1 /*
2 * linux/net/sunrpc/svc.c
3 *
4 * High-level RPC service routines
5 *
6 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
7 *
8 * Multiple threads pools and NUMAisation
9 * Copyright (c) 2006 Silicon Graphics, Inc.
10 * by Greg Banks <gnb@melbourne.sgi.com>
11 */
12
13 #include <linux/linkage.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/net.h>
17 #include <linux/in.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/kthread.h>
22 #include <linux/slab.h>
23 #include <linux/nsproxy.h>
24
25 #include <linux/sunrpc/types.h>
26 #include <linux/sunrpc/xdr.h>
27 #include <linux/sunrpc/stats.h>
28 #include <linux/sunrpc/svcsock.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/sunrpc/bc_xprt.h>
31
32 #define RPCDBG_FACILITY RPCDBG_SVCDSP
33
34 static void svc_unregister(const struct svc_serv *serv, struct net *net);
35
36 #define svc_serv_is_pooled(serv) ((serv)->sv_function)
37
38 /*
39 * Mode for mapping cpus to pools.
40 */
41 enum {
42 SVC_POOL_AUTO = -1, /* choose one of the others */
43 SVC_POOL_GLOBAL, /* no mapping, just a single global pool
44 * (legacy & UP mode) */
45 SVC_POOL_PERCPU, /* one pool per cpu */
46 SVC_POOL_PERNODE /* one pool per numa node */
47 };
48 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL
49
50 /*
51 * Structure for mapping cpus to pools and vice versa.
52 * Setup once during sunrpc initialisation.
53 */
54 static struct svc_pool_map {
55 int count; /* How many svc_servs use us */
56 int mode; /* Note: int not enum to avoid
57 * warnings about "enumeration value
58 * not handled in switch" */
59 unsigned int npools;
60 unsigned int *pool_to; /* maps pool id to cpu or node */
61 unsigned int *to_pool; /* maps cpu or node to pool id */
62 } svc_pool_map = {
63 .count = 0,
64 .mode = SVC_POOL_DEFAULT
65 };
66 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
67
68 static int
param_set_pool_mode(const char * val,struct kernel_param * kp)69 param_set_pool_mode(const char *val, struct kernel_param *kp)
70 {
71 int *ip = (int *)kp->arg;
72 struct svc_pool_map *m = &svc_pool_map;
73 int err;
74
75 mutex_lock(&svc_pool_map_mutex);
76
77 err = -EBUSY;
78 if (m->count)
79 goto out;
80
81 err = 0;
82 if (!strncmp(val, "auto", 4))
83 *ip = SVC_POOL_AUTO;
84 else if (!strncmp(val, "global", 6))
85 *ip = SVC_POOL_GLOBAL;
86 else if (!strncmp(val, "percpu", 6))
87 *ip = SVC_POOL_PERCPU;
88 else if (!strncmp(val, "pernode", 7))
89 *ip = SVC_POOL_PERNODE;
90 else
91 err = -EINVAL;
92
93 out:
94 mutex_unlock(&svc_pool_map_mutex);
95 return err;
96 }
97
98 static int
param_get_pool_mode(char * buf,struct kernel_param * kp)99 param_get_pool_mode(char *buf, struct kernel_param *kp)
100 {
101 int *ip = (int *)kp->arg;
102
103 switch (*ip)
104 {
105 case SVC_POOL_AUTO:
106 return strlcpy(buf, "auto", 20);
107 case SVC_POOL_GLOBAL:
108 return strlcpy(buf, "global", 20);
109 case SVC_POOL_PERCPU:
110 return strlcpy(buf, "percpu", 20);
111 case SVC_POOL_PERNODE:
112 return strlcpy(buf, "pernode", 20);
113 default:
114 return sprintf(buf, "%d", *ip);
115 }
116 }
117
118 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
119 &svc_pool_map.mode, 0644);
120
121 /*
122 * Detect best pool mapping mode heuristically,
123 * according to the machine's topology.
124 */
125 static int
svc_pool_map_choose_mode(void)126 svc_pool_map_choose_mode(void)
127 {
128 unsigned int node;
129
130 if (nr_online_nodes > 1) {
131 /*
132 * Actually have multiple NUMA nodes,
133 * so split pools on NUMA node boundaries
134 */
135 return SVC_POOL_PERNODE;
136 }
137
138 node = first_online_node;
139 if (nr_cpus_node(node) > 2) {
140 /*
141 * Non-trivial SMP, or CONFIG_NUMA on
142 * non-NUMA hardware, e.g. with a generic
143 * x86_64 kernel on Xeons. In this case we
144 * want to divide the pools on cpu boundaries.
145 */
146 return SVC_POOL_PERCPU;
147 }
148
149 /* default: one global pool */
150 return SVC_POOL_GLOBAL;
151 }
152
153 /*
154 * Allocate the to_pool[] and pool_to[] arrays.
155 * Returns 0 on success or an errno.
156 */
157 static int
svc_pool_map_alloc_arrays(struct svc_pool_map * m,unsigned int maxpools)158 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
159 {
160 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
161 if (!m->to_pool)
162 goto fail;
163 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
164 if (!m->pool_to)
165 goto fail_free;
166
167 return 0;
168
169 fail_free:
170 kfree(m->to_pool);
171 m->to_pool = NULL;
172 fail:
173 return -ENOMEM;
174 }
175
176 /*
177 * Initialise the pool map for SVC_POOL_PERCPU mode.
178 * Returns number of pools or <0 on error.
179 */
180 static int
svc_pool_map_init_percpu(struct svc_pool_map * m)181 svc_pool_map_init_percpu(struct svc_pool_map *m)
182 {
183 unsigned int maxpools = nr_cpu_ids;
184 unsigned int pidx = 0;
185 unsigned int cpu;
186 int err;
187
188 err = svc_pool_map_alloc_arrays(m, maxpools);
189 if (err)
190 return err;
191
192 for_each_online_cpu(cpu) {
193 BUG_ON(pidx > maxpools);
194 m->to_pool[cpu] = pidx;
195 m->pool_to[pidx] = cpu;
196 pidx++;
197 }
198 /* cpus brought online later all get mapped to pool0, sorry */
199
200 return pidx;
201 };
202
203
204 /*
205 * Initialise the pool map for SVC_POOL_PERNODE mode.
