1 /*
2  *  arch/s390/kernel/time.c
3  *    Time of day based timer functions.
4  *
5  *  S390 version
6  *    Copyright IBM Corp. 1999, 2008
7  *    Author(s): Hartmut Penner (hp@de.ibm.com),
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
9  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10  *
11  *  Derived from "arch/i386/kernel/time.c"
12  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
13  */
14 
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/kernel_stat.h>
19 #include <linux/errno.h>
20 #include <linux/module.h>
21 #include <linux/sched.h>
22 #include <linux/kernel.h>
23 #include <linux/param.h>
24 #include <linux/string.h>
25 #include <linux/mm.h>
26 #include <linux/interrupt.h>
27 #include <linux/cpu.h>
28 #include <linux/stop_machine.h>
29 #include <linux/time.h>
30 #include <linux/device.h>
31 #include <linux/delay.h>
32 #include <linux/init.h>
33 #include <linux/smp.h>
34 #include <linux/types.h>
35 #include <linux/profile.h>
36 #include <linux/timex.h>
37 #include <linux/notifier.h>
38 #include <linux/clocksource.h>
39 #include <linux/clockchips.h>
40 #include <linux/gfp.h>
41 #include <linux/kprobes.h>
42 #include <asm/uaccess.h>
43 #include <asm/delay.h>
44 #include <asm/div64.h>
45 #include <asm/vdso.h>
46 #include <asm/irq.h>
47 #include <asm/irq_regs.h>
48 #include <asm/timer.h>
49 #include <asm/etr.h>
50 #include <asm/cio.h>
51 #include "entry.h"
52 
53 /* change this if you have some constant time drift */
54 #define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
55 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
56 
57 u64 sched_clock_base_cc = -1;	/* Force to data section. */
58 EXPORT_SYMBOL_GPL(sched_clock_base_cc);
59 
60 static DEFINE_PER_CPU(struct clock_event_device, comparators);
61 
62 /*
63  * Scheduler clock - returns current time in nanosec units.
64  */
sched_clock(void)65 unsigned long long notrace __kprobes sched_clock(void)
66 {
67 	return tod_to_ns(get_clock_monotonic());
68 }
69 
70 /*
71  * Monotonic_clock - returns # of nanoseconds passed since time_init()
72  */
monotonic_clock(void)73 unsigned long long monotonic_clock(void)
74 {
75 	return sched_clock();
76 }
77 EXPORT_SYMBOL(monotonic_clock);
78 
tod_to_timeval(__u64 todval,struct timespec * xt)79 void tod_to_timeval(__u64 todval, struct timespec *xt)
80 {
81 	unsigned long long sec;
82 
83 	sec = todval >> 12;
84 	do_div(sec, 1000000);
85 	xt->tv_sec = sec;
86 	todval -= (sec * 1000000) << 12;
87 	xt->tv_nsec = ((todval * 1000) >> 12);
88 }
89 EXPORT_SYMBOL(tod_to_timeval);
90 
clock_comparator_work(void)91 void clock_comparator_work(void)
92 {
93 	struct clock_event_device *cd;
94 
95 	S390_lowcore.clock_comparator = -1ULL;
96 	set_clock_comparator(S390_lowcore.clock_comparator);
97 	cd = &__get_cpu_var(comparators);
98 	cd->event_handler(cd);
99 }
100 
101 /*
102  * Fixup the clock comparator.
103  */
fixup_clock_comparator(unsigned long long delta)104 static void fixup_clock_comparator(unsigned long long delta)
105 {
106 	/* If nobody is waiting there's nothing to fix. */
107 	if (S390_lowcore.clock_comparator == -1ULL)
108 		return;
109 	S390_lowcore.clock_comparator += delta;
110 	set_clock_comparator(S390_lowcore.clock_comparator);
111 }
112 
s390_next_ktime(ktime_t expires,struct clock_event_device * evt)113 static int s390_next_ktime(ktime_t expires,
114 			   struct clock_event_device *evt)
115 {
116 	struct timespec ts;
117 	u64 nsecs;
118 
119 	ts.tv_sec = ts.tv_nsec = 0;
120 	monotonic_to_bootbased(&ts);
121 	nsecs = ktime_to_ns(ktime_add(timespec_to_ktime(ts), expires));
122 	do_div(nsecs, 125);
123 	S390_lowcore.clock_comparator = sched_clock_base_cc + (nsecs << 9);
124 	/* Program the maximum value if we have an overflow (== year 2042) */
125 	if (unlikely(S390_lowcore.clock_comparator < sched_clock_base_cc))
126 		S390_lowcore.clock_comparator = -1ULL;
127 	set_clock_comparator(S390_lowcore.clock_comparator);
128 	return 0;
129 }
130 
s390_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)131 static void s390_set_mode(enum clock_event_mode mode,
132 			  struct clock_event_device *evt)
133 {
134 }
135 
136 /*
137  * Set up lowcore and control register of the current cpu to
138  * enable TOD clock and clock comparator interrupts.
139  */
init_cpu_timer(void)140 void init_cpu_timer(void)
141 {
142 	struct clock_event_device *cd;
143 	int cpu;
144 
145 	S390_lowcore.clock_comparator = -1ULL;
146 	set_clock_comparator(S390_lowcore.clock_comparator);
147 
148 	cpu = smp_processor_id();
149 	cd = &per_cpu(comparators, cpu);
150 	cd->name		= "comparator";
151 	cd->features		= CLOCK_EVT_FEAT_ONESHOT |
152 				  CLOCK_EVT_FEAT_KTIME;
153 	cd->mult		= 16777;
154 	cd->shift		= 12;
155 	cd->min_delta_ns	= 1;
156 	cd->max_delta_ns	= LONG_MAX;
157 	cd->rating		= 400;
158 	cd->cpumask		= cpumask_of(cpu);
159 	cd->set_next_ktime	= s390_next_ktime;
160 	cd->set_mode		= s390_set_mode;
161 
162 	clockevents_register_device(cd);
163 
164 	/* Enable clock comparator timer interrupt. */
165 	__ctl_set_bit(0,11);
166 
167 	/* Always allow the timing alert external interrupt. */
168 	__ctl_set_bit(0, 4);
169 }
170 
clock_comparator_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)171 static void clock_comparator_interrupt(struct ext_code ext_code,
172 				       unsigned int param32,
173 				       unsigned long param64)
174 {
175 	kstat_cpu(smp_processor_id()).irqs[EXTINT_CLK]++;
176 	if (S390_lowcore.clock_comparator == -1ULL)
177 		set_clock_comparator(S390_lowcore.clock_comparator);
178 }
179 
180 static void etr_timing_alert(struct etr_irq_parm *);
181 static void stp_timing_alert(struct stp_irq_parm *);
182 
timing_alert_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)183 static void timing_alert_interrupt(struct ext_code ext_code,
184 				   unsigned int param32, unsigned long param64)
185 {
186 	kstat_cpu(smp_processor_id()).irqs[EXTINT_TLA]++;
187 	if (param32 & 0x00c40000)
188 		etr_timing_alert((struct etr_irq_parm *) &param32);
189 	if (param32 & 0x00038000)
190 		stp_timing_alert((struct stp_irq_parm *) &param32);
191 }
192 
193 static void etr_reset(void);
194 static void stp_reset(void);
195 
read_persistent_clock(struct timespec * ts)196 void read_persistent_clock(struct timespec *ts)
197 {
198 	tod_to_timeval(get_clock() - TOD_UNIX_EPOCH, ts);
199 }
200 
read_boot_clock(struct timespec * ts)201 void read_boot_clock(struct timespec *ts)
202 {
203 	tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
204 }
205 
read_tod_clock(struct clocksource * cs)206 static cycle_t read_tod_clock(struct clocksource *cs)
207 {
208 	return get_clock();
209 }
210 
211 static struct clocksource clocksource_tod = {
212 	.name		= "tod",
213 	.rating		= 400,
214 	.read		= read_tod_clock,
215 	.mask		= -1ULL,
216 	.mult		= 1000,
217 	.shift		= 12,
218 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
219 };
220 
clocksource_default_clock(void)221 struct clocksource * __init clocksource_default_clock(void)
222 {
223 	return &clocksource_tod;
224 }
225 
update_vsyscall(struct timespec * wall_time,struct timespec * wtm,struct clocksource * clock,u32 mult)226 void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
227 			struct clocksource *clock, u32 mult)
228 {
229 	if (clock != &clocksource_tod)
230 		return;
231 
232 	/* Make userspace gettimeofday spin until we're done. */
233 	++vdso_data->tb_update_count;
234 	smp_wmb();
235 	vdso_data->xtime_tod_stamp = clock->cycle_last;
236 	vdso_data->xtime_clock_sec = wall_time->tv_sec;
237 	vdso_data->xtime_clock_nsec = wall_time->tv_nsec;
238 	vdso_data->wtom_clock_sec = wtm->tv_sec;
239 	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
240 	vdso_data->ntp_mult = mult;
241 	smp_wmb();
242 	++vdso_data->tb_update_count;
243 }
244 
245 extern struct timezone sys_tz;
246 
update_vsyscall_tz(void)247 void update_vsyscall_tz(void)
248 {
249 	/* Make userspace gettimeofday spin until we're done. */
250 	++vdso_data->tb_update_count;
251 	smp_wmb();
252 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
253 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
254 	smp_wmb();
255 	++vdso_data->tb_update_count;
256 }
257 
258 /*
259  * Initialize the TOD clock and the CPU timer of
260  * the boot cpu.
