1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4 ST Ethernet IPs are built around a Synopsys IP Core.
5
6 Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11 Documentation available at:
12 http://www.stlinux.com
13 Support available at:
14 https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52
53 /* As long as the interface is active, we keep the timestamping counter enabled
54 * with fine resolution and binary rollover. This avoid non-monotonic behavior
55 * (clock jumps) when changing timestamping settings at runtime.
56 */
57 #define STMMAC_HWTS_ACTIVE (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
58 PTP_TCR_TSCTRLSSR)
59
60 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
61 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1)
62
63 /* Module parameters */
64 #define TX_TIMEO 5000
65 static int watchdog = TX_TIMEO;
66 module_param(watchdog, int, 0644);
67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
68
69 static int debug = -1;
70 module_param(debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
72
73 static int phyaddr = -1;
74 module_param(phyaddr, int, 0444);
75 MODULE_PARM_DESC(phyaddr, "Physical device address");
76
77 #define STMMAC_TX_THRESH(x) ((x)->dma_tx_size / 4)
78 #define STMMAC_RX_THRESH(x) ((x)->dma_rx_size / 4)
79
80 /* Limit to make sure XDP TX and slow path can coexist */
81 #define STMMAC_XSK_TX_BUDGET_MAX 256
82 #define STMMAC_TX_XSK_AVAIL 16
83 #define STMMAC_RX_FILL_BATCH 16
84
85 #define STMMAC_XDP_PASS 0
86 #define STMMAC_XDP_CONSUMED BIT(0)
87 #define STMMAC_XDP_TX BIT(1)
88 #define STMMAC_XDP_REDIRECT BIT(2)
89
90 static int flow_ctrl = FLOW_AUTO;
91 module_param(flow_ctrl, int, 0644);
92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
93
94 static int pause = PAUSE_TIME;
95 module_param(pause, int, 0644);
96 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
97
98 #define TC_DEFAULT 64
99 static int tc = TC_DEFAULT;
100 module_param(tc, int, 0644);
101 MODULE_PARM_DESC(tc, "DMA threshold control value");
102
103 #define DEFAULT_BUFSIZE 1536
104 static int buf_sz = DEFAULT_BUFSIZE;
105 module_param(buf_sz, int, 0644);
106 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
107
108 #define STMMAC_RX_COPYBREAK 256
109
110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
111 NETIF_MSG_LINK | NETIF_MSG_IFUP |
112 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
113
114 #define STMMAC_DEFAULT_LPI_TIMER 1000
115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
116 module_param(eee_timer, int, 0644);
117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
119
120 /* By default the driver will use the ring mode to manage tx and rx descriptors,
121 * but allow user to force to use the chain instead of the ring
122 */
123 static unsigned int chain_mode;
124 module_param(chain_mode, int, 0444);
125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
126
127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
128 /* For MSI interrupts handling */
129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
133 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
134 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
135 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
136 u32 rxmode, u32 chan);
137
138 #ifdef CONFIG_DEBUG_FS
139 static const struct net_device_ops stmmac_netdev_ops;
140 static void stmmac_init_fs(struct net_device *dev);
141 static void stmmac_exit_fs(struct net_device *dev);
142 #endif
143
144 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
145
stmmac_bus_clks_config(struct stmmac_priv * priv,bool enabled)146 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
147 {
148 int ret = 0;
149
150 if (enabled) {
151 ret = clk_prepare_enable(priv->plat->stmmac_clk);
152 if (ret)
153 return ret;
154 ret = clk_prepare_enable(priv->plat->pclk);
155 if (ret) {
156 clk_disable_unprepare(priv->plat->stmmac_clk);
157 return ret;
158 }
159 if (priv->plat->clks_config) {
160 ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
161 if (ret) {
162 clk_disable_unprepare(priv->plat->stmmac_clk);
163 clk_disable_unprepare(priv->plat->pclk);
164 return ret;
165 }
166 }
167 } else {
168 clk_disable_unprepare(priv->plat->stmmac_clk);
169 clk_disable_unprepare(priv->plat->pclk);
170 if (priv->plat->clks_config)
171 priv->plat->clks_config(priv->plat->bsp_priv, enabled);
172 }
173
174 return ret;
175 }
176 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
177
178 /**
179 * stmmac_verify_args - verify the driver parameters.
180 * Description: it checks the driver parameters and set a default in case of
181 * errors.
182 */
stmmac_verify_args(void)183 static void stmmac_verify_args(void)
184 {
185 if (unlikely(watchdog < 0))
186 watchdog = TX_TIMEO;
187 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
188 buf_sz = DEFAULT_BUFSIZE;
189 if (unlikely(flow_ctrl > 1))
190 flow_ctrl = FLOW_AUTO;
191 else if (likely(flow_ctrl < 0))
192 flow_ctrl = FLOW_OFF;
193 if (unlikely((pause < 0) || (pause > 0xffff)))
194 pause = PAUSE_TIME;
195 if (eee_timer < 0)
196 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
197 }
198
__stmmac_disable_all_queues(struct stmmac_priv * priv)199 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
200 {
201 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
202 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
203 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
204 u32 queue;
205
206 for (queue = 0; queue < maxq; queue++) {
207 struct stmmac_channel *ch = &priv->channel[queue];
208
209 if (stmmac_xdp_is_enabled(priv) &&
210 test_bit(queue, priv->af_xdp_zc_qps)) {
211 napi_disable(&ch->rxtx_napi);
212 continue;
213 }
214
215 if (queue < rx_queues_cnt)
216 napi_disable(&ch->rx_napi);
217 if (queue < tx_queues_cnt)
218 napi_disable(&ch->tx_napi);
219 }
220 }
221
222 /**
223 * stmmac_disable_all_queues - Disable all queues
224 * @priv: driver private structure
225 */
stmmac_disable_all_queues(struct stmmac_priv * priv)226 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
227 {
228 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
229 struct stmmac_rx_queue *rx_q;
230 u32 queue;
231
232 /* synchronize_rcu() needed for pending XDP buffers to drain */
233 for (queue = 0; queue < rx_queues_cnt; queue++) {
234 rx_q = &priv->rx_queue[queue];
235 if (rx_q->xsk_pool) {
236 synchronize_rcu();
237 break;
238 }
239 }
240
241 __stmmac_disable_all_queues(priv);
242 }
243
244 /**
245 * stmmac_enable_all_queues - Enable all queues
246 * @priv: driver private structure
247 */
stmmac_enable_all_queues(struct stmmac_priv * priv)248 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
249 {
250 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
251 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
252 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
253 u32 queue;
254
255 for (queue = 0; queue < maxq; queue++) {
256 struct stmmac_channel *ch = &priv->channel[queue];
257
258 if (stmmac_xdp_is_enabled(priv) &&
259 test_bit(queue, priv->af_xdp_zc_qps)) {
260 napi_enable(&ch->rxtx_napi);
261 continue;
262 }
263
264 if (queue < rx_queues_cnt)
265 napi_enable(&ch->rx_napi);
266 if (queue < tx_queues_cnt)
267 napi_enable(&ch->tx_napi);
268 }
269 }
270
stmmac_service_event_schedule(struct stmmac_priv * priv)271 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
272 {
273 if (!test_bit(STMMAC_DOWN, &priv->state) &&
274 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
275 queue_work(priv->wq, &priv->service_task);
276 }
277
stmmac_global_err(struct stmmac_priv * priv)278 static void stmmac_global_err(struct stmmac_priv *priv)
279 {
280 netif_carrier_off(priv->dev);
281 set_bit(STMMAC_RESET_REQUESTED, &priv->state);
282 stmmac_service_event_schedule(priv);
283 }
284
285 /**
286 * stmmac_clk_csr_set - dynamically set the MDC clock
287 * @priv: driver private structure
288 * Description: this is to dynamically set the MDC clock according to the csr
289 * clock input.
290 * Note:
291 * If a specific clk_csr value is passed from the platform
292 * this means that the CSR Clock Range selection cannot be
293 * changed at run-time and it is fixed (as reported in the driver
294 * documentation). Viceversa the driver will try to set the MDC
295 * clock dynamically according to the actual clock input.
296 */
stmmac_clk_csr_set(struct stmmac_priv * priv)297 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
298 {
299 u32 clk_rate;
300
301 clk_rate = clk_get_rate(priv->plat->stmmac_clk);
302
303 /* Platform provided default clk_csr would be assumed valid
304 * for all other cases except for the below mentioned ones.
305 * For values higher than the IEEE 802.3 specified frequency
306 * we can not estimate the proper divider as it is not known
307 * the frequency of clk_csr_i. So we do not change the default
308 * divider.
309 */
310 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
311 if (clk_rate < CSR_F_35M)
312 priv->clk_csr = STMMAC_CSR_20_35M;
313 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
314 priv->clk_csr = STMMAC_CSR_35_60M;
315 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
316 priv->clk_csr = STMMAC_CSR_60_100M;
317 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
318 priv->clk_csr = STMMAC_CSR_100_150M;
319 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
320 priv->clk_csr = STMMAC_CSR_150_250M;
321 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
322 priv->clk_csr = STMMAC_CSR_250_300M;
323 }
324
325 if (priv->plat->has_sun8i) {
326 if (clk_rate > 160000000)
327 priv->clk_csr = 0x03;
328 else if (clk_rate > 80000000)
329 priv->clk_csr = 0x02;
330 else if (clk_rate > 40000000)
331 priv->clk_csr = 0x01;
332 else
333 priv->clk_csr = 0;
334 }
335
336 if (priv->plat->has_xgmac) {
337 if (clk_rate > 400000000)
338 priv->clk_csr = 0x5;
339 else if (clk_rate > 350000000)
340 priv->clk_csr = 0x4;
341 else if (clk_rate > 300000000)
342 priv->clk_csr = 0x3;
343 else if (clk_rate > 250000000)
344 priv->clk_csr = 0x2;
345 else if (clk_rate > 150000000)
346 priv->clk_csr = 0x1;
347 else
348 priv->clk_csr = 0x0;
349 }
350 }
351
print_pkt(unsigned char * buf,int len)352 static void print_pkt(unsigned char *buf, int len)
353 {
354 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
355 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
356 }
357
stmmac_tx_avail(struct stmmac_priv * priv,u32 queue)358 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
359 {
360 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
361 u32 avail;
362
363 if (tx_q->dirty_tx > tx_q->cur_tx)
364 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
365 else
366 avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
367
368 return avail;
369 }
370
371 /**
372 * stmmac_rx_dirty - Get RX queue dirty
373 * @priv: driver private structure
374 * @queue: RX queue index
375 */
stmmac_rx_dirty(struct stmmac_priv * priv,u32 queue)376 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
377 {
378 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
379 u32 dirty;
380
381 if (rx_q->dirty_rx <= rx_q->cur_rx)
382 dirty = rx_q->cur_rx - rx_q->dirty_rx;
383 else
384 dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
385
386 return dirty;
387 }
388
stmmac_lpi_entry_timer_config(struct stmmac_priv * priv,bool en)389 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
390 {
391 int tx_lpi_timer;
392
393 /* Clear/set the SW EEE timer flag based on LPI ET enablement */
394 priv->eee_sw_timer_en = en ? 0 : 1;
395 tx_lpi_timer = en ? priv->tx_lpi_timer : 0;
396 stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
397 }
398
399 /**
400 * stmmac_enable_eee_mode - check and enter in LPI mode
401 * @priv: driver private structure
402 * Description: this function is to verify and enter in LPI mode in case of
403 * EEE.
404 */
stmmac_enable_eee_mode(struct stmmac_priv * priv)405 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
406 {
407 u32 tx_cnt = priv->plat->tx_queues_to_use;
408 u32 queue;
409
410 /* check if all TX queues have the work finished */
411 for (queue = 0; queue < tx_cnt; queue++) {
412 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
413
414 if (tx_q->dirty_tx != tx_q->cur_tx)
415 return -EBUSY; /* still unfinished work */
416 }
417
418 /* Check and enter in LPI mode */
419 if (!priv->tx_path_in_lpi_mode)
420 stmmac_set_eee_mode(priv, priv->hw,
421 priv->plat->en_tx_lpi_clockgating);
422 return 0;
423 }
424
425 /**
426 * stmmac_disable_eee_mode - disable and exit from LPI mode
427 * @priv: driver private structure
428 * Description: this function is to exit and disable EEE in case of
429 * LPI state is true. This is called by the xmit.
430 */
stmmac_disable_eee_mode(struct stmmac_priv * priv)431 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
432 {
433 if (!priv->eee_sw_timer_en) {
434 stmmac_lpi_entry_timer_config(priv, 0);
435 return;
436 }
437
438 stmmac_reset_eee_mode(priv, priv->hw);
439 del_timer_sync(&priv->eee_ctrl_timer);
440 priv->tx_path_in_lpi_mode = false;
441 }
442
443 /**
444 * stmmac_eee_ctrl_timer - EEE TX SW timer.
445 * @t: timer_list struct containing private info
446 * Description:
447 * if there is no data transfer and if we are not in LPI state,
448 * then MAC Transmitter can be moved to LPI state.
449 */
stmmac_eee_ctrl_timer(struct timer_list * t)450 static void stmmac_eee_ctrl_timer(struct timer_list *t)
451 {
452 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
453
454 if (stmmac_enable_eee_mode(priv))
455 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
456 }
457
458 /**
459 * stmmac_eee_init - init EEE
460 * @priv: driver private structure
461 * Description:
462 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
463 * can also manage EEE, this function enable the LPI state and start related
464 * timer.
465 */
stmmac_eee_init(struct stmmac_priv * priv)466 bool stmmac_eee_init(struct stmmac_priv *priv)
467 {
468 int eee_tw_timer = priv->eee_tw_timer;
469
470 /* Using PCS we cannot dial with the phy registers at this stage
471 * so we do not support extra feature like EEE.
472 */
473 if (priv->hw->pcs == STMMAC_PCS_TBI ||
474 priv->hw->pcs == STMMAC_PCS_RTBI)
475 return false;
476
477 /* Check if MAC core supports the EEE feature. */
478 if (!priv->dma_cap.eee)
479 return false;
480
481 mutex_lock(&priv->lock);
482
483 /* Check if it needs to be deactivated */
484 if (!priv->eee_active) {
485 if (priv->eee_enabled) {
486 netdev_dbg(priv->dev, "disable EEE\n");
487 stmmac_lpi_entry_timer_config(priv, 0);
488 del_timer_sync(&priv->eee_ctrl_timer);
489 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
490 if (priv->hw->xpcs)
491 xpcs_config_eee(priv->hw->xpcs,
492 priv->plat->mult_fact_100ns,
493 false);
494 }
495 mutex_unlock(&priv->lock);
496 return false;
497 }
498
499 if (priv->eee_active && !priv->eee_enabled) {
500 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
501 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
502 eee_tw_timer);
503 if (priv->hw->xpcs)
504 xpcs_config_eee(priv->hw->xpcs,
505 priv->plat->mult_fact_100ns,
506 true);
507 }
508
509 if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
510 del_timer_sync(&priv->eee_ctrl_timer);
511 priv->tx_path_in_lpi_mode = false;
512 stmmac_lpi_entry_timer_config(priv, 1);
513 } else {
514 stmmac_lpi_entry_timer_config(priv, 0);
515 mod_timer(&priv->eee_ctrl_timer,
516 STMMAC_LPI_T(priv->tx_lpi_timer));
517 }
518
519 mutex_unlock(&priv->lock);
520 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
521 return true;
522 }
523
524 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
525 * @priv: driver private structure
526 * @p : descriptor pointer
527 * @skb : the socket buffer
528 * Description :
529 * This function will read timestamp from the descriptor & pass it to stack.
530 * and also perform some sanity checks.
531 */
stmmac_get_tx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct sk_buff * skb)532 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
533 struct dma_desc *p, struct sk_buff *skb)
534 {
535 struct skb_shared_hwtstamps shhwtstamp;
536 bool found = false;
537 u64 ns = 0;
538
539 if (!priv->hwts_tx_en)
540 return;
541
542 /* exit if skb doesn't support hw tstamp */
543 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
544 return;
545
546 /* check tx tstamp status */
547 if (stmmac_get_tx_timestamp_status(priv, p)) {
548 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
549 found = true;
550 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
551 found = true;
552 }
553
554 if (found) {
555 ns -= priv->plat->cdc_error_adj;
556
557 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
558 shhwtstamp.hwtstamp = ns_to_ktime(ns);
559
560 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
561 /* pass tstamp to stack */
562 skb_tstamp_tx(skb, &shhwtstamp);
563 }
564 }
565
566 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
567 * @priv: driver private structure
568 * @p : descriptor pointer
569 * @np : next descriptor pointer
570 * @skb : the socket buffer
571 * Description :
572 * This function will read received packet's timestamp from the descriptor
573 * and pass it to stack. It also perform some sanity checks.
574 */
stmmac_get_rx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct dma_desc * np,struct sk_buff * skb)575 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
576 struct dma_desc *np, struct sk_buff *skb)
577 {
578 struct skb_shared_hwtstamps *shhwtstamp = NULL;
579 struct dma_desc *desc = p;
580 u64 ns = 0;
581
582 if (!priv->hwts_rx_en)
583 return;
584 /* For GMAC4, the valid timestamp is from CTX next desc. */
585 if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
586 desc = np;
587
588 /* Check if timestamp is available */
589 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
590 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
591
592 ns -= priv->plat->cdc_error_adj;
593
594 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
595 shhwtstamp = skb_hwtstamps(skb);
596 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
597 shhwtstamp->hwtstamp = ns_to_ktime(ns);
598 } else {
599 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
600 }
601 }
602
603 /**
604 * stmmac_hwtstamp_set - control hardware timestamping.
605 * @dev: device pointer.
606 * @ifr: An IOCTL specific structure, that can contain a pointer to
607 * a proprietary structure used to pass information to the driver.
608 * Description:
609 * This function configures the MAC to enable/disable both outgoing(TX)
610 * and incoming(RX) packets time stamping based on user input.
611 * Return Value:
612 * 0 on success and an appropriate -ve integer on failure.
613 */
stmmac_hwtstamp_set(struct net_device * dev,struct ifreq * ifr)614 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
615 {
616 struct stmmac_priv *priv = netdev_priv(dev);
617 struct hwtstamp_config config;
618 u32 ptp_v2 = 0;
619 u32 tstamp_all = 0;
620 u32 ptp_over_ipv4_udp = 0;
621 u32 ptp_over_ipv6_udp = 0;
622 u32 ptp_over_ethernet = 0;
623 u32 snap_type_sel = 0;
624 u32 ts_master_en = 0;
625 u32 ts_event_en = 0;
626
627 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
628 netdev_alert(priv->dev, "No support for HW time stamping\n");
629 priv->hwts_tx_en = 0;
630 priv->hwts_rx_en = 0;
631
632 return -EOPNOTSUPP;
633 }
634
635 if (copy_from_user(&config, ifr->ifr_data,
636 sizeof(config)))
637 return -EFAULT;
638
639 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
640 __func__, config.flags, config.tx_type, config.rx_filter);
641
642 if (config.tx_type != HWTSTAMP_TX_OFF &&
643 config.tx_type != HWTSTAMP_TX_ON)
644 return -ERANGE;
645
646 if (priv->adv_ts) {
647 switch (config.rx_filter) {
648 case HWTSTAMP_FILTER_NONE:
649 /* time stamp no incoming packet at all */
650 config.rx_filter = HWTSTAMP_FILTER_NONE;
651 break;
652
653 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
654 /* PTP v1, UDP, any kind of event packet */
655 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
656 /* 'xmac' hardware can support Sync, Pdelay_Req and
657 * Pdelay_resp by setting bit14 and bits17/16 to 01
658 * This leaves Delay_Req timestamps out.
659 * Enable all events *and* general purpose message
660 * timestamping
661 */
662 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
663 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
664 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
665 break;
666
667 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
668 /* PTP v1, UDP, Sync packet */
669 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
670 /* take time stamp for SYNC messages only */
671 ts_event_en = PTP_TCR_TSEVNTENA;
672
673 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
674 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
675 break;
676
677 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
678 /* PTP v1, UDP, Delay_req packet */
679 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
680 /* take time stamp for Delay_Req messages only */
681 ts_master_en = PTP_TCR_TSMSTRENA;
682 ts_event_en = PTP_TCR_TSEVNTENA;
683
684 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
685 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
686 break;
687
688 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
689 /* PTP v2, UDP, any kind of event packet */
690 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
691 ptp_v2 = PTP_TCR_TSVER2ENA;
692 /* take time stamp for all event messages */
693 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
694
695 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
696 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
697 break;
698
699 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
700 /* PTP v2, UDP, Sync packet */
701 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
702 ptp_v2 = PTP_TCR_TSVER2ENA;
703 /* take time stamp for SYNC messages only */
704 ts_event_en = PTP_TCR_TSEVNTENA;
705
706 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
707 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
708 break;
709
710 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
711 /* PTP v2, UDP, Delay_req packet */
712 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
713 ptp_v2 = PTP_TCR_TSVER2ENA;
714 /* take time stamp for Delay_Req messages only */
715 ts_master_en = PTP_TCR_TSMSTRENA;
716 ts_event_en = PTP_TCR_TSEVNTENA;
717
718 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
719 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
720 break;
721
722 case HWTSTAMP_FILTER_PTP_V2_EVENT:
723 /* PTP v2/802.AS1 any layer, any kind of event packet */
724 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
725 ptp_v2 = PTP_TCR_TSVER2ENA;
726 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
727 if (priv->synopsys_id < DWMAC_CORE_4_10)
728 ts_event_en = PTP_TCR_TSEVNTENA;
729 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
730 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
731 ptp_over_ethernet = PTP_TCR_TSIPENA;
732 break;
733
734 case HWTSTAMP_FILTER_PTP_V2_SYNC:
735 /* PTP v2/802.AS1, any layer, Sync packet */
736 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
737 ptp_v2 = PTP_TCR_TSVER2ENA;
738 /* take time stamp for SYNC messages only */
739 ts_event_en = PTP_TCR_TSEVNTENA;
740
741 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
742 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
743 ptp_over_ethernet = PTP_TCR_TSIPENA;
744 break;
745
746 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
747 /* PTP v2/802.AS1, any layer, Delay_req packet */
748 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
749 ptp_v2 = PTP_TCR_TSVER2ENA;
750 /* take time stamp for Delay_Req messages only */
751 ts_master_en = PTP_TCR_TSMSTRENA;
752 ts_event_en = PTP_TCR_TSEVNTENA;
753
754 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
755 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
756 ptp_over_ethernet = PTP_TCR_TSIPENA;
757 break;
758
759 case HWTSTAMP_FILTER_NTP_ALL:
760 case HWTSTAMP_FILTER_ALL:
761 /* time stamp any incoming packet */
762 config.rx_filter = HWTSTAMP_FILTER_ALL;
763 tstamp_all = PTP_TCR_TSENALL;
764 break;
765
766 default:
767 return -ERANGE;
768 }
769 } else {
770 switch (config.rx_filter) {
771 case HWTSTAMP_FILTER_NONE:
772 config.rx_filter = HWTSTAMP_FILTER_NONE;
773 break;
774 default:
775 /* PTP v1, UDP, any kind of event packet */
776 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
777 break;
778 }
779 }
780 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
781 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
782
783 priv->systime_flags = STMMAC_HWTS_ACTIVE;
784
785 if (priv->hwts_tx_en || priv->hwts_rx_en) {
786 priv->systime_flags |= tstamp_all | ptp_v2 |
787 ptp_over_ethernet | ptp_over_ipv6_udp |
788 ptp_over_ipv4_udp | ts_event_en |
789 ts_master_en | snap_type_sel;
790 }
791
792 stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
793
794 memcpy(&priv->tstamp_config, &config, sizeof(config));
795
796 return copy_to_user(ifr->ifr_data, &config,
797 sizeof(config)) ? -EFAULT : 0;
798 }
799
800 /**
801 * stmmac_hwtstamp_get - read hardware timestamping.
802 * @dev: device pointer.
803 * @ifr: An IOCTL specific structure, that can contain a pointer to
804 * a proprietary structure used to pass information to the driver.
805 * Description:
806 * This function obtain the current hardware timestamping settings
807 * as requested.
808 */
stmmac_hwtstamp_get(struct net_device * dev,struct ifreq * ifr)809 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
810 {
811 struct stmmac_priv *priv = netdev_priv(dev);
812 struct hwtstamp_config *config = &priv->tstamp_config;
813
814 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
815 return -EOPNOTSUPP;
816
817 return copy_to_user(ifr->ifr_data, config,
818 sizeof(*config)) ? -EFAULT : 0;
819 }
820
821 /**
822 * stmmac_init_tstamp_counter - init hardware timestamping counter
823 * @priv: driver private structure
824 * @systime_flags: timestamping flags
825 * Description:
826 * Initialize hardware counter for packet timestamping.
827 * This is valid as long as the interface is open and not suspended.
828 * Will be rerun after resuming from suspend, case in which the timestamping
829 * flags updated by stmmac_hwtstamp_set() also need to be restored.
830 */
stmmac_init_tstamp_counter(struct stmmac_priv * priv,u32 systime_flags)831 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
832 {
833 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
834 struct timespec64 now;
835 u32 sec_inc = 0;
836 u64 temp = 0;
837
838 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
839 return -EOPNOTSUPP;
840
841 stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
842 priv->systime_flags = systime_flags;
843
844 /* program Sub Second Increment reg */
845 stmmac_config_sub_second_increment(priv, priv->ptpaddr,
846 priv->plat->clk_ptp_rate,
847 xmac, &sec_inc);
848 temp = div_u64(1000000000ULL, sec_inc);
849
850 /* Store sub second increment for later use */
851 priv->sub_second_inc = sec_inc;
852
853 /* calculate default added value:
854 * formula is :
855 * addend = (2^32)/freq_div_ratio;
856 * where, freq_div_ratio = 1e9ns/sec_inc
857 */
858 temp = (u64)(temp << 32);
859 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
860 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
861
862 /* initialize system time */
863 ktime_get_real_ts64(&now);
864
865 /* lower 32 bits of tv_sec are safe until y2106 */
866 stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
867
868 return 0;
869 }
870 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
871
872 /**
873 * stmmac_init_ptp - init PTP
874 * @priv: driver private structure
875 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
876 * This is done by looking at the HW cap. register.
877 * This function also registers the ptp driver.
878 */
stmmac_init_ptp(struct stmmac_priv * priv)879 static int stmmac_init_ptp(struct stmmac_priv *priv)
880 {
881 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
882 int ret;
883
884 if (priv->plat->ptp_clk_freq_config)
885 priv->plat->ptp_clk_freq_config(priv);
886
887 ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
888 if (ret)
889 return ret;
890
891 priv->adv_ts = 0;
892 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
893 if (xmac && priv->dma_cap.atime_stamp)
894 priv->adv_ts = 1;
895 /* Dwmac 3.x core with extend_desc can support adv_ts */
896 else if (priv->extend_desc && priv->dma_cap.atime_stamp)
897 priv->adv_ts = 1;
898
899 if (priv->dma_cap.time_stamp)
900 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
901
902 if (priv->adv_ts)
903 netdev_info(priv->dev,
904 "IEEE 1588-2008 Advanced Timestamp supported\n");
905
906 priv->hwts_tx_en = 0;
907 priv->hwts_rx_en = 0;
908
909 return 0;
910 }
911
stmmac_release_ptp(struct stmmac_priv * priv)912 static void stmmac_release_ptp(struct stmmac_priv *priv)
913 {
914 clk_disable_unprepare(priv->plat->clk_ptp_ref);
915 stmmac_ptp_unregister(priv);
916 }
917
918 /**
919 * stmmac_mac_flow_ctrl - Configure flow control in all queues
920 * @priv: driver private structure
921 * @duplex: duplex passed to the next function
922 * Description: It is used for configuring the flow control in all queues
923 */
stmmac_mac_flow_ctrl(struct stmmac_priv * priv,u32 duplex)924 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
925 {
926 u32 tx_cnt = priv->plat->tx_queues_to_use;
927
928 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
929 priv->pause, tx_cnt);
930 }
931
stmmac_mac_select_pcs(struct phylink_config * config,phy_interface_t interface)932 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
933 phy_interface_t interface)
934 {
935 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
936
937 if (!priv->hw->xpcs)
938 return NULL;
939
940 return &priv->hw->xpcs->pcs;
941 }
942
stmmac_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)943 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
944 const struct phylink_link_state *state)
945 {
946 /* Nothing to do, xpcs_config() handles everything */
947 }
948
stmmac_fpe_link_state_handle(struct stmmac_priv * priv,bool is_up)949 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
950 {
951 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
952 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
953 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
954 bool *hs_enable = &fpe_cfg->hs_enable;
955
956 if (is_up && *hs_enable) {
957 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
958 } else {
959 *lo_state = FPE_STATE_OFF;
960 *lp_state = FPE_STATE_OFF;
961 }
962 }
963
stmmac_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)964 static void stmmac_mac_link_down(struct phylink_config *config,
965 unsigned int mode, phy_interface_t interface)
966 {
967 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
968
969 stmmac_mac_set(priv, priv->ioaddr, false);
970 priv->eee_active = false;
971 priv->tx_lpi_enabled = false;
972 priv->eee_enabled = stmmac_eee_init(priv);
973 stmmac_set_eee_pls(priv, priv->hw, false);
974
975 if (priv->dma_cap.fpesel)
976 stmmac_fpe_link_state_handle(priv, false);
977 }
978
stmmac_mac_link_up(struct phylink_config * config,struct phy_device * phy,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)979 static void stmmac_mac_link_up(struct phylink_config *config,
980 struct phy_device *phy,
981 unsigned int mode, phy_interface_t interface,
982 int speed, int duplex,
983 bool tx_pause, bool rx_pause)
984 {
985 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
986 u32 old_ctrl, ctrl;
987
988 old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
989 ctrl = old_ctrl & ~priv->hw->link.speed_mask;
990
991 if (interface == PHY_INTERFACE_MODE_USXGMII) {
992 switch (speed) {
993 case SPEED_10000:
994 ctrl |= priv->hw->link.xgmii.speed10000;
995 break;
996 case SPEED_5000:
997 ctrl |= priv->hw->link.xgmii.speed5000;
998 break;
999 case SPEED_2500:
1000 ctrl |= priv->hw->link.xgmii.speed2500;
1001 break;
1002 default:
1003 return;
1004 }
1005 } else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1006 switch (speed) {
1007 case SPEED_100000:
1008 ctrl |= priv->hw->link.xlgmii.speed100000;
1009 break;
1010 case SPEED_50000:
1011 ctrl |= priv->hw->link.xlgmii.speed50000;
1012 break;
1013 case SPEED_40000:
1014 ctrl |= priv->hw->link.xlgmii.speed40000;
1015 break;
1016 case SPEED_25000:
1017 ctrl |= priv->hw->link.xlgmii.speed25000;
1018 break;
1019 case SPEED_10000:
1020 ctrl |= priv->hw->link.xgmii.speed10000;
1021 break;
1022 case SPEED_2500:
1023 ctrl |= priv->hw->link.speed2500;
1024 break;
1025 case SPEED_1000:
1026 ctrl |= priv->hw->link.speed1000;
1027 break;
1028 default:
1029 return;
1030 }
1031 } else {
1032 switch (speed) {
1033 case SPEED_2500:
1034 ctrl |= priv->hw->link.speed2500;
1035 break;
1036 case SPEED_1000:
1037 ctrl |= priv->hw->link.speed1000;
1038 break;
1039 case SPEED_100:
1040 ctrl |= priv->hw->link.speed100;
1041 break;
1042 case SPEED_10:
1043 ctrl |= priv->hw->link.speed10;
1044 break;
1045 default:
1046 return;
1047 }
1048 }
1049
1050 priv->speed = speed;
1051
1052 if (priv->plat->fix_mac_speed)
1053 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1054
1055 if (!duplex)
1056 ctrl &= ~priv->hw->link.duplex;
1057 else
1058 ctrl |= priv->hw->link.duplex;
1059
1060 /* Flow Control operation */
1061 if (tx_pause && rx_pause)
1062 stmmac_mac_flow_ctrl(priv, duplex);
1063
1064 if (ctrl != old_ctrl)
1065 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1066
1067 stmmac_mac_set(priv, priv->ioaddr, true);
1068 if (phy && priv->dma_cap.eee) {
1069 priv->eee_active = phy_init_eee(phy, 1) >= 0;
1070 priv->eee_enabled = stmmac_eee_init(priv);
1071 priv->tx_lpi_enabled = priv->eee_enabled;
1072 stmmac_set_eee_pls(priv, priv->hw, true);
1073 }
1074
1075 if (priv->dma_cap.fpesel)
1076 stmmac_fpe_link_state_handle(priv, true);
1077 }
1078
1079 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1080 .validate = phylink_generic_validate,
1081 .mac_select_pcs = stmmac_mac_select_pcs,
1082 .mac_config = stmmac_mac_config,
1083 .mac_link_down = stmmac_mac_link_down,
1084 .mac_link_up = stmmac_mac_link_up,
1085 };
1086
1087 /**
1088 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1089 * @priv: driver private structure
1090 * Description: this is to verify if the HW supports the PCS.
