821 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
822 sk, sk->sk_state, sk->sk_user_data);
823
824 if (!svsk)
825 printk("svc: socket %p: no user data\n", sk);
826 else {
827 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
828 svc_xprt_enqueue(&svsk->sk_xprt);
829 }
830 if (wq && waitqueue_active(wq))
831 wake_up_interruptible_all(wq);
832 }
833
svc_tcp_data_ready(struct sock * sk,int count)834 static void svc_tcp_data_ready(struct sock *sk, int count)
835 {
836 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
837 wait_queue_head_t *wq = sk_sleep(sk);
838
839 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
840 sk, sk->sk_user_data);
841 if (svsk) {
842 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
843 svc_xprt_enqueue(&svsk->sk_xprt);
844 }
845 if (wq && waitqueue_active(wq))
846 wake_up_interruptible(wq);
847 }
848
849 /*
850 * Accept a TCP connection
851 */
svc_tcp_accept(struct svc_xprt * xprt)852 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
853 {
854 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
855 struct sockaddr_storage addr;
856 struct sockaddr *sin = (struct sockaddr *) &addr;
857 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
858 struct socket *sock = svsk->sk_sock;
859 struct socket *newsock;
860 struct svc_sock *newsvsk;
861 int err, slen;
862 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
863
864 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
865 if (!sock)
866 return NULL;
867
868 clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
869 err = kernel_accept(sock, &newsock, O_NONBLOCK);
870 if (err < 0) {
871 if (err == -ENOMEM)
872 printk(KERN_WARNING "%s: no more sockets!\n",
873 serv->sv_name);
874 else if (err != -EAGAIN && net_ratelimit())
875 printk(KERN_WARNING "%s: accept failed (err %d)!\n",
876 serv->sv_name, -err);
877 return NULL;
878 }
879 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
880
881 err = kernel_getpeername(newsock, sin, &slen);
882 if (err < 0) {
883 if (net_ratelimit())
884 printk(KERN_WARNING "%s: peername failed (err %d)!\n",
885 serv->sv_name, -err);
886 goto failed; /* aborted connection or whatever */
887 }
888
889 /* Ideally, we would want to reject connections from unauthorized
890 * hosts here, but when we get encryption, the IP of the host won't
891 * tell us anything. For now just warn about unpriv connections.
892 */
893 if (!svc_port_is_privileged(sin)) {
894 dprintk(KERN_WARNING
895 "%s: connect from unprivileged port: %s\n",
896 serv->sv_name,
897 __svc_print_addr(sin, buf, sizeof(buf)));
898 }
899 dprintk("%s: connect from %s\n", serv->sv_name,
900 __svc_print_addr(sin, buf, sizeof(buf)));
901
902 /* make sure that a write doesn't block forever when
903 * low on memory
904 */
905 newsock->sk->sk_sndtimeo = HZ*30;
906
907 if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
908 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
909 goto failed;
910 svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen);
911 err = kernel_getsockname(newsock, sin, &slen);
912 if (unlikely(err < 0)) {
913 dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err);
914 slen = offsetof(struct sockaddr, sa_data);
915 }
916 svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen);
917
918 if (serv->sv_stats)
919 serv->sv_stats->nettcpconn++;
920
921 return &newsvsk->sk_xprt;
922
923 failed:
924 sock_release(newsock);
925 return NULL;
926 }
927
svc_tcp_restore_pages(struct svc_sock * svsk,struct svc_rqst * rqstp)928 static unsigned int svc_tcp_restore_pages(struct svc_sock *svsk, struct svc_rqst *rqstp)
929 {
930 unsigned int i, len, npages;
931
932 if (svsk->sk_tcplen <= sizeof(rpc_fraghdr))
933 return 0;
934 len = svsk->sk_tcplen - sizeof(rpc_fraghdr);
935 npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
936 for (i = 0; i < npages; i++) {
937 if (rqstp->rq_pages[i] != NULL)
938 put_page(rqstp->rq_pages[i]);
939 BUG_ON(svsk->sk_pages[i] == NULL);
940 rqstp->rq_pages[i] = svsk->sk_pages[i];
941 svsk->sk_pages[i] = NULL;
942 }
