1 /*****************************************************************************/
2 
3 /*
4  *	istallion.c  -- stallion intelligent multiport serial driver.
5  *
6  *	Copyright (C) 1996-1999  Stallion Technologies
7  *	Copyright (C) 1994-1996  Greg Ungerer.
8  *
9  *	This code is loosely based on the Linux serial driver, written by
10  *	Linus Torvalds, Theodore T'so and others.
11  *
12  *	This program is free software; you can redistribute it and/or modify
13  *	it under the terms of the GNU General Public License as published by
14  *	the Free Software Foundation; either version 2 of the License, or
15  *	(at your option) any later version.
16  *
17  *	This program is distributed in the hope that it will be useful,
18  *	but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *	GNU General Public License for more details.
21  *
22  *	You should have received a copy of the GNU General Public License
23  *	along with this program; if not, write to the Free Software
24  *	Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25  */
26 
27 /*****************************************************************************/
28 
29 #include <linux/config.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/tty.h>
34 #include <linux/tty_flip.h>
35 #include <linux/serial.h>
36 #include <linux/cdk.h>
37 #include <linux/comstats.h>
38 #include <linux/version.h>
39 #include <linux/istallion.h>
40 #include <linux/ioport.h>
41 #include <linux/delay.h>
42 #include <linux/init.h>
43 #include <linux/devfs_fs_kernel.h>
44 
45 #include <asm/io.h>
46 #include <asm/uaccess.h>
47 
48 #ifdef CONFIG_PCI
49 #include <linux/pci.h>
50 #endif
51 
52 /*****************************************************************************/
53 
54 /*
55  *	Define different board types. Not all of the following board types
56  *	are supported by this driver. But I will use the standard "assigned"
57  *	board numbers. Currently supported boards are abbreviated as:
58  *	ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
59  *	STAL = Stallion.
60  */
61 #define	BRD_UNKNOWN	0
62 #define	BRD_STALLION	1
63 #define	BRD_BRUMBY4	2
64 #define	BRD_ONBOARD2	3
65 #define	BRD_ONBOARD	4
66 #define	BRD_BRUMBY8	5
67 #define	BRD_BRUMBY16	6
68 #define	BRD_ONBOARDE	7
69 #define	BRD_ONBOARD32	9
70 #define	BRD_ONBOARD2_32	10
71 #define	BRD_ONBOARDRS	11
72 #define	BRD_EASYIO	20
73 #define	BRD_ECH		21
74 #define	BRD_ECHMC	22
75 #define	BRD_ECP		23
76 #define BRD_ECPE	24
77 #define	BRD_ECPMC	25
78 #define	BRD_ECHPCI	26
79 #define	BRD_ECH64PCI	27
80 #define	BRD_EASYIOPCI	28
81 #define	BRD_ECPPCI	29
82 
83 #define	BRD_BRUMBY	BRD_BRUMBY4
84 
85 /*
86  *	Define a configuration structure to hold the board configuration.
87  *	Need to set this up in the code (for now) with the boards that are
88  *	to be configured into the system. This is what needs to be modified
89  *	when adding/removing/modifying boards. Each line entry in the
90  *	stli_brdconf[] array is a board. Each line contains io/irq/memory
91  *	ranges for that board (as well as what type of board it is).
92  *	Some examples:
93  *		{ BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
94  *	This line will configure an EasyConnection 8/64 at io address 2a0,
95  *	and shared memory address of cc000. Multiple EasyConnection 8/64
96  *	boards can share the same shared memory address space. No interrupt
97  *	is required for this board type.
98  *	Another example:
99  *		{ BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
100  *	This line will configure an EasyConnection 8/64 EISA in slot 5 and
101  *	shared memory address of 0x80000000 (2 GByte). Multiple
102  *	EasyConnection 8/64 EISA boards can share the same shared memory
103  *	address space. No interrupt is required for this board type.
104  *	Another example:
105  *		{ BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
106  *	This line will configure an ONboard (ISA type) at io address 240,
107  *	and shared memory address of d0000. Multiple ONboards can share
108  *	the same shared memory address space. No interrupt required.