1091 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1092 * configured for the TBI, RTBI, or SGMII PHY interface.
1093 */
stmmac_check_pcs_mode(struct stmmac_priv * priv)1094 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1095 {
1096 int interface = priv->plat->interface;
1097
1098 if (priv->dma_cap.pcs) {
1099 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1100 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1101 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1102 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1103 netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1104 priv->hw->pcs = STMMAC_PCS_RGMII;
1105 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
1106 netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1107 priv->hw->pcs = STMMAC_PCS_SGMII;
1108 }
1109 }
1110 }
1111
1112 /**
1113 * stmmac_init_phy - PHY initialization
1114 * @dev: net device structure
1115 * Description: it initializes the driver's PHY state, and attaches the PHY
1116 * to the mac driver.
1117 * Return value:
1118 * 0 on success
1119 */
stmmac_init_phy(struct net_device * dev)1120 static int stmmac_init_phy(struct net_device *dev)
1121 {
1122 struct stmmac_priv *priv = netdev_priv(dev);
1123 struct device_node *node;
1124 int ret;
1125
1126 node = priv->plat->phylink_node;
1127
1128 if (node)
1129 ret = phylink_of_phy_connect(priv->phylink, node, 0);
1130
1131 /* Some DT bindings do not set-up the PHY handle. Let's try to
1132 * manually parse it
1133 */
1134 if (!node || ret) {
1135 int addr = priv->plat->phy_addr;
1136 struct phy_device *phydev;
1137
1138 phydev = mdiobus_get_phy(priv->mii, addr);
1139 if (!phydev) {
1140 netdev_err(priv->dev, "no phy at addr %d\n", addr);
1141 return -ENODEV;
1142 }
1143
1144 ret = phylink_connect_phy(priv->phylink, phydev);
1145 }
1146
1147 if (!priv->plat->pmt) {
1148 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1149
1150 phylink_ethtool_get_wol(priv->phylink, &wol);
1151 device_set_wakeup_capable(priv->device, !!wol.supported);
1152 }
1153
1154 return ret;
1155 }
1156
stmmac_phy_setup(struct stmmac_priv * priv)1157 static int stmmac_phy_setup(struct stmmac_priv *priv)
1158 {
1159 struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1160 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1161 int max_speed = priv->plat->max_speed;
1162 int mode = priv->plat->phy_interface;
1163 struct phylink *phylink;
1164
1165 priv->phylink_config.dev = &priv->dev->dev;
1166 priv->phylink_config.type = PHYLINK_NETDEV;
1167 if (priv->plat->mdio_bus_data)
1168 priv->phylink_config.ovr_an_inband =
1169 mdio_bus_data->xpcs_an_inband;
1170
1171 if (!fwnode)
1172 fwnode = dev_fwnode(priv->device);
1173
1174 /* Set the platform/firmware specified interface mode */
1175 __set_bit(mode, priv->phylink_config.supported_interfaces);
1176
1177 /* If we have an xpcs, it defines which PHY interfaces are supported. */
1178 if (priv->hw->xpcs)
1179 xpcs_get_interfaces(priv->hw->xpcs,
1180 priv->phylink_config.supported_interfaces);
1181
1182 priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1183 MAC_10 | MAC_100;
1184
1185 if (!max_speed || max_speed >= 1000)
1186 priv->phylink_config.mac_capabilities |= MAC_1000;
1187
1188 if (priv->plat->has_gmac4) {
1189 if (!max_speed || max_speed >= 2500)
1190 priv->phylink_config.mac_capabilities |= MAC_2500FD;
1191 } else if (priv->plat->has_xgmac) {
1192 if (!max_speed || max_speed >= 2500)
1193 priv->phylink_config.mac_capabilities |= MAC_2500FD;
1194 if (!max_speed || max_speed >= 5000)
1195 priv->phylink_config.mac_capabilities |= MAC_5000FD;
1196 if (!max_speed || max_speed >= 10000)
1197 priv->phylink_config.mac_capabilities |= MAC_10000FD;
1198 if (!max_speed || max_speed >= 25000)
1199 priv->phylink_config.mac_capabilities |= MAC_25000FD;
1200 if (!max_speed || max_speed >= 40000)
1201 priv->phylink_config.mac_capabilities |= MAC_40000FD;
1202 if (!max_speed || max_speed >= 50000)
1203 priv->phylink_config.mac_capabilities |= MAC_50000FD;
1204 if (!max_speed || max_speed >= 100000)
1205 priv->phylink_config.mac_capabilities |= MAC_100000FD;
1206 }
1207
1208 /* Half-Duplex can only work with single queue */
1209 if (priv->plat->tx_queues_to_use > 1)
1210 priv->phylink_config.mac_capabilities &=
1211 ~(MAC_10HD | MAC_100HD | MAC_1000HD);
1212
1213 phylink = phylink_create(&priv->phylink_config, fwnode,
1214 mode, &stmmac_phylink_mac_ops);
1215 if (IS_ERR(phylink))
1216 return PTR_ERR(phylink);
1217
1218 priv->phylink = phylink;
1219 return 0;
1220 }
1221
stmmac_display_rx_rings(struct stmmac_priv * priv)1222 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1223 {
1224 u32 rx_cnt = priv->plat->rx_queues_to_use;
1225 unsigned int desc_size;
1226 void *head_rx;
1227 u32 queue;
1228
1229 /* Display RX rings */
1230 for (queue = 0; queue < rx_cnt; queue++) {
1231 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1232
1233 pr_info("\tRX Queue %u rings\n", queue);
1234
1235 if (priv->extend_desc) {
1236 head_rx = (void *)rx_q->dma_erx;
1237 desc_size = sizeof(struct dma_extended_desc);
1238 } else {
1239 head_rx = (void *)rx_q->dma_rx;
1240 desc_size = sizeof(struct dma_desc);
1241 }
1242
1243 /* Display RX ring */
1244 stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
1245 rx_q->dma_rx_phy, desc_size);
1246 }
1247 }
1248
stmmac_display_tx_rings(struct stmmac_priv * priv)1249 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1250 {
1251 u32 tx_cnt = priv->plat->tx_queues_to_use;
1252 unsigned int desc_size;
1253 void *head_tx;
1254 u32 queue;
1255
1256 /* Display TX rings */
1257 for (queue = 0; queue < tx_cnt; queue++) {
1258 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1259
1260 pr_info("\tTX Queue %d rings\n", queue);
1261
1262 if (priv->extend_desc) {
1263 head_tx = (void *)tx_q->dma_etx;
1264 desc_size = sizeof(struct dma_extended_desc);
1265 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1266 head_tx = (void *)tx_q->dma_entx;
1267 desc_size = sizeof(struct dma_edesc);
1268 } else {
1269 head_tx = (void *)tx_q->dma_tx;
1270 desc_size = sizeof(struct dma_desc);
1271 }
1272
1273 stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
1274 tx_q->dma_tx_phy, desc_size);
1275 }
1276 }
1277
stmmac_display_rings(struct stmmac_priv * priv)1278 static void stmmac_display_rings(struct stmmac_priv *priv)
1279 {
1280 /* Display RX ring */
1281 stmmac_display_rx_rings(priv);
1282
1283 /* Display TX ring */
1284 stmmac_display_tx_rings(priv);
1285 }
1286
stmmac_set_bfsize(int mtu,int bufsize)1287 static int stmmac_set_bfsize(int mtu, int bufsize)
1288 {
1289 int ret = bufsize;
1290
1291 if (mtu >= BUF_SIZE_8KiB)
1292 ret = BUF_SIZE_16KiB;
1293 else if (mtu >= BUF_SIZE_4KiB)
1294 ret = BUF_SIZE_8KiB;
1295 else if (mtu >= BUF_SIZE_2KiB)
1296 ret = BUF_SIZE_4KiB;
1297 else if (mtu > DEFAULT_BUFSIZE)
1298 ret = BUF_SIZE_2KiB;
1299 else
1300 ret = DEFAULT_BUFSIZE;
1301
1302 return ret;
1303 }
1304
1305 /**
1306 * stmmac_clear_rx_descriptors - clear RX descriptors
1307 * @priv: driver private structure
1308 * @queue: RX queue index
1309 * Description: this function is called to clear the RX descriptors
1310 * in case of both basic and extended descriptors are used.
1311 */
stmmac_clear_rx_descriptors(struct stmmac_priv * priv,u32 queue)1312 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1313 {
1314 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1315 int i;
1316
1317 /* Clear the RX descriptors */
1318 for (i = 0; i < priv->dma_rx_size; i++)
1319 if (priv->extend_desc)
1320 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1321 priv->use_riwt, priv->mode,
1322 (i == priv->dma_rx_size - 1),
1323 priv->dma_buf_sz);
1324 else
1325 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1326 priv->use_riwt, priv->mode,
1327 (i == priv->dma_rx_size - 1),
1328 priv->dma_buf_sz);
1329 }
1330
1331 /**
1332 * stmmac_clear_tx_descriptors - clear tx descriptors
1333 * @priv: driver private structure
1334 * @queue: TX queue index.
1335 * Description: this function is called to clear the TX descriptors
1336 * in case of both basic and extended descriptors are used.
1337 */
stmmac_clear_tx_descriptors(struct stmmac_priv * priv,u32 queue)1338 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1339 {
1340 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1341 int i;
1342
1343 /* Clear the TX descriptors */
1344 for (i = 0; i < priv->dma_tx_size; i++) {
1345 int last = (i == (priv->dma_tx_size - 1));
1346 struct dma_desc *p;
1347
1348 if (priv->extend_desc)
1349 p = &tx_q->dma_etx[i].basic;
1350 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1351 p = &tx_q->dma_entx[i].basic;
1352 else
1353 p = &tx_q->dma_tx[i];
1354
1355 stmmac_init_tx_desc(priv, p, priv->mode, last);
1356 }
1357 }
1358
1359 /**
1360 * stmmac_clear_descriptors - clear descriptors
1361 * @priv: driver private structure
1362 * Description: this function is called to clear the TX and RX descriptors
1363 * in case of both basic and extended descriptors are used.
1364 */
stmmac_clear_descriptors(struct stmmac_priv * priv)1365 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1366 {
1367 u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1368 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1369 u32 queue;
1370
1371 /* Clear the RX descriptors */
1372 for (queue = 0; queue < rx_queue_cnt; queue++)
1373 stmmac_clear_rx_descriptors(priv, queue);
1374
1375 /* Clear the TX descriptors */
1376 for (queue = 0; queue < tx_queue_cnt; queue++)
1377 stmmac_clear_tx_descriptors(priv, queue);
1378 }
1379
1380 /**
1381 * stmmac_init_rx_buffers - init the RX descriptor buffer.
1382 * @priv: driver private structure
1383 * @p: descriptor pointer
1384 * @i: descriptor index
1385 * @flags: gfp flag
1386 * @queue: RX queue index
1387 * Description: this function is called to allocate a receive buffer, perform
1388 * the DMA mapping and init the descriptor.
1389 */
stmmac_init_rx_buffers(struct stmmac_priv * priv,struct dma_desc * p,int i,gfp_t flags,u32 queue)1390 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1391 int i, gfp_t flags, u32 queue)
1392 {
1393 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1394 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1395 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1396
1397 if (priv->dma_cap.addr64 <= 32)
1398 gfp |= GFP_DMA32;
1399
1400 if (!buf->page) {
1401 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1402 if (!buf->page)
1403 return -ENOMEM;
1404 buf->page_offset = stmmac_rx_offset(priv);
1405 }
1406
1407 if (priv->sph && !buf->sec_page) {
1408 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1409 if (!buf->sec_page)
1410 return -ENOMEM;
1411
1412 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1413 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1414 } else {
1415 buf->sec_page = NULL;
1416 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1417 }
1418
1419 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1420
1421 stmmac_set_desc_addr(priv, p, buf->addr);
1422 if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1423 stmmac_init_desc3(priv, p);
1424
1425 return 0;
1426 }
1427
1428 /**
1429 * stmmac_free_rx_buffer - free RX dma buffers
1430 * @priv: private structure
1431 * @queue: RX queue index
1432 * @i: buffer index.
1433 */
stmmac_free_rx_buffer(struct stmmac_priv * priv,u32 queue,int i)1434 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1435 {
1436 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1437 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1438
1439 if (buf->page)
1440 page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1441 buf->page = NULL;
1442
1443 if (buf->sec_page)
1444 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1445 buf->sec_page = NULL;
1446 }
1447
1448 /**
1449 * stmmac_free_tx_buffer - free RX dma buffers
1450 * @priv: private structure
1451 * @queue: RX queue index
1452 * @i: buffer index.
1453 */
stmmac_free_tx_buffer(struct stmmac_priv * priv,u32 queue,int i)1454 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1455 {
1456 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1457
1458 if (tx_q->tx_skbuff_dma[i].buf &&
1459 tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1460 if (tx_q->tx_skbuff_dma[i].map_as_page)
1461 dma_unmap_page(priv->device,
1462 tx_q->tx_skbuff_dma[i].buf,
1463 tx_q->tx_skbuff_dma[i].len,
1464 DMA_TO_DEVICE);
1465 else
1466 dma_unmap_single(priv->device,
1467 tx_q->tx_skbuff_dma[i].buf,
1468 tx_q->tx_skbuff_dma[i].len,
1469 DMA_TO_DEVICE);
1470 }
1471
1472 if (tx_q->xdpf[i] &&
1473 (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1474 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1475 xdp_return_frame(tx_q->xdpf[i]);
1476 tx_q->xdpf[i] = NULL;
1477 }
1478
1479 if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1480 tx_q->xsk_frames_done++;
1481
1482 if (tx_q->tx_skbuff[i] &&
1483 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1484 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1485 tx_q->tx_skbuff[i] = NULL;
1486 }
1487
1488 tx_q->tx_skbuff_dma[i].buf = 0;
1489 tx_q->tx_skbuff_dma[i].map_as_page = false;
1490 }
1491
1492 /**
1493 * dma_free_rx_skbufs - free RX dma buffers
1494 * @priv: private structure
1495 * @queue: RX queue index
1496 */
dma_free_rx_skbufs(struct stmmac_priv * priv,u32 queue)1497 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1498 {
1499 int i;
1500
1501 for (i = 0; i < priv->dma_rx_size; i++)
1502 stmmac_free_rx_buffer(priv, queue, i);
1503 }
1504
stmmac_alloc_rx_buffers(struct stmmac_priv * priv,u32 queue,gfp_t flags)1505 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue,
1506 gfp_t flags)
1507 {
1508 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1509 int i;
1510
1511 for (i = 0; i < priv->dma_rx_size; i++) {
1512 struct dma_desc *p;
1513 int ret;
1514
1515 if (priv->extend_desc)
1516 p = &((rx_q->dma_erx + i)->basic);
1517 else
1518 p = rx_q->dma_rx + i;
1519
1520 ret = stmmac_init_rx_buffers(priv, p, i, flags,
1521 queue);
1522 if (ret)
1523 return ret;
1524
1525 rx_q->buf_alloc_num++;
1526 }
1527
1528 return 0;
1529 }
1530
1531 /**
1532 * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1533 * @priv: private structure
1534 * @queue: RX queue index
1535 */
dma_free_rx_xskbufs(struct stmmac_priv * priv,u32 queue)1536 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue)
1537 {
1538 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1539 int i;
1540
1541 for (i = 0; i < priv->dma_rx_size; i++) {
1542 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1543
1544 if (!buf->xdp)
1545 continue;
1546
1547 xsk_buff_free(buf->xdp);
1548 buf->xdp = NULL;
1549 }
1550 }
1551
stmmac_alloc_rx_buffers_zc(struct stmmac_priv * priv,u32 queue)1552 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue)
1553 {
1554 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1555 int i;
1556
1557 for (i = 0; i < priv->dma_rx_size; i++) {
1558 struct stmmac_rx_buffer *buf;
1559 dma_addr_t dma_addr;
1560 struct dma_desc *p;
1561
1562 if (priv->extend_desc)
1563 p = (struct dma_desc *)(rx_q->dma_erx + i);
1564 else
1565 p = rx_q->dma_rx + i;
1566
1567 buf = &rx_q->buf_pool[i];
1568
1569 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1570 if (!buf->xdp)
1571 return -ENOMEM;
1572
1573 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1574 stmmac_set_desc_addr(priv, p, dma_addr);
1575 rx_q->buf_alloc_num++;
1576 }
1577
1578 return 0;
1579 }
1580
stmmac_get_xsk_pool(struct stmmac_priv * priv,u32 queue)1581 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1582 {
1583 if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1584 return NULL;
1585
1586 return xsk_get_pool_from_qid(priv->dev, queue);
1587 }
1588
1589 /**
1590 * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1591 * @priv: driver private structure
1592 * @queue: RX queue index
1593 * @flags: gfp flag.
1594 * Description: this function initializes the DMA RX descriptors
1595 * and allocates the socket buffers. It supports the chained and ring
1596 * modes.
1597 */
__init_dma_rx_desc_rings(struct stmmac_priv * priv,u32 queue,gfp_t flags)1598 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags)
1599 {
1600 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1601 int ret;
1602
1603 netif_dbg(priv, probe, priv->dev,
1604 "(%s) dma_rx_phy=0x%08x\n", __func__,
1605 (u32)rx_q->dma_rx_phy);
1606
1607 stmmac_clear_rx_descriptors(priv, queue);
1608
1609 xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1610
1611 rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1612
1613 if (rx_q->xsk_pool) {
1614 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1615 MEM_TYPE_XSK_BUFF_POOL,
1616 NULL));
1617 netdev_info(priv->dev,
1618 "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1619 rx_q->queue_index);
1620 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1621 } else {
1622 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1623 MEM_TYPE_PAGE_POOL,
1624 rx_q->page_pool));
1625 netdev_info(priv->dev,
1626 "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1627 rx_q->queue_index);
1628 }
1629
1630 if (rx_q->xsk_pool) {
1631 /* RX XDP ZC buffer pool may not be populated, e.g.
1632 * xdpsock TX-only.
1633 */
1634 stmmac_alloc_rx_buffers_zc(priv, queue);
1635 } else {
1636 ret = stmmac_alloc_rx_buffers(priv, queue, flags);
1637 if (ret < 0)
1638 return -ENOMEM;
1639 }
1640
1641 rx_q->cur_rx = 0;
1642 rx_q->dirty_rx = 0;
1643
1644 /* Setup the chained descriptor addresses */
1645 if (priv->mode == STMMAC_CHAIN_MODE) {
1646 if (priv->extend_desc)
1647 stmmac_mode_init(priv, rx_q->dma_erx,
1648 rx_q->dma_rx_phy,
1649 priv->dma_rx_size, 1);
1650 else
1651 stmmac_mode_init(priv, rx_q->dma_rx,
1652 rx_q->dma_rx_phy,
1653 priv->dma_rx_size, 0);
1654 }
1655
1656 return 0;
1657 }
1658
init_dma_rx_desc_rings(struct net_device * dev,gfp_t flags)1659 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1660 {
1661 struct stmmac_priv *priv = netdev_priv(dev);
1662 u32 rx_count = priv->plat->rx_queues_to_use;
1663 int queue;
1664 int ret;
1665
1666 /* RX INITIALIZATION */
1667 netif_dbg(priv, probe, priv->dev,
1668 "SKB addresses:\nskb\t\tskb data\tdma data\n");
1669
1670 for (queue = 0; queue < rx_count; queue++) {
1671 ret = __init_dma_rx_desc_rings(priv, queue, flags);
1672 if (ret)
1673 goto err_init_rx_buffers;
1674 }
1675
1676 return 0;
1677
1678 err_init_rx_buffers:
1679 while (queue >= 0) {
1680 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1681
1682 if (rx_q->xsk_pool)
1683 dma_free_rx_xskbufs(priv, queue);
1684 else
1685 dma_free_rx_skbufs(priv, queue);
1686
1687 rx_q->buf_alloc_num = 0;
1688 rx_q->xsk_pool = NULL;
1689
1690 queue--;
1691 }
1692
1693 return ret;
1694 }
1695
1696 /**
1697 * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1698 * @priv: driver private structure
1699 * @queue : TX queue index
1700 * Description: this function initializes the DMA TX descriptors
1701 * and allocates the socket buffers. It supports the chained and ring
1702 * modes.
1703 */
__init_dma_tx_desc_rings(struct stmmac_priv * priv,u32 queue)1704 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue)
1705 {
1706 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1707 int i;
1708
1709 netif_dbg(priv, probe, priv->dev,
1710 "(%s) dma_tx_phy=0x%08x\n", __func__,
1711 (u32)tx_q->dma_tx_phy);
1712
1713 /* Setup the chained descriptor addresses */
1714 if (priv->mode == STMMAC_CHAIN_MODE) {
1715 if (priv->extend_desc)
1716 stmmac_mode_init(priv, tx_q->dma_etx,
1717 tx_q->dma_tx_phy,
1718 priv->dma_tx_size, 1);
1719 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1720 stmmac_mode_init(priv, tx_q->dma_tx,
1721 tx_q->dma_tx_phy,
1722 priv->dma_tx_size, 0);
1723 }
1724
1725 tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1726
1727 for (i = 0; i < priv->dma_tx_size; i++) {
1728 struct dma_desc *p;
1729
1730 if (priv->extend_desc)
1731 p = &((tx_q->dma_etx + i)->basic);
1732 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1733 p = &((tx_q->dma_entx + i)->basic);
1734 else
1735 p = tx_q->dma_tx + i;
1736
1737 stmmac_clear_desc(priv, p);
1738
1739 tx_q->tx_skbuff_dma[i].buf = 0;
1740 tx_q->tx_skbuff_dma[i].map_as_page = false;
1741 tx_q->tx_skbuff_dma[i].len = 0;
1742 tx_q->tx_skbuff_dma[i].last_segment = false;
1743 tx_q->tx_skbuff[i] = NULL;
1744 }
1745
1746 tx_q->dirty_tx = 0;
1747 tx_q->cur_tx = 0;
1748 tx_q->mss = 0;
1749
1750 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1751
1752 return 0;
1753 }
1754
init_dma_tx_desc_rings(struct net_device * dev)1755 static int init_dma_tx_desc_rings(struct net_device *dev)
1756 {
1757 struct stmmac_priv *priv = netdev_priv(dev);
1758 u32 tx_queue_cnt;
1759 u32 queue;
1760
1761 tx_queue_cnt = priv->plat->tx_queues_to_use;
1762
1763 for (queue = 0; queue < tx_queue_cnt; queue++)
1764 __init_dma_tx_desc_rings(priv, queue);
1765
1766 return 0;
1767 }
1768
1769 /**
1770 * init_dma_desc_rings - init the RX/TX descriptor rings
1771 * @dev: net device structure
1772 * @flags: gfp flag.
1773 * Description: this function initializes the DMA RX/TX descriptors
1774 * and allocates the socket buffers. It supports the chained and ring
1775 * modes.
1776 */
init_dma_desc_rings(struct net_device * dev,gfp_t flags)1777 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1778 {
1779 struct stmmac_priv *priv = netdev_priv(dev);
1780 int ret;
1781
1782 ret = init_dma_rx_desc_rings(dev, flags);
1783 if (ret)
1784 return ret;
1785
1786 ret = init_dma_tx_desc_rings(dev);
1787
1788 stmmac_clear_descriptors(priv);
1789
1790 if (netif_msg_hw(priv))
1791 stmmac_display_rings(priv);
1792
1793 return ret;
1794 }
1795
1796 /**
1797 * dma_free_tx_skbufs - free TX dma buffers
1798 * @priv: private structure
1799 * @queue: TX queue index
1800 */
dma_free_tx_skbufs(struct stmmac_priv * priv,u32 queue)1801 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1802 {
1803 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1804 int i;
1805
1806 tx_q->xsk_frames_done = 0;
1807
1808 for (i = 0; i < priv->dma_tx_size; i++)
1809 stmmac_free_tx_buffer(priv, queue, i);
1810
1811 if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1812 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1813 tx_q->xsk_frames_done = 0;
1814 tx_q->xsk_pool = NULL;
1815 }
1816 }
1817
1818 /**
1819 * stmmac_free_tx_skbufs - free TX skb buffers
1820 * @priv: private structure
1821 */
stmmac_free_tx_skbufs(struct stmmac_priv * priv)1822 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1823 {
1824 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1825 u32 queue;
1826
1827 for (queue = 0; queue < tx_queue_cnt; queue++)
1828 dma_free_tx_skbufs(priv, queue);
1829 }
1830
1831 /**
1832 * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1833 * @priv: private structure
1834 * @queue: RX queue index
1835 */
__free_dma_rx_desc_resources(struct stmmac_priv * priv,u32 queue)1836 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1837 {
1838 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1839
1840 /* Release the DMA RX socket buffers */
1841 if (rx_q->xsk_pool)
1842 dma_free_rx_xskbufs(priv, queue);
1843 else
1844 dma_free_rx_skbufs(priv, queue);
1845
1846 rx_q->buf_alloc_num = 0;
1847 rx_q->xsk_pool = NULL;
1848
1849 /* Free DMA regions of consistent memory previously allocated */
1850 if (!priv->extend_desc)
1851 dma_free_coherent(priv->device, priv->dma_rx_size *
1852 sizeof(struct dma_desc),
1853 rx_q->dma_rx, rx_q->dma_rx_phy);
1854 else
1855 dma_free_coherent(priv->device, priv->dma_rx_size *
1856 sizeof(struct dma_extended_desc),
1857 rx_q->dma_erx, rx_q->dma_rx_phy);
1858
1859 if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1860 xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1861
1862 kfree(rx_q->buf_pool);
1863 if (rx_q->page_pool)
1864 page_pool_destroy(rx_q->page_pool);
1865 }
1866
free_dma_rx_desc_resources(struct stmmac_priv * priv)1867 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1868 {
1869 u32 rx_count = priv->plat->rx_queues_to_use;
1870 u32 queue;
1871
1872 /* Free RX queue resources */
1873 for (queue = 0; queue < rx_count; queue++)
1874 __free_dma_rx_desc_resources(priv, queue);
1875 }
1876
1877 /**
1878 * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1879 * @priv: private structure
1880 * @queue: TX queue index
1881 */
__free_dma_tx_desc_resources(struct stmmac_priv * priv,u32 queue)1882 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
1883 {
1884 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1885 size_t size;
1886 void *addr;
1887
1888 /* Release the DMA TX socket buffers */
1889 dma_free_tx_skbufs(priv, queue);
1890
1891 if (priv->extend_desc) {
1892 size = sizeof(struct dma_extended_desc);
1893 addr = tx_q->dma_etx;
1894 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1895 size = sizeof(struct dma_edesc);
1896 addr = tx_q->dma_entx;
1897 } else {
1898 size = sizeof(struct dma_desc);
1899 addr = tx_q->dma_tx;
1900 }
1901
1902 size *= priv->dma_tx_size;
1903
1904 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1905
1906 kfree(tx_q->tx_skbuff_dma);
1907 kfree(tx_q->tx_skbuff);
1908 }
1909
free_dma_tx_desc_resources(struct stmmac_priv * priv)1910 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1911 {
1912 u32 tx_count = priv->plat->tx_queues_to_use;
1913 u32 queue;
1914
1915 /* Free TX queue resources */
1916 for (queue = 0; queue < tx_count; queue++)
1917 __free_dma_tx_desc_resources(priv, queue);
1918 }
1919
1920 /**
1921 * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1922 * @priv: private structure
1923 * @queue: RX queue index
1924 * Description: according to which descriptor can be used (extend or basic)
1925 * this function allocates the resources for TX and RX paths. In case of
1926 * reception, for example, it pre-allocated the RX socket buffer in order to
1927 * allow zero-copy mechanism.