943 rqstp->rq_arg.head[0].iov_base = page_address(rqstp->rq_pages[0]);
944 return len;
945 }
946
svc_tcp_save_pages(struct svc_sock * svsk,struct svc_rqst * rqstp)947 static void svc_tcp_save_pages(struct svc_sock *svsk, struct svc_rqst *rqstp)
948 {
949 unsigned int i, len, npages;
950
951 if (svsk->sk_tcplen <= sizeof(rpc_fraghdr))
952 return;
953 len = svsk->sk_tcplen - sizeof(rpc_fraghdr);
954 npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
955 for (i = 0; i < npages; i++) {
956 svsk->sk_pages[i] = rqstp->rq_pages[i];
957 rqstp->rq_pages[i] = NULL;
958 }
959 }
960
svc_tcp_clear_pages(struct svc_sock * svsk)961 static void svc_tcp_clear_pages(struct svc_sock *svsk)
962 {
963 unsigned int i, len, npages;
964
965 if (svsk->sk_tcplen <= sizeof(rpc_fraghdr))
966 goto out;
967 len = svsk->sk_tcplen - sizeof(rpc_fraghdr);
968 npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
969 for (i = 0; i < npages; i++) {
970 BUG_ON(svsk->sk_pages[i] == NULL);
971 put_page(svsk->sk_pages[i]);
972 svsk->sk_pages[i] = NULL;
973 }
974 out:
975 svsk->sk_tcplen = 0;
976 }
977
978 /*
979 * Receive data.
980 * If we haven't gotten the record length yet, get the next four bytes.
981 * Otherwise try to gobble up as much as possible up to the complete
982 * record length.
983 */
svc_tcp_recv_record(struct svc_sock * svsk,struct svc_rqst * rqstp)984 static int svc_tcp_recv_record(struct svc_sock *svsk, struct svc_rqst *rqstp)
985 {
986 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
987 unsigned int want;
988 int len;
989
990 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
991
992 if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) {
993 struct kvec iov;
994
995 want = sizeof(rpc_fraghdr) - svsk->sk_tcplen;
996 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
997 iov.iov_len = want;
998 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
999 goto error;
1000 svsk->sk_tcplen += len;
1001
1002 if (len < want) {
1003 dprintk("svc: short recvfrom while reading record "
1004 "length (%d of %d)\n", len, want);
1005 return -EAGAIN;
1006 }
1007
1008 svsk->sk_reclen = ntohl(svsk->sk_reclen);
1009 if (!(svsk->sk_reclen & RPC_LAST_STREAM_FRAGMENT)) {
1010 /* FIXME: technically, a record can be fragmented,
1011 * and non-terminal fragments will not have the top
1012 * bit set in the fragment length header.
1013 * But apparently no known nfs clients send fragmented
1014 * records. */
1015 if (net_ratelimit())
1016 printk(KERN_NOTICE "RPC: multiple fragments "
1017 "per record not supported\n");
1018 goto err_delete;
1019 }
1020
1021 svsk->sk_reclen &= RPC_FRAGMENT_SIZE_MASK;
1022 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
1023 if (svsk->sk_reclen > serv->sv_max_mesg) {
1024 if (net_ratelimit())
1025 printk(KERN_NOTICE "RPC: "
1026 "fragment too large: 0x%08lx\n",
1027 (unsigned long)svsk->sk_reclen);
1028 goto err_delete;
1029 }
1030 }
1031
1032 if (svsk->sk_reclen < 8)
1033 goto err_delete; /* client is nuts. */
1034
1035 len = svsk->sk_reclen;
1036
1037 return len;
1038 error:
1039 dprintk("RPC: TCP recv_record got %d\n", len);
1040 return len;
1041 err_delete:
1042 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1043 return -EAGAIN;
1044 }
1045
receive_cb_reply(struct svc_sock * svsk,struct svc_rqst * rqstp)1046 static int receive_cb_reply(struct svc_sock *svsk, struct svc_rqst *rqstp)
1047 {
1048 struct rpc_xprt *bc_xprt = svsk->sk_xprt.xpt_bc_xprt;
1049 struct rpc_rqst *req = NULL;
1050 struct kvec *src, *dst;
1051 __be32 *p = (__be32 *)rqstp->rq_arg.head[0].iov_base;
1052 __be32 xid;
1053 __be32 calldir;
1054
1055 xid = *p++;
1056 calldir = *p;
1057
1058 if (bc_xprt)
1059 req = xprt_lookup_rqst(bc_xprt, xid);
1060
1061 if (!req) {
1062 printk(KERN_NOTICE
1063 "%s: Got unrecognized reply: "
1064 "calldir 0x%x xpt_bc_xprt %p xid %08x\n",
1065 __func__, ntohl(calldir),
1066 bc_xprt, xid);
1067 return -EAGAIN;
1068 }
1069
1070 memcpy(&req->rq_private_buf, &req->rq_rcv_buf, sizeof(struct xdr_buf));
1071 /*
1072 * XXX!: cheating for now! Only copying HEAD.