261  */
time_init(void)262 void __init time_init(void)
263 {
264 	/* Reset time synchronization interfaces. */
265 	etr_reset();
266 	stp_reset();
267 
268 	/* request the clock comparator external interrupt */
269 	if (register_external_interrupt(0x1004, clock_comparator_interrupt))
270                 panic("Couldn't request external interrupt 0x1004");
271 
272 	/* request the timing alert external interrupt */
273 	if (register_external_interrupt(0x1406, timing_alert_interrupt))
274 		panic("Couldn't request external interrupt 0x1406");
275 
276 	if (clocksource_register(&clocksource_tod) != 0)
277 		panic("Could not register TOD clock source");
278 
279 	/* Enable TOD clock interrupts on the boot cpu. */
280 	init_cpu_timer();
281 
282 	/* Enable cpu timer interrupts on the boot cpu. */
283 	vtime_init();
284 }
285 
286 /*
287  * The time is "clock". old is what we think the time is.
288  * Adjust the value by a multiple of jiffies and add the delta to ntp.
289  * "delay" is an approximation how long the synchronization took. If
290  * the time correction is positive, then "delay" is subtracted from
291  * the time difference and only the remaining part is passed to ntp.
292  */
adjust_time(unsigned long long old,unsigned long long clock,unsigned long long delay)293 static unsigned long long adjust_time(unsigned long long old,
294 				      unsigned long long clock,
295 				      unsigned long long delay)
296 {
297 	unsigned long long delta, ticks;
298 	struct timex adjust;
299 
300 	if (clock > old) {
301 		/* It is later than we thought. */
302 		delta = ticks = clock - old;
303 		delta = ticks = (delta < delay) ? 0 : delta - delay;
304 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
305 		adjust.offset = ticks * (1000000 / HZ);
306 	} else {
307 		/* It is earlier than we thought. */
308 		delta = ticks = old - clock;
309 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
310 		delta = -delta;
311 		adjust.offset = -ticks * (1000000 / HZ);
312 	}
313 	sched_clock_base_cc += delta;
314 	if (adjust.offset != 0) {
315 		pr_notice("The ETR interface has adjusted the clock "
316 			  "by %li microseconds\n", adjust.offset);
317 		adjust.modes = ADJ_OFFSET_SINGLESHOT;
318 		do_adjtimex(&adjust);
319 	}
320 	return delta;
321 }
322 
323 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
324 static DEFINE_MUTEX(clock_sync_mutex);
325 static unsigned long clock_sync_flags;
326 
327 #define CLOCK_SYNC_HAS_ETR	0
328 #define CLOCK_SYNC_HAS_STP	1
329 #define CLOCK_SYNC_ETR		2
330 #define CLOCK_SYNC_STP		3
331 
332 /*
333  * The synchronous get_clock function. It will write the current clock
334  * value to the clock pointer and return 0 if the clock is in sync with
335  * the external time source. If the clock mode is local it will return
336  * -ENOSYS and -EAGAIN if the clock is not in sync with the external
337  * reference.
338  */
get_sync_clock(unsigned long long * clock)339 int get_sync_clock(unsigned long long *clock)
340 {
341 	atomic_t *sw_ptr;
342 	unsigned int sw0, sw1;
343 
344 	sw_ptr = &get_cpu_var(clock_sync_word);
345 	sw0 = atomic_read(sw_ptr);
346 	*clock = get_clock();
347 	sw1 = atomic_read(sw_ptr);
348 	put_cpu_var(clock_sync_word);
349 	if (sw0 == sw1 && (sw0 & 0x80000000U))
350 		/* Success: time is in sync. */
351 		return 0;
352 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
353 	    !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
354 		return -ENOSYS;
355 	if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
356 	    !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
357 		return -EACCES;
358 	return -EAGAIN;
359 }
360 EXPORT_SYMBOL(get_sync_clock);
361 
362 /*
363  * Make get_sync_clock return -EAGAIN.
364  */
disable_sync_clock(void * dummy)365 static void disable_sync_clock(void *dummy)
366 {
367 	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
368 	/*
369 	 * Clear the in-sync bit 2^31. All get_sync_clock calls will
370 	 * fail until the sync bit is turned back on. In addition
371 	 * increase the "sequence" counter to avoid the race of an
372 	 * etr event and the complete recovery against get_sync_clock.
373 	 */
374 	atomic_clear_mask(0x80000000, sw_ptr);
375 	atomic_inc(sw_ptr);
376 }
377 
378 /*
379  * Make get_sync_clock return 0 again.
380  * Needs to be called from a context disabled for preemption.
381  */
enable_sync_clock(void)382 static void enable_sync_clock(void)
383 {
384 	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
385 	atomic_set_mask(0x80000000, sw_ptr);
386 }
387 
388 /*
389  * Function to check if the clock is in sync.
390  */
check_sync_clock(void)391 static inline int check_sync_clock(void)
392 {
393 	atomic_t *sw_ptr;
394 	int rc;
395 
396 	sw_ptr = &get_cpu_var(clock_sync_word);
397 	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
398 	put_cpu_var(clock_sync_word);
399 	return rc;
400 }
401 
402 /* Single threaded workqueue used for etr and stp sync events */
403 static struct workqueue_struct *time_sync_wq;
404 
time_init_wq(void)405 static void __init time_init_wq(void)
406 {
407 	if (time_sync_wq)
408 		return;
409 	time_sync_wq = create_singlethread_workqueue("timesync");
410 }
411 
412 /*
413  * External Time Reference (ETR) code.