1928 */
__alloc_dma_rx_desc_resources(struct stmmac_priv * priv,u32 queue)1929 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1930 {
1931 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1932 struct stmmac_channel *ch = &priv->channel[queue];
1933 bool xdp_prog = stmmac_xdp_is_enabled(priv);
1934 struct page_pool_params pp_params = { 0 };
1935 unsigned int num_pages;
1936 unsigned int napi_id;
1937 int ret;
1938
1939 rx_q->queue_index = queue;
1940 rx_q->priv_data = priv;
1941
1942 pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
1943 pp_params.pool_size = priv->dma_rx_size;
1944 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1945 pp_params.order = ilog2(num_pages);
1946 pp_params.nid = dev_to_node(priv->device);
1947 pp_params.dev = priv->device;
1948 pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1949 pp_params.offset = stmmac_rx_offset(priv);
1950 pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
1951
1952 rx_q->page_pool = page_pool_create(&pp_params);
1953 if (IS_ERR(rx_q->page_pool)) {
1954 ret = PTR_ERR(rx_q->page_pool);
1955 rx_q->page_pool = NULL;
1956 return ret;
1957 }
1958
1959 rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1960 sizeof(*rx_q->buf_pool),
1961 GFP_KERNEL);
1962 if (!rx_q->buf_pool)
1963 return -ENOMEM;
1964
1965 if (priv->extend_desc) {
1966 rx_q->dma_erx = dma_alloc_coherent(priv->device,
1967 priv->dma_rx_size *
1968 sizeof(struct dma_extended_desc),
1969 &rx_q->dma_rx_phy,
1970 GFP_KERNEL);
1971 if (!rx_q->dma_erx)
1972 return -ENOMEM;
1973
1974 } else {
1975 rx_q->dma_rx = dma_alloc_coherent(priv->device,
1976 priv->dma_rx_size *
1977 sizeof(struct dma_desc),
1978 &rx_q->dma_rx_phy,
1979 GFP_KERNEL);
1980 if (!rx_q->dma_rx)
1981 return -ENOMEM;
1982 }
1983
1984 if (stmmac_xdp_is_enabled(priv) &&
1985 test_bit(queue, priv->af_xdp_zc_qps))
1986 napi_id = ch->rxtx_napi.napi_id;
1987 else
1988 napi_id = ch->rx_napi.napi_id;
1989
1990 ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
1991 rx_q->queue_index,
1992 napi_id);
1993 if (ret) {
1994 netdev_err(priv->dev, "Failed to register xdp rxq info\n");
1995 return -EINVAL;
1996 }
1997
1998 return 0;
1999 }
2000
alloc_dma_rx_desc_resources(struct stmmac_priv * priv)2001 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
2002 {
2003 u32 rx_count = priv->plat->rx_queues_to_use;
2004 u32 queue;
2005 int ret;
2006
2007 /* RX queues buffers and DMA */
2008 for (queue = 0; queue < rx_count; queue++) {
2009 ret = __alloc_dma_rx_desc_resources(priv, queue);
2010 if (ret)
2011 goto err_dma;
2012 }
2013
2014 return 0;
2015
2016 err_dma:
2017 free_dma_rx_desc_resources(priv);
2018
2019 return ret;
2020 }
2021
2022 /**
2023 * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2024 * @priv: private structure
2025 * @queue: TX queue index
2026 * Description: according to which descriptor can be used (extend or basic)
2027 * this function allocates the resources for TX and RX paths. In case of
2028 * reception, for example, it pre-allocated the RX socket buffer in order to
2029 * allow zero-copy mechanism.
2030 */
__alloc_dma_tx_desc_resources(struct stmmac_priv * priv,u32 queue)2031 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
2032 {
2033 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2034 size_t size;
2035 void *addr;
2036
2037 tx_q->queue_index = queue;
2038 tx_q->priv_data = priv;
2039
2040 tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
2041 sizeof(*tx_q->tx_skbuff_dma),
2042 GFP_KERNEL);
2043 if (!tx_q->tx_skbuff_dma)
2044 return -ENOMEM;
2045
2046 tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
2047 sizeof(struct sk_buff *),
2048 GFP_KERNEL);
2049 if (!tx_q->tx_skbuff)
2050 return -ENOMEM;
2051
2052 if (priv->extend_desc)
2053 size = sizeof(struct dma_extended_desc);
2054 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2055 size = sizeof(struct dma_edesc);
2056 else
2057 size = sizeof(struct dma_desc);
2058
2059 size *= priv->dma_tx_size;
2060
2061 addr = dma_alloc_coherent(priv->device, size,
2062 &tx_q->dma_tx_phy, GFP_KERNEL);
2063 if (!addr)
2064 return -ENOMEM;
2065
2066 if (priv->extend_desc)
2067 tx_q->dma_etx = addr;
2068 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2069 tx_q->dma_entx = addr;
2070 else
2071 tx_q->dma_tx = addr;
2072
2073 return 0;
2074 }
2075
alloc_dma_tx_desc_resources(struct stmmac_priv * priv)2076 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
2077 {
2078 u32 tx_count = priv->plat->tx_queues_to_use;
2079 u32 queue;
2080 int ret;
2081
2082 /* TX queues buffers and DMA */
2083 for (queue = 0; queue < tx_count; queue++) {
2084 ret = __alloc_dma_tx_desc_resources(priv, queue);
2085 if (ret)
2086 goto err_dma;
2087 }
2088
2089 return 0;
2090
2091 err_dma:
2092 free_dma_tx_desc_resources(priv);
2093 return ret;
2094 }
2095
2096 /**
2097 * alloc_dma_desc_resources - alloc TX/RX resources.
2098 * @priv: private structure
2099 * Description: according to which descriptor can be used (extend or basic)
2100 * this function allocates the resources for TX and RX paths. In case of
2101 * reception, for example, it pre-allocated the RX socket buffer in order to
2102 * allow zero-copy mechanism.
2103 */
alloc_dma_desc_resources(struct stmmac_priv * priv)2104 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
2105 {
2106 /* RX Allocation */
2107 int ret = alloc_dma_rx_desc_resources(priv);
2108
2109 if (ret)
2110 return ret;
2111
2112 ret = alloc_dma_tx_desc_resources(priv);
2113
2114 return ret;
2115 }
2116
2117 /**
2118 * free_dma_desc_resources - free dma desc resources
2119 * @priv: private structure
2120 */
free_dma_desc_resources(struct stmmac_priv * priv)2121 static void free_dma_desc_resources(struct stmmac_priv *priv)
2122 {
2123 /* Release the DMA TX socket buffers */
2124 free_dma_tx_desc_resources(priv);
2125
2126 /* Release the DMA RX socket buffers later
2127 * to ensure all pending XDP_TX buffers are returned.
2128 */
2129 free_dma_rx_desc_resources(priv);
2130 }
2131
2132 /**
2133 * stmmac_mac_enable_rx_queues - Enable MAC rx queues
2134 * @priv: driver private structure
2135 * Description: It is used for enabling the rx queues in the MAC
2136 */
stmmac_mac_enable_rx_queues(struct stmmac_priv * priv)2137 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2138 {
2139 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2140 int queue;
2141 u8 mode;
2142
2143 for (queue = 0; queue < rx_queues_count; queue++) {
2144 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2145 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2146 }
2147 }
2148
2149 /**
2150 * stmmac_start_rx_dma - start RX DMA channel
2151 * @priv: driver private structure
2152 * @chan: RX channel index
2153 * Description:
2154 * This starts a RX DMA channel
2155 */
stmmac_start_rx_dma(struct stmmac_priv * priv,u32 chan)2156 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2157 {
2158 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2159 stmmac_start_rx(priv, priv->ioaddr, chan);
2160 }
2161
2162 /**
2163 * stmmac_start_tx_dma - start TX DMA channel
2164 * @priv: driver private structure
2165 * @chan: TX channel index
2166 * Description:
2167 * This starts a TX DMA channel
2168 */
stmmac_start_tx_dma(struct stmmac_priv * priv,u32 chan)2169 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2170 {
2171 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2172 stmmac_start_tx(priv, priv->ioaddr, chan);
2173 }
2174
2175 /**
2176 * stmmac_stop_rx_dma - stop RX DMA channel
2177 * @priv: driver private structure
2178 * @chan: RX channel index
2179 * Description:
2180 * This stops a RX DMA channel
2181 */
stmmac_stop_rx_dma(struct stmmac_priv * priv,u32 chan)2182 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2183 {
2184 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2185 stmmac_stop_rx(priv, priv->ioaddr, chan);
2186 }
2187
2188 /**
2189 * stmmac_stop_tx_dma - stop TX DMA channel
2190 * @priv: driver private structure
2191 * @chan: TX channel index
2192 * Description:
2193 * This stops a TX DMA channel
2194 */
stmmac_stop_tx_dma(struct stmmac_priv * priv,u32 chan)2195 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2196 {
2197 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2198 stmmac_stop_tx(priv, priv->ioaddr, chan);
2199 }
2200
stmmac_enable_all_dma_irq(struct stmmac_priv * priv)2201 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2202 {
2203 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2204 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2205 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2206 u32 chan;
2207
2208 for (chan = 0; chan < dma_csr_ch; chan++) {
2209 struct stmmac_channel *ch = &priv->channel[chan];
2210 unsigned long flags;
2211
2212 spin_lock_irqsave(&ch->lock, flags);
2213 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2214 spin_unlock_irqrestore(&ch->lock, flags);
2215 }
2216 }
2217
2218 /**
2219 * stmmac_start_all_dma - start all RX and TX DMA channels
2220 * @priv: driver private structure
2221 * Description:
2222 * This starts all the RX and TX DMA channels
2223 */
stmmac_start_all_dma(struct stmmac_priv * priv)2224 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2225 {
2226 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2227 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2228 u32 chan = 0;
2229
2230 for (chan = 0; chan < rx_channels_count; chan++)
2231 stmmac_start_rx_dma(priv, chan);
2232
2233 for (chan = 0; chan < tx_channels_count; chan++)
2234 stmmac_start_tx_dma(priv, chan);
2235 }
2236
2237 /**
2238 * stmmac_stop_all_dma - stop all RX and TX DMA channels
2239 * @priv: driver private structure
2240 * Description:
2241 * This stops the RX and TX DMA channels
2242 */
stmmac_stop_all_dma(struct stmmac_priv * priv)2243 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2244 {
2245 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2246 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2247 u32 chan = 0;
2248
2249 for (chan = 0; chan < rx_channels_count; chan++)
2250 stmmac_stop_rx_dma(priv, chan);
2251
2252 for (chan = 0; chan < tx_channels_count; chan++)
2253 stmmac_stop_tx_dma(priv, chan);
2254 }
2255
2256 /**
2257 * stmmac_dma_operation_mode - HW DMA operation mode
2258 * @priv: driver private structure
2259 * Description: it is used for configuring the DMA operation mode register in
2260 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2261 */
stmmac_dma_operation_mode(struct stmmac_priv * priv)2262 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2263 {
2264 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2265 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2266 int rxfifosz = priv->plat->rx_fifo_size;
2267 int txfifosz = priv->plat->tx_fifo_size;
2268 u32 txmode = 0;
2269 u32 rxmode = 0;
2270 u32 chan = 0;
2271 u8 qmode = 0;
2272
2273 if (rxfifosz == 0)
2274 rxfifosz = priv->dma_cap.rx_fifo_size;
2275 if (txfifosz == 0)
2276 txfifosz = priv->dma_cap.tx_fifo_size;
2277
2278 /* Adjust for real per queue fifo size */
2279 rxfifosz /= rx_channels_count;
2280 txfifosz /= tx_channels_count;
2281
2282 if (priv->plat->force_thresh_dma_mode) {
2283 txmode = tc;
2284 rxmode = tc;
2285 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2286 /*
2287 * In case of GMAC, SF mode can be enabled
2288 * to perform the TX COE in HW. This depends on:
2289 * 1) TX COE if actually supported
2290 * 2) There is no bugged Jumbo frame support
2291 * that needs to not insert csum in the TDES.
2292 */
2293 txmode = SF_DMA_MODE;
2294 rxmode = SF_DMA_MODE;
2295 priv->xstats.threshold = SF_DMA_MODE;
2296 } else {
2297 txmode = tc;
2298 rxmode = SF_DMA_MODE;
2299 }
2300
2301 /* configure all channels */
2302 for (chan = 0; chan < rx_channels_count; chan++) {
2303 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2304 u32 buf_size;
2305
2306 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2307
2308 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2309 rxfifosz, qmode);
2310
2311 if (rx_q->xsk_pool) {
2312 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2313 stmmac_set_dma_bfsize(priv, priv->ioaddr,
2314 buf_size,
2315 chan);
2316 } else {
2317 stmmac_set_dma_bfsize(priv, priv->ioaddr,
2318 priv->dma_buf_sz,
2319 chan);
2320 }
2321 }
2322
2323 for (chan = 0; chan < tx_channels_count; chan++) {
2324 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2325
2326 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2327 txfifosz, qmode);
2328 }
2329 }
2330
stmmac_xdp_xmit_zc(struct stmmac_priv * priv,u32 queue,u32 budget)2331 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2332 {
2333 struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2334 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2335 struct xsk_buff_pool *pool = tx_q->xsk_pool;
2336 unsigned int entry = tx_q->cur_tx;
2337 struct dma_desc *tx_desc = NULL;
2338 struct xdp_desc xdp_desc;
2339 bool work_done = true;
2340
2341 /* Avoids TX time-out as we are sharing with slow path */
2342 txq_trans_cond_update(nq);
2343
2344 budget = min(budget, stmmac_tx_avail(priv, queue));
2345
2346 while (budget-- > 0) {
2347 dma_addr_t dma_addr;
2348 bool set_ic;
2349
2350 /* We are sharing with slow path and stop XSK TX desc submission when
2351 * available TX ring is less than threshold.
2352 */
2353 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2354 !netif_carrier_ok(priv->dev)) {
2355 work_done = false;
2356 break;
2357 }
2358
2359 if (!xsk_tx_peek_desc(pool, &xdp_desc))
2360 break;
2361
2362 if (likely(priv->extend_desc))
2363 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2364 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2365 tx_desc = &tx_q->dma_entx[entry].basic;
2366 else
2367 tx_desc = tx_q->dma_tx + entry;
2368
2369 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2370 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2371
2372 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2373
2374 /* To return XDP buffer to XSK pool, we simple call
2375 * xsk_tx_completed(), so we don't need to fill up
2376 * 'buf' and 'xdpf'.
2377 */
2378 tx_q->tx_skbuff_dma[entry].buf = 0;
2379 tx_q->xdpf[entry] = NULL;
2380
2381 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2382 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2383 tx_q->tx_skbuff_dma[entry].last_segment = true;
2384 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2385
2386 stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2387
2388 tx_q->tx_count_frames++;
2389
2390 if (!priv->tx_coal_frames[queue])
2391 set_ic = false;
2392 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2393 set_ic = true;
2394 else
2395 set_ic = false;
2396
2397 if (set_ic) {
2398 tx_q->tx_count_frames = 0;
2399 stmmac_set_tx_ic(priv, tx_desc);
2400 priv->xstats.tx_set_ic_bit++;
2401 }
2402
2403 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2404 true, priv->mode, true, true,
2405 xdp_desc.len);
2406
2407 stmmac_enable_dma_transmission(priv, priv->ioaddr);
2408
2409 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
2410 entry = tx_q->cur_tx;
2411 }
2412
2413 if (tx_desc) {
2414 stmmac_flush_tx_descriptors(priv, queue);
2415 xsk_tx_release(pool);
2416 }
2417
2418 /* Return true if all of the 3 conditions are met
2419 * a) TX Budget is still available
2420 * b) work_done = true when XSK TX desc peek is empty (no more
2421 * pending XSK TX for transmission)
2422 */
2423 return !!budget && work_done;
2424 }
2425
stmmac_bump_dma_threshold(struct stmmac_priv * priv,u32 chan)2426 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2427 {
2428 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2429 tc += 64;
2430
2431 if (priv->plat->force_thresh_dma_mode)
2432 stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2433 else
2434 stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2435 chan);
2436
2437 priv->xstats.threshold = tc;
2438 }
2439 }
2440
2441 /**
2442 * stmmac_tx_clean - to manage the transmission completion
2443 * @priv: driver private structure
2444 * @budget: napi budget limiting this functions packet handling
2445 * @queue: TX queue index
2446 * Description: it reclaims the transmit resources after transmission completes.
2447 */
stmmac_tx_clean(struct stmmac_priv * priv,int budget,u32 queue)2448 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2449 {
2450 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2451 unsigned int bytes_compl = 0, pkts_compl = 0;
2452 unsigned int entry, xmits = 0, count = 0;
2453
2454 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2455
2456 priv->xstats.tx_clean++;
2457
2458 tx_q->xsk_frames_done = 0;
2459
2460 entry = tx_q->dirty_tx;
2461
2462 /* Try to clean all TX complete frame in 1 shot */
2463 while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) {
2464 struct xdp_frame *xdpf;
2465 struct sk_buff *skb;
2466 struct dma_desc *p;
2467 int status;
2468
2469 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2470 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2471 xdpf = tx_q->xdpf[entry];
2472 skb = NULL;
2473 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2474 xdpf = NULL;
2475 skb = tx_q->tx_skbuff[entry];
2476 } else {
2477 xdpf = NULL;
2478 skb = NULL;
2479 }
2480
2481 if (priv->extend_desc)
2482 p = (struct dma_desc *)(tx_q->dma_etx + entry);
2483 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2484 p = &tx_q->dma_entx[entry].basic;
2485 else
2486 p = tx_q->dma_tx + entry;
2487
2488 status = stmmac_tx_status(priv, &priv->dev->stats,
2489 &priv->xstats, p, priv->ioaddr);
2490 /* Check if the descriptor is owned by the DMA */
2491 if (unlikely(status & tx_dma_own))
2492 break;
2493
2494 count++;
2495
2496 /* Make sure descriptor fields are read after reading
2497 * the own bit.
2498 */
2499 dma_rmb();
2500
2501 /* Just consider the last segment and ...*/
2502 if (likely(!(status & tx_not_ls))) {
2503 /* ... verify the status error condition */
2504 if (unlikely(status & tx_err)) {
2505 priv->dev->stats.tx_errors++;
2506 if (unlikely(status & tx_err_bump_tc))
2507 stmmac_bump_dma_threshold(priv, queue);
2508 } else {
2509 priv->dev->stats.tx_packets++;
2510 priv->xstats.tx_pkt_n++;
2511 priv->xstats.txq_stats[queue].tx_pkt_n++;
2512 }
2513 if (skb)
2514 stmmac_get_tx_hwtstamp(priv, p, skb);
2515 }
2516
2517 if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2518 tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2519 if (tx_q->tx_skbuff_dma[entry].map_as_page)
2520 dma_unmap_page(priv->device,
2521 tx_q->tx_skbuff_dma[entry].buf,
2522 tx_q->tx_skbuff_dma[entry].len,
2523 DMA_TO_DEVICE);
2524 else
2525 dma_unmap_single(priv->device,
2526 tx_q->tx_skbuff_dma[entry].buf,
2527 tx_q->tx_skbuff_dma[entry].len,
2528 DMA_TO_DEVICE);
2529 tx_q->tx_skbuff_dma[entry].buf = 0;
2530 tx_q->tx_skbuff_dma[entry].len = 0;
2531 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2532 }
2533
2534 stmmac_clean_desc3(priv, tx_q, p);
2535
2536 tx_q->tx_skbuff_dma[entry].last_segment = false;
2537 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2538
2539 if (xdpf &&
2540 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2541 xdp_return_frame_rx_napi(xdpf);
2542 tx_q->xdpf[entry] = NULL;
2543 }
2544
2545 if (xdpf &&
2546 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2547 xdp_return_frame(xdpf);
2548 tx_q->xdpf[entry] = NULL;
2549 }
2550
2551 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2552 tx_q->xsk_frames_done++;
2553
2554 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2555 if (likely(skb)) {
2556 pkts_compl++;
2557 bytes_compl += skb->len;
2558 dev_consume_skb_any(skb);
2559 tx_q->tx_skbuff[entry] = NULL;
2560 }
2561 }
2562
2563 stmmac_release_tx_desc(priv, p, priv->mode);
2564
2565 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2566 }
2567 tx_q->dirty_tx = entry;
2568
2569 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2570 pkts_compl, bytes_compl);
2571
2572 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2573 queue))) &&
2574 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2575
2576 netif_dbg(priv, tx_done, priv->dev,
2577 "%s: restart transmit\n", __func__);
2578 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2579 }
2580
2581 if (tx_q->xsk_pool) {
2582 bool work_done;
2583
2584 if (tx_q->xsk_frames_done)
2585 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2586
2587 if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2588 xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2589
2590 /* For XSK TX, we try to send as many as possible.
2591 * If XSK work done (XSK TX desc empty and budget still
2592 * available), return "budget - 1" to reenable TX IRQ.
2593 * Else, return "budget" to make NAPI continue polling.
2594 */
2595 work_done = stmmac_xdp_xmit_zc(priv, queue,
2596 STMMAC_XSK_TX_BUDGET_MAX);
2597 if (work_done)
2598 xmits = budget - 1;
2599 else
2600 xmits = budget;
2601 }
2602
2603 if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2604 priv->eee_sw_timer_en) {
2605 if (stmmac_enable_eee_mode(priv))
2606 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2607 }
2608
2609 /* We still have pending packets, let's call for a new scheduling */
2610 if (tx_q->dirty_tx != tx_q->cur_tx)
2611 hrtimer_start(&tx_q->txtimer,
2612 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2613 HRTIMER_MODE_REL);
2614
2615 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2616
2617 /* Combine decisions from TX clean and XSK TX */
2618 return max(count, xmits);
2619 }
2620
2621 /**
2622 * stmmac_tx_err - to manage the tx error
2623 * @priv: driver private structure
2624 * @chan: channel index
2625 * Description: it cleans the descriptors and restarts the transmission
2626 * in case of transmission errors.
2627 */
stmmac_tx_err(struct stmmac_priv * priv,u32 chan)2628 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2629 {
2630 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2631
2632 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2633
2634 stmmac_stop_tx_dma(priv, chan);
2635 dma_free_tx_skbufs(priv, chan);
2636 stmmac_clear_tx_descriptors(priv, chan);
2637 tx_q->dirty_tx = 0;
2638 tx_q->cur_tx = 0;
2639 tx_q->mss = 0;
2640 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2641 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2642 tx_q->dma_tx_phy, chan);
2643 stmmac_start_tx_dma(priv, chan);
2644
2645 priv->dev->stats.tx_errors++;
2646 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2647 }
2648
2649 /**
2650 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2651 * @priv: driver private structure
2652 * @txmode: TX operating mode
2653 * @rxmode: RX operating mode
2654 * @chan: channel index
2655 * Description: it is used for configuring of the DMA operation mode in
2656 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2657 * mode.
2658 */
stmmac_set_dma_operation_mode(struct stmmac_priv * priv,u32 txmode,u32 rxmode,u32 chan)2659 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2660 u32 rxmode, u32 chan)
2661 {
2662 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2663 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2664 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2665 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2666 int rxfifosz = priv->plat->rx_fifo_size;
2667 int txfifosz = priv->plat->tx_fifo_size;
2668
2669 if (rxfifosz == 0)
2670 rxfifosz = priv->dma_cap.rx_fifo_size;
2671 if (txfifosz == 0)
2672 txfifosz = priv->dma_cap.tx_fifo_size;
2673
2674 /* Adjust for real per queue fifo size */
2675 rxfifosz /= rx_channels_count;
2676 txfifosz /= tx_channels_count;
2677
2678 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2679 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2680 }
2681
stmmac_safety_feat_interrupt(struct stmmac_priv * priv)2682 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2683 {
2684 int ret;
2685
2686 ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2687 priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2688 if (ret && (ret != -EINVAL)) {
2689 stmmac_global_err(priv);
2690 return true;
2691 }
2692
2693 return false;
2694 }
2695
stmmac_napi_check(struct stmmac_priv * priv,u32 chan,u32 dir)2696 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2697 {
2698 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2699 &priv->xstats, chan, dir);
2700 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2701 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2702 struct stmmac_channel *ch = &priv->channel[chan];
2703 struct napi_struct *rx_napi;
2704 struct napi_struct *tx_napi;
2705 unsigned long flags;
2706
2707 rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2708 tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2709
2710 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2711 if (napi_schedule_prep(rx_napi)) {
2712 spin_lock_irqsave(&ch->lock, flags);
2713 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2714 spin_unlock_irqrestore(&ch->lock, flags);
2715 __napi_schedule(rx_napi);
2716 }
2717 }
2718
2719 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2720 if (napi_schedule_prep(tx_napi)) {
2721 spin_lock_irqsave(&ch->lock, flags);
2722 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2723 spin_unlock_irqrestore(&ch->lock, flags);
2724 __napi_schedule(tx_napi);
2725 }
2726 }
2727
2728 return status;
2729 }
2730
2731 /**
2732 * stmmac_dma_interrupt - DMA ISR
2733 * @priv: driver private structure
2734 * Description: this is the DMA ISR. It is called by the main ISR.
2735 * It calls the dwmac dma routine and schedule poll method in case of some
2736 * work can be done.
2737 */
stmmac_dma_interrupt(struct stmmac_priv * priv)2738 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2739 {
2740 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2741 u32 rx_channel_count = priv->plat->rx_queues_to_use;
2742 u32 channels_to_check = tx_channel_count > rx_channel_count ?
2743 tx_channel_count : rx_channel_count;
2744 u32 chan;
2745 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2746
2747 /* Make sure we never check beyond our status buffer. */
2748 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2749 channels_to_check = ARRAY_SIZE(status);
2750
2751 for (chan = 0; chan < channels_to_check; chan++)
2752 status[chan] = stmmac_napi_check(priv, chan,
2753 DMA_DIR_RXTX);
2754
2755 for (chan = 0; chan < tx_channel_count; chan++) {
2756 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2757 /* Try to bump up the dma threshold on this failure */
2758 stmmac_bump_dma_threshold(priv, chan);
2759 } else if (unlikely(status[chan] == tx_hard_error)) {
2760 stmmac_tx_err(priv, chan);
2761 }
2762 }
2763 }
2764
2765 /**
2766 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2767 * @priv: driver private structure
2768 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2769 */
stmmac_mmc_setup(struct stmmac_priv * priv)2770 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2771 {
2772 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2773 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2774
2775 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2776
2777 if (priv->dma_cap.rmon) {
2778 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2779 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2780 } else
2781 netdev_info(priv->dev, "No MAC Management Counters available\n");
2782 }
2783
2784 /**
2785 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2786 * @priv: driver private structure
2787 * Description:
2788 * new GMAC chip generations have a new register to indicate the
2789 * presence of the optional feature/functions.
2790 * This can be also used to override the value passed through the
2791 * platform and necessary for old MAC10/100 and GMAC chips.
2792 */
stmmac_get_hw_features(struct stmmac_priv * priv)2793 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2794 {
2795 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2796 }
2797
2798 /**
2799 * stmmac_check_ether_addr - check if the MAC addr is valid
2800 * @priv: driver private structure
2801 * Description:
2802 * it is to verify if the MAC address is valid, in case of failures it
2803 * generates a random MAC address
2804 */
stmmac_check_ether_addr(struct stmmac_priv * priv)2805 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2806 {
2807 u8 addr[ETH_ALEN];
2808
2809 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2810 stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2811 if (is_valid_ether_addr(addr))
2812 eth_hw_addr_set(priv->dev, addr);
2813 else
2814 eth_hw_addr_random(priv->dev);
2815 dev_info(priv->device, "device MAC address %pM\n",
2816 priv->dev->dev_addr);
2817 }
2818 }
2819
2820 /**
2821 * stmmac_init_dma_engine - DMA init.
2822 * @priv: driver private structure
2823 * Description:
2824 * It inits the DMA invoking the specific MAC/GMAC callback.
2825 * Some DMA parameters can be passed from the platform;
2826 * in case of these are not passed a default is kept for the MAC or GMAC.