1073 * But we know this is good enough for now (in fact, for any
1074 * callback reply in the forseeable future).
1075 */
1076 dst = &req->rq_private_buf.head[0];
1077 src = &rqstp->rq_arg.head[0];
1078 if (dst->iov_len < src->iov_len)
1079 return -EAGAIN; /* whatever; just giving up. */
1080 memcpy(dst->iov_base, src->iov_base, src->iov_len);
1081 xprt_complete_rqst(req->rq_task, svsk->sk_reclen);
1082 rqstp->rq_arg.len = 0;
1083 return 0;
1084 }
1085
copy_pages_to_kvecs(struct kvec * vec,struct page ** pages,int len)1086 static int copy_pages_to_kvecs(struct kvec *vec, struct page **pages, int len)
1087 {
1088 int i = 0;
1089 int t = 0;
1090
1091 while (t < len) {
1092 vec[i].iov_base = page_address(pages[i]);
1093 vec[i].iov_len = PAGE_SIZE;
1094 i++;
1095 t += PAGE_SIZE;
1096 }
1097 return i;
1098 }
1099
1100
1101 /*
1102 * Receive data from a TCP socket.
1103 */
svc_tcp_recvfrom(struct svc_rqst * rqstp)1104 static int svc_tcp_recvfrom(struct svc_rqst *rqstp)
1105 {
1106 struct svc_sock *svsk =
1107 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
1108 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
1109 int len;
1110 struct kvec *vec;
1111 unsigned int want, base;
1112 __be32 *p;
1113 __be32 calldir;
1114 int pnum;
1115
1116 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
1117 svsk, test_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags),
1118 test_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags),
1119 test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags));
1120
1121 len = svc_tcp_recv_record(svsk, rqstp);
1122 if (len < 0)
1123 goto error;
1124
1125 base = svc_tcp_restore_pages(svsk, rqstp);
1126 want = svsk->sk_reclen - base;
1127
1128 vec = rqstp->rq_vec;
1129
1130 pnum = copy_pages_to_kvecs(&vec[0], &rqstp->rq_pages[0],
1131 svsk->sk_reclen);
1132
1133 rqstp->rq_respages = &rqstp->rq_pages[pnum];
1134
1135 /* Now receive data */
1136 len = svc_partial_recvfrom(rqstp, vec, pnum, want, base);
1137 if (len >= 0)
1138 svsk->sk_tcplen += len;
1139 if (len != want) {
1140 svc_tcp_save_pages(svsk, rqstp);
1141 if (len < 0 && len != -EAGAIN)
1142 goto err_other;
1143 dprintk("svc: incomplete TCP record (%d of %d)\n",
1144 svsk->sk_tcplen, svsk->sk_reclen);
1145 goto err_noclose;
1146 }
1147
1148 rqstp->rq_arg.len = svsk->sk_reclen;
1149 rqstp->rq_arg.page_base = 0;
1150 if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1151 rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1152 rqstp->rq_arg.page_len = 0;
1153 } else
1154 rqstp->rq_arg.page_len = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1155
1156 rqstp->rq_xprt_ctxt = NULL;
1157 rqstp->rq_prot = IPPROTO_TCP;
1158
1159 p = (__be32 *)rqstp->rq_arg.head[0].iov_base;
1160 calldir = p[1];
1161 if (calldir)
1162 len = receive_cb_reply(svsk, rqstp);
1163
1164 /* Reset TCP read info */
1165 svsk->sk_reclen = 0;
1166 svsk->sk_tcplen = 0;
1167 /* If we have more data, signal svc_xprt_enqueue() to try again */
1168 if (svc_recv_available(svsk) > sizeof(rpc_fraghdr))
1169 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1170
1171 if (len < 0)
1172 goto error;
1173
1174 svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt);
1175 if (serv->sv_stats)