414  */
415 static int etr_port0_online;
416 static int etr_port1_online;
417 static int etr_steai_available;
418 
early_parse_etr(char * p)419 static int __init early_parse_etr(char *p)
420 {
421 	if (strncmp(p, "off", 3) == 0)
422 		etr_port0_online = etr_port1_online = 0;
423 	else if (strncmp(p, "port0", 5) == 0)
424 		etr_port0_online = 1;
425 	else if (strncmp(p, "port1", 5) == 0)
426 		etr_port1_online = 1;
427 	else if (strncmp(p, "on", 2) == 0)
428 		etr_port0_online = etr_port1_online = 1;
429 	return 0;
430 }
431 early_param("etr", early_parse_etr);
432 
433 enum etr_event {
434 	ETR_EVENT_PORT0_CHANGE,
435 	ETR_EVENT_PORT1_CHANGE,
436 	ETR_EVENT_PORT_ALERT,
437 	ETR_EVENT_SYNC_CHECK,
438 	ETR_EVENT_SWITCH_LOCAL,
439 	ETR_EVENT_UPDATE,
440 };
441 
442 /*
443  * Valid bit combinations of the eacr register are (x = don't care):
444  * e0 e1 dp p0 p1 ea es sl
445  *  0  0  x  0	0  0  0  0  initial, disabled state
446  *  0  0  x  0	1  1  0  0  port 1 online
447  *  0  0  x  1	0  1  0  0  port 0 online
448  *  0  0  x  1	1  1  0  0  both ports online
449  *  0  1  x  0	1  1  0  0  port 1 online and usable, ETR or PPS mode
450  *  0  1  x  0	1  1  0  1  port 1 online, usable and ETR mode
451  *  0  1  x  0	1  1  1  0  port 1 online, usable, PPS mode, in-sync
452  *  0  1  x  0	1  1  1  1  port 1 online, usable, ETR mode, in-sync
453  *  0  1  x  1	1  1  0  0  both ports online, port 1 usable
454  *  0  1  x  1	1  1  1  0  both ports online, port 1 usable, PPS mode, in-sync
455  *  0  1  x  1	1  1  1  1  both ports online, port 1 usable, ETR mode, in-sync
456  *  1  0  x  1	0  1  0  0  port 0 online and usable, ETR or PPS mode
457  *  1  0  x  1	0  1  0  1  port 0 online, usable and ETR mode
458  *  1  0  x  1	0  1  1  0  port 0 online, usable, PPS mode, in-sync
459  *  1  0  x  1	0  1  1  1  port 0 online, usable, ETR mode, in-sync
460  *  1  0  x  1	1  1  0  0  both ports online, port 0 usable
461  *  1  0  x  1	1  1  1  0  both ports online, port 0 usable, PPS mode, in-sync
462  *  1  0  x  1	1  1  1  1  both ports online, port 0 usable, ETR mode, in-sync
463  *  1  1  x  1	1  1  1  0  both ports online & usable, ETR, in-sync
464  *  1  1  x  1	1  1  1  1  both ports online & usable, ETR, in-sync
465  */
466 static struct etr_eacr etr_eacr;
467 static u64 etr_tolec;			/* time of last eacr update */
468 static struct etr_aib etr_port0;
469 static int etr_port0_uptodate;
470 static struct etr_aib etr_port1;
471 static int etr_port1_uptodate;
472 static unsigned long etr_events;
473 static struct timer_list etr_timer;
474 
475 static void etr_timeout(unsigned long dummy);
476 static void etr_work_fn(struct work_struct *work);
477 static DEFINE_MUTEX(etr_work_mutex);
478 static DECLARE_WORK(etr_work, etr_work_fn);
479 
480 /*
481  * Reset ETR attachment.
482  */
etr_reset(void)483 static void etr_reset(void)
484 {
485 	etr_eacr =  (struct etr_eacr) {
486 		.e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
487 		.p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
488 		.es = 0, .sl = 0 };
489 	if (etr_setr(&etr_eacr) == 0) {
490 		etr_tolec = get_clock();
491 		set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
492 		if (etr_port0_online && etr_port1_online)
493 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
494 	} else if (etr_port0_online || etr_port1_online) {
495 		pr_warning("The real or virtual hardware system does "
496 			   "not provide an ETR interface\n");
497 		etr_port0_online = etr_port1_online = 0;
498 	}
499 }
500 
etr_init(void)501 static int __init etr_init(void)
502 {
503 	struct etr_aib aib;
504 
505 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
506 		return 0;
507 	time_init_wq();
508 	/* Check if this machine has the steai instruction. */
509 	if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
510 		etr_steai_available = 1;
511 	setup_timer(&etr_timer, etr_timeout, 0UL);
512 	if (etr_port0_online) {
513 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
514 		queue_work(time_sync_wq, &etr_work);
515 	}
516 	if (etr_port1_online) {
517 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
518 		queue_work(time_sync_wq, &etr_work);
519 	}
520 	return 0;
521 }
522 
523 arch_initcall(etr_init);
524 
525 /*
526  * Two sorts of ETR machine checks. The architecture reads:
527  * "When a machine-check niterruption occurs and if a switch-to-local or
528  *  ETR-sync-check interrupt request is pending but disabled, this pending
529  *  disabled interruption request is indicated and is cleared".
530  * Which means that we can get etr_switch_to_local events from the machine
531  * check handler although the interruption condition is disabled. Lovely..
532  */
533 
534 /*
535  * Switch to local machine check. This is called when the last usable
536  * ETR port goes inactive. After switch to local the clock is not in sync.
537  */
etr_switch_to_local(void)538 void etr_switch_to_local(void)
539 {
540 	if (!etr_eacr.sl)
541 		return;
542 	disable_sync_clock(NULL);
543 	if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
544 		etr_eacr.es = etr_eacr.sl = 0;
545 		etr_setr(&etr_eacr);
546 		queue_work(time_sync_wq, &etr_work);
547 	}
548 }
549 
550 /*
551  * ETR sync check machine check. This is called when the ETR OTE and the
552  * local clock OTE are farther apart than the ETR sync check tolerance.
553  * After a ETR sync check the clock is not in sync. The machine check
554  * is broadcasted to all cpus at the same time.
555  */
etr_sync_check(void)556 void etr_sync_check(void)
557 {
558 	if (!etr_eacr.es)
559 		return;
560 	disable_sync_clock(NULL);
561 	if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
562 		etr_eacr.es = 0;
563 		etr_setr(&etr_eacr);
564 		queue_work(time_sync_wq, &etr_work);
565 	}
566 }
567 
568 /*
569  * ETR timing alert. There are two causes:
570  * 1) port state change, check the usability of the port
571  * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
572  *    sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
573  *    or ETR-data word 4 (edf4) has changed.
574  */
etr_timing_alert(struct etr_irq_parm * intparm)575 static void etr_timing_alert(struct etr_irq_parm *intparm)
576 {
577 	if (intparm->pc0)
578 		/* ETR port 0 state change. */
579 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
580 	if (intparm->pc1)
581 		/* ETR port 1 state change. */
582 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
583 	if (intparm->eai)
584 		/*
585 		 * ETR port alert on either port 0, 1 or both.
586 		 * Both ports are not up-to-date now.
587 		 */
588 		set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
589 	queue_work(time_sync_wq, &etr_work);
590 }
591 
etr_timeout(unsigned long dummy)592 static void etr_timeout(unsigned long dummy)
593 {
594 	set_bit(ETR_EVENT_UPDATE, &etr_events);
595 	queue_work(time_sync_wq, &etr_work);
596 }
597 
598 /*
599  * Check if the etr mode is pss.
600  */
etr_mode_is_pps(struct etr_eacr eacr)601 static inline int etr_mode_is_pps(struct etr_eacr eacr)
602 {
603 	return eacr.es && !eacr.sl;
604 }
605 
606 /*
607  * Check if the etr mode is etr.
608  */
etr_mode_is_etr(struct etr_eacr eacr)609 static inline int etr_mode_is_etr(struct etr_eacr eacr)
610 {
611 	return eacr.es && eacr.sl;
612 }
613 
614 /*
615  * Check if the port can be used for TOD synchronization.
616  * For PPS mode the port has to receive OTEs. For ETR mode
617  * the port has to receive OTEs, the ETR stepping bit has to
618  * be zero and the validity bits for data frame 1, 2, and 3
619  * have to be 1.
620  */
etr_port_valid(struct etr_aib * aib,int port)621 static int etr_port_valid(struct etr_aib *aib, int port)
622 {
623 	unsigned int psc;
624 
625 	/* Check that this port is receiving OTEs. */
626 	if (aib->tsp == 0)
627 		return 0;
628 
629 	psc = port ? aib->esw.psc1 : aib->esw.psc0;
630 	if (psc == etr_lpsc_pps_mode)
631 		return 1;
632 	if (psc == etr_lpsc_operational_step)
633 		return !aib->esw.y && aib->slsw.v1 &&
634 			aib->slsw.v2 && aib->slsw.v3;
635 	return 0;
636 }
637 
638 /*
639  * Check if two ports are on the same network.
640  */
etr_compare_network(struct etr_aib * aib1,struct etr_aib * aib2)641 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
642 {
643 	// FIXME: any other fields we have to compare?
644 	return aib1->edf1.net_id == aib2->edf1.net_id;
645 }
646 
647 /*
648  * Wrapper for etr_stei that converts physical port states
649  * to logical port states to be consistent with the output
650  * of stetr (see etr_psc vs. etr_lpsc).