2827 */
stmmac_init_dma_engine(struct stmmac_priv * priv)2828 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2829 {
2830 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2831 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2832 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2833 struct stmmac_rx_queue *rx_q;
2834 struct stmmac_tx_queue *tx_q;
2835 u32 chan = 0;
2836 int atds = 0;
2837 int ret = 0;
2838
2839 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2840 dev_err(priv->device, "Invalid DMA configuration\n");
2841 return -EINVAL;
2842 }
2843
2844 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2845 atds = 1;
2846
2847 ret = stmmac_reset(priv, priv->ioaddr);
2848 if (ret) {
2849 dev_err(priv->device, "Failed to reset the dma\n");
2850 return ret;
2851 }
2852
2853 /* DMA Configuration */
2854 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2855
2856 if (priv->plat->axi)
2857 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2858
2859 /* DMA CSR Channel configuration */
2860 for (chan = 0; chan < dma_csr_ch; chan++) {
2861 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2862 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2863 }
2864
2865 /* DMA RX Channel Configuration */
2866 for (chan = 0; chan < rx_channels_count; chan++) {
2867 rx_q = &priv->rx_queue[chan];
2868
2869 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2870 rx_q->dma_rx_phy, chan);
2871
2872 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2873 (rx_q->buf_alloc_num *
2874 sizeof(struct dma_desc));
2875 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2876 rx_q->rx_tail_addr, chan);
2877 }
2878
2879 /* DMA TX Channel Configuration */
2880 for (chan = 0; chan < tx_channels_count; chan++) {
2881 tx_q = &priv->tx_queue[chan];
2882
2883 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2884 tx_q->dma_tx_phy, chan);
2885
2886 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2887 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2888 tx_q->tx_tail_addr, chan);
2889 }
2890
2891 return ret;
2892 }
2893
stmmac_tx_timer_arm(struct stmmac_priv * priv,u32 queue)2894 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2895 {
2896 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2897
2898 hrtimer_start(&tx_q->txtimer,
2899 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2900 HRTIMER_MODE_REL);
2901 }
2902
2903 /**
2904 * stmmac_tx_timer - mitigation sw timer for tx.
2905 * @t: data pointer
2906 * Description:
2907 * This is the timer handler to directly invoke the stmmac_tx_clean.
2908 */
stmmac_tx_timer(struct hrtimer * t)2909 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2910 {
2911 struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2912 struct stmmac_priv *priv = tx_q->priv_data;
2913 struct stmmac_channel *ch;
2914 struct napi_struct *napi;
2915
2916 ch = &priv->channel[tx_q->queue_index];
2917 napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2918
2919 if (likely(napi_schedule_prep(napi))) {
2920 unsigned long flags;
2921
2922 spin_lock_irqsave(&ch->lock, flags);
2923 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2924 spin_unlock_irqrestore(&ch->lock, flags);
2925 __napi_schedule(napi);
2926 }
2927
2928 return HRTIMER_NORESTART;
2929 }
2930
2931 /**
2932 * stmmac_init_coalesce - init mitigation options.
2933 * @priv: driver private structure
2934 * Description:
2935 * This inits the coalesce parameters: i.e. timer rate,
2936 * timer handler and default threshold used for enabling the
2937 * interrupt on completion bit.
2938 */
stmmac_init_coalesce(struct stmmac_priv * priv)2939 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2940 {
2941 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2942 u32 rx_channel_count = priv->plat->rx_queues_to_use;
2943 u32 chan;
2944
2945 for (chan = 0; chan < tx_channel_count; chan++) {
2946 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2947
2948 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
2949 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
2950
2951 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2952 tx_q->txtimer.function = stmmac_tx_timer;
2953 }
2954
2955 for (chan = 0; chan < rx_channel_count; chan++)
2956 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
2957 }
2958
stmmac_set_rings_length(struct stmmac_priv * priv)2959 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2960 {
2961 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2962 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2963 u32 chan;
2964
2965 /* set TX ring length */
2966 for (chan = 0; chan < tx_channels_count; chan++)
2967 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2968 (priv->dma_tx_size - 1), chan);
2969
2970 /* set RX ring length */
2971 for (chan = 0; chan < rx_channels_count; chan++)
2972 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2973 (priv->dma_rx_size - 1), chan);
2974 }
2975
2976 /**
2977 * stmmac_set_tx_queue_weight - Set TX queue weight
2978 * @priv: driver private structure
2979 * Description: It is used for setting TX queues weight
2980 */
stmmac_set_tx_queue_weight(struct stmmac_priv * priv)2981 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2982 {
2983 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2984 u32 weight;
2985 u32 queue;
2986
2987 for (queue = 0; queue < tx_queues_count; queue++) {
2988 weight = priv->plat->tx_queues_cfg[queue].weight;
2989 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2990 }
2991 }
2992
2993 /**
2994 * stmmac_configure_cbs - Configure CBS in TX queue
2995 * @priv: driver private structure
2996 * Description: It is used for configuring CBS in AVB TX queues
2997 */
stmmac_configure_cbs(struct stmmac_priv * priv)2998 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2999 {
3000 u32 tx_queues_count = priv->plat->tx_queues_to_use;
3001 u32 mode_to_use;
3002 u32 queue;
3003
3004 /* queue 0 is reserved for legacy traffic */
3005 for (queue = 1; queue < tx_queues_count; queue++) {
3006 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3007 if (mode_to_use == MTL_QUEUE_DCB)
3008 continue;
3009
3010 stmmac_config_cbs(priv, priv->hw,
3011 priv->plat->tx_queues_cfg[queue].send_slope,
3012 priv->plat->tx_queues_cfg[queue].idle_slope,
3013 priv->plat->tx_queues_cfg[queue].high_credit,
3014 priv->plat->tx_queues_cfg[queue].low_credit,
3015 queue);
3016 }
3017 }
3018
3019 /**
3020 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3021 * @priv: driver private structure
3022 * Description: It is used for mapping RX queues to RX dma channels
3023 */
stmmac_rx_queue_dma_chan_map(struct stmmac_priv * priv)3024 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3025 {
3026 u32 rx_queues_count = priv->plat->rx_queues_to_use;
3027 u32 queue;
3028 u32 chan;
3029
3030 for (queue = 0; queue < rx_queues_count; queue++) {
3031 chan = priv->plat->rx_queues_cfg[queue].chan;
3032 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3033 }
3034 }
3035
3036 /**
3037 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3038 * @priv: driver private structure
3039 * Description: It is used for configuring the RX Queue Priority
3040 */
stmmac_mac_config_rx_queues_prio(struct stmmac_priv * priv)3041 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3042 {
3043 u32 rx_queues_count = priv->plat->rx_queues_to_use;
3044 u32 queue;
3045 u32 prio;
3046
3047 for (queue = 0; queue < rx_queues_count; queue++) {
3048 if (!priv->plat->rx_queues_cfg[queue].use_prio)
3049 continue;
3050
3051 prio = priv->plat->rx_queues_cfg[queue].prio;
3052 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3053 }
3054 }
3055
3056 /**
3057 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3058 * @priv: driver private structure
3059 * Description: It is used for configuring the TX Queue Priority
3060 */
stmmac_mac_config_tx_queues_prio(struct stmmac_priv * priv)3061 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3062 {
3063 u32 tx_queues_count = priv->plat->tx_queues_to_use;
3064 u32 queue;
3065 u32 prio;
3066
3067 for (queue = 0; queue < tx_queues_count; queue++) {
3068 if (!priv->plat->tx_queues_cfg[queue].use_prio)
3069 continue;
3070
3071 prio = priv->plat->tx_queues_cfg[queue].prio;
3072 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3073 }
3074 }
3075
3076 /**
3077 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3078 * @priv: driver private structure
3079 * Description: It is used for configuring the RX queue routing
3080 */
stmmac_mac_config_rx_queues_routing(struct stmmac_priv * priv)3081 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3082 {
3083 u32 rx_queues_count = priv->plat->rx_queues_to_use;
3084 u32 queue;
3085 u8 packet;
3086
3087 for (queue = 0; queue < rx_queues_count; queue++) {
3088 /* no specific packet type routing specified for the queue */
3089 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3090 continue;
3091
3092 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3093 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3094 }
3095 }
3096
stmmac_mac_config_rss(struct stmmac_priv * priv)3097 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3098 {
3099 if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3100 priv->rss.enable = false;
3101 return;
3102 }
3103
3104 if (priv->dev->features & NETIF_F_RXHASH)
3105 priv->rss.enable = true;
3106 else
3107 priv->rss.enable = false;
3108
3109 stmmac_rss_configure(priv, priv->hw, &priv->rss,
3110 priv->plat->rx_queues_to_use);
3111 }
3112
3113 /**
3114 * stmmac_mtl_configuration - Configure MTL
3115 * @priv: driver private structure
3116 * Description: It is used for configurring MTL
3117 */
stmmac_mtl_configuration(struct stmmac_priv * priv)3118 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3119 {
3120 u32 rx_queues_count = priv->plat->rx_queues_to_use;
3121 u32 tx_queues_count = priv->plat->tx_queues_to_use;
3122
3123 if (tx_queues_count > 1)
3124 stmmac_set_tx_queue_weight(priv);
3125
3126 /* Configure MTL RX algorithms */
3127 if (rx_queues_count > 1)
3128 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3129 priv->plat->rx_sched_algorithm);
3130
3131 /* Configure MTL TX algorithms */
3132 if (tx_queues_count > 1)
3133 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3134 priv->plat->tx_sched_algorithm);
3135
3136 /* Configure CBS in AVB TX queues */
3137 if (tx_queues_count > 1)
3138 stmmac_configure_cbs(priv);
3139
3140 /* Map RX MTL to DMA channels */
3141 stmmac_rx_queue_dma_chan_map(priv);
3142
3143 /* Enable MAC RX Queues */
3144 stmmac_mac_enable_rx_queues(priv);
3145
3146 /* Set RX priorities */
3147 if (rx_queues_count > 1)
3148 stmmac_mac_config_rx_queues_prio(priv);
3149
3150 /* Set TX priorities */
3151 if (tx_queues_count > 1)
3152 stmmac_mac_config_tx_queues_prio(priv);
3153
3154 /* Set RX routing */
3155 if (rx_queues_count > 1)
3156 stmmac_mac_config_rx_queues_routing(priv);
3157
3158 /* Receive Side Scaling */
3159 if (rx_queues_count > 1)
3160 stmmac_mac_config_rss(priv);
3161 }
3162
stmmac_safety_feat_configuration(struct stmmac_priv * priv)3163 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3164 {
3165 if (priv->dma_cap.asp) {
3166 netdev_info(priv->dev, "Enabling Safety Features\n");
3167 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3168 priv->plat->safety_feat_cfg);
3169 } else {
3170 netdev_info(priv->dev, "No Safety Features support found\n");
3171 }
3172 }
3173
stmmac_fpe_start_wq(struct stmmac_priv * priv)3174 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3175 {
3176 char *name;
3177
3178 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3179 clear_bit(__FPE_REMOVING, &priv->fpe_task_state);
3180
3181 name = priv->wq_name;
3182 sprintf(name, "%s-fpe", priv->dev->name);
3183
3184 priv->fpe_wq = create_singlethread_workqueue(name);
3185 if (!priv->fpe_wq) {
3186 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3187
3188 return -ENOMEM;
3189 }
3190 netdev_info(priv->dev, "FPE workqueue start");
3191
3192 return 0;
3193 }
3194
3195 /**
3196 * stmmac_hw_setup - setup mac in a usable state.
3197 * @dev : pointer to the device structure.
3198 * @ptp_register: register PTP if set
3199 * Description:
3200 * this is the main function to setup the HW in a usable state because the
3201 * dma engine is reset, the core registers are configured (e.g. AXI,
3202 * Checksum features, timers). The DMA is ready to start receiving and
3203 * transmitting.
3204 * Return value:
3205 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3206 * file on failure.
3207 */
stmmac_hw_setup(struct net_device * dev,bool ptp_register)3208 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3209 {
3210 struct stmmac_priv *priv = netdev_priv(dev);
3211 u32 rx_cnt = priv->plat->rx_queues_to_use;
3212 u32 tx_cnt = priv->plat->tx_queues_to_use;
3213 bool sph_en;
3214 u32 chan;
3215 int ret;
3216
3217 /* DMA initialization and SW reset */
3218 ret = stmmac_init_dma_engine(priv);
3219 if (ret < 0) {
3220 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3221 __func__);
3222 return ret;
3223 }
3224
3225 /* Copy the MAC addr into the HW */
3226 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3227
3228 /* PS and related bits will be programmed according to the speed */
3229 if (priv->hw->pcs) {
3230 int speed = priv->plat->mac_port_sel_speed;
3231
3232 if ((speed == SPEED_10) || (speed == SPEED_100) ||
3233 (speed == SPEED_1000)) {
3234 priv->hw->ps = speed;
3235 } else {
3236 dev_warn(priv->device, "invalid port speed\n");
3237 priv->hw->ps = 0;
3238 }
3239 }
3240
3241 /* Initialize the MAC Core */
3242 stmmac_core_init(priv, priv->hw, dev);
3243
3244 /* Initialize MTL*/
3245 stmmac_mtl_configuration(priv);
3246
3247 /* Initialize Safety Features */
3248 stmmac_safety_feat_configuration(priv);
3249
3250 ret = stmmac_rx_ipc(priv, priv->hw);
3251 if (!ret) {
3252 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3253 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3254 priv->hw->rx_csum = 0;
3255 }
3256
3257 /* Enable the MAC Rx/Tx */
3258 stmmac_mac_set(priv, priv->ioaddr, true);
3259
3260 /* Set the HW DMA mode and the COE */
3261 stmmac_dma_operation_mode(priv);
3262
3263 stmmac_mmc_setup(priv);
3264
3265 if (ptp_register) {
3266 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3267 if (ret < 0)
3268 netdev_warn(priv->dev,
3269 "failed to enable PTP reference clock: %pe\n",
3270 ERR_PTR(ret));
3271 }
3272
3273 ret = stmmac_init_ptp(priv);
3274 if (ret == -EOPNOTSUPP)
3275 netdev_info(priv->dev, "PTP not supported by HW\n");
3276 else if (ret)
3277 netdev_warn(priv->dev, "PTP init failed\n");
3278 else if (ptp_register)
3279 stmmac_ptp_register(priv);
3280
3281 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3282
3283 /* Convert the timer from msec to usec */
3284 if (!priv->tx_lpi_timer)
3285 priv->tx_lpi_timer = eee_timer * 1000;
3286
3287 if (priv->use_riwt) {
3288 u32 queue;
3289
3290 for (queue = 0; queue < rx_cnt; queue++) {
3291 if (!priv->rx_riwt[queue])
3292 priv->rx_riwt[queue] = DEF_DMA_RIWT;
3293
3294 stmmac_rx_watchdog(priv, priv->ioaddr,
3295 priv->rx_riwt[queue], queue);
3296 }
3297 }
3298
3299 if (priv->hw->pcs)
3300 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3301
3302 /* set TX and RX rings length */
3303 stmmac_set_rings_length(priv);
3304
3305 /* Enable TSO */
3306 if (priv->tso) {
3307 for (chan = 0; chan < tx_cnt; chan++) {
3308 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3309
3310 /* TSO and TBS cannot co-exist */
3311 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3312 continue;
3313
3314 stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3315 }
3316 }
3317
3318 /* Enable Split Header */
3319 sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3320 for (chan = 0; chan < rx_cnt; chan++)
3321 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3322
3323
3324 /* VLAN Tag Insertion */
3325 if (priv->dma_cap.vlins)
3326 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3327
3328 /* TBS */
3329 for (chan = 0; chan < tx_cnt; chan++) {
3330 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3331 int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3332
3333 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3334 }
3335
3336 /* Configure real RX and TX queues */
3337 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3338 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3339
3340 /* Start the ball rolling... */
3341 stmmac_start_all_dma(priv);
3342
3343 if (priv->dma_cap.fpesel) {
3344 stmmac_fpe_start_wq(priv);
3345
3346 if (priv->plat->fpe_cfg->enable)
3347 stmmac_fpe_handshake(priv, true);
3348 }
3349
3350 return 0;
3351 }
3352
stmmac_hw_teardown(struct net_device * dev)3353 static void stmmac_hw_teardown(struct net_device *dev)
3354 {
3355 struct stmmac_priv *priv = netdev_priv(dev);
3356
3357 clk_disable_unprepare(priv->plat->clk_ptp_ref);
3358 }
3359
stmmac_free_irq(struct net_device * dev,enum request_irq_err irq_err,int irq_idx)3360 static void stmmac_free_irq(struct net_device *dev,
3361 enum request_irq_err irq_err, int irq_idx)
3362 {
3363 struct stmmac_priv *priv = netdev_priv(dev);
3364 int j;
3365
3366 switch (irq_err) {
3367 case REQ_IRQ_ERR_ALL:
3368 irq_idx = priv->plat->tx_queues_to_use;
3369 fallthrough;
3370 case REQ_IRQ_ERR_TX:
3371 for (j = irq_idx - 1; j >= 0; j--) {
3372 if (priv->tx_irq[j] > 0) {
3373 irq_set_affinity_hint(priv->tx_irq[j], NULL);
3374 free_irq(priv->tx_irq[j], &priv->tx_queue[j]);
3375 }
3376 }
3377 irq_idx = priv->plat->rx_queues_to_use;
3378 fallthrough;
3379 case REQ_IRQ_ERR_RX:
3380 for (j = irq_idx - 1; j >= 0; j--) {
3381 if (priv->rx_irq[j] > 0) {
3382 irq_set_affinity_hint(priv->rx_irq[j], NULL);
3383 free_irq(priv->rx_irq[j], &priv->rx_queue[j]);
3384 }
3385 }
3386
3387 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3388 free_irq(priv->sfty_ue_irq, dev);
3389 fallthrough;
3390 case REQ_IRQ_ERR_SFTY_UE:
3391 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3392 free_irq(priv->sfty_ce_irq, dev);
3393 fallthrough;
3394 case REQ_IRQ_ERR_SFTY_CE:
3395 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3396 free_irq(priv->lpi_irq, dev);
3397 fallthrough;
3398 case REQ_IRQ_ERR_LPI:
3399 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3400 free_irq(priv->wol_irq, dev);
3401 fallthrough;
3402 case REQ_IRQ_ERR_WOL:
3403 free_irq(dev->irq, dev);
3404 fallthrough;
3405 case REQ_IRQ_ERR_MAC:
3406 case REQ_IRQ_ERR_NO:
3407 /* If MAC IRQ request error, no more IRQ to free */
3408 break;
3409 }
3410 }
3411
stmmac_request_irq_multi_msi(struct net_device * dev)3412 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3413 {
3414 struct stmmac_priv *priv = netdev_priv(dev);
3415 enum request_irq_err irq_err;
3416 cpumask_t cpu_mask;
3417 int irq_idx = 0;
3418 char *int_name;
3419 int ret;
3420 int i;
3421
3422 /* For common interrupt */
3423 int_name = priv->int_name_mac;
3424 sprintf(int_name, "%s:%s", dev->name, "mac");
3425 ret = request_irq(dev->irq, stmmac_mac_interrupt,
3426 0, int_name, dev);
3427 if (unlikely(ret < 0)) {
3428 netdev_err(priv->dev,
3429 "%s: alloc mac MSI %d (error: %d)\n",
3430 __func__, dev->irq, ret);
3431 irq_err = REQ_IRQ_ERR_MAC;
3432 goto irq_error;
3433 }
3434
3435 /* Request the Wake IRQ in case of another line
3436 * is used for WoL
3437 */
3438 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3439 int_name = priv->int_name_wol;
3440 sprintf(int_name, "%s:%s", dev->name, "wol");
3441 ret = request_irq(priv->wol_irq,
3442 stmmac_mac_interrupt,
3443 0, int_name, dev);
3444 if (unlikely(ret < 0)) {
3445 netdev_err(priv->dev,
3446 "%s: alloc wol MSI %d (error: %d)\n",
3447 __func__, priv->wol_irq, ret);
3448 irq_err = REQ_IRQ_ERR_WOL;
3449 goto irq_error;
3450 }
3451 }
3452
3453 /* Request the LPI IRQ in case of another line
3454 * is used for LPI
3455 */
3456 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3457 int_name = priv->int_name_lpi;
3458 sprintf(int_name, "%s:%s", dev->name, "lpi");
3459 ret = request_irq(priv->lpi_irq,
3460 stmmac_mac_interrupt,
3461 0, int_name, dev);
3462 if (unlikely(ret < 0)) {
3463 netdev_err(priv->dev,
3464 "%s: alloc lpi MSI %d (error: %d)\n",
3465 __func__, priv->lpi_irq, ret);
3466 irq_err = REQ_IRQ_ERR_LPI;
3467 goto irq_error;
3468 }
3469 }
3470
3471 /* Request the Safety Feature Correctible Error line in
3472 * case of another line is used
3473 */
3474 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3475 int_name = priv->int_name_sfty_ce;
3476 sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3477 ret = request_irq(priv->sfty_ce_irq,
3478 stmmac_safety_interrupt,
3479 0, int_name, dev);
3480 if (unlikely(ret < 0)) {
3481 netdev_err(priv->dev,
3482 "%s: alloc sfty ce MSI %d (error: %d)\n",
3483 __func__, priv->sfty_ce_irq, ret);
3484 irq_err = REQ_IRQ_ERR_SFTY_CE;
3485 goto irq_error;
3486 }
3487 }
3488
3489 /* Request the Safety Feature Uncorrectible Error line in
3490 * case of another line is used
3491 */
3492 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3493 int_name = priv->int_name_sfty_ue;
3494 sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3495 ret = request_irq(priv->sfty_ue_irq,
3496 stmmac_safety_interrupt,
3497 0, int_name, dev);
3498 if (unlikely(ret < 0)) {
3499 netdev_err(priv->dev,
3500 "%s: alloc sfty ue MSI %d (error: %d)\n",
3501 __func__, priv->sfty_ue_irq, ret);
3502 irq_err = REQ_IRQ_ERR_SFTY_UE;
3503 goto irq_error;
3504 }
3505 }
3506
3507 /* Request Rx MSI irq */
3508 for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3509 if (i >= MTL_MAX_RX_QUEUES)
3510 break;
3511 if (priv->rx_irq[i] == 0)
3512 continue;
3513
3514 int_name = priv->int_name_rx_irq[i];
3515 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3516 ret = request_irq(priv->rx_irq[i],
3517 stmmac_msi_intr_rx,
3518 0, int_name, &priv->rx_queue[i]);
3519 if (unlikely(ret < 0)) {
3520 netdev_err(priv->dev,
3521 "%s: alloc rx-%d MSI %d (error: %d)\n",
3522 __func__, i, priv->rx_irq[i], ret);
3523 irq_err = REQ_IRQ_ERR_RX;
3524 irq_idx = i;
3525 goto irq_error;
3526 }
3527 cpumask_clear(&cpu_mask);
3528 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3529 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3530 }
3531
3532 /* Request Tx MSI irq */
3533 for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3534 if (i >= MTL_MAX_TX_QUEUES)
3535 break;
3536 if (priv->tx_irq[i] == 0)
3537 continue;
3538
3539 int_name = priv->int_name_tx_irq[i];
3540 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3541 ret = request_irq(priv->tx_irq[i],
3542 stmmac_msi_intr_tx,
3543 0, int_name, &priv->tx_queue[i]);
3544 if (unlikely(ret < 0)) {
3545 netdev_err(priv->dev,
3546 "%s: alloc tx-%d MSI %d (error: %d)\n",
3547 __func__, i, priv->tx_irq[i], ret);
3548 irq_err = REQ_IRQ_ERR_TX;
3549 irq_idx = i;
3550 goto irq_error;
3551 }
3552 cpumask_clear(&cpu_mask);
3553 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3554 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3555 }
3556
3557 return 0;
3558
3559 irq_error:
3560 stmmac_free_irq(dev, irq_err, irq_idx);
3561 return ret;
3562 }
3563
stmmac_request_irq_single(struct net_device * dev)3564 static int stmmac_request_irq_single(struct net_device *dev)
3565 {
3566 struct stmmac_priv *priv = netdev_priv(dev);
3567 enum request_irq_err irq_err;
3568 int ret;
3569
3570 ret = request_irq(dev->irq, stmmac_interrupt,
3571 IRQF_SHARED, dev->name, dev);
3572 if (unlikely(ret < 0)) {
3573 netdev_err(priv->dev,
3574 "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3575 __func__, dev->irq, ret);
3576 irq_err = REQ_IRQ_ERR_MAC;
3577 goto irq_error;
3578 }
3579
3580 /* Request the Wake IRQ in case of another line
3581 * is used for WoL
3582 */
3583 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3584 ret = request_irq(priv->wol_irq, stmmac_interrupt,
3585 IRQF_SHARED, dev->name, dev);
3586 if (unlikely(ret < 0)) {
3587 netdev_err(priv->dev,
3588 "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3589 __func__, priv->wol_irq, ret);
3590 irq_err = REQ_IRQ_ERR_WOL;
3591 goto irq_error;
3592 }
3593 }
3594
3595 /* Request the IRQ lines */
3596 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3597 ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3598 IRQF_SHARED, dev->name, dev);
3599 if (unlikely(ret < 0)) {
3600 netdev_err(priv->dev,
3601 "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3602 __func__, priv->lpi_irq, ret);
3603 irq_err = REQ_IRQ_ERR_LPI;
3604 goto irq_error;
3605 }
3606 }
3607
3608 return 0;
3609
3610 irq_error:
3611 stmmac_free_irq(dev, irq_err, 0);
3612 return ret;
3613 }
3614
stmmac_request_irq(struct net_device * dev)3615 static int stmmac_request_irq(struct net_device *dev)
3616 {
3617 struct stmmac_priv *priv = netdev_priv(dev);
3618 int ret;
3619
3620 /* Request the IRQ lines */
3621 if (priv->plat->multi_msi_en)
3622 ret = stmmac_request_irq_multi_msi(dev);
3623 else
3624 ret = stmmac_request_irq_single(dev);
3625
3626 return ret;
3627 }
3628
3629 /**
3630 * stmmac_open - open entry point of the driver
3631 * @dev : pointer to the device structure.
3632 * Description:
3633 * This function is the open entry point of the driver.
3634 * Return value:
3635 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3636 * file on failure.
3637 */
stmmac_open(struct net_device * dev)3638 static int stmmac_open(struct net_device *dev)
3639 {
3640 struct stmmac_priv *priv = netdev_priv(dev);
3641 int mode = priv->plat->phy_interface;
3642 int bfsize = 0;
3643 u32 chan;
3644 int ret;
3645
3646 ret = pm_runtime_resume_and_get(priv->device);
3647 if (ret < 0)
3648 return ret;
3649
3650 if (priv->hw->pcs != STMMAC_PCS_TBI &&
3651 priv->hw->pcs != STMMAC_PCS_RTBI &&
3652 (!priv->hw->xpcs ||
3653 xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3654 ret = stmmac_init_phy(dev);
3655 if (ret) {
3656 netdev_err(priv->dev,
3657 "%s: Cannot attach to PHY (error: %d)\n",
3658 __func__, ret);
3659 goto init_phy_error;
3660 }
3661 }
3662
3663 /* Extra statistics */
3664 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3665 priv->xstats.threshold = tc;
3666
3667 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
3668 if (bfsize < 0)
3669 bfsize = 0;
3670
3671 if (bfsize < BUF_SIZE_16KiB)
3672 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
3673
3674 priv->dma_buf_sz = bfsize;
3675 buf_sz = bfsize;
3676
3677 priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3678
3679 if (!priv->dma_tx_size)
3680 priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3681 if (!priv->dma_rx_size)
3682 priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3683
3684 /* Earlier check for TBS */
3685 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3686 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3687 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3688
3689 /* Setup per-TXQ tbs flag before TX descriptor alloc */
3690 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3691 }
3692
3693 ret = alloc_dma_desc_resources(priv);
3694 if (ret < 0) {
3695 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3696 __func__);
3697 goto dma_desc_error;
3698 }
3699
3700 ret = init_dma_desc_rings(dev, GFP_KERNEL);
3701 if (ret < 0) {
3702 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3703 __func__);
3704 goto init_error;
3705 }
3706
3707 ret = stmmac_hw_setup(dev, true);
3708 if (ret < 0) {
3709 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3710 goto init_error;
3711 }
3712
3713 stmmac_init_coalesce(priv);
3714
3715 phylink_start(priv->phylink);
3716 /* We may have called phylink_speed_down before */
3717 phylink_speed_up(priv->phylink);
3718
3719 ret = stmmac_request_irq(dev);
3720 if (ret)
3721 goto irq_error;
3722
3723 stmmac_enable_all_queues(priv);
3724 netif_tx_start_all_queues(priv->dev);
3725 stmmac_enable_all_dma_irq(priv);
3726
3727 return 0;
3728
3729 irq_error:
3730 phylink_stop(priv->phylink);
3731
3732 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3733 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3734
3735 stmmac_hw_teardown(dev);
3736 init_error:
3737 free_dma_desc_resources(priv);
3738 dma_desc_error:
3739 phylink_disconnect_phy(priv->phylink);
3740 init_phy_error:
3741 pm_runtime_put(priv->device);
3742 return ret;
3743 }
3744
stmmac_fpe_stop_wq(struct stmmac_priv * priv)3745 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3746 {
3747 set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3748
3749 if (priv->fpe_wq)
3750 destroy_workqueue(priv->fpe_wq);
3751
3752 netdev_info(priv->dev, "FPE workqueue stop");
3753 }
3754
3755 /**
3756 * stmmac_release - close entry point of the driver
3757 * @dev : device pointer.
3758 * Description:
3759 * This is the stop entry point of the driver.