1176 serv->sv_stats->nettcpcnt++;
1177
1178 dprintk("svc: TCP complete record (%d bytes)\n", rqstp->rq_arg.len);
1179 return rqstp->rq_arg.len;
1180
1181 error:
1182 if (len != -EAGAIN)
1183 goto err_other;
1184 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1185 return -EAGAIN;
1186 err_other:
1187 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1188 svsk->sk_xprt.xpt_server->sv_name, -len);
1189 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1190 err_noclose:
1191 return -EAGAIN; /* record not complete */
1192 }
1193
1194 /*
1195 * Send out data on TCP socket.
1196 */
svc_tcp_sendto(struct svc_rqst * rqstp)1197 static int svc_tcp_sendto(struct svc_rqst *rqstp)
1198 {
1199 struct xdr_buf *xbufp = &rqstp->rq_res;
1200 int sent;
1201 __be32 reclen;
1202
1203 /* Set up the first element of the reply kvec.
1204 * Any other kvecs that may be in use have been taken
1205 * care of by the server implementation itself.
1206 */
1207 reclen = htonl(0x80000000|((xbufp->len ) - 4));
1208 memcpy(xbufp->head[0].iov_base, &reclen, 4);
1209
1210 sent = svc_sendto(rqstp, &rqstp->rq_res);
1211 if (sent != xbufp->len) {
1212 printk(KERN_NOTICE
1213 "rpc-srv/tcp: %s: %s %d when sending %d bytes "
1214 "- shutting down socket\n",
1215 rqstp->rq_xprt->xpt_server->sv_name,
1216 (sent<0)?"got error":"sent only",
1217 sent, xbufp->len);
1218 set_bit(XPT_CLOSE, &rqstp->rq_xprt->xpt_flags);
1219 svc_xprt_enqueue(rqstp->rq_xprt);
1220 sent = -EAGAIN;
1221 }
1222 return sent;
1223 }
1224
1225 /*
1226 * Setup response header. TCP has a 4B record length field.
1227 */
svc_tcp_prep_reply_hdr(struct svc_rqst * rqstp)1228 static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp)
1229 {
1230 struct kvec *resv = &rqstp->rq_res.head[0];
1231
1232 /* tcp needs a space for the record length... */
1233 svc_putnl(resv, 0);
1234 }
1235
svc_tcp_has_wspace(struct svc_xprt * xprt)1236 static int svc_tcp_has_wspace(struct svc_xprt *xprt)
1237 {
1238 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1239 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
1240 int required;
1241
1242 if (test_bit(XPT_LISTENER, &xprt->xpt_flags))
1243 return 1;
1244 required = atomic_read(&xprt->xpt_reserved) + serv->sv_max_mesg;
1245 if (sk_stream_wspace(svsk->sk_sk) >= required)
1246 return 1;
1247 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
1248 return 0;
1249 }
1250
svc_tcp_create(struct svc_serv * serv,struct net * net,struct sockaddr * sa,int salen,int flags)1251 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
1252 struct net *net,
1253 struct sockaddr *sa, int salen,
1254 int flags)
1255 {
1256 return svc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags);
1257 }
1258
1259 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1260 static struct svc_xprt *svc_bc_create_socket(struct svc_serv *, int,
1261 struct net *, struct sockaddr *,
1262 int, int);
1263 static void svc_bc_sock_free(struct svc_xprt *xprt);
1264
svc_bc_tcp_create(struct svc_serv * serv,struct net * net,struct sockaddr * sa,int salen,int flags)1265 static struct svc_xprt *svc_bc_tcp_create(struct svc_serv *serv,
1266 struct net *net,
1267 struct sockaddr *sa, int salen,
1268 int flags)