206 * Returns number of pools or <0 on error.
207 */
208 static int
svc_pool_map_init_pernode(struct svc_pool_map * m)209 svc_pool_map_init_pernode(struct svc_pool_map *m)
210 {
211 unsigned int maxpools = nr_node_ids;
212 unsigned int pidx = 0;
213 unsigned int node;
214 int err;
215
216 err = svc_pool_map_alloc_arrays(m, maxpools);
217 if (err)
218 return err;
219
220 for_each_node_with_cpus(node) {
221 /* some architectures (e.g. SN2) have cpuless nodes */
222 BUG_ON(pidx > maxpools);
223 m->to_pool[node] = pidx;
224 m->pool_to[pidx] = node;
225 pidx++;
226 }
227 /* nodes brought online later all get mapped to pool0, sorry */
228
229 return pidx;
230 }
231
232
233 /*
234 * Add a reference to the global map of cpus to pools (and
235 * vice versa). Initialise the map if we're the first user.
236 * Returns the number of pools.
237 */
238 static unsigned int
svc_pool_map_get(void)239 svc_pool_map_get(void)
240 {
241 struct svc_pool_map *m = &svc_pool_map;
242 int npools = -1;
243
244 mutex_lock(&svc_pool_map_mutex);
245
246 if (m->count++) {
247 mutex_unlock(&svc_pool_map_mutex);
248 return m->npools;
249 }
250
251 if (m->mode == SVC_POOL_AUTO)
252 m->mode = svc_pool_map_choose_mode();
253
254 switch (m->mode) {
255 case SVC_POOL_PERCPU:
256 npools = svc_pool_map_init_percpu(m);
257 break;
258 case SVC_POOL_PERNODE:
259 npools = svc_pool_map_init_pernode(m);
260 break;
261 }
262
263 if (npools < 0) {
264 /* default, or memory allocation failure */
265 npools = 1;
266 m->mode = SVC_POOL_GLOBAL;
267 }
268 m->npools = npools;
269
270 mutex_unlock(&svc_pool_map_mutex);
271 return m->npools;
272 }
273
274
275 /*
276 * Drop a reference to the global map of cpus to pools.
277 * When the last reference is dropped, the map data is
278 * freed; this allows the sysadmin to change the pool
279 * mode using the pool_mode module option without
280 * rebooting or re-loading sunrpc.ko.
281 */
282 static void
svc_pool_map_put(void)283 svc_pool_map_put(void)
284 {
285 struct svc_pool_map *m = &svc_pool_map;
286
287 mutex_lock(&svc_pool_map_mutex);
288
289 if (!--m->count) {
290 kfree(m->to_pool);
291 m->to_pool = NULL;
292 kfree(m->pool_to);
293 m->pool_to = NULL;
294 m->npools = 0;
295 }
296
297 mutex_unlock(&svc_pool_map_mutex);
298 }
299
300
svc_pool_map_get_node(unsigned int pidx)301 static int svc_pool_map_get_node(unsigned int pidx)
302 {
303 const struct svc_pool_map *m = &svc_pool_map;
304
305 if (m->count) {
306 if (m->mode == SVC_POOL_PERCPU)
307 return cpu_to_node(m->pool_to[pidx]);
308 if (m->mode == SVC_POOL_PERNODE)
309 return m->pool_to[pidx];
310 }
311 return NUMA_NO_NODE;
312 }
313 /*
314 * Set the given thread's cpus_allowed mask so that it
315 * will only run on cpus in the given pool.
316 */
317 static inline void
svc_pool_map_set_cpumask(struct task_struct * task,unsigned int pidx)318 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
319 {
320 struct svc_pool_map *m = &svc_pool_map;
321 unsigned int node = m->pool_to[pidx];
322
323 /*
324 * The caller checks for sv_nrpools > 1, which
325 * implies that we've been initialized.
326 */
327 BUG_ON(m->count == 0);
328
329 switch (m->mode) {
330 case SVC_POOL_PERCPU:
331 {
332 set_cpus_allowed_ptr(task, cpumask_of(node));
333 break;
334 }
335 case SVC_POOL_PERNODE:
336 {
337 set_cpus_allowed_ptr(task, cpumask_of_node(node));
338 break;
339 }
340 }
341 }
342
343 /*
344 * Use the mapping mode to choose a pool for a given CPU.
345 * Used when enqueueing an incoming RPC. Always returns
346 * a non-NULL pool pointer.
347 */
348 struct svc_pool *
svc_pool_for_cpu(struct svc_serv * serv,int cpu)349 svc_pool_for_cpu(struct svc_serv *serv, int cpu)
350 {
351 struct svc_pool_map *m = &svc_pool_map;
352 unsigned int pidx = 0;
353
354 /*
355 * An uninitialised map happens in a pure client when
356 * lockd is brought up, so silently treat it the
357 * same as SVC_POOL_GLOBAL.