109  *	Another example:
110  *		{ BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
111  *	This line will configure a Brumby board (any number of ports!) at
112  *	io address 360 and shared memory address of c8000. All Brumby boards
113  *	configured into a system must have their own separate io and memory
114  *	addresses. No interrupt is required.
115  *	Another example:
116  *		{ BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
117  *	This line will configure an original Stallion board at io address 330
118  *	and shared memory address d0000 (this would only be valid for a "V4.0"
119  *	or Rev.O Stallion board). All Stallion boards configured into the
120  *	system must have their own separate io and memory addresses. No
121  *	interrupt is required.
122  */
123 
124 typedef struct {
125 	int		brdtype;
126 	int		ioaddr1;
127 	int		ioaddr2;
128 	unsigned long	memaddr;
129 	int		irq;
130 	int		irqtype;
131 } stlconf_t;
132 
133 static stlconf_t	stli_brdconf[] = {
134 	/*{ BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },*/
135 };
136 
137 static int	stli_nrbrds = sizeof(stli_brdconf) / sizeof(stlconf_t);
138 
139 /*
140  *	There is some experimental EISA board detection code in this driver.
141  *	By default it is disabled, but for those that want to try it out,
142  *	then set the define below to be 1.
143  */
144 #define	STLI_EISAPROBE	0
145 
146 static devfs_handle_t devfs_handle;
147 
148 /*****************************************************************************/
149 
150 /*
151  *	Define some important driver characteristics. Device major numbers
152  *	allocated as per Linux Device Registry.
153  */
154 #ifndef	STL_SIOMEMMAJOR
155 #define	STL_SIOMEMMAJOR		28
156 #endif
157 #ifndef	STL_SERIALMAJOR
158 #define	STL_SERIALMAJOR		24
159 #endif
160 #ifndef	STL_CALLOUTMAJOR
161 #define	STL_CALLOUTMAJOR	25
162 #endif
163 
164 #define	STL_DRVTYPSERIAL	1
165 #define	STL_DRVTYPCALLOUT	2
166 
167 /*****************************************************************************/
168 
169 /*
170  *	Define our local driver identity first. Set up stuff to deal with
171  *	all the local structures required by a serial tty driver.
172  */
173 static char	*stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
174 static char	*stli_drvname = "istallion";
175 static char	*stli_drvversion = "5.6.0";
176 static char	*stli_serialname = "ttyE";
177 static char	*stli_calloutname = "cue";
178 
179 static struct tty_driver	stli_serial;
180 static struct tty_driver	stli_callout;
181 static struct tty_struct	*stli_ttys[STL_MAXDEVS];
182 static struct termios		*stli_termios[STL_MAXDEVS];
183 static struct termios		*stli_termioslocked[STL_MAXDEVS];
184 static int			stli_refcount;
185 
186 /*
187  *	We will need to allocate a temporary write buffer for chars that
188  *	come direct from user space. The problem is that a copy from user
189  *	space might cause a page fault (typically on a system that is
190  *	swapping!). All ports will share one buffer - since if the system
191  *	is already swapping a shared buffer won't make things any worse.
192  */
193 static char			*stli_tmpwritebuf;
194 static DECLARE_MUTEX(stli_tmpwritesem);
195 
196 #define	STLI_TXBUFSIZE		4096
197 
198 /*
199  *	Use a fast local buffer for cooked characters. Typically a whole
200  *	bunch of cooked characters come in for a port, 1 at a time. So we
201  *	save those up into a local buffer, then write out the whole lot
202  *	with a large memcpy. Just use 1 buffer for all ports, since its
203  *	use it is only need for short periods of time by each port.
204  */
205 static char			*stli_txcookbuf;
206 static int			stli_txcooksize;
207 static int			stli_txcookrealsize;
208 static struct tty_struct	*stli_txcooktty;
209 
210 /*
211  *	Define a local default termios struct. All ports will be created
212  *	with this termios initially. Basically all it defines is a raw port
213  *	at 9600 baud, 8 data bits, no parity, 1 stop bit.