1269 {
1270 return svc_bc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags);
1271 }
1272
svc_bc_tcp_sock_detach(struct svc_xprt * xprt)1273 static void svc_bc_tcp_sock_detach(struct svc_xprt *xprt)
1274 {
1275 }
1276
1277 static struct svc_xprt_ops svc_tcp_bc_ops = {
1278 .xpo_create = svc_bc_tcp_create,
1279 .xpo_detach = svc_bc_tcp_sock_detach,
1280 .xpo_free = svc_bc_sock_free,
1281 .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr,
1282 };
1283
1284 static struct svc_xprt_class svc_tcp_bc_class = {
1285 .xcl_name = "tcp-bc",
1286 .xcl_owner = THIS_MODULE,
1287 .xcl_ops = &svc_tcp_bc_ops,
1288 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
1289 };
1290
svc_init_bc_xprt_sock(void)1291 static void svc_init_bc_xprt_sock(void)
1292 {
1293 svc_reg_xprt_class(&svc_tcp_bc_class);
1294 }
1295
svc_cleanup_bc_xprt_sock(void)1296 static void svc_cleanup_bc_xprt_sock(void)
1297 {
1298 svc_unreg_xprt_class(&svc_tcp_bc_class);
1299 }
1300 #else /* CONFIG_SUNRPC_BACKCHANNEL */
svc_init_bc_xprt_sock(void)1301 static void svc_init_bc_xprt_sock(void)
1302 {
1303 }
1304
svc_cleanup_bc_xprt_sock(void)1305 static void svc_cleanup_bc_xprt_sock(void)
1306 {
1307 }
1308 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1309
1310 static struct svc_xprt_ops svc_tcp_ops = {
1311 .xpo_create = svc_tcp_create,
1312 .xpo_recvfrom = svc_tcp_recvfrom,
1313 .xpo_sendto = svc_tcp_sendto,
1314 .xpo_release_rqst = svc_release_skb,
1315 .xpo_detach = svc_tcp_sock_detach,
1316 .xpo_free = svc_sock_free,
1317 .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr,
1318 .xpo_has_wspace = svc_tcp_has_wspace,
1319 .xpo_accept = svc_tcp_accept,
1320 };
1321
1322 static struct svc_xprt_class svc_tcp_class = {
1323 .xcl_name = "tcp",
1324 .xcl_owner = THIS_MODULE,
1325 .xcl_ops = &svc_tcp_ops,
1326 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
1327 };
1328
svc_init_xprt_sock(void)1329 void svc_init_xprt_sock(void)
1330 {
1331 svc_reg_xprt_class(&svc_tcp_class);
1332 svc_reg_xprt_class(&svc_udp_class);
1333 svc_init_bc_xprt_sock();
1334 }
1335
svc_cleanup_xprt_sock(void)1336 void svc_cleanup_xprt_sock(void)
1337 {
1338 svc_unreg_xprt_class(&svc_tcp_class);
1339 svc_unreg_xprt_class(&svc_udp_class);
1340 svc_cleanup_bc_xprt_sock();
1341 }
1342
svc_tcp_init(struct svc_sock * svsk,struct svc_serv * serv)1343 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
1344 {
1345 struct sock *sk = svsk->sk_sk;
1346
1347 svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_tcp_class,
1348 &svsk->sk_xprt, serv);
1349 set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
1350 if (sk->sk_state == TCP_LISTEN) {
1351 dprintk("setting up TCP socket for listening\n");
1352 set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
1353 sk->sk_data_ready = svc_tcp_listen_data_ready;
1354 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1355 } else {
1356 dprintk("setting up TCP socket for reading\n");
1357 sk->sk_state_change = svc_tcp_state_change;
1358 sk->sk_data_ready = svc_tcp_data_ready;
1359 sk->sk_write_space = svc_tcp_write_space;
1360
1361 svsk->sk_reclen = 0;
1362 svsk->sk_tcplen = 0;
1363 memset(&svsk->sk_pages[0], 0, sizeof(svsk->sk_pages));
1364