358 */
359 if (svc_serv_is_pooled(serv)) {
360 switch (m->mode) {
361 case SVC_POOL_PERCPU:
362 pidx = m->to_pool[cpu];
363 break;
364 case SVC_POOL_PERNODE:
365 pidx = m->to_pool[cpu_to_node(cpu)];
366 break;
367 }
368 }
369 return &serv->sv_pools[pidx % serv->sv_nrpools];
370 }
371
svc_rpcb_setup(struct svc_serv * serv,struct net * net)372 int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
373 {
374 int err;
375
376 err = rpcb_create_local(net);
377 if (err)
378 return err;
379
380 /* Remove any stale portmap registrations */
381 svc_unregister(serv, net);
382 return 0;
383 }
384 EXPORT_SYMBOL_GPL(svc_rpcb_setup);
385
svc_rpcb_cleanup(struct svc_serv * serv,struct net * net)386 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
387 {
388 svc_unregister(serv, net);
389 rpcb_put_local(net);
390 }
391 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
392
svc_uses_rpcbind(struct svc_serv * serv)393 static int svc_uses_rpcbind(struct svc_serv *serv)
394 {
395 struct svc_program *progp;
396 unsigned int i;
397
398 for (progp = serv->sv_program; progp; progp = progp->pg_next) {
399 for (i = 0; i < progp->pg_nvers; i++) {
400 if (progp->pg_vers[i] == NULL)
401 continue;
402 if (progp->pg_vers[i]->vs_hidden == 0)
403 return 1;
404 }
405 }
406
407 return 0;
408 }
409
svc_bind(struct svc_serv * serv,struct net * net)410 int svc_bind(struct svc_serv *serv, struct net *net)
411 {
412 if (!svc_uses_rpcbind(serv))
413 return 0;
414 return svc_rpcb_setup(serv, net);
415 }
416 EXPORT_SYMBOL_GPL(svc_bind);
417
418 /*
419 * Create an RPC service
420 */
421 static struct svc_serv *
__svc_create(struct svc_program * prog,unsigned int bufsize,int npools,void (* shutdown)(struct svc_serv * serv,struct net * net))422 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools,
423 void (*shutdown)(struct svc_serv *serv, struct net *net))
424 {
425 struct svc_serv *serv;
426 unsigned int vers;
427 unsigned int xdrsize;
428 unsigned int i;
429
430 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
431 return NULL;
432 serv->sv_name = prog->pg_name;
433 serv->sv_program = prog;
434 serv->sv_nrthreads = 1;
435 serv->sv_stats = prog->pg_stats;
436 if (bufsize > RPCSVC_MAXPAYLOAD)
437 bufsize = RPCSVC_MAXPAYLOAD;
438 serv->sv_max_payload = bufsize? bufsize : 4096;
439 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
440 serv->sv_shutdown = shutdown;
441 xdrsize = 0;
442 while (prog) {
443 prog->pg_lovers = prog->pg_nvers-1;
444 for (vers=0; vers<prog->pg_nvers ; vers++)
445 if (prog->pg_vers[vers]) {
446 prog->pg_hivers = vers;
447 if (prog->pg_lovers > vers)
448 prog->pg_lovers = vers;
449 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
450 xdrsize = prog->pg_vers[vers]->vs_xdrsize;
451 }
452 prog = prog->pg_next;
453 }
454 serv->sv_xdrsize = xdrsize;
455 INIT_LIST_HEAD(&serv->sv_tempsocks);
456 INIT_LIST_HEAD(&serv->sv_permsocks);
457 init_timer(&serv->sv_temptimer);
458 spin_lock_init(&serv->sv_lock);
459
460 serv->sv_nrpools = npools;
461 serv->sv_pools =
462 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
463 GFP_KERNEL);
464 if (!serv->sv_pools) {
465 kfree(serv);
466 return NULL;
467 }
468
469 for (i = 0; i < serv->sv_nrpools; i++) {
470 struct svc_pool *pool = &serv->sv_pools[i];
471
472 dprintk("svc: initialising pool %u for %s\n",
473 i, serv->sv_name);
474
475 pool->sp_id = i;
476 INIT_LIST_HEAD(&pool->sp_threads);
477 INIT_LIST_HEAD(&pool->sp_sockets);
478 INIT_LIST_HEAD(&pool->sp_all_threads);
479 spin_lock_init(&pool->sp_lock);
480 }
481
482 if (svc_uses_rpcbind(serv) && (!serv->sv_shutdown))
483 serv->sv_shutdown = svc_rpcb_cleanup;
484
485 return serv;
486 }
487
488 struct svc_serv *
svc_create(struct svc_program * prog,unsigned int bufsize,void (* shutdown)(struct svc_serv * serv,struct net * net))489 svc_create(struct svc_program *prog, unsigned int bufsize,
490 void (*shutdown)(struct svc_serv *serv, struct net *net))
491 {
492 return __svc_create(prog, bufsize, /*npools*/1, shutdown);
493 }
494 EXPORT_SYMBOL_GPL(svc_create);
495
496 struct svc_serv *
svc_create_pooled(struct svc_program * prog,unsigned int bufsize,void (* shutdown)(struct svc_serv * serv,struct net * net),svc_thread_fn func,struct module * mod)497 svc_create_pooled(struct svc_program *prog, unsigned int bufsize,
498 void (*shutdown)(struct svc_serv *serv, struct net *net),
499 svc_thread_fn func, struct module *mod)
500 {
501 struct svc_serv *serv;
502 unsigned int npools = svc_pool_map_get();
503
504 serv = __svc_create(prog, bufsize, npools, shutdown);
505
506 if (serv != NULL) {
507 serv->sv_function = func;
508 serv->sv_module = mod;
509 }
510
511 return serv;
512 }
513 EXPORT_SYMBOL_GPL(svc_create_pooled);
514
svc_shutdown_net(struct svc_serv * serv,struct net * net)515 void svc_shutdown_net(struct svc_serv *serv, struct net *net)
516 {
517 /*
518 * The set of xprts (contained in the sv_tempsocks and
519 * sv_permsocks lists) is now constant, since it is modified
520 * only by accepting new sockets (done by service threads in
521 * svc_recv) or aging old ones (done by sv_temptimer), or
522 * configuration changes (excluded by whatever locking the
523 * caller is using--nfsd_mutex in the case of nfsd). So it's
524 * safe to traverse those lists and shut everything down:
525 */
526 svc_close_net(serv, net);
527
528 if (serv->sv_shutdown)
529 serv->sv_shutdown(serv, net);
530 }
531 EXPORT_SYMBOL_GPL(svc_shutdown_net);
532
533 /*
534 * Destroy an RPC service. Should be called with appropriate locking to
535 * protect the sv_nrthreads, sv_permsocks and sv_tempsocks.