3760 */
stmmac_release(struct net_device * dev)3761 static int stmmac_release(struct net_device *dev)
3762 {
3763 struct stmmac_priv *priv = netdev_priv(dev);
3764 u32 chan;
3765
3766 netif_tx_disable(dev);
3767
3768 if (device_may_wakeup(priv->device))
3769 phylink_speed_down(priv->phylink, false);
3770 /* Stop and disconnect the PHY */
3771 phylink_stop(priv->phylink);
3772 phylink_disconnect_phy(priv->phylink);
3773
3774 stmmac_disable_all_queues(priv);
3775
3776 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3777 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3778
3779 /* Free the IRQ lines */
3780 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3781
3782 if (priv->eee_enabled) {
3783 priv->tx_path_in_lpi_mode = false;
3784 del_timer_sync(&priv->eee_ctrl_timer);
3785 }
3786
3787 /* Stop TX/RX DMA and clear the descriptors */
3788 stmmac_stop_all_dma(priv);
3789
3790 /* Release and free the Rx/Tx resources */
3791 free_dma_desc_resources(priv);
3792
3793 /* Disable the MAC Rx/Tx */
3794 stmmac_mac_set(priv, priv->ioaddr, false);
3795
3796 netif_carrier_off(dev);
3797
3798 stmmac_release_ptp(priv);
3799
3800 pm_runtime_put(priv->device);
3801
3802 if (priv->dma_cap.fpesel)
3803 stmmac_fpe_stop_wq(priv);
3804
3805 return 0;
3806 }
3807
stmmac_vlan_insert(struct stmmac_priv * priv,struct sk_buff * skb,struct stmmac_tx_queue * tx_q)3808 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3809 struct stmmac_tx_queue *tx_q)
3810 {
3811 u16 tag = 0x0, inner_tag = 0x0;
3812 u32 inner_type = 0x0;
3813 struct dma_desc *p;
3814
3815 if (!priv->dma_cap.vlins)
3816 return false;
3817 if (!skb_vlan_tag_present(skb))
3818 return false;
3819 if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3820 inner_tag = skb_vlan_tag_get(skb);
3821 inner_type = STMMAC_VLAN_INSERT;
3822 }
3823
3824 tag = skb_vlan_tag_get(skb);
3825
3826 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3827 p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3828 else
3829 p = &tx_q->dma_tx[tx_q->cur_tx];
3830
3831 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3832 return false;
3833
3834 stmmac_set_tx_owner(priv, p);
3835 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3836 return true;
3837 }
3838
3839 /**
3840 * stmmac_tso_allocator - close entry point of the driver
3841 * @priv: driver private structure
3842 * @des: buffer start address
3843 * @total_len: total length to fill in descriptors
3844 * @last_segment: condition for the last descriptor
3845 * @queue: TX queue index
3846 * Description:
3847 * This function fills descriptor and request new descriptors according to
3848 * buffer length to fill
3849 */
stmmac_tso_allocator(struct stmmac_priv * priv,dma_addr_t des,int total_len,bool last_segment,u32 queue)3850 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3851 int total_len, bool last_segment, u32 queue)
3852 {
3853 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3854 struct dma_desc *desc;
3855 u32 buff_size;
3856 int tmp_len;
3857
3858 tmp_len = total_len;
3859
3860 while (tmp_len > 0) {
3861 dma_addr_t curr_addr;
3862
3863 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3864 priv->dma_tx_size);
3865 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3866
3867 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3868 desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3869 else
3870 desc = &tx_q->dma_tx[tx_q->cur_tx];
3871
3872 curr_addr = des + (total_len - tmp_len);
3873 if (priv->dma_cap.addr64 <= 32)
3874 desc->des0 = cpu_to_le32(curr_addr);
3875 else
3876 stmmac_set_desc_addr(priv, desc, curr_addr);
3877
3878 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3879 TSO_MAX_BUFF_SIZE : tmp_len;
3880
3881 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3882 0, 1,
3883 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3884 0, 0);
3885
3886 tmp_len -= TSO_MAX_BUFF_SIZE;
3887 }
3888 }
3889
stmmac_flush_tx_descriptors(struct stmmac_priv * priv,int queue)3890 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
3891 {
3892 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3893 int desc_size;
3894
3895 if (likely(priv->extend_desc))
3896 desc_size = sizeof(struct dma_extended_desc);
3897 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3898 desc_size = sizeof(struct dma_edesc);
3899 else
3900 desc_size = sizeof(struct dma_desc);
3901
3902 /* The own bit must be the latest setting done when prepare the
3903 * descriptor and then barrier is needed to make sure that
3904 * all is coherent before granting the DMA engine.
3905 */
3906 wmb();
3907
3908 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3909 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3910 }
3911
3912 /**
3913 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3914 * @skb : the socket buffer
3915 * @dev : device pointer
3916 * Description: this is the transmit function that is called on TSO frames
3917 * (support available on GMAC4 and newer chips).
3918 * Diagram below show the ring programming in case of TSO frames:
3919 *
3920 * First Descriptor
3921 * --------
3922 * | DES0 |---> buffer1 = L2/L3/L4 header
3923 * | DES1 |---> TCP Payload (can continue on next descr...)
3924 * | DES2 |---> buffer 1 and 2 len
3925 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3926 * --------
3927 * |
3928 * ...
3929 * |
3930 * --------
3931 * | DES0 | --| Split TCP Payload on Buffers 1 and 2
3932 * | DES1 | --|
3933 * | DES2 | --> buffer 1 and 2 len
3934 * | DES3 |
3935 * --------
3936 *
3937 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3938 */
stmmac_tso_xmit(struct sk_buff * skb,struct net_device * dev)3939 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3940 {
3941 struct dma_desc *desc, *first, *mss_desc = NULL;
3942 struct stmmac_priv *priv = netdev_priv(dev);
3943 int nfrags = skb_shinfo(skb)->nr_frags;
3944 u32 queue = skb_get_queue_mapping(skb);
3945 unsigned int first_entry, tx_packets;
3946 int tmp_pay_len = 0, first_tx;
3947 struct stmmac_tx_queue *tx_q;
3948 bool has_vlan, set_ic;
3949 u8 proto_hdr_len, hdr;
3950 u32 pay_len, mss;
3951 dma_addr_t des;
3952 int i;
3953
3954 tx_q = &priv->tx_queue[queue];
3955 first_tx = tx_q->cur_tx;
3956
3957 /* Compute header lengths */
3958 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3959 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3960 hdr = sizeof(struct udphdr);
3961 } else {
3962 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3963 hdr = tcp_hdrlen(skb);
3964 }
3965
3966 /* Desc availability based on threshold should be enough safe */
3967 if (unlikely(stmmac_tx_avail(priv, queue) <
3968 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3969 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3970 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3971 queue));
3972 /* This is a hard error, log it. */
3973 netdev_err(priv->dev,
3974 "%s: Tx Ring full when queue awake\n",
3975 __func__);
3976 }
3977 return NETDEV_TX_BUSY;
3978 }
3979
3980 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3981
3982 mss = skb_shinfo(skb)->gso_size;
3983
3984 /* set new MSS value if needed */
3985 if (mss != tx_q->mss) {
3986 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3987 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3988 else
3989 mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3990
3991 stmmac_set_mss(priv, mss_desc, mss);
3992 tx_q->mss = mss;
3993 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3994 priv->dma_tx_size);
3995 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3996 }
3997
3998 if (netif_msg_tx_queued(priv)) {
3999 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4000 __func__, hdr, proto_hdr_len, pay_len, mss);
4001 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4002 skb->data_len);
4003 }
4004
4005 /* Check if VLAN can be inserted by HW */
4006 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4007
4008 first_entry = tx_q->cur_tx;
4009 WARN_ON(tx_q->tx_skbuff[first_entry]);
4010
4011 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4012 desc = &tx_q->dma_entx[first_entry].basic;
4013 else
4014 desc = &tx_q->dma_tx[first_entry];
4015 first = desc;
4016
4017 if (has_vlan)
4018 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4019
4020 /* first descriptor: fill Headers on Buf1 */
4021 des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4022 DMA_TO_DEVICE);
4023 if (dma_mapping_error(priv->device, des))
4024 goto dma_map_err;
4025
4026 tx_q->tx_skbuff_dma[first_entry].buf = des;
4027 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4028 tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4029 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4030
4031 if (priv->dma_cap.addr64 <= 32) {
4032 first->des0 = cpu_to_le32(des);
4033
4034 /* Fill start of payload in buff2 of first descriptor */
4035 if (pay_len)
4036 first->des1 = cpu_to_le32(des + proto_hdr_len);
4037
4038 /* If needed take extra descriptors to fill the remaining payload */
4039 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4040 } else {
4041 stmmac_set_desc_addr(priv, first, des);
4042 tmp_pay_len = pay_len;
4043 des += proto_hdr_len;
4044 pay_len = 0;
4045 }
4046
4047 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4048
4049 /* Prepare fragments */
4050 for (i = 0; i < nfrags; i++) {
4051 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4052
4053 des = skb_frag_dma_map(priv->device, frag, 0,
4054 skb_frag_size(frag),
4055 DMA_TO_DEVICE);
4056 if (dma_mapping_error(priv->device, des))
4057 goto dma_map_err;
4058
4059 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4060 (i == nfrags - 1), queue);
4061
4062 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4063 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4064 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4065 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4066 }
4067
4068 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4069
4070 /* Only the last descriptor gets to point to the skb. */
4071 tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4072 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4073
4074 /* Manage tx mitigation */
4075 tx_packets = (tx_q->cur_tx + 1) - first_tx;
4076 tx_q->tx_count_frames += tx_packets;
4077
4078 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4079 set_ic = true;
4080 else if (!priv->tx_coal_frames[queue])
4081 set_ic = false;
4082 else if (tx_packets > priv->tx_coal_frames[queue])
4083 set_ic = true;
4084 else if ((tx_q->tx_count_frames %
4085 priv->tx_coal_frames[queue]) < tx_packets)
4086 set_ic = true;
4087 else
4088 set_ic = false;
4089
4090 if (set_ic) {
4091 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4092 desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4093 else
4094 desc = &tx_q->dma_tx[tx_q->cur_tx];
4095
4096 tx_q->tx_count_frames = 0;
4097 stmmac_set_tx_ic(priv, desc);
4098 priv->xstats.tx_set_ic_bit++;
4099 }
4100
4101 /* We've used all descriptors we need for this skb, however,
4102 * advance cur_tx so that it references a fresh descriptor.
4103 * ndo_start_xmit will fill this descriptor the next time it's
4104 * called and stmmac_tx_clean may clean up to this descriptor.
4105 */
4106 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
4107
4108 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4109 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4110 __func__);
4111 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4112 }
4113
4114 dev->stats.tx_bytes += skb->len;
4115 priv->xstats.tx_tso_frames++;
4116 priv->xstats.tx_tso_nfrags += nfrags;
4117
4118 if (priv->sarc_type)
4119 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4120
4121 skb_tx_timestamp(skb);
4122
4123 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4124 priv->hwts_tx_en)) {
4125 /* declare that device is doing timestamping */
4126 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4127 stmmac_enable_tx_timestamp(priv, first);
4128 }
4129
4130 /* Complete the first descriptor before granting the DMA */
4131 stmmac_prepare_tso_tx_desc(priv, first, 1,
4132 proto_hdr_len,
4133 pay_len,
4134 1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4135 hdr / 4, (skb->len - proto_hdr_len));
4136
4137 /* If context desc is used to change MSS */
4138 if (mss_desc) {
4139 /* Make sure that first descriptor has been completely
4140 * written, including its own bit. This is because MSS is
4141 * actually before first descriptor, so we need to make
4142 * sure that MSS's own bit is the last thing written.
4143 */
4144 dma_wmb();
4145 stmmac_set_tx_owner(priv, mss_desc);
4146 }
4147
4148 if (netif_msg_pktdata(priv)) {
4149 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4150 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4151 tx_q->cur_tx, first, nfrags);
4152 pr_info(">>> frame to be transmitted: ");
4153 print_pkt(skb->data, skb_headlen(skb));
4154 }
4155
4156 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4157
4158 stmmac_flush_tx_descriptors(priv, queue);
4159 stmmac_tx_timer_arm(priv, queue);
4160
4161 return NETDEV_TX_OK;
4162
4163 dma_map_err:
4164 dev_err(priv->device, "Tx dma map failed\n");
4165 dev_kfree_skb(skb);
4166 priv->dev->stats.tx_dropped++;
4167 return NETDEV_TX_OK;
4168 }
4169
4170 /**
4171 * stmmac_xmit - Tx entry point of the driver
4172 * @skb : the socket buffer
4173 * @dev : device pointer
4174 * Description : this is the tx entry point of the driver.
4175 * It programs the chain or the ring and supports oversized frames
4176 * and SG feature.
4177 */
stmmac_xmit(struct sk_buff * skb,struct net_device * dev)4178 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4179 {
4180 unsigned int first_entry, tx_packets, enh_desc;
4181 struct stmmac_priv *priv = netdev_priv(dev);
4182 unsigned int nopaged_len = skb_headlen(skb);
4183 int i, csum_insertion = 0, is_jumbo = 0;
4184 u32 queue = skb_get_queue_mapping(skb);
4185 int nfrags = skb_shinfo(skb)->nr_frags;
4186 int gso = skb_shinfo(skb)->gso_type;
4187 struct dma_edesc *tbs_desc = NULL;
4188 struct dma_desc *desc, *first;
4189 struct stmmac_tx_queue *tx_q;
4190 bool has_vlan, set_ic;
4191 int entry, first_tx;
4192 dma_addr_t des;
4193
4194 tx_q = &priv->tx_queue[queue];
4195 first_tx = tx_q->cur_tx;
4196
4197 if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4198 stmmac_disable_eee_mode(priv);
4199
4200 /* Manage oversized TCP frames for GMAC4 device */
4201 if (skb_is_gso(skb) && priv->tso) {
4202 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4203 return stmmac_tso_xmit(skb, dev);
4204 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4205 return stmmac_tso_xmit(skb, dev);
4206 }
4207
4208 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4209 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4210 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4211 queue));
4212 /* This is a hard error, log it. */
4213 netdev_err(priv->dev,
4214 "%s: Tx Ring full when queue awake\n",
4215 __func__);
4216 }
4217 return NETDEV_TX_BUSY;
4218 }
4219
4220 /* Check if VLAN can be inserted by HW */
4221 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4222
4223 entry = tx_q->cur_tx;
4224 first_entry = entry;
4225 WARN_ON(tx_q->tx_skbuff[first_entry]);
4226
4227 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4228
4229 if (likely(priv->extend_desc))
4230 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4231 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4232 desc = &tx_q->dma_entx[entry].basic;
4233 else
4234 desc = tx_q->dma_tx + entry;
4235
4236 first = desc;
4237
4238 if (has_vlan)
4239 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4240
4241 enh_desc = priv->plat->enh_desc;
4242 /* To program the descriptors according to the size of the frame */
4243 if (enh_desc)
4244 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4245
4246 if (unlikely(is_jumbo)) {
4247 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4248 if (unlikely(entry < 0) && (entry != -EINVAL))
4249 goto dma_map_err;
4250 }
4251
4252 for (i = 0; i < nfrags; i++) {
4253 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4254 int len = skb_frag_size(frag);
4255 bool last_segment = (i == (nfrags - 1));
4256
4257 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4258 WARN_ON(tx_q->tx_skbuff[entry]);
4259
4260 if (likely(priv->extend_desc))
4261 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4262 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4263 desc = &tx_q->dma_entx[entry].basic;
4264 else
4265 desc = tx_q->dma_tx + entry;
4266
4267 des = skb_frag_dma_map(priv->device, frag, 0, len,
4268 DMA_TO_DEVICE);
4269 if (dma_mapping_error(priv->device, des))
4270 goto dma_map_err; /* should reuse desc w/o issues */
4271
4272 tx_q->tx_skbuff_dma[entry].buf = des;
4273
4274 stmmac_set_desc_addr(priv, desc, des);
4275
4276 tx_q->tx_skbuff_dma[entry].map_as_page = true;
4277 tx_q->tx_skbuff_dma[entry].len = len;
4278 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4279 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4280
4281 /* Prepare the descriptor and set the own bit too */
4282 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4283 priv->mode, 1, last_segment, skb->len);
4284 }
4285
4286 /* Only the last descriptor gets to point to the skb. */
4287 tx_q->tx_skbuff[entry] = skb;
4288 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4289
4290 /* According to the coalesce parameter the IC bit for the latest
4291 * segment is reset and the timer re-started to clean the tx status.
4292 * This approach takes care about the fragments: desc is the first
4293 * element in case of no SG.
4294 */
4295 tx_packets = (entry + 1) - first_tx;
4296 tx_q->tx_count_frames += tx_packets;
4297
4298 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4299 set_ic = true;
4300 else if (!priv->tx_coal_frames[queue])
4301 set_ic = false;
4302 else if (tx_packets > priv->tx_coal_frames[queue])
4303 set_ic = true;
4304 else if ((tx_q->tx_count_frames %
4305 priv->tx_coal_frames[queue]) < tx_packets)
4306 set_ic = true;
4307 else
4308 set_ic = false;
4309
4310 if (set_ic) {
4311 if (likely(priv->extend_desc))
4312 desc = &tx_q->dma_etx[entry].basic;
4313 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4314 desc = &tx_q->dma_entx[entry].basic;
4315 else
4316 desc = &tx_q->dma_tx[entry];
4317
4318 tx_q->tx_count_frames = 0;
4319 stmmac_set_tx_ic(priv, desc);
4320 priv->xstats.tx_set_ic_bit++;
4321 }
4322
4323 /* We've used all descriptors we need for this skb, however,
4324 * advance cur_tx so that it references a fresh descriptor.
4325 * ndo_start_xmit will fill this descriptor the next time it's
4326 * called and stmmac_tx_clean may clean up to this descriptor.
4327 */
4328 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4329 tx_q->cur_tx = entry;
4330
4331 if (netif_msg_pktdata(priv)) {
4332 netdev_dbg(priv->dev,
4333 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4334 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4335 entry, first, nfrags);
4336
4337 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4338 print_pkt(skb->data, skb->len);
4339 }
4340
4341 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4342 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4343 __func__);
4344 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4345 }
4346
4347 dev->stats.tx_bytes += skb->len;
4348
4349 if (priv->sarc_type)
4350 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4351
4352 skb_tx_timestamp(skb);
4353
4354 /* Ready to fill the first descriptor and set the OWN bit w/o any
4355 * problems because all the descriptors are actually ready to be
4356 * passed to the DMA engine.
4357 */
4358 if (likely(!is_jumbo)) {
4359 bool last_segment = (nfrags == 0);
4360
4361 des = dma_map_single(priv->device, skb->data,
4362 nopaged_len, DMA_TO_DEVICE);
4363 if (dma_mapping_error(priv->device, des))
4364 goto dma_map_err;
4365
4366 tx_q->tx_skbuff_dma[first_entry].buf = des;
4367 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4368 tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4369
4370 stmmac_set_desc_addr(priv, first, des);
4371
4372 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4373 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4374
4375 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4376 priv->hwts_tx_en)) {
4377 /* declare that device is doing timestamping */
4378 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4379 stmmac_enable_tx_timestamp(priv, first);
4380 }
4381
4382 /* Prepare the first descriptor setting the OWN bit too */
4383 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4384 csum_insertion, priv->mode, 0, last_segment,
4385 skb->len);
4386 }
4387
4388 if (tx_q->tbs & STMMAC_TBS_EN) {
4389 struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4390
4391 tbs_desc = &tx_q->dma_entx[first_entry];
4392 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4393 }
4394
4395 stmmac_set_tx_owner(priv, first);
4396
4397 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4398
4399 stmmac_enable_dma_transmission(priv, priv->ioaddr);
4400
4401 stmmac_flush_tx_descriptors(priv, queue);
4402 stmmac_tx_timer_arm(priv, queue);
4403
4404 return NETDEV_TX_OK;
4405
4406 dma_map_err:
4407 netdev_err(priv->dev, "Tx DMA map failed\n");
4408 dev_kfree_skb(skb);
4409 priv->dev->stats.tx_dropped++;
4410 return NETDEV_TX_OK;
4411 }
4412
stmmac_rx_vlan(struct net_device * dev,struct sk_buff * skb)4413 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4414 {
4415 struct vlan_ethhdr *veth;
4416 __be16 vlan_proto;
4417 u16 vlanid;
4418
4419 veth = (struct vlan_ethhdr *)skb->data;
4420 vlan_proto = veth->h_vlan_proto;
4421
4422 if ((vlan_proto == htons(ETH_P_8021Q) &&
4423 dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4424 (vlan_proto == htons(ETH_P_8021AD) &&
4425 dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4426 /* pop the vlan tag */
4427 vlanid = ntohs(veth->h_vlan_TCI);
4428 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4429 skb_pull(skb, VLAN_HLEN);
4430 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4431 }
4432 }
4433
4434 /**
4435 * stmmac_rx_refill - refill used skb preallocated buffers
4436 * @priv: driver private structure
4437 * @queue: RX queue index
4438 * Description : this is to reallocate the skb for the reception process
4439 * that is based on zero-copy.
4440 */
stmmac_rx_refill(struct stmmac_priv * priv,u32 queue)4441 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4442 {
4443 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4444 int dirty = stmmac_rx_dirty(priv, queue);
4445 unsigned int entry = rx_q->dirty_rx;
4446 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4447
4448 if (priv->dma_cap.addr64 <= 32)
4449 gfp |= GFP_DMA32;
4450
4451 while (dirty-- > 0) {
4452 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4453 struct dma_desc *p;
4454 bool use_rx_wd;
4455
4456 if (priv->extend_desc)
4457 p = (struct dma_desc *)(rx_q->dma_erx + entry);
4458 else
4459 p = rx_q->dma_rx + entry;
4460
4461 if (!buf->page) {
4462 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4463 if (!buf->page)
4464 break;
4465 }
4466
4467 if (priv->sph && !buf->sec_page) {
4468 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4469 if (!buf->sec_page)
4470 break;
4471
4472 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4473 }
4474
4475 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4476
4477 stmmac_set_desc_addr(priv, p, buf->addr);
4478 if (priv->sph)
4479 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4480 else
4481 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4482 stmmac_refill_desc3(priv, rx_q, p);
4483
4484 rx_q->rx_count_frames++;
4485 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4486 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4487 rx_q->rx_count_frames = 0;
4488
4489 use_rx_wd = !priv->rx_coal_frames[queue];
4490 use_rx_wd |= rx_q->rx_count_frames > 0;
4491 if (!priv->use_riwt)
4492 use_rx_wd = false;
4493
4494 dma_wmb();
4495 stmmac_set_rx_owner(priv, p, use_rx_wd);
4496
4497 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4498 }
4499 rx_q->dirty_rx = entry;
4500 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4501 (rx_q->dirty_rx * sizeof(struct dma_desc));
4502 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4503 }
4504
stmmac_rx_buf1_len(struct stmmac_priv * priv,struct dma_desc * p,int status,unsigned int len)4505 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4506 struct dma_desc *p,
4507 int status, unsigned int len)
4508 {
4509 unsigned int plen = 0, hlen = 0;
4510 int coe = priv->hw->rx_csum;
4511
4512 /* Not first descriptor, buffer is always zero */
4513 if (priv->sph && len)
4514 return 0;
4515
4516 /* First descriptor, get split header length */
4517 stmmac_get_rx_header_len(priv, p, &hlen);
4518 if (priv->sph && hlen) {
4519 priv->xstats.rx_split_hdr_pkt_n++;
4520 return hlen;
4521 }
4522
4523 /* First descriptor, not last descriptor and not split header */
4524 if (status & rx_not_ls)
4525 return priv->dma_buf_sz;
4526
4527 plen = stmmac_get_rx_frame_len(priv, p, coe);
4528
4529 /* First descriptor and last descriptor and not split header */
4530 return min_t(unsigned int, priv->dma_buf_sz, plen);
4531 }
4532
stmmac_rx_buf2_len(struct stmmac_priv * priv,struct dma_desc * p,int status,unsigned int len)4533 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4534 struct dma_desc *p,
4535 int status, unsigned int len)
4536 {
4537 int coe = priv->hw->rx_csum;
4538 unsigned int plen = 0;
4539
4540 /* Not split header, buffer is not available */
4541 if (!priv->sph)
4542 return 0;
4543
4544 /* Not last descriptor */
4545 if (status & rx_not_ls)
4546 return priv->dma_buf_sz;
4547
4548 plen = stmmac_get_rx_frame_len(priv, p, coe);
4549
4550 /* Last descriptor */
4551 return plen - len;
4552 }
4553
stmmac_xdp_xmit_xdpf(struct stmmac_priv * priv,int queue,struct xdp_frame * xdpf,bool dma_map)4554 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4555 struct xdp_frame *xdpf, bool dma_map)
4556 {
4557 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4558 unsigned int entry = tx_q->cur_tx;
4559 struct dma_desc *tx_desc;
4560 dma_addr_t dma_addr;
4561 bool set_ic;
4562
4563 if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4564 return STMMAC_XDP_CONSUMED;
4565
4566 if (likely(priv->extend_desc))
4567 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4568 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4569 tx_desc = &tx_q->dma_entx[entry].basic;
4570 else
4571 tx_desc = tx_q->dma_tx + entry;
4572
4573 if (dma_map) {
4574 dma_addr = dma_map_single(priv->device, xdpf->data,
4575 xdpf->len, DMA_TO_DEVICE);
4576 if (dma_mapping_error(priv->device, dma_addr))
4577 return STMMAC_XDP_CONSUMED;
4578
4579 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4580 } else {
4581 struct page *page = virt_to_page(xdpf->data);
4582
4583 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4584 xdpf->headroom;
4585 dma_sync_single_for_device(priv->device, dma_addr,
4586 xdpf->len, DMA_BIDIRECTIONAL);
4587
4588 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4589 }
4590
4591 tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4592 tx_q->tx_skbuff_dma[entry].map_as_page = false;
4593 tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4594 tx_q->tx_skbuff_dma[entry].last_segment = true;
4595 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4596
4597 tx_q->xdpf[entry] = xdpf;
4598
4599 stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4600
4601 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4602 true, priv->mode, true, true,
4603 xdpf->len);
4604
4605 tx_q->tx_count_frames++;
4606
4607 if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4608 set_ic = true;
4609 else
4610 set_ic = false;
4611
4612 if (set_ic) {
4613 tx_q->tx_count_frames = 0;
4614 stmmac_set_tx_ic(priv, tx_desc);
4615 priv->xstats.tx_set_ic_bit++;
4616 }
4617
4618 stmmac_enable_dma_transmission(priv, priv->ioaddr);
4619
4620 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4621 tx_q->cur_tx = entry;
4622
4623 return STMMAC_XDP_TX;
4624 }
4625
stmmac_xdp_get_tx_queue(struct stmmac_priv * priv,int cpu)4626 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4627 int cpu)
4628 {
4629 int index = cpu;
4630
4631 if (unlikely(index < 0))
4632 index = 0;
4633
4634 while (index >= priv->plat->tx_queues_to_use)
4635 index -= priv->plat->tx_queues_to_use;
4636
4637 return index;
4638 }
4639
stmmac_xdp_xmit_back(struct stmmac_priv * priv,struct xdp_buff * xdp)4640 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4641 struct xdp_buff *xdp)
4642 {
4643 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4644 int cpu = smp_processor_id();
4645 struct netdev_queue *nq;
4646 int queue;
4647 int res;
4648
4649 if (unlikely(!xdpf))
4650 return STMMAC_XDP_CONSUMED;
4651
4652 queue = stmmac_xdp_get_tx_queue(priv, cpu);
4653 nq = netdev_get_tx_queue(priv->dev, queue);
4654
4655 __netif_tx_lock(nq, cpu);
4656 /* Avoids TX time-out as we are sharing with slow path */
4657 txq_trans_cond_update(nq);
4658
4659 res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4660 if (res == STMMAC_XDP_TX)
4661 stmmac_flush_tx_descriptors(priv, queue);
4662
4663 __netif_tx_unlock(nq);
4664
4665 return res;
4666 }
4667
__stmmac_xdp_run_prog(struct stmmac_priv * priv,struct bpf_prog * prog,struct xdp_buff * xdp)4668 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4669 struct bpf_prog *prog,
4670 struct xdp_buff *xdp)
4671 {
4672 u32 act;
4673 int res;
4674
4675 act = bpf_prog_run_xdp(prog, xdp);
4676 switch (act) {
4677 case XDP_PASS:
4678 res = STMMAC_XDP_PASS;
4679 break;
4680 case XDP_TX:
4681 res = stmmac_xdp_xmit_back(priv, xdp);
4682 break;
4683 case XDP_REDIRECT:
4684 if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4685 res = STMMAC_XDP_CONSUMED;
4686 else
4687 res = STMMAC_XDP_REDIRECT;
4688 break;
4689 default:
4690 bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4691 fallthrough;
4692 case XDP_ABORTED:
4693 trace_xdp_exception(priv->dev, prog, act);
4694 fallthrough;
4695 case XDP_DROP:
4696 res = STMMAC_XDP_CONSUMED;
4697 break;
4698 }
4699
4700 return res;
4701 }
4702
stmmac_xdp_run_prog(struct stmmac_priv * priv,struct xdp_buff * xdp)4703 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4704 struct xdp_buff *xdp)
4705 {
4706 struct bpf_prog *prog;
4707 int res;
4708
4709 prog = READ_ONCE(priv->xdp_prog);
4710 if (!prog) {
4711 res = STMMAC_XDP_PASS;
4712 goto out;
4713 }
4714
4715 res = __stmmac_xdp_run_prog(priv, prog, xdp);
4716 out:
4717 return ERR_PTR(-res);
4718 }
4719
stmmac_finalize_xdp_rx(struct stmmac_priv * priv,int xdp_status)4720 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4721 int xdp_status)
4722 {
4723 int cpu = smp_processor_id();
4724 int queue;
4725
4726 queue = stmmac_xdp_get_tx_queue(priv, cpu);
4727
4728 if (xdp_status & STMMAC_XDP_TX)
4729 stmmac_tx_timer_arm(priv, queue);
4730
4731 if (xdp_status & STMMAC_XDP_REDIRECT)
4732 xdp_do_flush();
4733 }
4734
stmmac_construct_skb_zc(struct stmmac_channel * ch,struct xdp_buff * xdp)4735 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4736 struct xdp_buff *xdp)
4737 {
4738 unsigned int metasize = xdp->data - xdp->data_meta;
4739 unsigned int datasize = xdp->data_end - xdp->data;
4740 struct sk_buff *skb;
4741
4742 skb = __napi_alloc_skb(&ch->rxtx_napi,
4743 xdp->data_end - xdp->data_hard_start,
4744 GFP_ATOMIC | __GFP_NOWARN);
4745 if (unlikely(!skb))
4746 return NULL;
4747
4748 skb_reserve(skb, xdp->data - xdp->data_hard_start);
4749 memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4750 if (metasize)
4751 skb_metadata_set(skb, metasize);
4752
4753 return skb;
4754 }
4755
stmmac_dispatch_skb_zc(struct stmmac_priv * priv,u32 queue,struct dma_desc * p,struct dma_desc * np,struct xdp_buff * xdp)4756 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4757 struct dma_desc *p, struct dma_desc *np,
4758 struct xdp_buff *xdp)
4759 {
4760 struct stmmac_channel *ch = &priv->channel[queue];
4761 unsigned int len = xdp->data_end - xdp->data;
4762 enum pkt_hash_types hash_type;
4763 int coe = priv->hw->rx_csum;
4764 struct sk_buff *skb;
4765 u32 hash;
4766
4767 skb = stmmac_construct_skb_zc(ch, xdp);
4768 if (!skb) {
4769 priv->dev->stats.rx_dropped++;
4770 return;
4771 }
4772
4773 stmmac_get_rx_hwtstamp(priv, p, np, skb);
4774 stmmac_rx_vlan(priv->dev, skb);
4775 skb->protocol = eth_type_trans(skb, priv->dev);
4776
4777 if (unlikely(!coe))
4778 skb_checksum_none_assert(skb);
4779 else
4780 skb->ip_summed = CHECKSUM_UNNECESSARY;
4781
4782 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4783 skb_set_hash(skb, hash, hash_type);
4784
4785 skb_record_rx_queue(skb, queue);
4786 napi_gro_receive(&ch->rxtx_napi, skb);
4787
4788 priv->dev->stats.rx_packets++;
4789 priv->dev->stats.rx_bytes += len;
4790 }
4791
stmmac_rx_refill_zc(struct stmmac_priv * priv,u32 queue,u32 budget)4792 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4793 {
4794 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4795 unsigned int entry = rx_q->dirty_rx;
4796 struct dma_desc *rx_desc = NULL;
4797 bool ret = true;
4798
4799 budget = min(budget, stmmac_rx_dirty(priv, queue));
4800
4801 while (budget-- > 0 && entry != rx_q->cur_rx) {
4802 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4803 dma_addr_t dma_addr;
4804 bool use_rx_wd;
4805
4806 if (!buf->xdp) {
4807 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4808 if (!buf->xdp) {
4809 ret = false;
4810 break;
4811 }
4812 }
4813
4814 if (priv->extend_desc)
4815 rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4816 else
4817 rx_desc = rx_q->dma_rx + entry;
4818
4819 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4820 stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4821 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4822 stmmac_refill_desc3(priv, rx_q, rx_desc);
4823
4824 rx_q->rx_count_frames++;
4825 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4826 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4827 rx_q->rx_count_frames = 0;
4828
4829 use_rx_wd = !priv->rx_coal_frames[queue];
4830 use_rx_wd |= rx_q->rx_count_frames > 0;
4831 if (!priv->use_riwt)
4832 use_rx_wd = false;
4833
4834 dma_wmb();
4835 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4836
4837 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4838 }
4839
4840 if (rx_desc) {
4841 rx_q->dirty_rx = entry;
4842 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4843 (rx_q->dirty_rx * sizeof(struct dma_desc));
4844 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4845 }
4846
4847 return ret;
4848 }
4849
stmmac_rx_zc(struct stmmac_priv * priv,int limit,u32 queue)4850 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4851 {
4852 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4853 unsigned int count = 0, error = 0, len = 0;
4854 int dirty = stmmac_rx_dirty(priv, queue);
4855 unsigned int next_entry = rx_q->cur_rx;
4856 unsigned int desc_size;
4857 struct bpf_prog *prog;
4858 bool failure = false;
4859 int xdp_status = 0;
4860 int status = 0;
4861
4862 if (netif_msg_rx_status(priv)) {
4863 void *rx_head;
4864
4865 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4866 if (priv->extend_desc) {
4867 rx_head = (void *)rx_q->dma_erx;
4868 desc_size = sizeof(struct dma_extended_desc);
4869 } else {
4870 rx_head = (void *)rx_q->dma_rx;
4871 desc_size = sizeof(struct dma_desc);
4872 }
4873
4874 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
4875 rx_q->dma_rx_phy, desc_size);
4876 }
4877 while (count < limit) {
4878 struct stmmac_rx_buffer *buf;
4879 unsigned int buf1_len = 0;
4880 struct dma_desc *np, *p;
4881 int entry;
4882 int res;
4883
4884 if (!count && rx_q->state_saved) {
4885 error = rx_q->state.error;
4886 len = rx_q->state.len;
4887 } else {
4888 rx_q->state_saved = false;
4889 error = 0;
4890 len = 0;
4891 }
4892
4893 if (count >= limit)
4894 break;
4895
4896 read_again:
4897 buf1_len = 0;
4898 entry = next_entry;
4899 buf = &rx_q->buf_pool[entry];
4900
4901 if (dirty >= STMMAC_RX_FILL_BATCH) {
4902 failure = failure ||
4903 !stmmac_rx_refill_zc(priv, queue, dirty);
4904 dirty = 0;
4905 }
4906
4907 if (priv->extend_desc)
4908 p = (struct dma_desc *)(rx_q->dma_erx + entry);
4909 else
4910 p = rx_q->dma_rx + entry;
4911
4912 /* read the status of the incoming frame */
4913 status = stmmac_rx_status(priv, &priv->dev->stats,
4914 &priv->xstats, p);
4915 /* check if managed by the DMA otherwise go ahead */
4916 if (unlikely(status & dma_own))
4917 break;
4918
4919 /* Prefetch the next RX descriptor */
4920 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
4921 priv->dma_rx_size);
4922 next_entry = rx_q->cur_rx;
4923
4924 if (priv->extend_desc)
4925 np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
4926 else
4927 np = rx_q->dma_rx + next_entry;
4928
4929 prefetch(np);
4930
4931 /* Ensure a valid XSK buffer before proceed */
4932 if (!buf->xdp)
4933 break;
4934
4935 if (priv->extend_desc)
4936 stmmac_rx_extended_status(priv, &priv->dev->stats,
4937 &priv->xstats,
4938 rx_q->dma_erx + entry);
4939 if (unlikely(status == discard_frame)) {
4940 xsk_buff_free(buf->xdp);
4941 buf->xdp = NULL;
4942 dirty++;
4943 error = 1;
4944 if (!priv->hwts_rx_en)
4945 priv->dev->stats.rx_errors++;
4946 }
4947
4948 if (unlikely(error && (status & rx_not_ls)))
4949 goto read_again;
4950 if (unlikely(error)) {
4951 count++;
4952 continue;
4953 }
4954
4955 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */
4956 if (likely(status & rx_not_ls)) {
4957 xsk_buff_free(buf->xdp);
4958 buf->xdp = NULL;
4959 dirty++;
4960 count++;
4961 goto read_again;
4962 }
4963
4964 /* XDP ZC Frame only support primary buffers for now */
4965 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
4966 len += buf1_len;
4967
4968 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
4969 * Type frames (LLC/LLC-SNAP)
4970 *
4971 * llc_snap is never checked in GMAC >= 4, so this ACS
4972 * feature is always disabled and packets need to be
4973 * stripped manually.