651  */
etr_steai_cv(struct etr_aib * aib,unsigned int func)652 static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
653 {
654 	BUG_ON(etr_steai(aib, func) != 0);
655 	/* Convert port state to logical port state. */
656 	if (aib->esw.psc0 == 1)
657 		aib->esw.psc0 = 2;
658 	else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
659 		aib->esw.psc0 = 1;
660 	if (aib->esw.psc1 == 1)
661 		aib->esw.psc1 = 2;
662 	else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
663 		aib->esw.psc1 = 1;
664 }
665 
666 /*
667  * Check if the aib a2 is still connected to the same attachment as
668  * aib a1, the etv values differ by one and a2 is valid.
669  */
etr_aib_follows(struct etr_aib * a1,struct etr_aib * a2,int p)670 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
671 {
672 	int state_a1, state_a2;
673 
674 	/* Paranoia check: e0/e1 should better be the same. */
675 	if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
676 	    a1->esw.eacr.e1 != a2->esw.eacr.e1)
677 		return 0;
678 
679 	/* Still connected to the same etr ? */
680 	state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
681 	state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
682 	if (state_a1 == etr_lpsc_operational_step) {
683 		if (state_a2 != etr_lpsc_operational_step ||
684 		    a1->edf1.net_id != a2->edf1.net_id ||
685 		    a1->edf1.etr_id != a2->edf1.etr_id ||
686 		    a1->edf1.etr_pn != a2->edf1.etr_pn)
687 			return 0;
688 	} else if (state_a2 != etr_lpsc_pps_mode)
689 		return 0;
690 
691 	/* The ETV value of a2 needs to be ETV of a1 + 1. */
692 	if (a1->edf2.etv + 1 != a2->edf2.etv)
693 		return 0;
694 
695 	if (!etr_port_valid(a2, p))
696 		return 0;
697 
698 	return 1;
699 }
700 
701 struct clock_sync_data {
702 	atomic_t cpus;
703 	int in_sync;
704 	unsigned long long fixup_cc;
705 	int etr_port;
706 	struct etr_aib *etr_aib;
707 };
708 
clock_sync_cpu(struct clock_sync_data * sync)709 static void clock_sync_cpu(struct clock_sync_data *sync)
710 {
711 	atomic_dec(&sync->cpus);
712 	enable_sync_clock();
713 	/*
714 	 * This looks like a busy wait loop but it isn't. etr_sync_cpus
715 	 * is called on all other cpus while the TOD clocks is stopped.
716 	 * __udelay will stop the cpu on an enabled wait psw until the
717 	 * TOD is running again.
718 	 */
719 	while (sync->in_sync == 0) {
720 		__udelay(1);
721 		/*
722 		 * A different cpu changes *in_sync. Therefore use
723 		 * barrier() to force memory access.
724 		 */
725 		barrier();
726 	}
727 	if (sync->in_sync != 1)
728 		/* Didn't work. Clear per-cpu in sync bit again. */
729 		disable_sync_clock(NULL);
730 	/*
731 	 * This round of TOD syncing is done. Set the clock comparator
732 	 * to the next tick and let the processor continue.
733 	 */
734 	fixup_clock_comparator(sync->fixup_cc);
735 }
736 
737 /*
738  * Sync the TOD clock using the port referred to by aibp. This port
739  * has to be enabled and the other port has to be disabled. The
740  * last eacr update has to be more than 1.6 seconds in the past.
741  */
etr_sync_clock(void * data)742 static int etr_sync_clock(void *data)
743 {
744 	static int first;
745 	unsigned long long clock, old_clock, delay, delta;
746 	struct clock_sync_data *etr_sync;
747 	struct etr_aib *sync_port, *aib;
748 	int port;
749 	int rc;
750 
751 	etr_sync = data;
752 
753 	if (xchg(&first, 1) == 1) {
754 		/* Slave */
755 		clock_sync_cpu(etr_sync);
756 		return 0;
757 	}
758 
759 	/* Wait until all other cpus entered the sync function. */
760 	while (atomic_read(&etr_sync->cpus) != 0)
761 		cpu_relax();
762 
763 	port = etr_sync->etr_port;
764 	aib = etr_sync->etr_aib;
765 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
766 	enable_sync_clock();
767 
768 	/* Set clock to next OTE. */
769 	__ctl_set_bit(14, 21);
770 	__ctl_set_bit(0, 29);
771 	clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
772 	old_clock = get_clock();
773 	if (set_clock(clock) == 0) {
774 		__udelay(1);	/* Wait for the clock to start. */
775 		__ctl_clear_bit(0, 29);
776 		__ctl_clear_bit(14, 21);
777 		etr_stetr(aib);
778 		/* Adjust Linux timing variables. */
779 		delay = (unsigned long long)
780 			(aib->edf2.etv - sync_port->edf2.etv) << 32;
781 		delta = adjust_time(old_clock, clock, delay);
782 		etr_sync->fixup_cc = delta;
783 		fixup_clock_comparator(delta);
784 		/* Verify that the clock is properly set. */
785 		if (!etr_aib_follows(sync_port, aib, port)) {
786 			/* Didn't work. */
787 			disable_sync_clock(NULL);
788 			etr_sync->in_sync = -EAGAIN;
789 			rc = -EAGAIN;
790 		} else {
791 			etr_sync->in_sync = 1;
792 			rc = 0;
793 		}
794 	} else {
795 		/* Could not set the clock ?!? */
796 		__ctl_clear_bit(0, 29);
797 		__ctl_clear_bit(14, 21);
798 		disable_sync_clock(NULL);
799 		etr_sync->in_sync = -EAGAIN;
800 		rc = -EAGAIN;
801 	}
802 	xchg(&first, 0);
803 	return rc;
804 }
805 
etr_sync_clock_stop(struct etr_aib * aib,int port)806 static int etr_sync_clock_stop(struct etr_aib *aib, int port)
807 {
808 	struct clock_sync_data etr_sync;
809 	struct etr_aib *sync_port;
810 	int follows;
811 	int rc;
812 
813 	/* Check if the current aib is adjacent to the sync port aib. */
814 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
815 	follows = etr_aib_follows(sync_port, aib, port);
816 	memcpy(sync_port, aib, sizeof(*aib));
817 	if (!follows)
818 		return -EAGAIN;
819 	memset(&etr_sync, 0, sizeof(etr_sync));
820 	etr_sync.etr_aib = aib;
821 	etr_sync.etr_port = port;
822 	get_online_cpus();
823 	atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
824 	rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask);
825 	put_online_cpus();
826 	return rc;
827 }
828 
829 /*
830  * Handle the immediate effects of the different events.
831  * The port change event is used for online/offline changes.
832  */
etr_handle_events(struct etr_eacr eacr)833 static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
834 {
835 	if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
836 		eacr.es = 0;
837 	if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
838 		eacr.es = eacr.sl = 0;
839 	if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
840 		etr_port0_uptodate = etr_port1_uptodate = 0;
841 
842 	if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
843 		if (eacr.e0)
844 			/*
845 			 * Port change of an enabled port. We have to
846 			 * assume that this can have caused an stepping
847 			 * port switch.
848 			 */
849 			etr_tolec = get_clock();
850 		eacr.p0 = etr_port0_online;
851 		if (!eacr.p0)
852 			eacr.e0 = 0;
853 		etr_port0_uptodate = 0;
854 	}
855 	if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
856 		if (eacr.e1)
857 			/*
858 			 * Port change of an enabled port. We have to
859 			 * assume that this can have caused an stepping
860 			 * port switch.
861 			 */
862 			etr_tolec = get_clock();
863 		eacr.p1 = etr_port1_online;
864 		if (!eacr.p1)
865 			eacr.e1 = 0;
866 		etr_port1_uptodate = 0;
867 	}
868 	clear_bit(ETR_EVENT_UPDATE, &etr_events);
869 	return eacr;
870 }
871 
872 /*
873  * Set up a timer that expires after the etr_tolec + 1.6 seconds if
874  * one of the ports needs an update.
875  */
etr_set_tolec_timeout(unsigned long long now)876 static void etr_set_tolec_timeout(unsigned long long now)
877 {
878 	unsigned long micros;
879 
880 	if ((!etr_eacr.p0 || etr_port0_uptodate) &&
881 	    (!etr_eacr.p1 || etr_port1_uptodate))
882 		return;
883 	micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
884 	micros = (micros > 1600000) ? 0 : 1600000 - micros;
885 	mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
886 }
887 
888 /*
889  * Set up a time that expires after 1/2 second.