536 */
537 void
svc_destroy(struct svc_serv * serv)538 svc_destroy(struct svc_serv *serv)
539 {
540 dprintk("svc: svc_destroy(%s, %d)\n",
541 serv->sv_program->pg_name,
542 serv->sv_nrthreads);
543
544 if (serv->sv_nrthreads) {
545 if (--(serv->sv_nrthreads) != 0) {
546 svc_sock_update_bufs(serv);
547 return;
548 }
549 } else
550 printk("svc_destroy: no threads for serv=%p!\n", serv);
551
552 del_timer_sync(&serv->sv_temptimer);
553
554 /*
555 * The last user is gone and thus all sockets have to be destroyed to
556 * the point. Check this.
557 */
558 BUG_ON(!list_empty(&serv->sv_permsocks));
559 BUG_ON(!list_empty(&serv->sv_tempsocks));
560
561 cache_clean_deferred(serv);
562
563 if (svc_serv_is_pooled(serv))
564 svc_pool_map_put();
565
566 kfree(serv->sv_pools);
567 kfree(serv);
568 }
569 EXPORT_SYMBOL_GPL(svc_destroy);
570
571 /*
572 * Allocate an RPC server's buffer space.
573 * We allocate pages and place them in rq_argpages.
574 */
575 static int
svc_init_buffer(struct svc_rqst * rqstp,unsigned int size,int node)576 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
577 {
578 unsigned int pages, arghi;
579
580 /* bc_xprt uses fore channel allocated buffers */
581 if (svc_is_backchannel(rqstp))
582 return 1;
583
584 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
585 * We assume one is at most one page
586 */
587 arghi = 0;
588 BUG_ON(pages > RPCSVC_MAXPAGES);
589 while (pages) {
590 struct page *p = alloc_pages_node(node, GFP_KERNEL, 0);
591 if (!p)
592 break;
593 rqstp->rq_pages[arghi++] = p;
594 pages--;
595 }
596 return pages == 0;
597 }
598
599 /*
600 * Release an RPC server buffer
601 */
602 static void
svc_release_buffer(struct svc_rqst * rqstp)603 svc_release_buffer(struct svc_rqst *rqstp)
604 {
605 unsigned int i;
606
607 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
608 if (rqstp->rq_pages[i])
609 put_page(rqstp->rq_pages[i]);
610 }
611
612 struct svc_rqst *
svc_prepare_thread(struct svc_serv * serv,struct svc_pool * pool,int node)613 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
614 {
615 struct svc_rqst *rqstp;
616
617 rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
618 if (!rqstp)
619 goto out_enomem;
620
621 init_waitqueue_head(&rqstp->rq_wait);
622
623 serv->sv_nrthreads++;
624 spin_lock_bh(&pool->sp_lock);
625 pool->sp_nrthreads++;
626 list_add(&rqstp->rq_all, &pool->sp_all_threads);
627 spin_unlock_bh(&pool->sp_lock);
628 rqstp->rq_server = serv;
629 rqstp->rq_pool = pool;
630
631 rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
632 if (!rqstp->rq_argp)
633 goto out_thread;
634
635 rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
636 if (!rqstp->rq_resp)
637 goto out_thread;
638
639 if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
640 goto out_thread;
641
642 return rqstp;
643 out_thread:
644 svc_exit_thread(rqstp);
645 out_enomem:
646 return ERR_PTR(-ENOMEM);
647 }
648 EXPORT_SYMBOL_GPL(svc_prepare_thread);
649
650 /*
651 * Choose a pool in which to create a new thread, for svc_set_num_threads
652 */
653 static inline struct svc_pool *
choose_pool(struct svc_serv * serv,struct svc_pool * pool,unsigned int * state)654 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
655 {
656 if (pool != NULL)
657 return pool;
658
659 return &serv->sv_pools[(*state)++ % serv->sv_nrpools];
660 }
661
662 /*
663 * Choose a thread to kill, for svc_set_num_threads
664 */
665 static inline struct task_struct *
choose_victim(struct svc_serv * serv,struct svc_pool * pool,unsigned int * state)666 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
667 {
668 unsigned int i;
669 struct task_struct *task = NULL;
670
671 if (pool != NULL) {
672 spin_lock_bh(&pool->sp_lock);
673 } else {
674 /* choose a pool in round-robin fashion */
675 for (i = 0; i < serv->sv_nrpools; i++) {
676 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
677 spin_lock_bh(&pool->sp_lock);
678 if (!list_empty(&pool->sp_all_threads))
679 goto found_pool;
680 spin_unlock_bh(&pool->sp_lock);
681 }
682 return NULL;
683 }
684
685 found_pool:
686 if (!list_empty(&pool->sp_all_threads)) {
687 struct svc_rqst *rqstp;
688
689 /*
690 * Remove from the pool->sp_all_threads list
691 * so we don't try to kill it again.
692 */
693 rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all);
694 list_del_init(&rqstp->rq_all);
695 task = rqstp->rq_task;
696 }
697 spin_unlock_bh(&pool->sp_lock);
698
699 return task;
700 }
701
702 /*
703 * Create or destroy enough new threads to make the number
704 * of threads the given number. If `pool' is non-NULL, applies
705 * only to threads in that pool, otherwise round-robins between
706 * all pools. Caller must ensure that mutual exclusion between this and
707 * server startup or shutdown.
708 *
709 * Destroying threads relies on the service threads filling in
710 * rqstp->rq_task, which only the nfs ones do. Assumes the serv
711 * has been created using svc_create_pooled().
712 *
713 * Based on code that used to be in nfsd_svc() but tweaked
714 * to be pool-aware.