1365 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF;
1366
1367 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1368 if (sk->sk_state != TCP_ESTABLISHED)
1369 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1370 }
1371 }
1372
svc_sock_update_bufs(struct svc_serv * serv)1373 void svc_sock_update_bufs(struct svc_serv *serv)
1374 {
1375 /*
1376 * The number of server threads has changed. Update
1377 * rcvbuf and sndbuf accordingly on all sockets
1378 */
1379 struct svc_sock *svsk;
1380
1381 spin_lock_bh(&serv->sv_lock);
1382 list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list)
1383 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1384 spin_unlock_bh(&serv->sv_lock);
1385 }
1386 EXPORT_SYMBOL_GPL(svc_sock_update_bufs);
1387
1388 /*
1389 * Initialize socket for RPC use and create svc_sock struct
1390 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1391 */
svc_setup_socket(struct svc_serv * serv,struct socket * sock,int * errp,int flags)1392 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1393 struct socket *sock,
1394 int *errp, int flags)
1395 {
1396 struct svc_sock *svsk;
1397 struct sock *inet;
1398 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1399
1400 dprintk("svc: svc_setup_socket %p\n", sock);
1401 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1402 *errp = -ENOMEM;
1403 return NULL;
1404 }
1405
1406 inet = sock->sk;
1407
1408 /* Register socket with portmapper */
1409 if (*errp >= 0 && pmap_register)
1410 *errp = svc_register(serv, sock_net(sock->sk), inet->sk_family,
1411 inet->sk_protocol,
1412 ntohs(inet_sk(inet)->inet_sport));
1413
1414 if (*errp < 0) {
1415 kfree(svsk);
1416 return NULL;
1417 }
1418
1419 inet->sk_user_data = svsk;
1420 svsk->sk_sock = sock;
1421 svsk->sk_sk = inet;
1422 svsk->sk_ostate = inet->sk_state_change;
1423 svsk->sk_odata = inet->sk_data_ready;
1424 svsk->sk_owspace = inet->sk_write_space;
1425
1426 /* Initialize the socket */
1427 if (sock->type == SOCK_DGRAM)
1428 svc_udp_init(svsk, serv);
1429 else {
1430 /* initialise setting must have enough space to
1431 * receive and respond to one request.
1432 */
1433 svc_sock_setbufsize(svsk->sk_sock, 4 * serv->sv_max_mesg,
1434 4 * serv->sv_max_mesg);
1435 svc_tcp_init(svsk, serv);
1436 }
1437
1438 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1439 svsk, svsk->sk_sk);
1440
1441 return svsk;
1442 }
1443
svc_alien_sock(struct net * net,int fd)1444 bool svc_alien_sock(struct net *net, int fd)
1445 {
1446 int err;
1447 struct socket *sock = sockfd_lookup(fd, &err);
1448 bool ret = false;
1449
1450 if (!sock)
1451 goto out;
1452 if (sock_net(sock->sk) != net)
1453 ret = true;
1454 sockfd_put(sock);
1455 out:
1456 return ret;
1457 }
1458 EXPORT_SYMBOL_GPL(svc_alien_sock);
1459
1460 /**
1461 * svc_addsock - add a listener socket to an RPC service
1462 * @serv: pointer to RPC service to which to add a new listener
1463 * @fd: file descriptor of the new listener
1464 * @name_return: pointer to buffer to fill in with name of listener
1465 * @len: size of the buffer
1466 *
1467 * Fills in socket name and returns positive length of name if successful.
1468 * Name is terminated with '\n'. On error, returns a negative errno
1469 * value.