4974 */
4975 if (likely(!(status & rx_not_ls)) &&
4976 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
4977 unlikely(status != llc_snap))) {
4978 buf1_len -= ETH_FCS_LEN;
4979 len -= ETH_FCS_LEN;
4980 }
4981
4982 /* RX buffer is good and fit into a XSK pool buffer */
4983 buf->xdp->data_end = buf->xdp->data + buf1_len;
4984 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
4985
4986 prog = READ_ONCE(priv->xdp_prog);
4987 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
4988
4989 switch (res) {
4990 case STMMAC_XDP_PASS:
4991 stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
4992 xsk_buff_free(buf->xdp);
4993 break;
4994 case STMMAC_XDP_CONSUMED:
4995 xsk_buff_free(buf->xdp);
4996 priv->dev->stats.rx_dropped++;
4997 break;
4998 case STMMAC_XDP_TX:
4999 case STMMAC_XDP_REDIRECT:
5000 xdp_status |= res;
5001 break;
5002 }
5003
5004 buf->xdp = NULL;
5005 dirty++;
5006 count++;
5007 }
5008
5009 if (status & rx_not_ls) {
5010 rx_q->state_saved = true;
5011 rx_q->state.error = error;
5012 rx_q->state.len = len;
5013 }
5014
5015 stmmac_finalize_xdp_rx(priv, xdp_status);
5016
5017 priv->xstats.rx_pkt_n += count;
5018 priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5019
5020 if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5021 if (failure || stmmac_rx_dirty(priv, queue) > 0)
5022 xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5023 else
5024 xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5025
5026 return (int)count;
5027 }
5028
5029 return failure ? limit : (int)count;
5030 }
5031
5032 /**
5033 * stmmac_rx - manage the receive process
5034 * @priv: driver private structure
5035 * @limit: napi bugget
5036 * @queue: RX queue index.
5037 * Description : this the function called by the napi poll method.
5038 * It gets all the frames inside the ring.
5039 */
stmmac_rx(struct stmmac_priv * priv,int limit,u32 queue)5040 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5041 {
5042 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5043 struct stmmac_channel *ch = &priv->channel[queue];
5044 unsigned int count = 0, error = 0, len = 0;
5045 int status = 0, coe = priv->hw->rx_csum;
5046 unsigned int next_entry = rx_q->cur_rx;
5047 enum dma_data_direction dma_dir;
5048 unsigned int desc_size;
5049 struct sk_buff *skb = NULL;
5050 struct xdp_buff xdp;
5051 int xdp_status = 0;
5052 int buf_sz;
5053
5054 dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5055 buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5056
5057 if (netif_msg_rx_status(priv)) {
5058 void *rx_head;
5059
5060 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5061 if (priv->extend_desc) {
5062 rx_head = (void *)rx_q->dma_erx;
5063 desc_size = sizeof(struct dma_extended_desc);
5064 } else {
5065 rx_head = (void *)rx_q->dma_rx;
5066 desc_size = sizeof(struct dma_desc);
5067 }
5068
5069 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
5070 rx_q->dma_rx_phy, desc_size);
5071 }
5072 while (count < limit) {
5073 unsigned int buf1_len = 0, buf2_len = 0;
5074 enum pkt_hash_types hash_type;
5075 struct stmmac_rx_buffer *buf;
5076 struct dma_desc *np, *p;
5077 int entry;
5078 u32 hash;
5079
5080 if (!count && rx_q->state_saved) {
5081 skb = rx_q->state.skb;
5082 error = rx_q->state.error;
5083 len = rx_q->state.len;
5084 } else {
5085 rx_q->state_saved = false;
5086 skb = NULL;
5087 error = 0;
5088 len = 0;
5089 }
5090
5091 if (count >= limit)
5092 break;
5093
5094 read_again:
5095 buf1_len = 0;
5096 buf2_len = 0;
5097 entry = next_entry;
5098 buf = &rx_q->buf_pool[entry];
5099
5100 if (priv->extend_desc)
5101 p = (struct dma_desc *)(rx_q->dma_erx + entry);
5102 else
5103 p = rx_q->dma_rx + entry;
5104
5105 /* read the status of the incoming frame */
5106 status = stmmac_rx_status(priv, &priv->dev->stats,
5107 &priv->xstats, p);
5108 /* check if managed by the DMA otherwise go ahead */
5109 if (unlikely(status & dma_own))
5110 break;
5111
5112 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5113 priv->dma_rx_size);
5114 next_entry = rx_q->cur_rx;
5115
5116 if (priv->extend_desc)
5117 np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5118 else
5119 np = rx_q->dma_rx + next_entry;
5120
5121 prefetch(np);
5122
5123 if (priv->extend_desc)
5124 stmmac_rx_extended_status(priv, &priv->dev->stats,
5125 &priv->xstats, rx_q->dma_erx + entry);
5126 if (unlikely(status == discard_frame)) {
5127 page_pool_recycle_direct(rx_q->page_pool, buf->page);
5128 buf->page = NULL;
5129 error = 1;
5130 if (!priv->hwts_rx_en)
5131 priv->dev->stats.rx_errors++;
5132 }
5133
5134 if (unlikely(error && (status & rx_not_ls)))
5135 goto read_again;
5136 if (unlikely(error)) {
5137 dev_kfree_skb(skb);
5138 skb = NULL;
5139 count++;
5140 continue;
5141 }
5142
5143 /* Buffer is good. Go on. */
5144
5145 prefetch(page_address(buf->page) + buf->page_offset);
5146 if (buf->sec_page)
5147 prefetch(page_address(buf->sec_page));
5148
5149 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5150 len += buf1_len;
5151 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5152 len += buf2_len;
5153
5154 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
5155 * Type frames (LLC/LLC-SNAP)
5156 *
5157 * llc_snap is never checked in GMAC >= 4, so this ACS
5158 * feature is always disabled and packets need to be
5159 * stripped manually.
5160 */
5161 if (likely(!(status & rx_not_ls)) &&
5162 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
5163 unlikely(status != llc_snap))) {
5164 if (buf2_len) {
5165 buf2_len -= ETH_FCS_LEN;
5166 len -= ETH_FCS_LEN;
5167 } else if (buf1_len) {
5168 buf1_len -= ETH_FCS_LEN;
5169 len -= ETH_FCS_LEN;
5170 }
5171 }
5172
5173 if (!skb) {
5174 unsigned int pre_len, sync_len;
5175
5176 dma_sync_single_for_cpu(priv->device, buf->addr,
5177 buf1_len, dma_dir);
5178
5179 xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5180 xdp_prepare_buff(&xdp, page_address(buf->page),
5181 buf->page_offset, buf1_len, false);
5182
5183 pre_len = xdp.data_end - xdp.data_hard_start -
5184 buf->page_offset;
5185 skb = stmmac_xdp_run_prog(priv, &xdp);
5186 /* Due xdp_adjust_tail: DMA sync for_device
5187 * cover max len CPU touch
5188 */
5189 sync_len = xdp.data_end - xdp.data_hard_start -
5190 buf->page_offset;
5191 sync_len = max(sync_len, pre_len);
5192
5193 /* For Not XDP_PASS verdict */
5194 if (IS_ERR(skb)) {
5195 unsigned int xdp_res = -PTR_ERR(skb);
5196
5197 if (xdp_res & STMMAC_XDP_CONSUMED) {
5198 page_pool_put_page(rx_q->page_pool,
5199 virt_to_head_page(xdp.data),
5200 sync_len, true);
5201 buf->page = NULL;
5202 priv->dev->stats.rx_dropped++;
5203
5204 /* Clear skb as it was set as
5205 * status by XDP program.
5206 */
5207 skb = NULL;
5208
5209 if (unlikely((status & rx_not_ls)))
5210 goto read_again;
5211
5212 count++;
5213 continue;
5214 } else if (xdp_res & (STMMAC_XDP_TX |
5215 STMMAC_XDP_REDIRECT)) {
5216 xdp_status |= xdp_res;
5217 buf->page = NULL;
5218 skb = NULL;
5219 count++;
5220 continue;
5221 }
5222 }
5223 }
5224
5225 if (!skb) {
5226 /* XDP program may expand or reduce tail */
5227 buf1_len = xdp.data_end - xdp.data;
5228
5229 skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5230 if (!skb) {
5231 priv->dev->stats.rx_dropped++;
5232 count++;
5233 goto drain_data;
5234 }
5235
5236 /* XDP program may adjust header */
5237 skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5238 skb_put(skb, buf1_len);
5239
5240 /* Data payload copied into SKB, page ready for recycle */
5241 page_pool_recycle_direct(rx_q->page_pool, buf->page);
5242 buf->page = NULL;
5243 } else if (buf1_len) {
5244 dma_sync_single_for_cpu(priv->device, buf->addr,
5245 buf1_len, dma_dir);
5246 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5247 buf->page, buf->page_offset, buf1_len,
5248 priv->dma_buf_sz);
5249
5250 /* Data payload appended into SKB */
5251 page_pool_release_page(rx_q->page_pool, buf->page);
5252 buf->page = NULL;
5253 }
5254
5255 if (buf2_len) {
5256 dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5257 buf2_len, dma_dir);
5258 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5259 buf->sec_page, 0, buf2_len,
5260 priv->dma_buf_sz);
5261
5262 /* Data payload appended into SKB */
5263 page_pool_release_page(rx_q->page_pool, buf->sec_page);
5264 buf->sec_page = NULL;
5265 }
5266
5267 drain_data:
5268 if (likely(status & rx_not_ls))
5269 goto read_again;
5270 if (!skb)
5271 continue;
5272
5273 /* Got entire packet into SKB. Finish it. */
5274
5275 stmmac_get_rx_hwtstamp(priv, p, np, skb);
5276 stmmac_rx_vlan(priv->dev, skb);
5277 skb->protocol = eth_type_trans(skb, priv->dev);
5278
5279 if (unlikely(!coe))
5280 skb_checksum_none_assert(skb);
5281 else
5282 skb->ip_summed = CHECKSUM_UNNECESSARY;
5283
5284 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5285 skb_set_hash(skb, hash, hash_type);
5286
5287 skb_record_rx_queue(skb, queue);
5288 napi_gro_receive(&ch->rx_napi, skb);
5289 skb = NULL;
5290
5291 priv->dev->stats.rx_packets++;
5292 priv->dev->stats.rx_bytes += len;
5293 count++;
5294 }
5295
5296 if (status & rx_not_ls || skb) {
5297 rx_q->state_saved = true;
5298 rx_q->state.skb = skb;
5299 rx_q->state.error = error;
5300 rx_q->state.len = len;
5301 }
5302
5303 stmmac_finalize_xdp_rx(priv, xdp_status);
5304
5305 stmmac_rx_refill(priv, queue);
5306
5307 priv->xstats.rx_pkt_n += count;
5308 priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5309
5310 return count;
5311 }
5312
stmmac_napi_poll_rx(struct napi_struct * napi,int budget)5313 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5314 {
5315 struct stmmac_channel *ch =
5316 container_of(napi, struct stmmac_channel, rx_napi);
5317 struct stmmac_priv *priv = ch->priv_data;
5318 u32 chan = ch->index;
5319 int work_done;
5320
5321 priv->xstats.napi_poll++;
5322
5323 work_done = stmmac_rx(priv, budget, chan);
5324 if (work_done < budget && napi_complete_done(napi, work_done)) {
5325 unsigned long flags;
5326
5327 spin_lock_irqsave(&ch->lock, flags);
5328 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5329 spin_unlock_irqrestore(&ch->lock, flags);
5330 }
5331
5332 return work_done;
5333 }
5334
stmmac_napi_poll_tx(struct napi_struct * napi,int budget)5335 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5336 {
5337 struct stmmac_channel *ch =
5338 container_of(napi, struct stmmac_channel, tx_napi);
5339 struct stmmac_priv *priv = ch->priv_data;
5340 u32 chan = ch->index;
5341 int work_done;
5342
5343 priv->xstats.napi_poll++;
5344
5345 work_done = stmmac_tx_clean(priv, budget, chan);
5346 work_done = min(work_done, budget);
5347
5348 if (work_done < budget && napi_complete_done(napi, work_done)) {
5349 unsigned long flags;
5350
5351 spin_lock_irqsave(&ch->lock, flags);
5352 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5353 spin_unlock_irqrestore(&ch->lock, flags);
5354 }
5355
5356 return work_done;
5357 }
5358
stmmac_napi_poll_rxtx(struct napi_struct * napi,int budget)5359 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5360 {
5361 struct stmmac_channel *ch =
5362 container_of(napi, struct stmmac_channel, rxtx_napi);
5363 struct stmmac_priv *priv = ch->priv_data;
5364 int rx_done, tx_done, rxtx_done;
5365 u32 chan = ch->index;
5366
5367 priv->xstats.napi_poll++;
5368
5369 tx_done = stmmac_tx_clean(priv, budget, chan);
5370 tx_done = min(tx_done, budget);
5371
5372 rx_done = stmmac_rx_zc(priv, budget, chan);
5373
5374 rxtx_done = max(tx_done, rx_done);
5375
5376 /* If either TX or RX work is not complete, return budget
5377 * and keep pooling
5378 */
5379 if (rxtx_done >= budget)
5380 return budget;
5381
5382 /* all work done, exit the polling mode */
5383 if (napi_complete_done(napi, rxtx_done)) {
5384 unsigned long flags;
5385
5386 spin_lock_irqsave(&ch->lock, flags);
5387 /* Both RX and TX work done are compelte,
5388 * so enable both RX & TX IRQs.
5389 */
5390 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5391 spin_unlock_irqrestore(&ch->lock, flags);
5392 }
5393
5394 return min(rxtx_done, budget - 1);
5395 }
5396
5397 /**
5398 * stmmac_tx_timeout
5399 * @dev : Pointer to net device structure
5400 * @txqueue: the index of the hanging transmit queue
5401 * Description: this function is called when a packet transmission fails to
5402 * complete within a reasonable time. The driver will mark the error in the
5403 * netdev structure and arrange for the device to be reset to a sane state
5404 * in order to transmit a new packet.
5405 */
stmmac_tx_timeout(struct net_device * dev,unsigned int txqueue)5406 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5407 {
5408 struct stmmac_priv *priv = netdev_priv(dev);
5409
5410 stmmac_global_err(priv);
5411 }
5412
5413 /**
5414 * stmmac_set_rx_mode - entry point for multicast addressing
5415 * @dev : pointer to the device structure
5416 * Description:
5417 * This function is a driver entry point which gets called by the kernel
5418 * whenever multicast addresses must be enabled/disabled.
5419 * Return value:
5420 * void.
5421 */
stmmac_set_rx_mode(struct net_device * dev)5422 static void stmmac_set_rx_mode(struct net_device *dev)
5423 {
5424 struct stmmac_priv *priv = netdev_priv(dev);
5425
5426 stmmac_set_filter(priv, priv->hw, dev);
5427 }
5428
5429 /**
5430 * stmmac_change_mtu - entry point to change MTU size for the device.
5431 * @dev : device pointer.
5432 * @new_mtu : the new MTU size for the device.
5433 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
5434 * to drive packet transmission. Ethernet has an MTU of 1500 octets
5435 * (ETH_DATA_LEN). This value can be changed with ifconfig.
5436 * Return value:
5437 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5438 * file on failure.
5439 */
stmmac_change_mtu(struct net_device * dev,int new_mtu)5440 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5441 {
5442 struct stmmac_priv *priv = netdev_priv(dev);
5443 int txfifosz = priv->plat->tx_fifo_size;
5444 const int mtu = new_mtu;
5445
5446 if (txfifosz == 0)
5447 txfifosz = priv->dma_cap.tx_fifo_size;
5448
5449 txfifosz /= priv->plat->tx_queues_to_use;
5450
5451 if (netif_running(dev)) {
5452 netdev_err(priv->dev, "must be stopped to change its MTU\n");
5453 return -EBUSY;
5454 }
5455
5456 if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5457 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5458 return -EINVAL;
5459 }
5460
5461 new_mtu = STMMAC_ALIGN(new_mtu);
5462
5463 /* If condition true, FIFO is too small or MTU too large */
5464 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5465 return -EINVAL;
5466
5467 dev->mtu = mtu;
5468
5469 netdev_update_features(dev);
5470
5471 return 0;
5472 }
5473
stmmac_fix_features(struct net_device * dev,netdev_features_t features)5474 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5475 netdev_features_t features)
5476 {
5477 struct stmmac_priv *priv = netdev_priv(dev);
5478
5479 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5480 features &= ~NETIF_F_RXCSUM;
5481
5482 if (!priv->plat->tx_coe)
5483 features &= ~NETIF_F_CSUM_MASK;
5484
5485 /* Some GMAC devices have a bugged Jumbo frame support that
5486 * needs to have the Tx COE disabled for oversized frames
5487 * (due to limited buffer sizes). In this case we disable
5488 * the TX csum insertion in the TDES and not use SF.
5489 */
5490 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5491 features &= ~NETIF_F_CSUM_MASK;
5492
5493 /* Disable tso if asked by ethtool */
5494 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5495 if (features & NETIF_F_TSO)
5496 priv->tso = true;
5497 else
5498 priv->tso = false;
5499 }
5500
5501 return features;
5502 }
5503
stmmac_set_features(struct net_device * netdev,netdev_features_t features)5504 static int stmmac_set_features(struct net_device *netdev,
5505 netdev_features_t features)
5506 {
5507 struct stmmac_priv *priv = netdev_priv(netdev);
5508
5509 /* Keep the COE Type in case of csum is supporting */
5510 if (features & NETIF_F_RXCSUM)
5511 priv->hw->rx_csum = priv->plat->rx_coe;
5512 else
5513 priv->hw->rx_csum = 0;
5514 /* No check needed because rx_coe has been set before and it will be
5515 * fixed in case of issue.
5516 */
5517 stmmac_rx_ipc(priv, priv->hw);
5518
5519 if (priv->sph_cap) {
5520 bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5521 u32 chan;
5522
5523 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5524 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5525 }
5526
5527 return 0;
5528 }
5529
stmmac_fpe_event_status(struct stmmac_priv * priv,int status)5530 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5531 {
5532 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5533 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5534 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5535 bool *hs_enable = &fpe_cfg->hs_enable;
5536
5537 if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5538 return;
5539
5540 /* If LP has sent verify mPacket, LP is FPE capable */
5541 if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5542 if (*lp_state < FPE_STATE_CAPABLE)
5543 *lp_state = FPE_STATE_CAPABLE;
5544
5545 /* If user has requested FPE enable, quickly response */
5546 if (*hs_enable)
5547 stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5548 MPACKET_RESPONSE);
5549 }
5550
5551 /* If Local has sent verify mPacket, Local is FPE capable */
5552 if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5553 if (*lo_state < FPE_STATE_CAPABLE)
5554 *lo_state = FPE_STATE_CAPABLE;
5555 }
5556
5557 /* If LP has sent response mPacket, LP is entering FPE ON */
5558 if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5559 *lp_state = FPE_STATE_ENTERING_ON;
5560
5561 /* If Local has sent response mPacket, Local is entering FPE ON */
5562 if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5563 *lo_state = FPE_STATE_ENTERING_ON;
5564
5565 if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5566 !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5567 priv->fpe_wq) {
5568 queue_work(priv->fpe_wq, &priv->fpe_task);
5569 }
5570 }
5571
stmmac_common_interrupt(struct stmmac_priv * priv)5572 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5573 {
5574 u32 rx_cnt = priv->plat->rx_queues_to_use;
5575 u32 tx_cnt = priv->plat->tx_queues_to_use;
5576 u32 queues_count;
5577 u32 queue;
5578 bool xmac;
5579
5580 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5581 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5582
5583 if (priv->irq_wake)
5584 pm_wakeup_event(priv->device, 0);
5585
5586 if (priv->dma_cap.estsel)
5587 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5588 &priv->xstats, tx_cnt);
5589
5590 if (priv->dma_cap.fpesel) {
5591 int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5592 priv->dev);
5593
5594 stmmac_fpe_event_status(priv, status);
5595 }
5596
5597 /* To handle GMAC own interrupts */
5598 if ((priv->plat->has_gmac) || xmac) {
5599 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5600
5601 if (unlikely(status)) {
5602 /* For LPI we need to save the tx status */
5603 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5604 priv->tx_path_in_lpi_mode = true;
5605 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5606 priv->tx_path_in_lpi_mode = false;
5607 }
5608
5609 for (queue = 0; queue < queues_count; queue++) {
5610 status = stmmac_host_mtl_irq_status(priv, priv->hw,
5611 queue);
5612 }
5613
5614 /* PCS link status */
5615 if (priv->hw->pcs) {
5616 if (priv->xstats.pcs_link)
5617 netif_carrier_on(priv->dev);
5618 else
5619 netif_carrier_off(priv->dev);
5620 }
5621
5622 stmmac_timestamp_interrupt(priv, priv);
5623 }
5624 }
5625
5626 /**
5627 * stmmac_interrupt - main ISR
5628 * @irq: interrupt number.
5629 * @dev_id: to pass the net device pointer.
5630 * Description: this is the main driver interrupt service routine.
5631 * It can call:
5632 * o DMA service routine (to manage incoming frame reception and transmission
5633 * status)
5634 * o Core interrupts to manage: remote wake-up, management counter, LPI
5635 * interrupts.
5636 */
stmmac_interrupt(int irq,void * dev_id)5637 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5638 {
5639 struct net_device *dev = (struct net_device *)dev_id;
5640 struct stmmac_priv *priv = netdev_priv(dev);
5641
5642 /* Check if adapter is up */
5643 if (test_bit(STMMAC_DOWN, &priv->state))
5644 return IRQ_HANDLED;
5645
5646 /* Check if a fatal error happened */
5647 if (stmmac_safety_feat_interrupt(priv))
5648 return IRQ_HANDLED;
5649
5650 /* To handle Common interrupts */
5651 stmmac_common_interrupt(priv);
5652
5653 /* To handle DMA interrupts */
5654 stmmac_dma_interrupt(priv);
5655
5656 return IRQ_HANDLED;
5657 }
5658
stmmac_mac_interrupt(int irq,void * dev_id)5659 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5660 {
5661 struct net_device *dev = (struct net_device *)dev_id;
5662 struct stmmac_priv *priv = netdev_priv(dev);
5663
5664 if (unlikely(!dev)) {
5665 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5666 return IRQ_NONE;
5667 }
5668
5669 /* Check if adapter is up */
5670 if (test_bit(STMMAC_DOWN, &priv->state))
5671 return IRQ_HANDLED;
5672
5673 /* To handle Common interrupts */
5674 stmmac_common_interrupt(priv);
5675
5676 return IRQ_HANDLED;
5677 }
5678
stmmac_safety_interrupt(int irq,void * dev_id)5679 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5680 {
5681 struct net_device *dev = (struct net_device *)dev_id;
5682 struct stmmac_priv *priv = netdev_priv(dev);
5683
5684 if (unlikely(!dev)) {
5685 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5686 return IRQ_NONE;
5687 }
5688
5689 /* Check if adapter is up */
5690 if (test_bit(STMMAC_DOWN, &priv->state))
5691 return IRQ_HANDLED;
5692
5693 /* Check if a fatal error happened */
5694 stmmac_safety_feat_interrupt(priv);
5695
5696 return IRQ_HANDLED;
5697 }
5698
stmmac_msi_intr_tx(int irq,void * data)5699 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5700 {
5701 struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5702 int chan = tx_q->queue_index;
5703 struct stmmac_priv *priv;
5704 int status;
5705
5706 priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]);
5707
5708 if (unlikely(!data)) {
5709 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5710 return IRQ_NONE;
5711 }
5712
5713 /* Check if adapter is up */
5714 if (test_bit(STMMAC_DOWN, &priv->state))
5715 return IRQ_HANDLED;
5716
5717 status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5718
5719 if (unlikely(status & tx_hard_error_bump_tc)) {
5720 /* Try to bump up the dma threshold on this failure */
5721 stmmac_bump_dma_threshold(priv, chan);
5722 } else if (unlikely(status == tx_hard_error)) {
5723 stmmac_tx_err(priv, chan);
5724 }
5725
5726 return IRQ_HANDLED;
5727 }
5728
stmmac_msi_intr_rx(int irq,void * data)5729 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5730 {
5731 struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5732 int chan = rx_q->queue_index;
5733 struct stmmac_priv *priv;
5734
5735 priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]);
5736
5737 if (unlikely(!data)) {
5738 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5739 return IRQ_NONE;
5740 }
5741
5742 /* Check if adapter is up */
5743 if (test_bit(STMMAC_DOWN, &priv->state))
5744 return IRQ_HANDLED;
5745
5746 stmmac_napi_check(priv, chan, DMA_DIR_RX);
5747
5748 return IRQ_HANDLED;
5749 }
5750
5751 #ifdef CONFIG_NET_POLL_CONTROLLER
5752 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5753 * to allow network I/O with interrupts disabled.