715 */
716 int
svc_set_num_threads(struct svc_serv * serv,struct svc_pool * pool,int nrservs)717 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
718 {
719 struct svc_rqst *rqstp;
720 struct task_struct *task;
721 struct svc_pool *chosen_pool;
722 int error = 0;
723 unsigned int state = serv->sv_nrthreads-1;
724 int node;
725
726 if (pool == NULL) {
727 /* The -1 assumes caller has done a svc_get() */
728 nrservs -= (serv->sv_nrthreads-1);
729 } else {
730 spin_lock_bh(&pool->sp_lock);
731 nrservs -= pool->sp_nrthreads;
732 spin_unlock_bh(&pool->sp_lock);
733 }
734
735 /* create new threads */
736 while (nrservs > 0) {
737 nrservs--;
738 chosen_pool = choose_pool(serv, pool, &state);
739
740 node = svc_pool_map_get_node(chosen_pool->sp_id);
741 rqstp = svc_prepare_thread(serv, chosen_pool, node);
742 if (IS_ERR(rqstp)) {
743 error = PTR_ERR(rqstp);
744 break;
745 }
746
747 __module_get(serv->sv_module);
748 task = kthread_create_on_node(serv->sv_function, rqstp,
749 node, serv->sv_name);
750 if (IS_ERR(task)) {
751 error = PTR_ERR(task);
752 module_put(serv->sv_module);
753 svc_exit_thread(rqstp);
754 break;
755 }
756
757 rqstp->rq_task = task;
758 if (serv->sv_nrpools > 1)
759 svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
760
761 svc_sock_update_bufs(serv);
762 wake_up_process(task);
763 }
764 /* destroy old threads */
765 while (nrservs < 0 &&
766 (task = choose_victim(serv, pool, &state)) != NULL) {
767 send_sig(SIGINT, task, 1);
768 nrservs++;
769 }
770
771 return error;
772 }
773 EXPORT_SYMBOL_GPL(svc_set_num_threads);
774
775 /*
776 * Called from a server thread as it's exiting. Caller must hold the BKL or
777 * the "service mutex", whichever is appropriate for the service.
778 */
779 void
svc_exit_thread(struct svc_rqst * rqstp)780 svc_exit_thread(struct svc_rqst *rqstp)
781 {
782 struct svc_serv *serv = rqstp->rq_server;
783 struct svc_pool *pool = rqstp->rq_pool;
784
785 svc_release_buffer(rqstp);
786 kfree(rqstp->rq_resp);
787 kfree(rqstp->rq_argp);
788 kfree(rqstp->rq_auth_data);
789
790 spin_lock_bh(&pool->sp_lock);
791 pool->sp_nrthreads--;
792 list_del(&rqstp->rq_all);
793 spin_unlock_bh(&pool->sp_lock);
794
795 kfree(rqstp);
796
797 /* Release the server */
798 if (serv)
799 svc_destroy(serv);
800 }
801 EXPORT_SYMBOL_GPL(svc_exit_thread);
802
803 /*
804 * Register an "inet" protocol family netid with the local
805 * rpcbind daemon via an rpcbind v4 SET request.
806 *
807 * No netconfig infrastructure is available in the kernel, so
808 * we map IP_ protocol numbers to netids by hand.
809 *
810 * Returns zero on success; a negative errno value is returned
811 * if any error occurs.
812 */
__svc_rpcb_register4(struct net * net,const u32 program,const u32 version,const unsigned short protocol,const unsigned short port)813 static int __svc_rpcb_register4(struct net *net, const u32 program,
814 const u32 version,
815 const unsigned short protocol,
816 const unsigned short port)
817 {
818 const struct sockaddr_in sin = {
819 .sin_family = AF_INET,
820 .sin_addr.s_addr = htonl(INADDR_ANY),
821 .sin_port = htons(port),
822 };
823 const char *netid;
824 int error;
825
826 switch (protocol) {
827 case IPPROTO_UDP:
828 netid = RPCBIND_NETID_UDP;
829 break;
830 case IPPROTO_TCP:
831 netid = RPCBIND_NETID_TCP;
832 break;
833 default:
834 return -ENOPROTOOPT;
835 }
836
837 error = rpcb_v4_register(net, program, version,
838 (const struct sockaddr *)&sin, netid);
839
840 /*
841 * User space didn't support rpcbind v4, so retry this
842 * registration request with the legacy rpcbind v2 protocol.
843 */
844 if (error == -EPROTONOSUPPORT)
845 error = rpcb_register(net, program, version, protocol, port);
846
847 return error;
848 }
849
850 #if IS_ENABLED(CONFIG_IPV6)
851 /*
852 * Register an "inet6" protocol family netid with the local
853 * rpcbind daemon via an rpcbind v4 SET request.
854 *
855 * No netconfig infrastructure is available in the kernel, so
856 * we map IP_ protocol numbers to netids by hand.
857 *
858 * Returns zero on success; a negative errno value is returned
859 * if any error occurs.
860 */
__svc_rpcb_register6(struct net * net,const u32 program,const u32 version,const unsigned short protocol,const unsigned short port)861 static int __svc_rpcb_register6(struct net *net, const u32 program,
862 const u32 version,
863 const unsigned short protocol,
864 const unsigned short port)
865 {
866 const struct sockaddr_in6 sin6 = {
867 .sin6_family = AF_INET6,
868 .sin6_addr = IN6ADDR_ANY_INIT,
869 .sin6_port = htons(port),
870 };
871 const char *netid;
872 int error;
873
874 switch (protocol) {
875 case IPPROTO_UDP:
876 netid = RPCBIND_NETID_UDP6;
877 break;
878 case IPPROTO_TCP:
879 netid = RPCBIND_NETID_TCP6;
880 break;
881 default:
882 return -ENOPROTOOPT;
883 }
884
885 error = rpcb_v4_register(net, program, version,
886 (const struct sockaddr *)&sin6, netid);
887
888 /*
889 * User space didn't support rpcbind version 4, so we won't
890 * use a PF_INET6 listener.
891 */
892 if (error == -EPROTONOSUPPORT)
893 error = -EAFNOSUPPORT;
894
895 return error;
896 }
897 #endif /* IS_ENABLED(CONFIG_IPV6) */
898
899 /*
900 * Register a kernel RPC service via rpcbind version 4.