890  */
etr_set_sync_timeout(void)891 static void etr_set_sync_timeout(void)
892 {
893 	mod_timer(&etr_timer, jiffies + HZ/2);
894 }
895 
896 /*
897  * Update the aib information for one or both ports.
898  */
etr_handle_update(struct etr_aib * aib,struct etr_eacr eacr)899 static struct etr_eacr etr_handle_update(struct etr_aib *aib,
900 					 struct etr_eacr eacr)
901 {
902 	/* With both ports disabled the aib information is useless. */
903 	if (!eacr.e0 && !eacr.e1)
904 		return eacr;
905 
906 	/* Update port0 or port1 with aib stored in etr_work_fn. */
907 	if (aib->esw.q == 0) {
908 		/* Information for port 0 stored. */
909 		if (eacr.p0 && !etr_port0_uptodate) {
910 			etr_port0 = *aib;
911 			if (etr_port0_online)
912 				etr_port0_uptodate = 1;
913 		}
914 	} else {
915 		/* Information for port 1 stored. */
916 		if (eacr.p1 && !etr_port1_uptodate) {
917 			etr_port1 = *aib;
918 			if (etr_port0_online)
919 				etr_port1_uptodate = 1;
920 		}
921 	}
922 
923 	/*
924 	 * Do not try to get the alternate port aib if the clock
925 	 * is not in sync yet.
926 	 */
927 	if (!eacr.es || !check_sync_clock())
928 		return eacr;
929 
930 	/*
931 	 * If steai is available we can get the information about
932 	 * the other port immediately. If only stetr is available the
933 	 * data-port bit toggle has to be used.
934 	 */
935 	if (etr_steai_available) {
936 		if (eacr.p0 && !etr_port0_uptodate) {
937 			etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
938 			etr_port0_uptodate = 1;
939 		}
940 		if (eacr.p1 && !etr_port1_uptodate) {
941 			etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
942 			etr_port1_uptodate = 1;
943 		}
944 	} else {
945 		/*
946 		 * One port was updated above, if the other
947 		 * port is not uptodate toggle dp bit.
948 		 */
949 		if ((eacr.p0 && !etr_port0_uptodate) ||
950 		    (eacr.p1 && !etr_port1_uptodate))
951 			eacr.dp ^= 1;
952 		else
953 			eacr.dp = 0;
954 	}
955 	return eacr;
956 }
957 
958 /*
959  * Write new etr control register if it differs from the current one.
960  * Return 1 if etr_tolec has been updated as well.
961  */
etr_update_eacr(struct etr_eacr eacr)962 static void etr_update_eacr(struct etr_eacr eacr)
963 {
964 	int dp_changed;
965 
966 	if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
967 		/* No change, return. */
968 		return;
969 	/*
970 	 * The disable of an active port of the change of the data port
971 	 * bit can/will cause a change in the data port.
972 	 */
973 	dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
974 		(etr_eacr.dp ^ eacr.dp) != 0;
975 	etr_eacr = eacr;
976 	etr_setr(&etr_eacr);
977 	if (dp_changed)
978 		etr_tolec = get_clock();
979 }
980 
981 /*
982  * ETR work. In this function you'll find the main logic. In
983  * particular this is the only function that calls etr_update_eacr(),
984  * it "controls" the etr control register.
985  */
etr_work_fn(struct work_struct * work)986 static void etr_work_fn(struct work_struct *work)
987 {
988 	unsigned long long now;
989 	struct etr_eacr eacr;
990 	struct etr_aib aib;
991 	int sync_port;
992 
993 	/* prevent multiple execution. */
994 	mutex_lock(&etr_work_mutex);
995 
996 	/* Create working copy of etr_eacr. */
997 	eacr = etr_eacr;
998 
999 	/* Check for the different events and their immediate effects. */
1000 	eacr = etr_handle_events(eacr);
1001 
1002 	/* Check if ETR is supposed to be active. */
1003 	eacr.ea = eacr.p0 || eacr.p1;
1004 	if (!eacr.ea) {
1005 		/* Both ports offline. Reset everything. */
1006 		eacr.dp = eacr.es = eacr.sl = 0;
1007 		on_each_cpu(disable_sync_clock, NULL, 1);
1008 		del_timer_sync(&etr_timer);
1009 		etr_update_eacr(eacr);
1010 		goto out_unlock;
1011 	}
1012 
1013 	/* Store aib to get the current ETR status word. */
1014 	BUG_ON(etr_stetr(&aib) != 0);
1015 	etr_port0.esw = etr_port1.esw = aib.esw;	/* Copy status word. */
1016 	now = get_clock();
1017 
1018 	/*
1019 	 * Update the port information if the last stepping port change
1020 	 * or data port change is older than 1.6 seconds.
1021 	 */
1022 	if (now >= etr_tolec + (1600000 << 12))
1023 		eacr = etr_handle_update(&aib, eacr);
1024 
1025 	/*
1026 	 * Select ports to enable. The preferred synchronization mode is PPS.
1027 	 * If a port can be enabled depends on a number of things:
1028 	 * 1) The port needs to be online and uptodate. A port is not
1029 	 *    disabled just because it is not uptodate, but it is only
1030 	 *    enabled if it is uptodate.
1031 	 * 2) The port needs to have the same mode (pps / etr).
1032 	 * 3) The port needs to be usable -> etr_port_valid() == 1
1033 	 * 4) To enable the second port the clock needs to be in sync.
1034 	 * 5) If both ports are useable and are ETR ports, the network id
1035 	 *    has to be the same.
1036 	 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1037 	 */
1038 	if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1039 		eacr.sl = 0;
1040 		eacr.e0 = 1;
1041 		if (!etr_mode_is_pps(etr_eacr))
1042 			eacr.es = 0;
1043 		if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1044 			eacr.e1 = 0;
1045 		// FIXME: uptodate checks ?
1046 		else if (etr_port0_uptodate && etr_port1_uptodate)
1047 			eacr.e1 = 1;
1048 		sync_port = (etr_port0_uptodate &&
1049 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1050 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1051 		eacr.sl = 0;
1052 		eacr.e0 = 0;
1053 		eacr.e1 = 1;
1054 		if (!etr_mode_is_pps(etr_eacr))
1055 			eacr.es = 0;
1056 		sync_port = (etr_port1_uptodate &&
1057 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1058 	} else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1059 		eacr.sl = 1;
1060 		eacr.e0 = 1;
1061 		if (!etr_mode_is_etr(etr_eacr))
1062 			eacr.es = 0;
1063 		if (!eacr.es || !eacr.p1 ||
1064 		    aib.esw.psc1 != etr_lpsc_operational_alt)
1065 			eacr.e1 = 0;
1066 		else if (etr_port0_uptodate && etr_port1_uptodate &&
1067 			 etr_compare_network(&etr_port0, &etr_port1))
1068 			eacr.e1 = 1;
1069 		sync_port = (etr_port0_uptodate &&
1070 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1071 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1072 		eacr.sl = 1;
1073 		eacr.e0 = 0;
1074 		eacr.e1 = 1;
1075 		if (!etr_mode_is_etr(etr_eacr))
1076 			eacr.es = 0;
1077 		sync_port = (etr_port1_uptodate &&
1078 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1079 	} else {
1080 		/* Both ports not usable. */
1081 		eacr.es = eacr.sl = 0;
1082 		sync_port = -1;
1083 	}
1084 
1085 	/*
1086 	 * If the clock is in sync just update the eacr and return.
1087 	 * If there is no valid sync port wait for a port update.
1088 	 */
1089 	if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1090 		etr_update_eacr(eacr);
1091 		etr_set_tolec_timeout(now);
1092 		goto out_unlock;
1093 	}
1094 
1095 	/*
1096 	 * Prepare control register for clock syncing
1097 	 * (reset data port bit, set sync check control.