5754 */
stmmac_poll_controller(struct net_device * dev)5755 static void stmmac_poll_controller(struct net_device *dev)
5756 {
5757 struct stmmac_priv *priv = netdev_priv(dev);
5758 int i;
5759
5760 /* If adapter is down, do nothing */
5761 if (test_bit(STMMAC_DOWN, &priv->state))
5762 return;
5763
5764 if (priv->plat->multi_msi_en) {
5765 for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5766 stmmac_msi_intr_rx(0, &priv->rx_queue[i]);
5767
5768 for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5769 stmmac_msi_intr_tx(0, &priv->tx_queue[i]);
5770 } else {
5771 disable_irq(dev->irq);
5772 stmmac_interrupt(dev->irq, dev);
5773 enable_irq(dev->irq);
5774 }
5775 }
5776 #endif
5777
5778 /**
5779 * stmmac_ioctl - Entry point for the Ioctl
5780 * @dev: Device pointer.
5781 * @rq: An IOCTL specefic structure, that can contain a pointer to
5782 * a proprietary structure used to pass information to the driver.
5783 * @cmd: IOCTL command
5784 * Description:
5785 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5786 */
stmmac_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)5787 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5788 {
5789 struct stmmac_priv *priv = netdev_priv (dev);
5790 int ret = -EOPNOTSUPP;
5791
5792 if (!netif_running(dev))
5793 return -EINVAL;
5794
5795 switch (cmd) {
5796 case SIOCGMIIPHY:
5797 case SIOCGMIIREG:
5798 case SIOCSMIIREG:
5799 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5800 break;
5801 case SIOCSHWTSTAMP:
5802 ret = stmmac_hwtstamp_set(dev, rq);
5803 break;
5804 case SIOCGHWTSTAMP:
5805 ret = stmmac_hwtstamp_get(dev, rq);
5806 break;
5807 default:
5808 break;
5809 }
5810
5811 return ret;
5812 }
5813
stmmac_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)5814 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5815 void *cb_priv)
5816 {
5817 struct stmmac_priv *priv = cb_priv;
5818 int ret = -EOPNOTSUPP;
5819
5820 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5821 return ret;
5822
5823 __stmmac_disable_all_queues(priv);
5824
5825 switch (type) {
5826 case TC_SETUP_CLSU32:
5827 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5828 break;
5829 case TC_SETUP_CLSFLOWER:
5830 ret = stmmac_tc_setup_cls(priv, priv, type_data);
5831 break;
5832 default:
5833 break;
5834 }
5835
5836 stmmac_enable_all_queues(priv);
5837 return ret;
5838 }
5839
5840 static LIST_HEAD(stmmac_block_cb_list);
5841
stmmac_setup_tc(struct net_device * ndev,enum tc_setup_type type,void * type_data)5842 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5843 void *type_data)
5844 {
5845 struct stmmac_priv *priv = netdev_priv(ndev);
5846
5847 switch (type) {
5848 case TC_SETUP_BLOCK:
5849 return flow_block_cb_setup_simple(type_data,
5850 &stmmac_block_cb_list,
5851 stmmac_setup_tc_block_cb,
5852 priv, priv, true);
5853 case TC_SETUP_QDISC_CBS:
5854 return stmmac_tc_setup_cbs(priv, priv, type_data);
5855 case TC_SETUP_QDISC_TAPRIO:
5856 return stmmac_tc_setup_taprio(priv, priv, type_data);
5857 case TC_SETUP_QDISC_ETF:
5858 return stmmac_tc_setup_etf(priv, priv, type_data);
5859 default:
5860 return -EOPNOTSUPP;
5861 }
5862 }
5863
stmmac_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)5864 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
5865 struct net_device *sb_dev)
5866 {
5867 int gso = skb_shinfo(skb)->gso_type;
5868
5869 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
5870 /*
5871 * There is no way to determine the number of TSO/USO
5872 * capable Queues. Let's use always the Queue 0
5873 * because if TSO/USO is supported then at least this
5874 * one will be capable.
5875 */
5876 return 0;
5877 }
5878
5879 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
5880 }
5881
stmmac_set_mac_address(struct net_device * ndev,void * addr)5882 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
5883 {
5884 struct stmmac_priv *priv = netdev_priv(ndev);
5885 int ret = 0;
5886
5887 ret = pm_runtime_resume_and_get(priv->device);
5888 if (ret < 0)
5889 return ret;
5890
5891 ret = eth_mac_addr(ndev, addr);
5892 if (ret)
5893 goto set_mac_error;
5894
5895 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
5896
5897 set_mac_error:
5898 pm_runtime_put(priv->device);
5899
5900 return ret;
5901 }
5902
5903 #ifdef CONFIG_DEBUG_FS
5904 static struct dentry *stmmac_fs_dir;
5905
sysfs_display_ring(void * head,int size,int extend_desc,struct seq_file * seq,dma_addr_t dma_phy_addr)5906 static void sysfs_display_ring(void *head, int size, int extend_desc,
5907 struct seq_file *seq, dma_addr_t dma_phy_addr)
5908 {
5909 int i;
5910 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
5911 struct dma_desc *p = (struct dma_desc *)head;
5912 dma_addr_t dma_addr;
5913
5914 for (i = 0; i < size; i++) {
5915 if (extend_desc) {
5916 dma_addr = dma_phy_addr + i * sizeof(*ep);
5917 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5918 i, &dma_addr,
5919 le32_to_cpu(ep->basic.des0),
5920 le32_to_cpu(ep->basic.des1),
5921 le32_to_cpu(ep->basic.des2),
5922 le32_to_cpu(ep->basic.des3));
5923 ep++;
5924 } else {
5925 dma_addr = dma_phy_addr + i * sizeof(*p);
5926 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5927 i, &dma_addr,
5928 le32_to_cpu(p->des0), le32_to_cpu(p->des1),
5929 le32_to_cpu(p->des2), le32_to_cpu(p->des3));
5930 p++;
5931 }
5932 seq_printf(seq, "\n");
5933 }
5934 }
5935
stmmac_rings_status_show(struct seq_file * seq,void * v)5936 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
5937 {
5938 struct net_device *dev = seq->private;
5939 struct stmmac_priv *priv = netdev_priv(dev);
5940 u32 rx_count = priv->plat->rx_queues_to_use;
5941 u32 tx_count = priv->plat->tx_queues_to_use;
5942 u32 queue;
5943
5944 if ((dev->flags & IFF_UP) == 0)
5945 return 0;
5946
5947 for (queue = 0; queue < rx_count; queue++) {
5948 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5949
5950 seq_printf(seq, "RX Queue %d:\n", queue);
5951
5952 if (priv->extend_desc) {
5953 seq_printf(seq, "Extended descriptor ring:\n");
5954 sysfs_display_ring((void *)rx_q->dma_erx,
5955 priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
5956 } else {
5957 seq_printf(seq, "Descriptor ring:\n");
5958 sysfs_display_ring((void *)rx_q->dma_rx,
5959 priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
5960 }
5961 }
5962
5963 for (queue = 0; queue < tx_count; queue++) {
5964 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5965
5966 seq_printf(seq, "TX Queue %d:\n", queue);
5967
5968 if (priv->extend_desc) {
5969 seq_printf(seq, "Extended descriptor ring:\n");
5970 sysfs_display_ring((void *)tx_q->dma_etx,
5971 priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
5972 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
5973 seq_printf(seq, "Descriptor ring:\n");
5974 sysfs_display_ring((void *)tx_q->dma_tx,
5975 priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
5976 }
5977 }
5978
5979 return 0;
5980 }
5981 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
5982
stmmac_dma_cap_show(struct seq_file * seq,void * v)5983 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
5984 {
5985 struct net_device *dev = seq->private;
5986 struct stmmac_priv *priv = netdev_priv(dev);
5987
5988 if (!priv->hw_cap_support) {
5989 seq_printf(seq, "DMA HW features not supported\n");
5990 return 0;
5991 }
5992
5993 seq_printf(seq, "==============================\n");
5994 seq_printf(seq, "\tDMA HW features\n");
5995 seq_printf(seq, "==============================\n");
5996
5997 seq_printf(seq, "\t10/100 Mbps: %s\n",
5998 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
5999 seq_printf(seq, "\t1000 Mbps: %s\n",
6000 (priv->dma_cap.mbps_1000) ? "Y" : "N");
6001 seq_printf(seq, "\tHalf duplex: %s\n",
6002 (priv->dma_cap.half_duplex) ? "Y" : "N");
6003 seq_printf(seq, "\tHash Filter: %s\n",
6004 (priv->dma_cap.hash_filter) ? "Y" : "N");
6005 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6006 (priv->dma_cap.multi_addr) ? "Y" : "N");
6007 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6008 (priv->dma_cap.pcs) ? "Y" : "N");
6009 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6010 (priv->dma_cap.sma_mdio) ? "Y" : "N");
6011 seq_printf(seq, "\tPMT Remote wake up: %s\n",
6012 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6013 seq_printf(seq, "\tPMT Magic Frame: %s\n",
6014 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6015 seq_printf(seq, "\tRMON module: %s\n",
6016 (priv->dma_cap.rmon) ? "Y" : "N");
6017 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6018 (priv->dma_cap.time_stamp) ? "Y" : "N");
6019 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6020 (priv->dma_cap.atime_stamp) ? "Y" : "N");
6021 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6022 (priv->dma_cap.eee) ? "Y" : "N");
6023 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6024 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6025 (priv->dma_cap.tx_coe) ? "Y" : "N");
6026 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6027 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6028 (priv->dma_cap.rx_coe) ? "Y" : "N");
6029 } else {
6030 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6031 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6032 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6033 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6034 }
6035 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6036 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6037 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6038 priv->dma_cap.number_rx_channel);
6039 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6040 priv->dma_cap.number_tx_channel);
6041 seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6042 priv->dma_cap.number_rx_queues);
6043 seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6044 priv->dma_cap.number_tx_queues);
6045 seq_printf(seq, "\tEnhanced descriptors: %s\n",
6046 (priv->dma_cap.enh_desc) ? "Y" : "N");
6047 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6048 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6049 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6050 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6051 seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6052 priv->dma_cap.pps_out_num);
6053 seq_printf(seq, "\tSafety Features: %s\n",
6054 priv->dma_cap.asp ? "Y" : "N");
6055 seq_printf(seq, "\tFlexible RX Parser: %s\n",
6056 priv->dma_cap.frpsel ? "Y" : "N");
6057 seq_printf(seq, "\tEnhanced Addressing: %d\n",
6058 priv->dma_cap.addr64);
6059 seq_printf(seq, "\tReceive Side Scaling: %s\n",
6060 priv->dma_cap.rssen ? "Y" : "N");
6061 seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6062 priv->dma_cap.vlhash ? "Y" : "N");
6063 seq_printf(seq, "\tSplit Header: %s\n",
6064 priv->dma_cap.sphen ? "Y" : "N");
6065 seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6066 priv->dma_cap.vlins ? "Y" : "N");
6067 seq_printf(seq, "\tDouble VLAN: %s\n",
6068 priv->dma_cap.dvlan ? "Y" : "N");
6069 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6070 priv->dma_cap.l3l4fnum);
6071 seq_printf(seq, "\tARP Offloading: %s\n",
6072 priv->dma_cap.arpoffsel ? "Y" : "N");
6073 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6074 priv->dma_cap.estsel ? "Y" : "N");
6075 seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6076 priv->dma_cap.fpesel ? "Y" : "N");
6077 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6078 priv->dma_cap.tbssel ? "Y" : "N");
6079 return 0;
6080 }
6081 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6082
6083 /* Use network device events to rename debugfs file entries.
6084 */
stmmac_device_event(struct notifier_block * unused,unsigned long event,void * ptr)6085 static int stmmac_device_event(struct notifier_block *unused,
6086 unsigned long event, void *ptr)
6087 {
6088 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6089 struct stmmac_priv *priv = netdev_priv(dev);
6090
6091 if (dev->netdev_ops != &stmmac_netdev_ops)
6092 goto done;
6093
6094 switch (event) {
6095 case NETDEV_CHANGENAME:
6096 if (priv->dbgfs_dir)
6097 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6098 priv->dbgfs_dir,
6099 stmmac_fs_dir,
6100 dev->name);
6101 break;
6102 }
6103 done:
6104 return NOTIFY_DONE;
6105 }
6106
6107 static struct notifier_block stmmac_notifier = {
6108 .notifier_call = stmmac_device_event,
6109 };
6110
stmmac_init_fs(struct net_device * dev)6111 static void stmmac_init_fs(struct net_device *dev)
6112 {
6113 struct stmmac_priv *priv = netdev_priv(dev);
6114
6115 rtnl_lock();
6116
6117 /* Create per netdev entries */
6118 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6119
6120 /* Entry to report DMA RX/TX rings */
6121 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6122 &stmmac_rings_status_fops);
6123
6124 /* Entry to report the DMA HW features */
6125 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6126 &stmmac_dma_cap_fops);
6127
6128 rtnl_unlock();
6129 }
6130
stmmac_exit_fs(struct net_device * dev)6131 static void stmmac_exit_fs(struct net_device *dev)
6132 {
6133 struct stmmac_priv *priv = netdev_priv(dev);
6134
6135 debugfs_remove_recursive(priv->dbgfs_dir);
6136 }
6137 #endif /* CONFIG_DEBUG_FS */
6138
stmmac_vid_crc32_le(__le16 vid_le)6139 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6140 {
6141 unsigned char *data = (unsigned char *)&vid_le;
6142 unsigned char data_byte = 0;
6143 u32 crc = ~0x0;
6144 u32 temp = 0;
6145 int i, bits;
6146
6147 bits = get_bitmask_order(VLAN_VID_MASK);
6148 for (i = 0; i < bits; i++) {
6149 if ((i % 8) == 0)
6150 data_byte = data[i / 8];
6151
6152 temp = ((crc & 1) ^ data_byte) & 1;
6153 crc >>= 1;
6154 data_byte >>= 1;
6155
6156 if (temp)
6157 crc ^= 0xedb88320;
6158 }
6159
6160 return crc;
6161 }
6162
stmmac_vlan_update(struct stmmac_priv * priv,bool is_double)6163 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6164 {
6165 u32 crc, hash = 0;
6166 __le16 pmatch = 0;
6167 int count = 0;
6168 u16 vid = 0;
6169
6170 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6171 __le16 vid_le = cpu_to_le16(vid);
6172 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6173 hash |= (1 << crc);
6174 count++;
6175 }
6176
6177 if (!priv->dma_cap.vlhash) {
6178 if (count > 2) /* VID = 0 always passes filter */
6179 return -EOPNOTSUPP;
6180
6181 pmatch = cpu_to_le16(vid);
6182 hash = 0;
6183 }
6184
6185 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6186 }
6187
stmmac_vlan_rx_add_vid(struct net_device * ndev,__be16 proto,u16 vid)6188 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6189 {
6190 struct stmmac_priv *priv = netdev_priv(ndev);
6191 bool is_double = false;
6192 int ret;
6193
6194 if (be16_to_cpu(proto) == ETH_P_8021AD)
6195 is_double = true;
6196
6197 set_bit(vid, priv->active_vlans);
6198 ret = stmmac_vlan_update(priv, is_double);
6199 if (ret) {
6200 clear_bit(vid, priv->active_vlans);
6201 return ret;
6202 }
6203
6204 if (priv->hw->num_vlan) {
6205 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6206 if (ret)
6207 return ret;
6208 }
6209
6210 return 0;
6211 }
6212
stmmac_vlan_rx_kill_vid(struct net_device * ndev,__be16 proto,u16 vid)6213 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6214 {
6215 struct stmmac_priv *priv = netdev_priv(ndev);
6216 bool is_double = false;
6217 int ret;
6218
6219 ret = pm_runtime_resume_and_get(priv->device);
6220 if (ret < 0)
6221 return ret;
6222
6223 if (be16_to_cpu(proto) == ETH_P_8021AD)
6224 is_double = true;
6225
6226 clear_bit(vid, priv->active_vlans);
6227
6228 if (priv->hw->num_vlan) {
6229 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6230 if (ret)
6231 goto del_vlan_error;
6232 }
6233
6234 ret = stmmac_vlan_update(priv, is_double);
6235
6236 del_vlan_error:
6237 pm_runtime_put(priv->device);
6238
6239 return ret;
6240 }
6241
stmmac_bpf(struct net_device * dev,struct netdev_bpf * bpf)6242 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6243 {
6244 struct stmmac_priv *priv = netdev_priv(dev);
6245
6246 switch (bpf->command) {
6247 case XDP_SETUP_PROG:
6248 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6249 case XDP_SETUP_XSK_POOL:
6250 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6251 bpf->xsk.queue_id);
6252 default:
6253 return -EOPNOTSUPP;
6254 }
6255 }
6256
stmmac_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)6257 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6258 struct xdp_frame **frames, u32 flags)
6259 {
6260 struct stmmac_priv *priv = netdev_priv(dev);
6261 int cpu = smp_processor_id();
6262 struct netdev_queue *nq;
6263 int i, nxmit = 0;
6264 int queue;
6265
6266 if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6267 return -ENETDOWN;
6268
6269 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6270 return -EINVAL;
6271
6272 queue = stmmac_xdp_get_tx_queue(priv, cpu);
6273 nq = netdev_get_tx_queue(priv->dev, queue);
6274
6275 __netif_tx_lock(nq, cpu);
6276 /* Avoids TX time-out as we are sharing with slow path */
6277 txq_trans_cond_update(nq);
6278
6279 for (i = 0; i < num_frames; i++) {
6280 int res;
6281
6282 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6283 if (res == STMMAC_XDP_CONSUMED)
6284 break;
6285
6286 nxmit++;
6287 }
6288
6289 if (flags & XDP_XMIT_FLUSH) {
6290 stmmac_flush_tx_descriptors(priv, queue);
6291 stmmac_tx_timer_arm(priv, queue);
6292 }
6293
6294 __netif_tx_unlock(nq);
6295
6296 return nxmit;
6297 }
6298
stmmac_disable_rx_queue(struct stmmac_priv * priv,u32 queue)6299 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6300 {
6301 struct stmmac_channel *ch = &priv->channel[queue];
6302 unsigned long flags;
6303
6304 spin_lock_irqsave(&ch->lock, flags);
6305 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6306 spin_unlock_irqrestore(&ch->lock, flags);
6307
6308 stmmac_stop_rx_dma(priv, queue);
6309 __free_dma_rx_desc_resources(priv, queue);
6310 }
6311
stmmac_enable_rx_queue(struct stmmac_priv * priv,u32 queue)6312 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6313 {
6314 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
6315 struct stmmac_channel *ch = &priv->channel[queue];
6316 unsigned long flags;
6317 u32 buf_size;
6318 int ret;
6319
6320 ret = __alloc_dma_rx_desc_resources(priv, queue);
6321 if (ret) {
6322 netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6323 return;
6324 }
6325
6326 ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL);
6327 if (ret) {
6328 __free_dma_rx_desc_resources(priv, queue);
6329 netdev_err(priv->dev, "Failed to init RX desc.\n");
6330 return;
6331 }
6332
6333 stmmac_clear_rx_descriptors(priv, queue);
6334
6335 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6336 rx_q->dma_rx_phy, rx_q->queue_index);
6337
6338 rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6339 sizeof(struct dma_desc));
6340 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6341 rx_q->rx_tail_addr, rx_q->queue_index);
6342
6343 if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6344 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6345 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6346 buf_size,
6347 rx_q->queue_index);
6348 } else {
6349 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6350 priv->dma_buf_sz,
6351 rx_q->queue_index);
6352 }
6353
6354 stmmac_start_rx_dma(priv, queue);
6355
6356 spin_lock_irqsave(&ch->lock, flags);
6357 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6358 spin_unlock_irqrestore(&ch->lock, flags);
6359 }
6360
stmmac_disable_tx_queue(struct stmmac_priv * priv,u32 queue)6361 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6362 {
6363 struct stmmac_channel *ch = &priv->channel[queue];
6364 unsigned long flags;
6365
6366 spin_lock_irqsave(&ch->lock, flags);
6367 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6368 spin_unlock_irqrestore(&ch->lock, flags);
6369
6370 stmmac_stop_tx_dma(priv, queue);
6371 __free_dma_tx_desc_resources(priv, queue);
6372 }
6373
stmmac_enable_tx_queue(struct stmmac_priv * priv,u32 queue)6374 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6375 {
6376 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
6377 struct stmmac_channel *ch = &priv->channel[queue];
6378 unsigned long flags;
6379 int ret;
6380
6381 ret = __alloc_dma_tx_desc_resources(priv, queue);
6382 if (ret) {
6383 netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6384 return;
6385 }
6386
6387 ret = __init_dma_tx_desc_rings(priv, queue);
6388 if (ret) {
6389 __free_dma_tx_desc_resources(priv, queue);
6390 netdev_err(priv->dev, "Failed to init TX desc.\n");
6391 return;
6392 }
6393
6394 stmmac_clear_tx_descriptors(priv, queue);
6395
6396 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6397 tx_q->dma_tx_phy, tx_q->queue_index);
6398
6399 if (tx_q->tbs & STMMAC_TBS_AVAIL)
6400 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6401
6402 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6403 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6404 tx_q->tx_tail_addr, tx_q->queue_index);
6405
6406 stmmac_start_tx_dma(priv, queue);
6407
6408 spin_lock_irqsave(&ch->lock, flags);
6409 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6410 spin_unlock_irqrestore(&ch->lock, flags);
6411 }
6412
stmmac_xdp_release(struct net_device * dev)6413 void stmmac_xdp_release(struct net_device *dev)
6414 {
6415 struct stmmac_priv *priv = netdev_priv(dev);
6416 u32 chan;
6417
6418 /* Disable NAPI process */
6419 stmmac_disable_all_queues(priv);
6420
6421 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6422 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
6423
6424 /* Free the IRQ lines */
6425 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6426
6427 /* Stop TX/RX DMA channels */
6428 stmmac_stop_all_dma(priv);
6429
6430 /* Release and free the Rx/Tx resources */
6431 free_dma_desc_resources(priv);
6432
6433 /* Disable the MAC Rx/Tx */
6434 stmmac_mac_set(priv, priv->ioaddr, false);
6435
6436 /* set trans_start so we don't get spurious
6437 * watchdogs during reset
6438 */
6439 netif_trans_update(dev);
6440 netif_carrier_off(dev);
6441 }
6442
stmmac_xdp_open(struct net_device * dev)6443 int stmmac_xdp_open(struct net_device *dev)
6444 {
6445 struct stmmac_priv *priv = netdev_priv(dev);
6446 u32 rx_cnt = priv->plat->rx_queues_to_use;
6447 u32 tx_cnt = priv->plat->tx_queues_to_use;
6448 u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6449 struct stmmac_rx_queue *rx_q;
6450 struct stmmac_tx_queue *tx_q;
6451 u32 buf_size;
6452 bool sph_en;
6453 u32 chan;
6454 int ret;
6455
6456 ret = alloc_dma_desc_resources(priv);
6457 if (ret < 0) {
6458 netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6459 __func__);
6460 goto dma_desc_error;
6461 }
6462
6463 ret = init_dma_desc_rings(dev, GFP_KERNEL);
6464 if (ret < 0) {
6465 netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6466 __func__);
6467 goto init_error;
6468 }
6469
6470 /* DMA CSR Channel configuration */
6471 for (chan = 0; chan < dma_csr_ch; chan++) {
6472 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6473 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6474 }
6475
6476 /* Adjust Split header */
6477 sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6478
6479 /* DMA RX Channel Configuration */
6480 for (chan = 0; chan < rx_cnt; chan++) {
6481 rx_q = &priv->rx_queue[chan];
6482
6483 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6484 rx_q->dma_rx_phy, chan);
6485
6486 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6487 (rx_q->buf_alloc_num *
6488 sizeof(struct dma_desc));
6489 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6490 rx_q->rx_tail_addr, chan);
6491
6492 if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6493 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6494 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6495 buf_size,
6496 rx_q->queue_index);
6497 } else {
6498 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6499 priv->dma_buf_sz,
6500 rx_q->queue_index);
6501 }
6502
6503 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6504 }
6505
6506 /* DMA TX Channel Configuration */
6507 for (chan = 0; chan < tx_cnt; chan++) {
6508 tx_q = &priv->tx_queue[chan];
6509
6510 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6511 tx_q->dma_tx_phy, chan);
6512
6513 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6514 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6515 tx_q->tx_tail_addr, chan);
6516
6517 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6518 tx_q->txtimer.function = stmmac_tx_timer;
6519 }
6520
6521 /* Enable the MAC Rx/Tx */
6522 stmmac_mac_set(priv, priv->ioaddr, true);
6523
6524 /* Start Rx & Tx DMA Channels */
6525 stmmac_start_all_dma(priv);
6526
6527 ret = stmmac_request_irq(dev);
6528 if (ret)
6529 goto irq_error;
6530
6531 /* Enable NAPI process*/
6532 stmmac_enable_all_queues(priv);
6533 netif_carrier_on(dev);
6534 netif_tx_start_all_queues(dev);
6535 stmmac_enable_all_dma_irq(priv);
6536
6537 return 0;
6538
6539 irq_error:
6540 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6541 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
6542
6543 stmmac_hw_teardown(dev);
6544 init_error:
6545 free_dma_desc_resources(priv);
6546 dma_desc_error:
6547 return ret;
6548 }
6549
stmmac_xsk_wakeup(struct net_device * dev,u32 queue,u32 flags)6550 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6551 {
6552 struct stmmac_priv *priv = netdev_priv(dev);
6553 struct stmmac_rx_queue *rx_q;
6554 struct stmmac_tx_queue *tx_q;
6555 struct stmmac_channel *ch;
6556
6557 if (test_bit(STMMAC_DOWN, &priv->state) ||
6558 !netif_carrier_ok(priv->dev))
6559 return -ENETDOWN;
6560
6561 if (!stmmac_xdp_is_enabled(priv))
6562 return -EINVAL;
6563
6564 if (queue >= priv->plat->rx_queues_to_use ||
6565 queue >= priv->plat->tx_queues_to_use)
6566 return -EINVAL;
6567
6568 rx_q = &priv->rx_queue[queue];
6569 tx_q = &priv->tx_queue[queue];
6570 ch = &priv->channel[queue];
6571
6572 if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6573 return -EINVAL;
6574
6575 if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6576 /* EQoS does not have per-DMA channel SW interrupt,
6577 * so we schedule RX Napi straight-away.
6578 */
6579 if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6580 __napi_schedule(&ch->rxtx_napi);
6581 }
6582
6583 return 0;
6584 }
6585
6586 static const struct net_device_ops stmmac_netdev_ops = {
6587 .ndo_open = stmmac_open,
6588 .ndo_start_xmit = stmmac_xmit,
6589 .ndo_stop = stmmac_release,
6590 .ndo_change_mtu = stmmac_change_mtu,
6591 .ndo_fix_features = stmmac_fix_features,
6592 .ndo_set_features = stmmac_set_features,
6593 .ndo_set_rx_mode = stmmac_set_rx_mode,
6594 .ndo_tx_timeout = stmmac_tx_timeout,
6595 .ndo_eth_ioctl = stmmac_ioctl,
6596 .ndo_setup_tc = stmmac_setup_tc,
6597 .ndo_select_queue = stmmac_select_queue,
6598 #ifdef CONFIG_NET_POLL_CONTROLLER
6599 .ndo_poll_controller = stmmac_poll_controller,
6600 #endif
6601 .ndo_set_mac_address = stmmac_set_mac_address,
6602 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6603 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6604 .ndo_bpf = stmmac_bpf,
6605 .ndo_xdp_xmit = stmmac_xdp_xmit,
6606 .ndo_xsk_wakeup = stmmac_xsk_wakeup,
6607 };
6608
stmmac_reset_subtask(struct stmmac_priv * priv)6609 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6610 {
6611 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6612 return;
6613 if (test_bit(STMMAC_DOWN, &priv->state))
6614 return;
6615
6616 netdev_err(priv->dev, "Reset adapter.\n");
6617
6618 rtnl_lock();
6619 netif_trans_update(priv->dev);
6620 while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6621 usleep_range(1000, 2000);
6622
6623 set_bit(STMMAC_DOWN, &priv->state);
6624 dev_close(priv->dev);
6625 dev_open(priv->dev, NULL);
6626 clear_bit(STMMAC_DOWN, &priv->state);
6627 clear_bit(STMMAC_RESETING, &priv->state);
6628 rtnl_unlock();
6629 }
6630
stmmac_service_task(struct work_struct * work)6631 static void stmmac_service_task(struct work_struct *work)
6632 {
6633 struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6634 service_task);
6635
6636 stmmac_reset_subtask(priv);
6637 clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6638 }
6639
6640 /**
6641 * stmmac_hw_init - Init the MAC device
6642 * @priv: driver private structure
6643 * Description: this function is to configure the MAC device according to
6644 * some platform parameters or the HW capability register. It prepares the
6645 * driver to use either ring or chain modes and to setup either enhanced or
6646 * normal descriptors.