901 *
902 * Returns zero on success; a negative errno value is returned
903 * if any error occurs.
904 */
__svc_register(struct net * net,const char * progname,const u32 program,const u32 version,const int family,const unsigned short protocol,const unsigned short port)905 static int __svc_register(struct net *net, const char *progname,
906 const u32 program, const u32 version,
907 const int family,
908 const unsigned short protocol,
909 const unsigned short port)
910 {
911 int error = -EAFNOSUPPORT;
912
913 switch (family) {
914 case PF_INET:
915 error = __svc_rpcb_register4(net, program, version,
916 protocol, port);
917 break;
918 #if IS_ENABLED(CONFIG_IPV6)
919 case PF_INET6:
920 error = __svc_rpcb_register6(net, program, version,
921 protocol, port);
922 #endif
923 }
924
925 if (error < 0)
926 printk(KERN_WARNING "svc: failed to register %sv%u RPC "
927 "service (errno %d).\n", progname, version, -error);
928 return error;
929 }
930
931 /**
932 * svc_register - register an RPC service with the local portmapper
933 * @serv: svc_serv struct for the service to register
934 * @net: net namespace for the service to register
935 * @family: protocol family of service's listener socket
936 * @proto: transport protocol number to advertise
937 * @port: port to advertise
938 *
939 * Service is registered for any address in the passed-in protocol family
940 */
svc_register(const struct svc_serv * serv,struct net * net,const int family,const unsigned short proto,const unsigned short port)941 int svc_register(const struct svc_serv *serv, struct net *net,
942 const int family, const unsigned short proto,
943 const unsigned short port)
944 {
945 struct svc_program *progp;
946 unsigned int i;
947 int error = 0;
948
949 BUG_ON(proto == 0 && port == 0);
950
951 for (progp = serv->sv_program; progp; progp = progp->pg_next) {
952 for (i = 0; i < progp->pg_nvers; i++) {
953 if (progp->pg_vers[i] == NULL)
954 continue;
955
956 dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n",
957 progp->pg_name,
958 i,
959 proto == IPPROTO_UDP? "udp" : "tcp",
960 port,
961 family,
962 progp->pg_vers[i]->vs_hidden?
963 " (but not telling portmap)" : "");
964
965 if (progp->pg_vers[i]->vs_hidden)
966 continue;
967
968 error = __svc_register(net, progp->pg_name, progp->pg_prog,
969 i, family, proto, port);
970 if (error < 0)
971 break;
972 }
973 }
974
975 return error;
976 }
977
978 /*
979 * If user space is running rpcbind, it should take the v4 UNSET
980 * and clear everything for this [program, version]. If user space
981 * is running portmap, it will reject the v4 UNSET, but won't have
982 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient
983 * in this case to clear all existing entries for [program, version].
984 */
__svc_unregister(struct net * net,const u32 program,const u32 version,const char * progname)985 static void __svc_unregister(struct net *net, const u32 program, const u32 version,
986 const char *progname)
987 {
988 int error;
989
990 error = rpcb_v4_register(net, program, version, NULL, "");
991
992 /*
993 * User space didn't support rpcbind v4, so retry this
994 * request with the legacy rpcbind v2 protocol.
995 */
996 if (error == -EPROTONOSUPPORT)
997 error = rpcb_register(net, program, version, 0, 0);
998
999 dprintk("svc: %s(%sv%u), error %d\n",
1000 __func__, progname, version, error);
1001 }
1002
1003 /*
1004 * All netids, bind addresses and ports registered for [program, version]
1005 * are removed from the local rpcbind database (if the service is not
1006 * hidden) to make way for a new instance of the service.
1007 *
1008 * The result of unregistration is reported via dprintk for those who want
1009 * verification of the result, but is otherwise not important.
1010 */
svc_unregister(const struct svc_serv * serv,struct net * net)1011 static void svc_unregister(const struct svc_serv *serv, struct net *net)
1012 {
1013 struct svc_program *progp;
1014 unsigned long flags;
1015 unsigned int i;
1016
1017 clear_thread_flag(TIF_SIGPENDING);
1018
1019 for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1020 for (i = 0; i < progp->pg_nvers; i++) {
1021 if (progp->pg_vers[i] == NULL)
1022 continue;
1023 if (progp->pg_vers[i]->vs_hidden)
1024 continue;
1025
1026 dprintk("svc: attempting to unregister %sv%u\n",
1027 progp->pg_name, i);
1028 __svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1029 }
1030 }
1031
1032 spin_lock_irqsave(¤t->sighand->siglock, flags);
1033 recalc_sigpending();
1034 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
1035 }
1036
1037 /*
1038 * Printk the given error with the address of the client that caused it.
1039 */
1040 static __printf(2, 3)
svc_printk(struct svc_rqst * rqstp,const char * fmt,...)1041 int svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1042 {
1043 va_list args;
1044 int r;
1045 char buf[RPC_MAX_ADDRBUFLEN];
1046
1047 if (!net_ratelimit())
1048 return 0;
1049
1050 printk(KERN_WARNING "svc: %s: ",
1051 svc_print_addr(rqstp, buf, sizeof(buf)));
1052
1053 va_start(args, fmt);
1054 r = vprintk(fmt, args);
1055 va_end(args);
1056
1057 return r;
1058 }
1059
1060 /*
1061 * Common routine for processing the RPC request.