1098 	 */
1099 	eacr.dp = 0;
1100 	eacr.es = 1;
1101 
1102 	/*
1103 	 * Update eacr and try to synchronize the clock. If the update
1104 	 * of eacr caused a stepping port switch (or if we have to
1105 	 * assume that a stepping port switch has occurred) or the
1106 	 * clock syncing failed, reset the sync check control bit
1107 	 * and set up a timer to try again after 0.5 seconds
1108 	 */
1109 	etr_update_eacr(eacr);
1110 	if (now < etr_tolec + (1600000 << 12) ||
1111 	    etr_sync_clock_stop(&aib, sync_port) != 0) {
1112 		/* Sync failed. Try again in 1/2 second. */
1113 		eacr.es = 0;
1114 		etr_update_eacr(eacr);
1115 		etr_set_sync_timeout();
1116 	} else
1117 		etr_set_tolec_timeout(now);
1118 out_unlock:
1119 	mutex_unlock(&etr_work_mutex);
1120 }
1121 
1122 /*
1123  * Sysfs interface functions
1124  */
1125 static struct bus_type etr_subsys = {
1126 	.name		= "etr",
1127 	.dev_name	= "etr",
1128 };
1129 
1130 static struct device etr_port0_dev = {
1131 	.id	= 0,
1132 	.bus	= &etr_subsys,
1133 };
1134 
1135 static struct device etr_port1_dev = {
1136 	.id	= 1,
1137 	.bus	= &etr_subsys,
1138 };
1139 
1140 /*
1141  * ETR subsys attributes
1142  */
etr_stepping_port_show(struct device * dev,struct device_attribute * attr,char * buf)1143 static ssize_t etr_stepping_port_show(struct device *dev,
1144 					struct device_attribute *attr,
1145 					char *buf)
1146 {
1147 	return sprintf(buf, "%i\n", etr_port0.esw.p);
1148 }
1149 
1150 static DEVICE_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1151 
etr_stepping_mode_show(struct device * dev,struct device_attribute * attr,char * buf)1152 static ssize_t etr_stepping_mode_show(struct device *dev,
1153 					struct device_attribute *attr,
1154 					char *buf)
1155 {
1156 	char *mode_str;
1157 
1158 	if (etr_mode_is_pps(etr_eacr))
1159 		mode_str = "pps";
1160 	else if (etr_mode_is_etr(etr_eacr))
1161 		mode_str = "etr";
1162 	else
1163 		mode_str = "local";
1164 	return sprintf(buf, "%s\n", mode_str);
1165 }
1166 
1167 static DEVICE_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1168 
1169 /*
1170  * ETR port attributes
1171  */
etr_aib_from_dev(struct device * dev)1172 static inline struct etr_aib *etr_aib_from_dev(struct device *dev)
1173 {
1174 	if (dev == &etr_port0_dev)
1175 		return etr_port0_online ? &etr_port0 : NULL;
1176 	else
1177 		return etr_port1_online ? &etr_port1 : NULL;
1178 }
1179 
etr_online_show(struct device * dev,struct device_attribute * attr,char * buf)1180 static ssize_t etr_online_show(struct device *dev,
1181 				struct device_attribute *attr,
1182 				char *buf)
1183 {
1184 	unsigned int online;
1185 
1186 	online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1187 	return sprintf(buf, "%i\n", online);
1188 }
1189 
etr_online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1190 static ssize_t etr_online_store(struct device *dev,
1191 				struct device_attribute *attr,
1192 				const char *buf, size_t count)
1193 {
1194 	unsigned int value;
1195 
1196 	value = simple_strtoul(buf, NULL, 0);
1197 	if (value != 0 && value != 1)
1198 		return -EINVAL;
1199 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1200 		return -EOPNOTSUPP;
1201 	mutex_lock(&clock_sync_mutex);
1202 	if (dev == &etr_port0_dev) {
1203 		if (etr_port0_online == value)
1204 			goto out;	/* Nothing to do. */
1205 		etr_port0_online = value;
1206 		if (etr_port0_online && etr_port1_online)
1207 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1208 		else
1209 			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1210 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1211 		queue_work(time_sync_wq, &etr_work);
1212 	} else {
1213 		if (etr_port1_online == value)
1214 			goto out;	/* Nothing to do. */
1215 		etr_port1_online = value;
1216 		if (etr_port0_online && etr_port1_online)
1217 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1218 		else
1219 			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1220 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1221 		queue_work(time_sync_wq, &etr_work);
1222 	}
1223 out:
1224 	mutex_unlock(&clock_sync_mutex);
1225 	return count;
1226 }
1227 
1228 static DEVICE_ATTR(online, 0600, etr_online_show, etr_online_store);
1229 
etr_stepping_control_show(struct device * dev,struct device_attribute * attr,char * buf)1230 static ssize_t etr_stepping_control_show(struct device *dev,
1231 					struct device_attribute *attr,
1232 					char *buf)
1233 {
1234 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1235 		       etr_eacr.e0 : etr_eacr.e1);
1236 }
1237 
1238 static DEVICE_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1239 
etr_mode_code_show(struct device * dev,struct device_attribute * attr,char * buf)1240 static ssize_t etr_mode_code_show(struct device *dev,
1241 				struct device_attribute *attr, char *buf)
1242 {
1243 	if (!etr_port0_online && !etr_port1_online)
1244 		/* Status word is not uptodate if both ports are offline. */
1245 		return -ENODATA;
1246 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1247 		       etr_port0.esw.psc0 : etr_port0.esw.psc1);
1248 }
1249 
1250 static DEVICE_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1251 
etr_untuned_show(struct device * dev,struct device_attribute * attr,char * buf)1252 static ssize_t etr_untuned_show(struct device *dev,
1253 				struct device_attribute *attr, char *buf)
1254 {
1255 	struct etr_aib *aib = etr_aib_from_dev(dev);
1256 
1257 	if (!aib || !aib->slsw.v1)
1258 		return -ENODATA;
1259 	return sprintf(buf, "%i\n", aib->edf1.u);
1260 }
1261 
1262 static DEVICE_ATTR(untuned, 0400, etr_untuned_show, NULL);
1263 
etr_network_id_show(struct device * dev,struct device_attribute * attr,char * buf)1264 static ssize_t etr_network_id_show(struct device *dev,
1265 				struct device_attribute *attr, char *buf)
1266 {
1267 	struct etr_aib *aib = etr_aib_from_dev(dev);
1268 
1269 	if (!aib || !aib->slsw.v1)
1270 		return -ENODATA;
1271 	return sprintf(buf, "%i\n", aib->edf1.net_id);
1272 }
1273 
1274 static DEVICE_ATTR(network, 0400, etr_network_id_show, NULL);
1275 
etr_id_show(struct device * dev,struct device_attribute * attr,char * buf)1276 static ssize_t etr_id_show(struct device *dev,
1277 			struct device_attribute *attr, char *buf)
1278 {
1279 	struct etr_aib *aib = etr_aib_from_dev(dev);
1280 
1281 	if (!aib || !aib->slsw.v1)
1282 		return -ENODATA;
1283 	return sprintf(buf, "%i\n", aib->edf1.etr_id);
1284 }
1285 
1286 static DEVICE_ATTR(id, 0400, etr_id_show, NULL);
1287 
etr_port_number_show(struct device * dev,struct device_attribute * attr,char * buf)1288 static ssize_t etr_port_number_show(struct device *dev,
1289 			struct device_attribute *attr, char *buf)
1290 {
1291 	struct etr_aib *aib = etr_aib_from_dev(dev);
1292 
1293 	if (!aib || !aib->slsw.v1)
1294 		return -ENODATA;
1295 	return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1296 }
1297 
1298 static DEVICE_ATTR(port, 0400, etr_port_number_show, NULL);
1299 
etr_coupled_show(struct device * dev,struct device_attribute * attr,char * buf)1300 static ssize_t etr_coupled_show(struct device *dev,
1301 			struct device_attribute *attr, char *buf)
1302 {
1303 	struct etr_aib *aib = etr_aib_from_dev(dev);
1304 
1305 	if (!aib || !aib->slsw.v3)
1306 		return -ENODATA;
1307 	return sprintf(buf, "%i\n", aib->edf3.c);
1308 }
1309 
1310 static DEVICE_ATTR(coupled, 0400, etr_coupled_show, NULL);
1311 
etr_local_time_show(struct device * dev,struct device_attribute * attr,char * buf)1312 static ssize_t etr_local_time_show(struct device *dev,