6647 */
stmmac_hw_init(struct stmmac_priv * priv)6648 static int stmmac_hw_init(struct stmmac_priv *priv)
6649 {
6650 int ret;
6651
6652 /* dwmac-sun8i only work in chain mode */
6653 if (priv->plat->has_sun8i)
6654 chain_mode = 1;
6655 priv->chain_mode = chain_mode;
6656
6657 /* Initialize HW Interface */
6658 ret = stmmac_hwif_init(priv);
6659 if (ret)
6660 return ret;
6661
6662 /* Get the HW capability (new GMAC newer than 3.50a) */
6663 priv->hw_cap_support = stmmac_get_hw_features(priv);
6664 if (priv->hw_cap_support) {
6665 dev_info(priv->device, "DMA HW capability register supported\n");
6666
6667 /* We can override some gmac/dma configuration fields: e.g.
6668 * enh_desc, tx_coe (e.g. that are passed through the
6669 * platform) with the values from the HW capability
6670 * register (if supported).
6671 */
6672 priv->plat->enh_desc = priv->dma_cap.enh_desc;
6673 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6674 !priv->plat->use_phy_wol;
6675 priv->hw->pmt = priv->plat->pmt;
6676 if (priv->dma_cap.hash_tb_sz) {
6677 priv->hw->multicast_filter_bins =
6678 (BIT(priv->dma_cap.hash_tb_sz) << 5);
6679 priv->hw->mcast_bits_log2 =
6680 ilog2(priv->hw->multicast_filter_bins);
6681 }
6682
6683 /* TXCOE doesn't work in thresh DMA mode */
6684 if (priv->plat->force_thresh_dma_mode)
6685 priv->plat->tx_coe = 0;
6686 else
6687 priv->plat->tx_coe = priv->dma_cap.tx_coe;
6688
6689 /* In case of GMAC4 rx_coe is from HW cap register. */
6690 priv->plat->rx_coe = priv->dma_cap.rx_coe;
6691
6692 if (priv->dma_cap.rx_coe_type2)
6693 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6694 else if (priv->dma_cap.rx_coe_type1)
6695 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6696
6697 } else {
6698 dev_info(priv->device, "No HW DMA feature register supported\n");
6699 }
6700
6701 if (priv->plat->rx_coe) {
6702 priv->hw->rx_csum = priv->plat->rx_coe;
6703 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6704 if (priv->synopsys_id < DWMAC_CORE_4_00)
6705 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6706 }
6707 if (priv->plat->tx_coe)
6708 dev_info(priv->device, "TX Checksum insertion supported\n");
6709
6710 if (priv->plat->pmt) {
6711 dev_info(priv->device, "Wake-Up On Lan supported\n");
6712 device_set_wakeup_capable(priv->device, 1);
6713 }
6714
6715 if (priv->dma_cap.tsoen)
6716 dev_info(priv->device, "TSO supported\n");
6717
6718 priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6719 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6720
6721 /* Run HW quirks, if any */
6722 if (priv->hwif_quirks) {
6723 ret = priv->hwif_quirks(priv);
6724 if (ret)
6725 return ret;
6726 }
6727
6728 /* Rx Watchdog is available in the COREs newer than the 3.40.
6729 * In some case, for example on bugged HW this feature
6730 * has to be disable and this can be done by passing the
6731 * riwt_off field from the platform.
6732 */
6733 if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6734 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6735 priv->use_riwt = 1;
6736 dev_info(priv->device,
6737 "Enable RX Mitigation via HW Watchdog Timer\n");
6738 }
6739
6740 return 0;
6741 }
6742
stmmac_napi_add(struct net_device * dev)6743 static void stmmac_napi_add(struct net_device *dev)
6744 {
6745 struct stmmac_priv *priv = netdev_priv(dev);
6746 u32 queue, maxq;
6747
6748 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6749
6750 for (queue = 0; queue < maxq; queue++) {
6751 struct stmmac_channel *ch = &priv->channel[queue];
6752
6753 ch->priv_data = priv;
6754 ch->index = queue;
6755 spin_lock_init(&ch->lock);
6756
6757 if (queue < priv->plat->rx_queues_to_use) {
6758 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
6759 NAPI_POLL_WEIGHT);
6760 }
6761 if (queue < priv->plat->tx_queues_to_use) {
6762 netif_napi_add_tx(dev, &ch->tx_napi,
6763 stmmac_napi_poll_tx);
6764 }
6765 if (queue < priv->plat->rx_queues_to_use &&
6766 queue < priv->plat->tx_queues_to_use) {
6767 netif_napi_add(dev, &ch->rxtx_napi,
6768 stmmac_napi_poll_rxtx,
6769 NAPI_POLL_WEIGHT);
6770 }
6771 }
6772 }
6773
stmmac_napi_del(struct net_device * dev)6774 static void stmmac_napi_del(struct net_device *dev)
6775 {
6776 struct stmmac_priv *priv = netdev_priv(dev);
6777 u32 queue, maxq;
6778
6779 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6780
6781 for (queue = 0; queue < maxq; queue++) {
6782 struct stmmac_channel *ch = &priv->channel[queue];
6783
6784 if (queue < priv->plat->rx_queues_to_use)
6785 netif_napi_del(&ch->rx_napi);
6786 if (queue < priv->plat->tx_queues_to_use)
6787 netif_napi_del(&ch->tx_napi);
6788 if (queue < priv->plat->rx_queues_to_use &&
6789 queue < priv->plat->tx_queues_to_use) {
6790 netif_napi_del(&ch->rxtx_napi);
6791 }
6792 }
6793 }
6794
stmmac_reinit_queues(struct net_device * dev,u32 rx_cnt,u32 tx_cnt)6795 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6796 {
6797 struct stmmac_priv *priv = netdev_priv(dev);
6798 int ret = 0;
6799
6800 if (netif_running(dev))
6801 stmmac_release(dev);
6802
6803 stmmac_napi_del(dev);
6804
6805 priv->plat->rx_queues_to_use = rx_cnt;
6806 priv->plat->tx_queues_to_use = tx_cnt;
6807
6808 stmmac_napi_add(dev);
6809
6810 if (netif_running(dev))
6811 ret = stmmac_open(dev);
6812
6813 return ret;
6814 }
6815
stmmac_reinit_ringparam(struct net_device * dev,u32 rx_size,u32 tx_size)6816 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6817 {
6818 struct stmmac_priv *priv = netdev_priv(dev);
6819 int ret = 0;
6820
6821 if (netif_running(dev))
6822 stmmac_release(dev);
6823
6824 priv->dma_rx_size = rx_size;
6825 priv->dma_tx_size = tx_size;
6826
6827 if (netif_running(dev))
6828 ret = stmmac_open(dev);
6829
6830 return ret;
6831 }
6832
6833 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
stmmac_fpe_lp_task(struct work_struct * work)6834 static void stmmac_fpe_lp_task(struct work_struct *work)
6835 {
6836 struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6837 fpe_task);
6838 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6839 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6840 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6841 bool *hs_enable = &fpe_cfg->hs_enable;
6842 bool *enable = &fpe_cfg->enable;
6843 int retries = 20;
6844
6845 while (retries-- > 0) {
6846 /* Bail out immediately if FPE handshake is OFF */
6847 if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6848 break;
6849
6850 if (*lo_state == FPE_STATE_ENTERING_ON &&
6851 *lp_state == FPE_STATE_ENTERING_ON) {
6852 stmmac_fpe_configure(priv, priv->ioaddr,
6853 priv->plat->tx_queues_to_use,
6854 priv->plat->rx_queues_to_use,
6855 *enable);
6856
6857 netdev_info(priv->dev, "configured FPE\n");
6858
6859 *lo_state = FPE_STATE_ON;
6860 *lp_state = FPE_STATE_ON;
6861 netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
6862 break;
6863 }
6864
6865 if ((*lo_state == FPE_STATE_CAPABLE ||
6866 *lo_state == FPE_STATE_ENTERING_ON) &&
6867 *lp_state != FPE_STATE_ON) {
6868 netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
6869 *lo_state, *lp_state);
6870 stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6871 MPACKET_VERIFY);
6872 }
6873 /* Sleep then retry */
6874 msleep(500);
6875 }
6876
6877 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
6878 }
6879
stmmac_fpe_handshake(struct stmmac_priv * priv,bool enable)6880 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
6881 {
6882 if (priv->plat->fpe_cfg->hs_enable != enable) {
6883 if (enable) {
6884 stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6885 MPACKET_VERIFY);
6886 } else {
6887 priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
6888 priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
6889 }
6890
6891 priv->plat->fpe_cfg->hs_enable = enable;
6892 }
6893 }
6894
6895 /**
6896 * stmmac_dvr_probe
6897 * @device: device pointer
6898 * @plat_dat: platform data pointer
6899 * @res: stmmac resource pointer
6900 * Description: this is the main probe function used to
6901 * call the alloc_etherdev, allocate the priv structure.
6902 * Return:
6903 * returns 0 on success, otherwise errno.
6904 */
stmmac_dvr_probe(struct device * device,struct plat_stmmacenet_data * plat_dat,struct stmmac_resources * res)6905 int stmmac_dvr_probe(struct device *device,
6906 struct plat_stmmacenet_data *plat_dat,
6907 struct stmmac_resources *res)
6908 {
6909 struct net_device *ndev = NULL;
6910 struct stmmac_priv *priv;
6911 u32 rxq;
6912 int i, ret = 0;
6913
6914 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
6915 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
6916 if (!ndev)
6917 return -ENOMEM;
6918
6919 SET_NETDEV_DEV(ndev, device);
6920
6921 priv = netdev_priv(ndev);
6922 priv->device = device;
6923 priv->dev = ndev;
6924
6925 stmmac_set_ethtool_ops(ndev);
6926 priv->pause = pause;
6927 priv->plat = plat_dat;
6928 priv->ioaddr = res->addr;
6929 priv->dev->base_addr = (unsigned long)res->addr;
6930 priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
6931
6932 priv->dev->irq = res->irq;
6933 priv->wol_irq = res->wol_irq;
6934 priv->lpi_irq = res->lpi_irq;
6935 priv->sfty_ce_irq = res->sfty_ce_irq;
6936 priv->sfty_ue_irq = res->sfty_ue_irq;
6937 for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
6938 priv->rx_irq[i] = res->rx_irq[i];
6939 for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
6940 priv->tx_irq[i] = res->tx_irq[i];
6941
6942 if (!is_zero_ether_addr(res->mac))
6943 eth_hw_addr_set(priv->dev, res->mac);
6944
6945 dev_set_drvdata(device, priv->dev);
6946
6947 /* Verify driver arguments */
6948 stmmac_verify_args();
6949
6950 priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
6951 if (!priv->af_xdp_zc_qps)
6952 return -ENOMEM;
6953
6954 /* Allocate workqueue */
6955 priv->wq = create_singlethread_workqueue("stmmac_wq");
6956 if (!priv->wq) {
6957 dev_err(priv->device, "failed to create workqueue\n");
6958 return -ENOMEM;
6959 }
6960
6961 INIT_WORK(&priv->service_task, stmmac_service_task);
6962
6963 /* Initialize Link Partner FPE workqueue */
6964 INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
6965
6966 /* Override with kernel parameters if supplied XXX CRS XXX
6967 * this needs to have multiple instances
6968 */
6969 if ((phyaddr >= 0) && (phyaddr <= 31))
6970 priv->plat->phy_addr = phyaddr;
6971
6972 if (priv->plat->stmmac_rst) {
6973 ret = reset_control_assert(priv->plat->stmmac_rst);
6974 reset_control_deassert(priv->plat->stmmac_rst);
6975 /* Some reset controllers have only reset callback instead of
6976 * assert + deassert callbacks pair.
6977 */
6978 if (ret == -ENOTSUPP)
6979 reset_control_reset(priv->plat->stmmac_rst);
6980 }
6981
6982 ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
6983 if (ret == -ENOTSUPP)
6984 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
6985 ERR_PTR(ret));
6986
6987 /* Init MAC and get the capabilities */
6988 ret = stmmac_hw_init(priv);
6989 if (ret)
6990 goto error_hw_init;
6991
6992 /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
6993 */
6994 if (priv->synopsys_id < DWMAC_CORE_5_20)
6995 priv->plat->dma_cfg->dche = false;
6996
6997 stmmac_check_ether_addr(priv);
6998
6999 ndev->netdev_ops = &stmmac_netdev_ops;
7000
7001 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7002 NETIF_F_RXCSUM;
7003
7004 ret = stmmac_tc_init(priv, priv);
7005 if (!ret) {
7006 ndev->hw_features |= NETIF_F_HW_TC;
7007 }
7008
7009 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
7010 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7011 if (priv->plat->has_gmac4)
7012 ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7013 priv->tso = true;
7014 dev_info(priv->device, "TSO feature enabled\n");
7015 }
7016
7017 if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
7018 ndev->hw_features |= NETIF_F_GRO;
7019 priv->sph_cap = true;
7020 priv->sph = priv->sph_cap;
7021 dev_info(priv->device, "SPH feature enabled\n");
7022 }
7023
7024 /* The current IP register MAC_HW_Feature1[ADDR64] only define
7025 * 32/40/64 bit width, but some SOC support others like i.MX8MP
7026 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
7027 * So overwrite dma_cap.addr64 according to HW real design.
7028 */
7029 if (priv->plat->addr64)
7030 priv->dma_cap.addr64 = priv->plat->addr64;
7031
7032 if (priv->dma_cap.addr64) {
7033 ret = dma_set_mask_and_coherent(device,
7034 DMA_BIT_MASK(priv->dma_cap.addr64));
7035 if (!ret) {
7036 dev_info(priv->device, "Using %d bits DMA width\n",
7037 priv->dma_cap.addr64);
7038
7039 /*
7040 * If more than 32 bits can be addressed, make sure to
7041 * enable enhanced addressing mode.
7042 */
7043 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7044 priv->plat->dma_cfg->eame = true;
7045 } else {
7046 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7047 if (ret) {
7048 dev_err(priv->device, "Failed to set DMA Mask\n");
7049 goto error_hw_init;
7050 }
7051
7052 priv->dma_cap.addr64 = 32;
7053 }
7054 }
7055
7056 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7057 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7058 #ifdef STMMAC_VLAN_TAG_USED
7059 /* Both mac100 and gmac support receive VLAN tag detection */
7060 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7061 if (priv->dma_cap.vlhash) {
7062 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7063 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7064 }
7065 if (priv->dma_cap.vlins) {
7066 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7067 if (priv->dma_cap.dvlan)
7068 ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7069 }
7070 #endif
7071 priv->msg_enable = netif_msg_init(debug, default_msg_level);
7072
7073 /* Initialize RSS */
7074 rxq = priv->plat->rx_queues_to_use;
7075 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7076 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7077 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7078
7079 if (priv->dma_cap.rssen && priv->plat->rss_en)
7080 ndev->features |= NETIF_F_RXHASH;
7081
7082 /* MTU range: 46 - hw-specific max */
7083 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7084 if (priv->plat->has_xgmac)
7085 ndev->max_mtu = XGMAC_JUMBO_LEN;
7086 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7087 ndev->max_mtu = JUMBO_LEN;
7088 else
7089 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7090 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7091 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7092 */
7093 if ((priv->plat->maxmtu < ndev->max_mtu) &&
7094 (priv->plat->maxmtu >= ndev->min_mtu))
7095 ndev->max_mtu = priv->plat->maxmtu;
7096 else if (priv->plat->maxmtu < ndev->min_mtu)
7097 dev_warn(priv->device,
7098 "%s: warning: maxmtu having invalid value (%d)\n",
7099 __func__, priv->plat->maxmtu);
7100
7101 if (flow_ctrl)
7102 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
7103
7104 /* Setup channels NAPI */
7105 stmmac_napi_add(ndev);
7106
7107 mutex_init(&priv->lock);
7108
7109 /* If a specific clk_csr value is passed from the platform
7110 * this means that the CSR Clock Range selection cannot be
7111 * changed at run-time and it is fixed. Viceversa the driver'll try to
7112 * set the MDC clock dynamically according to the csr actual
7113 * clock input.
7114 */
7115 if (priv->plat->clk_csr >= 0)
7116 priv->clk_csr = priv->plat->clk_csr;
7117 else
7118 stmmac_clk_csr_set(priv);
7119
7120 stmmac_check_pcs_mode(priv);
7121
7122 pm_runtime_get_noresume(device);
7123 pm_runtime_set_active(device);
7124 if (!pm_runtime_enabled(device))
7125 pm_runtime_enable(device);
7126
7127 if (priv->hw->pcs != STMMAC_PCS_TBI &&
7128 priv->hw->pcs != STMMAC_PCS_RTBI) {
7129 /* MDIO bus Registration */
7130 ret = stmmac_mdio_register(ndev);
7131 if (ret < 0) {
7132 dev_err_probe(priv->device, ret,
7133 "%s: MDIO bus (id: %d) registration failed\n",
7134 __func__, priv->plat->bus_id);
7135 goto error_mdio_register;
7136 }
7137 }
7138
7139 if (priv->plat->speed_mode_2500)
7140 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7141
7142 if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7143 ret = stmmac_xpcs_setup(priv->mii);
7144 if (ret)
7145 goto error_xpcs_setup;
7146 }
7147
7148 ret = stmmac_phy_setup(priv);
7149 if (ret) {
7150 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7151 goto error_phy_setup;
7152 }
7153
7154 ret = register_netdev(ndev);
7155 if (ret) {
7156 dev_err(priv->device, "%s: ERROR %i registering the device\n",
7157 __func__, ret);
7158 goto error_netdev_register;
7159 }
7160
7161 if (priv->plat->serdes_powerup) {
7162 ret = priv->plat->serdes_powerup(ndev,
7163 priv->plat->bsp_priv);
7164
7165 if (ret < 0)
7166 goto error_serdes_powerup;
7167 }
7168
7169 #ifdef CONFIG_DEBUG_FS
7170 stmmac_init_fs(ndev);
7171 #endif
7172
7173 if (priv->plat->dump_debug_regs)
7174 priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7175
7176 /* Let pm_runtime_put() disable the clocks.
7177 * If CONFIG_PM is not enabled, the clocks will stay powered.
7178 */
7179 pm_runtime_put(device);
7180
7181 return ret;
7182
7183 error_serdes_powerup:
7184 unregister_netdev(ndev);
7185 error_netdev_register:
7186 phylink_destroy(priv->phylink);
7187 error_xpcs_setup:
7188 error_phy_setup:
7189 if (priv->hw->pcs != STMMAC_PCS_TBI &&
7190 priv->hw->pcs != STMMAC_PCS_RTBI)
7191 stmmac_mdio_unregister(ndev);
7192 error_mdio_register:
7193 stmmac_napi_del(ndev);
7194 error_hw_init:
7195 destroy_workqueue(priv->wq);
7196 bitmap_free(priv->af_xdp_zc_qps);
7197
7198 return ret;
7199 }
7200 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7201
7202 /**
7203 * stmmac_dvr_remove
7204 * @dev: device pointer
7205 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7206 * changes the link status, releases the DMA descriptor rings.
7207 */
stmmac_dvr_remove(struct device * dev)7208 int stmmac_dvr_remove(struct device *dev)
7209 {
7210 struct net_device *ndev = dev_get_drvdata(dev);
7211 struct stmmac_priv *priv = netdev_priv(ndev);
7212
7213 netdev_info(priv->dev, "%s: removing driver", __func__);
7214
7215 pm_runtime_get_sync(dev);
7216
7217 stmmac_stop_all_dma(priv);
7218 stmmac_mac_set(priv, priv->ioaddr, false);
7219 netif_carrier_off(ndev);
7220 unregister_netdev(ndev);
7221
7222 /* Serdes power down needs to happen after VLAN filter
7223 * is deleted that is triggered by unregister_netdev().
7224 */
7225 if (priv->plat->serdes_powerdown)
7226 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7227
7228 #ifdef CONFIG_DEBUG_FS
7229 stmmac_exit_fs(ndev);
7230 #endif
7231 phylink_destroy(priv->phylink);
7232 if (priv->plat->stmmac_rst)
7233 reset_control_assert(priv->plat->stmmac_rst);
7234 reset_control_assert(priv->plat->stmmac_ahb_rst);
7235 if (priv->hw->pcs != STMMAC_PCS_TBI &&
7236 priv->hw->pcs != STMMAC_PCS_RTBI)
7237 stmmac_mdio_unregister(ndev);
7238 destroy_workqueue(priv->wq);
7239 mutex_destroy(&priv->lock);
7240 bitmap_free(priv->af_xdp_zc_qps);
7241
7242 pm_runtime_disable(dev);
7243 pm_runtime_put_noidle(dev);
7244
7245 return 0;
7246 }
7247 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7248
7249 /**
7250 * stmmac_suspend - suspend callback
7251 * @dev: device pointer
7252 * Description: this is the function to suspend the device and it is called
7253 * by the platform driver to stop the network queue, release the resources,
7254 * program the PMT register (for WoL), clean and release driver resources.
7255 */
stmmac_suspend(struct device * dev)7256 int stmmac_suspend(struct device *dev)
7257 {
7258 struct net_device *ndev = dev_get_drvdata(dev);
7259 struct stmmac_priv *priv = netdev_priv(ndev);
7260 u32 chan;
7261
7262 if (!ndev || !netif_running(ndev))
7263 return 0;
7264
7265 mutex_lock(&priv->lock);
7266
7267 netif_device_detach(ndev);
7268
7269 stmmac_disable_all_queues(priv);
7270
7271 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7272 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
7273
7274 if (priv->eee_enabled) {
7275 priv->tx_path_in_lpi_mode = false;
7276 del_timer_sync(&priv->eee_ctrl_timer);
7277 }
7278
7279 /* Stop TX/RX DMA */
7280 stmmac_stop_all_dma(priv);
7281
7282 if (priv->plat->serdes_powerdown)
7283 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7284
7285 /* Enable Power down mode by programming the PMT regs */
7286 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7287 stmmac_pmt(priv, priv->hw, priv->wolopts);
7288 priv->irq_wake = 1;
7289 } else {
7290 stmmac_mac_set(priv, priv->ioaddr, false);
7291 pinctrl_pm_select_sleep_state(priv->device);
7292 }
7293
7294 mutex_unlock(&priv->lock);
7295
7296 rtnl_lock();
7297 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7298 phylink_suspend(priv->phylink, true);
7299 } else {
7300 if (device_may_wakeup(priv->device))
7301 phylink_speed_down(priv->phylink, false);
7302 phylink_suspend(priv->phylink, false);
7303 }
7304 rtnl_unlock();
7305
7306 if (priv->dma_cap.fpesel) {
7307 /* Disable FPE */
7308 stmmac_fpe_configure(priv, priv->ioaddr,
7309 priv->plat->tx_queues_to_use,
7310 priv->plat->rx_queues_to_use, false);
7311
7312 stmmac_fpe_handshake(priv, false);
7313 stmmac_fpe_stop_wq(priv);
7314 }
7315
7316 priv->speed = SPEED_UNKNOWN;
7317 return 0;
7318 }
7319 EXPORT_SYMBOL_GPL(stmmac_suspend);
7320
7321 /**
7322 * stmmac_reset_queues_param - reset queue parameters
7323 * @priv: device pointer
7324 */
stmmac_reset_queues_param(struct stmmac_priv * priv)7325 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7326 {
7327 u32 rx_cnt = priv->plat->rx_queues_to_use;
7328 u32 tx_cnt = priv->plat->tx_queues_to_use;
7329 u32 queue;
7330
7331 for (queue = 0; queue < rx_cnt; queue++) {
7332 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
7333
7334 rx_q->cur_rx = 0;
7335 rx_q->dirty_rx = 0;
7336 }
7337
7338 for (queue = 0; queue < tx_cnt; queue++) {
7339 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
7340
7341 tx_q->cur_tx = 0;
7342 tx_q->dirty_tx = 0;
7343 tx_q->mss = 0;
7344
7345 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7346 }
7347 }
7348
7349 /**
7350 * stmmac_resume - resume callback
7351 * @dev: device pointer
7352 * Description: when resume this function is invoked to setup the DMA and CORE
7353 * in a usable state.
7354 */
stmmac_resume(struct device * dev)7355 int stmmac_resume(struct device *dev)
7356 {
7357 struct net_device *ndev = dev_get_drvdata(dev);
7358 struct stmmac_priv *priv = netdev_priv(ndev);
7359 int ret;
7360
7361 if (!netif_running(ndev))
7362 return 0;
7363
7364 /* Power Down bit, into the PM register, is cleared
7365 * automatically as soon as a magic packet or a Wake-up frame
7366 * is received. Anyway, it's better to manually clear
7367 * this bit because it can generate problems while resuming
7368 * from another devices (e.g. serial console).
7369 */
7370 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7371 mutex_lock(&priv->lock);
7372 stmmac_pmt(priv, priv->hw, 0);
7373 mutex_unlock(&priv->lock);
7374 priv->irq_wake = 0;
7375 } else {
7376 pinctrl_pm_select_default_state(priv->device);
7377 /* reset the phy so that it's ready */
7378 if (priv->mii)
7379 stmmac_mdio_reset(priv->mii);
7380 }
7381
7382 if (priv->plat->serdes_powerup) {
7383 ret = priv->plat->serdes_powerup(ndev,
7384 priv->plat->bsp_priv);
7385
7386 if (ret < 0)
7387 return ret;
7388 }
7389
7390 rtnl_lock();
7391 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7392 phylink_resume(priv->phylink);
7393 } else {
7394 phylink_resume(priv->phylink);
7395 if (device_may_wakeup(priv->device))
7396 phylink_speed_up(priv->phylink);
7397 }
7398 rtnl_unlock();
7399
7400 rtnl_lock();
7401 mutex_lock(&priv->lock);
7402
7403 stmmac_reset_queues_param(priv);
7404
7405 stmmac_free_tx_skbufs(priv);
7406 stmmac_clear_descriptors(priv);
7407
7408 stmmac_hw_setup(ndev, false);
7409 stmmac_init_coalesce(priv);
7410 stmmac_set_rx_mode(ndev);
7411
7412 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7413
7414 stmmac_enable_all_queues(priv);
7415 stmmac_enable_all_dma_irq(priv);
7416
7417 mutex_unlock(&priv->lock);
7418 rtnl_unlock();
7419
7420 netif_device_attach(ndev);
7421
7422 return 0;
7423 }
7424 EXPORT_SYMBOL_GPL(stmmac_resume);
7425
7426 #ifndef MODULE
stmmac_cmdline_opt(char * str)7427 static int __init stmmac_cmdline_opt(char *str)
7428 {
7429 char *opt;
7430
7431 if (!str || !*str)
7432 return 1;
7433 while ((opt = strsep(&str, ",")) != NULL) {
7434 if (!strncmp(opt, "debug:", 6)) {
7435 if (kstrtoint(opt + 6, 0, &debug))
7436 goto err;
7437 } else if (!strncmp(opt, "phyaddr:", 8)) {
7438 if (kstrtoint(opt + 8, 0, &phyaddr))
7439 goto err;
7440 } else if (!strncmp(opt, "buf_sz:", 7)) {
7441 if (kstrtoint(opt + 7, 0, &buf_sz))
7442 goto err;
7443 } else if (!strncmp(opt, "tc:", 3)) {
7444 if (kstrtoint(opt + 3, 0, &tc))
7445 goto err;
7446 } else if (!strncmp(opt, "watchdog:", 9)) {
7447 if (kstrtoint(opt + 9, 0, &watchdog))
7448 goto err;
7449 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
7450 if (kstrtoint(opt + 10, 0, &flow_ctrl))
7451 goto err;
7452 } else if (!strncmp(opt, "pause:", 6)) {
7453 if (kstrtoint(opt + 6, 0, &pause))
7454 goto err;
7455 } else if (!strncmp(opt, "eee_timer:", 10)) {
7456 if (kstrtoint(opt + 10, 0, &eee_timer))
7457 goto err;
7458 } else if (!strncmp(opt, "chain_mode:", 11)) {
7459 if (kstrtoint(opt + 11, 0, &chain_mode))
7460 goto err;
7461 }
7462 }
7463 return 1;
7464
7465 err:
7466 pr_err("%s: ERROR broken module parameter conversion", __func__);
7467 return 1;
7468 }
7469
7470 __setup("stmmaceth=", stmmac_cmdline_opt);
7471 #endif /* MODULE */
7472
stmmac_init(void)7473 static int __init stmmac_init(void)
7474 {
7475 #ifdef CONFIG_DEBUG_FS
7476 /* Create debugfs main directory if it doesn't exist yet */
7477 if (!stmmac_fs_dir)
7478 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7479 register_netdevice_notifier(&stmmac_notifier);
7480 #endif
7481
7482 return 0;
7483 }
7484
stmmac_exit(void)7485 static void __exit stmmac_exit(void)
7486 {
7487 #ifdef CONFIG_DEBUG_FS
7488 unregister_netdevice_notifier(&stmmac_notifier);
7489 debugfs_remove_recursive(stmmac_fs_dir);
7490 #endif
7491 }
7492
7493 module_init(stmmac_init)
7494 module_exit(stmmac_exit)
7495
7496 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7497 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7498 MODULE_LICENSE("GPL");
7499