1062 */
1063 static int
svc_process_common(struct svc_rqst * rqstp,struct kvec * argv,struct kvec * resv)1064 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv)
1065 {
1066 struct svc_program *progp;
1067 struct svc_version *versp = NULL; /* compiler food */
1068 struct svc_procedure *procp = NULL;
1069 struct svc_serv *serv = rqstp->rq_server;
1070 kxdrproc_t xdr;
1071 __be32 *statp;
1072 u32 prog, vers, proc;
1073 __be32 auth_stat, rpc_stat;
1074 int auth_res;
1075 __be32 *reply_statp;
1076
1077 rpc_stat = rpc_success;
1078
1079 if (argv->iov_len < 6*4)
1080 goto err_short_len;
1081
1082 /* Will be turned off only in gss privacy case: */
1083 rqstp->rq_splice_ok = 1;
1084 /* Will be turned off only when NFSv4 Sessions are used */
1085 rqstp->rq_usedeferral = 1;
1086 rqstp->rq_dropme = false;
1087
1088 /* Setup reply header */
1089 rqstp->rq_xprt->xpt_ops->xpo_prep_reply_hdr(rqstp);
1090
1091 svc_putu32(resv, rqstp->rq_xid);
1092
1093 vers = svc_getnl(argv);
1094
1095 /* First words of reply: */
1096 svc_putnl(resv, 1); /* REPLY */
1097
1098 if (vers != 2) /* RPC version number */
1099 goto err_bad_rpc;
1100
1101 /* Save position in case we later decide to reject: */
1102 reply_statp = resv->iov_base + resv->iov_len;
1103
1104 svc_putnl(resv, 0); /* ACCEPT */
1105
1106 rqstp->rq_prog = prog = svc_getnl(argv); /* program number */
1107 rqstp->rq_vers = vers = svc_getnl(argv); /* version number */
1108 rqstp->rq_proc = proc = svc_getnl(argv); /* procedure number */
1109
1110 progp = serv->sv_program;
1111
1112 for (progp = serv->sv_program; progp; progp = progp->pg_next)
1113 if (prog == progp->pg_prog)
1114 break;
1115
1116 /*
1117 * Decode auth data, and add verifier to reply buffer.
1118 * We do this before anything else in order to get a decent
1119 * auth verifier.
1120 */
1121 auth_res = svc_authenticate(rqstp, &auth_stat);
1122 /* Also give the program a chance to reject this call: */
1123 if (auth_res == SVC_OK && progp) {
1124 auth_stat = rpc_autherr_badcred;
1125 auth_res = progp->pg_authenticate(rqstp);
1126 }
1127 switch (auth_res) {
1128 case SVC_OK:
1129 break;
1130 case SVC_GARBAGE:
1131 goto err_garbage;
1132 case SVC_SYSERR:
1133 rpc_stat = rpc_system_err;
1134 goto err_bad;
1135 case SVC_DENIED:
1136 goto err_bad_auth;
1137 case SVC_CLOSE:
1138 if (test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1139 svc_close_xprt(rqstp->rq_xprt);
1140 case SVC_DROP:
1141 goto dropit;
1142 case SVC_COMPLETE:
1143 goto sendit;
1144 }
1145
1146 if (progp == NULL)
1147 goto err_bad_prog;
1148
1149 if (vers >= progp->pg_nvers ||
1150 !(versp = progp->pg_vers[vers]))
1151 goto err_bad_vers;
1152
1153 procp = versp->vs_proc + proc;
1154 if (proc >= versp->vs_nproc || !procp->pc_func)
1155 goto err_bad_proc;
1156 rqstp->rq_procinfo = procp;
1157
1158 /* Syntactic check complete */
1159 serv->sv_stats->rpccnt++;
1160
1161 /* Build the reply header. */
1162 statp = resv->iov_base +resv->iov_len;
1163 svc_putnl(resv, RPC_SUCCESS);
1164
1165 /* Bump per-procedure stats counter */
1166 procp->pc_count++;
1167
1168 /* Initialize storage for argp and resp */
1169 memset(rqstp->rq_argp, 0, procp->pc_argsize);
1170 memset(rqstp->rq_resp, 0, procp->pc_ressize);
1171
1172 /* un-reserve some of the out-queue now that we have a
1173 * better idea of reply size
1174 */
1175 if (procp->pc_xdrressize)
1176 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1177
1178 /* Call the function that processes the request. */
1179 if (!versp->vs_dispatch) {
1180 /* Decode arguments */
1181 xdr = procp->pc_decode;
1182 if (xdr && !xdr(rqstp, argv->iov_base, rqstp->rq_argp))
1183 goto err_garbage;
1184
1185 *statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp);
1186
1187 /* Encode reply */
1188 if (rqstp->rq_dropme) {
1189 if (procp->pc_release)
1190 procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1191 goto dropit;
1192 }
1193 if (*statp == rpc_success &&
1194 (xdr = procp->pc_encode) &&
1195 !xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) {
1196 dprintk("svc: failed to encode reply\n");
1197 /* serv->sv_stats->rpcsystemerr++; */
1198 *statp = rpc_system_err;
1199 }
1200 } else {
1201 dprintk("svc: calling dispatcher\n");
1202 if (!versp->vs_dispatch(rqstp, statp)) {
1203 /* Release reply info */
1204 if (procp->pc_release)
1205 procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1206 goto dropit;
1207 }
1208 }
1209
1210 /* Check RPC status result */
1211 if (*statp != rpc_success)
1212 resv->iov_len = ((void*)statp) - resv->iov_base + 4;
1213
1214 /* Release reply info */
1215 if (procp->pc_release)
1216 procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1217
1218 if (procp->pc_encode == NULL)
1219 goto dropit;
1220
1221 sendit:
1222 if (svc_authorise(rqstp))
1223 goto dropit;
1224 return 1; /* Caller can now send it */
1225
1226 dropit:
1227 svc_authorise(rqstp); /* doesn't hurt to call this twice */
1228 dprintk("svc: svc_process dropit\n");
1229 return 0;
1230
1231 err_short_len:
1232 svc_printk(rqstp, "short len %Zd, dropping request\n",
1233 argv->iov_len);
1234
1235 goto dropit; /* drop request */
1236
1237 err_bad_rpc:
1238 serv->sv_stats->rpcbadfmt++;
1239 svc_putnl(resv, 1); /* REJECT */
1240 svc_putnl(resv, 0); /* RPC_MISMATCH */
1241 svc_putnl(resv, 2); /* Only RPCv2 supported */
1242 svc_putnl(resv, 2);
1243 goto sendit;
1244
1245 err_bad_auth:
1246 dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat));
1247 serv->sv_stats->rpcbadauth++;
1248 /* Restore write pointer to location of accept status: */
1249 xdr_ressize_check(rqstp, reply_statp);
1250 svc_putnl(resv, 1); /* REJECT */
1251 svc_putnl(resv, 1); /* AUTH_ERROR */
1252 svc_putnl(resv, ntohl(auth_stat)); /* status */
1253 goto sendit;
1254
1255 err_bad_prog:
1256 dprintk("svc: unknown program %d\n", prog);
1257 serv->sv_stats->rpcbadfmt++;
1258 svc_putnl(resv, RPC_PROG_UNAVAIL);
1259 goto sendit;
1260
1261 err_bad_vers:
1262 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1263 vers, prog, progp->pg_name);
1264
1265 serv->sv_stats->rpcbadfmt++;
1266 svc_putnl(resv, RPC_PROG_MISMATCH);
1267 svc_putnl(resv, progp->pg_lovers);
1268 svc_putnl(resv, progp->pg_hivers);
1269 goto sendit;
1270
1271 err_bad_proc:
1272 svc_printk(rqstp, "unknown procedure (%d)\n", proc);
1273
1274 serv->sv_stats->rpcbadfmt++;
1275 svc_putnl(resv, RPC_PROC_UNAVAIL);
1276 goto sendit;
1277
1278 err_garbage:
1279 svc_printk(rqstp, "failed to decode args\n");
1280
1281 rpc_stat = rpc_garbage_args;
1282 err_bad:
1283 serv->sv_stats->rpcbadfmt++;
1284 svc_putnl(resv, ntohl(rpc_stat));
1285 goto sendit;
1286 }
1287 EXPORT_SYMBOL_GPL(svc_process);
1288
1289 /*
1290 * Process the RPC request.
1291 */
1292 int
svc_process(struct svc_rqst * rqstp)1293 svc_process(struct svc_rqst *rqstp)
1294 {
1295 struct kvec *argv = &rqstp->rq_arg.head[0];
1296 struct kvec *resv = &rqstp->rq_res.head[0];
1297 struct svc_serv *serv = rqstp->rq_server;
1298 u32 dir;
1299
1300 /*
1301 * Setup response xdr_buf.
1302 * Initially it has just one page
1303 */
1304 rqstp->rq_resused = 1;
1305 resv->iov_base = page_address(rqstp->rq_respages[0]);
1306 resv->iov_len = 0;
1307 rqstp->rq_res.pages = rqstp->rq_respages + 1;
1308 rqstp->rq_res.len = 0;
1309 rqstp->rq_res.page_base = 0;
1310 rqstp->rq_res.page_len = 0;
1311 rqstp->rq_res.buflen = PAGE_SIZE;
1312 rqstp->rq_res.tail[0].iov_base = NULL;
1313 rqstp->rq_res.tail[0].iov_len = 0;
1314
1315 rqstp->rq_xid = svc_getu32(argv);
1316
1317 dir = svc_getnl(argv);
1318 if (dir != 0) {
1319 /* direction != CALL */
1320 svc_printk(rqstp, "bad direction %d, dropping request\n", dir);
1321 serv->sv_stats->rpcbadfmt++;
1322 svc_drop(rqstp);
1323 return 0;
1324 }
1325
1326 /* Returns 1 for send, 0 for drop */
1327 if (svc_process_common(rqstp, argv, resv))
1328 return svc_send(rqstp);
1329 else {
1330 svc_drop(rqstp);
1331 return 0;
1332 }
1333 }
1334
1335 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1336 /*
1337 * Process a backchannel RPC request that arrived over an existing
1338 * outbound connection
1339 */
1340 int
bc_svc_process(struct svc_serv * serv,struct rpc_rqst * req,struct svc_rqst * rqstp)1341 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req,
1342 struct svc_rqst *rqstp)
1343 {
1344 struct kvec *argv = &rqstp->rq_arg.head[0];
1345 struct kvec *resv = &rqstp->rq_res.head[0];
1346
1347 /* Build the svc_rqst used by the common processing routine */
1348 rqstp->rq_xprt = serv->sv_bc_xprt;
1349 rqstp->rq_xid = req->rq_xid;
1350 rqstp->rq_prot = req->rq_xprt->prot;
1351 rqstp->rq_server = serv;
1352
1353 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1354 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1355 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1356 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1357
1358 /* reset result send buffer "put" position */
1359 resv->iov_len = 0;
1360
1361 if (rqstp->rq_prot != IPPROTO_TCP) {
1362 printk(KERN_ERR "No support for Non-TCP transports!\n");
1363 BUG();
1364 }
1365
1366 /*
1367 * Skip the next two words because they've already been
1368 * processed in the trasport
1369 */
1370 svc_getu32(argv); /* XID */
1371 svc_getnl(argv); /* CALLDIR */
1372
1373 /* Returns 1 for send, 0 for drop */
1374 if (svc_process_common(rqstp, argv, resv)) {
1375 memcpy(&req->rq_snd_buf, &rqstp->rq_res,
1376 sizeof(req->rq_snd_buf));
1377 return bc_send(req);
1378 } else {
1379 /* drop request */
1380 xprt_free_bc_request(req);
1381 return 0;
1382 }
1383 }
1384 EXPORT_SYMBOL_GPL(bc_svc_process);
1385 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1386
1387 /*
1388 * Return (transport-specific) limit on the rpc payload.
1389 */
svc_max_payload(const struct svc_rqst * rqstp)1390 u32 svc_max_payload(const struct svc_rqst *rqstp)
1391 {
1392 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1393
1394 if (rqstp->rq_server->sv_max_payload < max)
1395 max = rqstp->rq_server->sv_max_payload;
1396 return max;
1397 }
1398 EXPORT_SYMBOL_GPL(svc_max_payload);
1399