1470 */
svc_addsock(struct svc_serv * serv,const int fd,char * name_return,const size_t len)1471 int svc_addsock(struct svc_serv *serv, const int fd, char *name_return,
1472 const size_t len)
1473 {
1474 int err = 0;
1475 struct socket *so = sockfd_lookup(fd, &err);
1476 struct svc_sock *svsk = NULL;
1477
1478 if (!so)
1479 return err;
1480 if ((so->sk->sk_family != PF_INET) && (so->sk->sk_family != PF_INET6))
1481 err = -EAFNOSUPPORT;
1482 else if (so->sk->sk_protocol != IPPROTO_TCP &&
1483 so->sk->sk_protocol != IPPROTO_UDP)
1484 err = -EPROTONOSUPPORT;
1485 else if (so->state > SS_UNCONNECTED)
1486 err = -EISCONN;
1487 else {
1488 if (!try_module_get(THIS_MODULE))
1489 err = -ENOENT;
1490 else
1491 svsk = svc_setup_socket(serv, so, &err,
1492 SVC_SOCK_DEFAULTS);
1493 if (svsk) {
1494 struct sockaddr_storage addr;
1495 struct sockaddr *sin = (struct sockaddr *)&addr;
1496 int salen;
1497 if (kernel_getsockname(svsk->sk_sock, sin, &salen) == 0)
1498 svc_xprt_set_local(&svsk->sk_xprt, sin, salen);
1499 clear_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags);
1500 spin_lock_bh(&serv->sv_lock);
1501 list_add(&svsk->sk_xprt.xpt_list, &serv->sv_permsocks);
1502 spin_unlock_bh(&serv->sv_lock);
1503 svc_xprt_received(&svsk->sk_xprt);
1504 err = 0;
1505 } else
1506 module_put(THIS_MODULE);
1507 }
1508 if (err) {
1509 sockfd_put(so);
1510 return err;
1511 }
1512 return svc_one_sock_name(svsk, name_return, len);
1513 }
1514 EXPORT_SYMBOL_GPL(svc_addsock);
1515
1516 /*
1517 * Create socket for RPC service.
1518 */
svc_create_socket(struct svc_serv * serv,int protocol,struct net * net,struct sockaddr * sin,int len,int flags)1519 static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
1520 int protocol,
1521 struct net *net,
1522 struct sockaddr *sin, int len,
1523 int flags)
1524 {
1525 struct svc_sock *svsk;
1526 struct socket *sock;
1527 int error;
1528 int type;
1529 struct sockaddr_storage addr;
1530 struct sockaddr *newsin = (struct sockaddr *)&addr;
1531 int newlen;
1532 int family;
1533 int val;
1534 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
1535
1536 dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1537 serv->sv_program->pg_name, protocol,
1538 __svc_print_addr(sin, buf, sizeof(buf)));
1539
1540 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1541 printk(KERN_WARNING "svc: only UDP and TCP "
1542 "sockets supported\n");
1543 return ERR_PTR(-EINVAL);
1544 }
1545
1546 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1547 switch (sin->sa_family) {
1548 case AF_INET6:
1549 family = PF_INET6;
1550 break;
1551 case AF_INET:
1552 family = PF_INET;
1553 break;
1554 default:
1555 return ERR_PTR(-EINVAL);
1556 }
1557
1558 error = __sock_create(net, family, type, protocol, &sock, 1);
1559 if (error < 0)
1560 return ERR_PTR(error);
1561
1562 svc_reclassify_socket(sock);
1563
1564 /*
1565 * If this is an PF_INET6 listener, we want to avoid
1566 * getting requests from IPv4 remotes. Those should
1567 * be shunted to a PF_INET listener via rpcbind.