1313 			struct device_attribute *attr, char *buf)
1314 {
1315 	struct etr_aib *aib = etr_aib_from_dev(dev);
1316 
1317 	if (!aib || !aib->slsw.v3)
1318 		return -ENODATA;
1319 	return sprintf(buf, "%i\n", aib->edf3.blto);
1320 }
1321 
1322 static DEVICE_ATTR(local_time, 0400, etr_local_time_show, NULL);
1323 
etr_utc_offset_show(struct device * dev,struct device_attribute * attr,char * buf)1324 static ssize_t etr_utc_offset_show(struct device *dev,
1325 			struct device_attribute *attr, char *buf)
1326 {
1327 	struct etr_aib *aib = etr_aib_from_dev(dev);
1328 
1329 	if (!aib || !aib->slsw.v3)
1330 		return -ENODATA;
1331 	return sprintf(buf, "%i\n", aib->edf3.buo);
1332 }
1333 
1334 static DEVICE_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1335 
1336 static struct device_attribute *etr_port_attributes[] = {
1337 	&dev_attr_online,
1338 	&dev_attr_stepping_control,
1339 	&dev_attr_state_code,
1340 	&dev_attr_untuned,
1341 	&dev_attr_network,
1342 	&dev_attr_id,
1343 	&dev_attr_port,
1344 	&dev_attr_coupled,
1345 	&dev_attr_local_time,
1346 	&dev_attr_utc_offset,
1347 	NULL
1348 };
1349 
etr_register_port(struct device * dev)1350 static int __init etr_register_port(struct device *dev)
1351 {
1352 	struct device_attribute **attr;
1353 	int rc;
1354 
1355 	rc = device_register(dev);
1356 	if (rc)
1357 		goto out;
1358 	for (attr = etr_port_attributes; *attr; attr++) {
1359 		rc = device_create_file(dev, *attr);
1360 		if (rc)
1361 			goto out_unreg;
1362 	}
1363 	return 0;
1364 out_unreg:
1365 	for (; attr >= etr_port_attributes; attr--)
1366 		device_remove_file(dev, *attr);
1367 	device_unregister(dev);
1368 out:
1369 	return rc;
1370 }
1371 
etr_unregister_port(struct device * dev)1372 static void __init etr_unregister_port(struct device *dev)
1373 {
1374 	struct device_attribute **attr;
1375 
1376 	for (attr = etr_port_attributes; *attr; attr++)
1377 		device_remove_file(dev, *attr);
1378 	device_unregister(dev);
1379 }
1380 
etr_init_sysfs(void)1381 static int __init etr_init_sysfs(void)
1382 {
1383 	int rc;
1384 
1385 	rc = subsys_system_register(&etr_subsys, NULL);
1386 	if (rc)
1387 		goto out;
1388 	rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1389 	if (rc)
1390 		goto out_unreg_subsys;
1391 	rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1392 	if (rc)
1393 		goto out_remove_stepping_port;
1394 	rc = etr_register_port(&etr_port0_dev);
1395 	if (rc)
1396 		goto out_remove_stepping_mode;
1397 	rc = etr_register_port(&etr_port1_dev);
1398 	if (rc)
1399 		goto out_remove_port0;
1400 	return 0;
1401 
1402 out_remove_port0:
1403 	etr_unregister_port(&etr_port0_dev);
1404 out_remove_stepping_mode:
1405 	device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1406 out_remove_stepping_port:
1407 	device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1408 out_unreg_subsys:
1409 	bus_unregister(&etr_subsys);
1410 out:
1411 	return rc;
1412 }
1413 
1414 device_initcall(etr_init_sysfs);
1415 
1416 /*
1417  * Server Time Protocol (STP) code.
1418  */
1419 static int stp_online;
1420 static struct stp_sstpi stp_info;
1421 static void *stp_page;
1422 
1423 static void stp_work_fn(struct work_struct *work);
1424 static DEFINE_MUTEX(stp_work_mutex);
1425 static DECLARE_WORK(stp_work, stp_work_fn);
1426 static struct timer_list stp_timer;
1427 
early_parse_stp(char * p)1428 static int __init early_parse_stp(char *p)
1429 {
1430 	if (strncmp(p, "off", 3) == 0)
1431 		stp_online = 0;
1432 	else if (strncmp(p, "on", 2) == 0)
1433 		stp_online = 1;
1434 	return 0;
1435 }
1436 early_param("stp", early_parse_stp);
1437 
1438 /*
1439  * Reset STP attachment.
1440  */
stp_reset(void)1441 static void __init stp_reset(void)
1442 {
1443 	int rc;
1444 
1445 	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1446 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1447 	if (rc == 0)
1448 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1449 	else if (stp_online) {
1450 		pr_warning("The real or virtual hardware system does "
1451 			   "not provide an STP interface\n");
1452 		free_page((unsigned long) stp_page);
1453 		stp_page = NULL;
1454 		stp_online = 0;
1455 	}
1456 }
1457 
stp_timeout(unsigned long dummy)1458 static void stp_timeout(unsigned long dummy)
1459 {
1460 	queue_work(time_sync_wq, &stp_work);
1461 }
1462 
stp_init(void)1463 static int __init stp_init(void)
1464 {
1465 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1466 		return 0;
1467 	setup_timer(&stp_timer, stp_timeout, 0UL);
1468 	time_init_wq();
1469 	if (!stp_online)
1470 		return 0;
1471 	queue_work(time_sync_wq, &stp_work);
1472 	return 0;
1473 }
1474 
1475 arch_initcall(stp_init);
1476 
1477 /*
1478  * STP timing alert. There are three causes:
1479  * 1) timing status change
1480  * 2) link availability change
1481  * 3) time control parameter change
1482  * In all three cases we are only interested in the clock source state.
1483  * If a STP clock source is now available use it.
1484  */
stp_timing_alert(struct stp_irq_parm * intparm)1485 static void stp_timing_alert(struct stp_irq_parm *intparm)
1486 {
1487 	if (intparm->tsc || intparm->lac || intparm->tcpc)
1488 		queue_work(time_sync_wq, &stp_work);
1489 }
1490 
1491 /*
1492  * STP sync check machine check. This is called when the timing state
1493  * changes from the synchronized state to the unsynchronized state.
1494  * After a STP sync check the clock is not in sync. The machine check
1495  * is broadcasted to all cpus at the same time.
1496  */
stp_sync_check(void)1497 void stp_sync_check(void)
1498 {
1499 	disable_sync_clock(NULL);
1500 	queue_work(time_sync_wq, &stp_work);
1501 }
1502 
1503 /*
1504  * STP island condition machine check. This is called when an attached
1505  * server  attempts to communicate over an STP link and the servers
1506  * have matching CTN ids and have a valid stratum-1 configuration
1507  * but the configurations do not match.
1508  */
stp_island_check(void)1509 void stp_island_check(void)
1510 {
1511 	disable_sync_clock(NULL);
1512 	queue_work(time_sync_wq, &stp_work);
1513 }
1514 
1515 
stp_sync_clock(void * data)1516 static int stp_sync_clock(void *data)
1517 {
1518 	static int first;
1519 	unsigned long long old_clock, delta;
1520 	struct clock_sync_data *stp_sync;
1521 	int rc;
1522 
1523 	stp_sync = data;
1524 
1525 	if (xchg(&first, 1) == 1) {
1526 		/* Slave */
1527 		clock_sync_cpu(stp_sync);
1528 		return 0;
1529 	}
1530 
1531 	/* Wait until all other cpus entered the sync function. */
1532 	while (atomic_read(&stp_sync->cpus) != 0)
1533 		cpu_relax();
1534 
1535 	enable_sync_clock();
1536 
1537 	rc = 0;
1538 	if (stp_info.todoff[0] || stp_info.todoff[1] ||
1539 	    stp_info.todoff[2] || stp_info.todoff[3] ||
1540 	    stp_info.tmd != 2) {
1541 		old_clock = get_clock();
1542 		rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1543 		if (rc == 0) {
1544 			delta = adjust_time(old_clock, get_clock(), 0);
1545 			fixup_clock_comparator(delta);
1546 			rc = chsc_sstpi(stp_page, &stp_info,
1547 					sizeof(struct stp_sstpi));
1548 			if (rc == 0 && stp_info.tmd != 2)
1549 				rc = -EAGAIN;
1550 		}
1551 	}
1552 	if (rc) {
1553 		disable_sync_clock(NULL);
1554 		stp_sync->in_sync = -EAGAIN;
1555 	} else
1556 		stp_sync->in_sync = 1;
1557 	xchg(&first, 0);
1558 	return 0;
1559 }
1560 
1561 /*
1562  * STP work. Check for the STP state and take over the clock
1563  * synchronization if the STP clock source is usable.
1564  */
stp_work_fn(struct work_struct * work)1565 static void stp_work_fn(struct work_struct *work)
1566 {
1567 	struct clock_sync_data stp_sync;
1568 	int rc;
1569 
1570 	/* prevent multiple execution. */
1571 	mutex_lock(&stp_work_mutex);
1572 
1573 	if (!stp_online) {
1574 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1575 		del_timer_sync(&stp_timer);
1576 		goto out_unlock;
1577 	}
1578 
1579 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1580 	if (rc)
1581 		goto out_unlock;
1582 
1583 	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1584 	if (rc || stp_info.c == 0)
1585 		goto out_unlock;
1586 
1587 	/* Skip synchronization if the clock is already in sync. */
1588 	if (check_sync_clock())
1589 		goto out_unlock;
1590 
1591 	memset(&stp_sync, 0, sizeof(stp_sync));
1592 	get_online_cpus();
1593 	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1594 	stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
1595 	put_online_cpus();
1596 
1597 	if (!check_sync_clock())
1598 		/*
1599 		 * There is a usable clock but the synchonization failed.
1600 		 * Retry after a second.
1601 		 */
1602 		mod_timer(&stp_timer, jiffies + HZ);
1603 
1604 out_unlock:
1605 	mutex_unlock(&stp_work_mutex);
1606 }
1607 
1608 /*
1609  * STP subsys sysfs interface functions
1610  */
1611 static struct bus_type stp_subsys = {
1612 	.name		= "stp",
1613 	.dev_name	= "stp",
1614 };
1615 
stp_ctn_id_show(struct device * dev,struct device_attribute * attr,char * buf)1616 static ssize_t stp_ctn_id_show(struct device *dev,
1617 				struct device_attribute *attr,
1618 				char *buf)
1619 {
1620 	if (!stp_online)
1621 		return -ENODATA;
1622 	return sprintf(buf, "%016llx\n",
1623 		       *(unsigned long long *) stp_info.ctnid);
1624 }
1625 
1626 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1627 
stp_ctn_type_show(struct device * dev,struct device_attribute * attr,char * buf)1628 static ssize_t stp_ctn_type_show(struct device *dev,
1629 				struct device_attribute *attr,
1630 				char *buf)
1631 {
1632 	if (!stp_online)
1633 		return -ENODATA;
1634 	return sprintf(buf, "%i\n", stp_info.ctn);
1635 }
1636 
1637 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1638 
stp_dst_offset_show(struct device * dev,struct device_attribute * attr,char * buf)1639 static ssize_t stp_dst_offset_show(struct device *dev,
1640 				   struct device_attribute *attr,
1641 				   char *buf)
1642 {
1643 	if (!stp_online || !(stp_info.vbits & 0x2000))
1644 		return -ENODATA;
1645 	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1646 }
1647 
1648 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1649 
stp_leap_seconds_show(struct device * dev,struct device_attribute * attr,char * buf)1650 static ssize_t stp_leap_seconds_show(struct device *dev,
1651 					struct device_attribute *attr,
1652 					char *buf)
1653 {
1654 	if (!stp_online || !(stp_info.vbits & 0x8000))
1655 		return -ENODATA;
1656 	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1657 }
1658 
1659 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1660 
stp_stratum_show(struct device * dev,struct device_attribute * attr,char * buf)1661 static ssize_t stp_stratum_show(struct device *dev,
1662 				struct device_attribute *attr,
1663 				char *buf)
1664 {
1665 	if (!stp_online)
1666 		return -ENODATA;
1667 	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1668 }
1669 
1670 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
1671 
stp_time_offset_show(struct device * dev,struct device_attribute * attr,char * buf)1672 static ssize_t stp_time_offset_show(struct device *dev,
1673 				struct device_attribute *attr,
1674 				char *buf)
1675 {
1676 	if (!stp_online || !(stp_info.vbits & 0x0800))
1677 		return -ENODATA;
1678 	return sprintf(buf, "%i\n", (int) stp_info.tto);
1679 }
1680 
1681 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1682 
stp_time_zone_offset_show(struct device * dev,struct device_attribute * attr,char * buf)1683 static ssize_t stp_time_zone_offset_show(struct device *dev,
1684 				struct device_attribute *attr,
1685 				char *buf)
1686 {
1687 	if (!stp_online || !(stp_info.vbits & 0x4000))
1688 		return -ENODATA;
1689 	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1690 }
1691 
1692 static DEVICE_ATTR(time_zone_offset, 0400,
1693 			 stp_time_zone_offset_show, NULL);
1694 
stp_timing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)1695 static ssize_t stp_timing_mode_show(struct device *dev,
1696 				struct device_attribute *attr,
1697 				char *buf)
1698 {
1699 	if (!stp_online)
1700 		return -ENODATA;
1701 	return sprintf(buf, "%i\n", stp_info.tmd);
1702 }
1703 
1704 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1705 
stp_timing_state_show(struct device * dev,struct device_attribute * attr,char * buf)1706 static ssize_t stp_timing_state_show(struct device *dev,
1707 				struct device_attribute *attr,
1708 				char *buf)
1709 {
1710 	if (!stp_online)
1711 		return -ENODATA;
1712 	return sprintf(buf, "%i\n", stp_info.tst);
1713 }
1714 
1715 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1716 
stp_online_show(struct device * dev,struct device_attribute * attr,char * buf)1717 static ssize_t stp_online_show(struct device *dev,
1718 				struct device_attribute *attr,
1719 				char *buf)
1720 {
1721 	return sprintf(buf, "%i\n", stp_online);
1722 }
1723 
stp_online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1724 static ssize_t stp_online_store(struct device *dev,
1725 				struct device_attribute *attr,
1726 				const char *buf, size_t count)
1727 {
1728 	unsigned int value;
1729 
1730 	value = simple_strtoul(buf, NULL, 0);
1731 	if (value != 0 && value != 1)
1732 		return -EINVAL;
1733 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1734 		return -EOPNOTSUPP;
1735 	mutex_lock(&clock_sync_mutex);
1736 	stp_online = value;
1737 	if (stp_online)
1738 		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1739 	else
1740 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1741 	queue_work(time_sync_wq, &stp_work);
1742 	mutex_unlock(&clock_sync_mutex);
1743 	return count;
1744 }
1745 
1746 /*
1747  * Can't use DEVICE_ATTR because the attribute should be named
1748  * stp/online but dev_attr_online already exists in this file ..
1749  */
1750 static struct device_attribute dev_attr_stp_online = {
1751 	.attr = { .name = "online", .mode = 0600 },
1752 	.show	= stp_online_show,
1753 	.store	= stp_online_store,
1754 };
1755 
1756 static struct device_attribute *stp_attributes[] = {
1757 	&dev_attr_ctn_id,
1758 	&dev_attr_ctn_type,
1759 	&dev_attr_dst_offset,
1760 	&dev_attr_leap_seconds,
1761 	&dev_attr_stp_online,
1762 	&dev_attr_stratum,
1763 	&dev_attr_time_offset,
1764 	&dev_attr_time_zone_offset,
1765 	&dev_attr_timing_mode,
1766 	&dev_attr_timing_state,
1767 	NULL
1768 };
1769 
stp_init_sysfs(void)1770 static int __init stp_init_sysfs(void)
1771 {
1772 	struct device_attribute **attr;
1773 	int rc;
1774 
1775 	rc = subsys_system_register(&stp_subsys, NULL);
1776 	if (rc)
1777 		goto out;
1778 	for (attr = stp_attributes; *attr; attr++) {
1779 		rc = device_create_file(stp_subsys.dev_root, *attr);
1780 		if (rc)
1781 			goto out_unreg;
1782 	}
1783 	return 0;
1784 out_unreg:
1785 	for (; attr >= stp_attributes; attr--)
1786 		device_remove_file(stp_subsys.dev_root, *attr);
1787 	bus_unregister(&stp_subsys);
1788 out:
1789 	return rc;
1790 }
1791 
1792 device_initcall(stp_init_sysfs);
1793