1568 */
1569 val = 1;
1570 if (family == PF_INET6)
1571 kernel_setsockopt(sock, SOL_IPV6, IPV6_V6ONLY,
1572 (char *)&val, sizeof(val));
1573
1574 if (type == SOCK_STREAM)
1575 sock->sk->sk_reuse = 1; /* allow address reuse */
1576 error = kernel_bind(sock, sin, len);
1577 if (error < 0)
1578 goto bummer;
1579
1580 newlen = len;
1581 error = kernel_getsockname(sock, newsin, &newlen);
1582 if (error < 0)
1583 goto bummer;
1584
1585 if (protocol == IPPROTO_TCP) {
1586 if ((error = kernel_listen(sock, 64)) < 0)
1587 goto bummer;
1588 }
1589
1590 if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1591 svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen);
1592 return (struct svc_xprt *)svsk;
1593 }
1594
1595 bummer:
1596 dprintk("svc: svc_create_socket error = %d\n", -error);
1597 sock_release(sock);
1598 return ERR_PTR(error);
1599 }
1600
1601 /*
1602 * Detach the svc_sock from the socket so that no
1603 * more callbacks occur.
1604 */
svc_sock_detach(struct svc_xprt * xprt)1605 static void svc_sock_detach(struct svc_xprt *xprt)
1606 {
1607 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1608 struct sock *sk = svsk->sk_sk;
1609 wait_queue_head_t *wq;
1610
1611 dprintk("svc: svc_sock_detach(%p)\n", svsk);
1612
1613 /* put back the old socket callbacks */
1614 sk->sk_state_change = svsk->sk_ostate;
1615 sk->sk_data_ready = svsk->sk_odata;
1616 sk->sk_write_space = svsk->sk_owspace;
1617
1618 wq = sk_sleep(sk);
1619 if (wq && waitqueue_active(wq))
1620 wake_up_interruptible(wq);
1621 }
1622
1623 /*
1624 * Disconnect the socket, and reset the callbacks
1625 */
svc_tcp_sock_detach(struct svc_xprt * xprt)1626 static void svc_tcp_sock_detach(struct svc_xprt *xprt)
1627 {
1628 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1629
1630 dprintk("svc: svc_tcp_sock_detach(%p)\n", svsk);
1631
1632 svc_sock_detach(xprt);
1633
1634 if (!test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
1635 svc_tcp_clear_pages(svsk);
1636 kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR);
1637 }
1638 }
1639
1640 /*
1641 * Free the svc_sock's socket resources and the svc_sock itself.
1642 */
svc_sock_free(struct svc_xprt * xprt)1643 static void svc_sock_free(struct svc_xprt *xprt)
1644 {
1645 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1646 dprintk("svc: svc_sock_free(%p)\n", svsk);
1647
1648 if (svsk->sk_sock->file)
1649 sockfd_put(svsk->sk_sock);
1650 else
1651 sock_release(svsk->sk_sock);
1652 kfree(svsk);
1653 }
1654
1655 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1656 /*
1657 * Create a back channel svc_xprt which shares the fore channel socket.
1658 */
svc_bc_create_socket(struct svc_serv * serv,int protocol,struct net * net,struct sockaddr * sin,int len,int flags)1659 static struct svc_xprt *svc_bc_create_socket(struct svc_serv *serv,
1660 int protocol,
1661 struct net *net,
1662 struct sockaddr *sin, int len,
1663 int flags)
1664 {
1665 struct svc_sock *svsk;
1666 struct svc_xprt *xprt;
1667
1668 if (protocol != IPPROTO_TCP) {
1669 printk(KERN_WARNING "svc: only TCP sockets"
1670 " supported on shared back channel\n");
1671 return ERR_PTR(-EINVAL);
1672 }
1673
1674 svsk = kzalloc(sizeof(*svsk), GFP_KERNEL);
1675 if (!svsk)
1676 return ERR_PTR(-ENOMEM);
1677
1678 xprt = &svsk->sk_xprt;
1679 svc_xprt_init(net, &svc_tcp_bc_class, xprt, serv);
1680
1681 serv->sv_bc_xprt = xprt;
1682
1683 return xprt;
1684 }
1685
1686 /*
1687 * Free a back channel svc_sock.
1688 */
svc_bc_sock_free(struct svc_xprt * xprt)1689 static void svc_bc_sock_free(struct svc_xprt *xprt)
1690 {
1691 if (xprt)
1692 kfree(container_of(xprt, struct svc_sock, sk_xprt));
1693 }
1694 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1695