214  */
215 static struct termios		stli_deftermios = {
216 	c_cflag:	(B9600 | CS8 | CREAD | HUPCL | CLOCAL),
217 	c_cc:		INIT_C_CC,
218 };
219 
220 /*
221  *	Define global stats structures. Not used often, and can be
222  *	re-used for each stats call.
223  */
224 static comstats_t	stli_comstats;
225 static combrd_t		stli_brdstats;
226 static asystats_t	stli_cdkstats;
227 static stlibrd_t	stli_dummybrd;
228 static stliport_t	stli_dummyport;
229 
230 /*****************************************************************************/
231 
232 static stlibrd_t	*stli_brds[STL_MAXBRDS];
233 
234 static int		stli_shared;
235 
236 /*
237  *	Per board state flags. Used with the state field of the board struct.
238  *	Not really much here... All we need to do is keep track of whether
239  *	the board has been detected, and whether it is actually running a slave
240  *	or not.
241  */
242 #define	BST_FOUND	0x1
243 #define	BST_STARTED	0x2
244 
245 /*
246  *	Define the set of port state flags. These are marked for internal
247  *	state purposes only, usually to do with the state of communications
248  *	with the slave. Most of them need to be updated atomically, so always
249  *	use the bit setting operations (unless protected by cli/sti).
250  */
251 #define	ST_INITIALIZING	1
252 #define	ST_OPENING	2
253 #define	ST_CLOSING	3
254 #define	ST_CMDING	4
255 #define	ST_TXBUSY	5
256 #define	ST_RXING	6
257 #define	ST_DOFLUSHRX	7
258 #define	ST_DOFLUSHTX	8
259 #define	ST_DOSIGS	9
260 #define	ST_RXSTOP	10
261 #define	ST_GETSIGS	11
262 
263 /*
264  *	Define an array of board names as printable strings. Handy for
265  *	referencing boards when printing trace and stuff.
266  */
267 static char	*stli_brdnames[] = {
268 	"Unknown",
269 	"Stallion",
270 	"Brumby",
271 	"ONboard-MC",
272 	"ONboard",
273 	"Brumby",
274 	"Brumby",
275 	"ONboard-EI",
276 	(char *) NULL,
277 	"ONboard",
278 	"ONboard-MC",
279 	"ONboard-MC",
280 	(char *) NULL,
281 	(char *) NULL,
282 	(char *) NULL,
283 	(char *) NULL,
284 	(char *) NULL,
285 	(char *) NULL,
286 	(char *) NULL,
287 	(char *) NULL,
288 	"EasyIO",
289 	"EC8/32-AT",
290 	"EC8/32-MC",
291 	"EC8/64-AT",
292 	"EC8/64-EI",
293 	"EC8/64-MC",
294 	"EC8/32-PCI",
295 	"EC8/64-PCI",
296 	"EasyIO-PCI",
297 	"EC/RA-PCI",
298 };
299 
300 /*****************************************************************************/
301 
302 #ifdef MODULE
303 /*
304  *	Define some string labels for arguments passed from the module
305  *	load line. These allow for easy board definitions, and easy
306  *	modification of the io, memory and irq resoucres.
307  */
308 
309 static char	*board0[8];
310 static char	*board1[8];
311 static char	*board2[8];
312 static char	*board3[8];
313 
314 static char	**stli_brdsp[] = {
315 	(char **) &board0,
316 	(char **) &board1,
317 	(char **) &board2,
318 	(char **) &board3
319 };
320 
321 /*
322  *	Define a set of common board names, and types. This is used to
323  *	parse any module arguments.
324  */
325 
326 typedef struct stlibrdtype {
327 	char	*name;
328 	int	type;
329 } stlibrdtype_t;
330 
331 static stlibrdtype_t	stli_brdstr[] = {
332 	{ "stallion", BRD_STALLION },
333 	{ "1", BRD_STALLION },
334 	{ "brumby", BRD_BRUMBY },
335 	{ "brumby4", BRD_BRUMBY },
336 	{ "brumby/4", BRD_BRUMBY },
337 	{ "brumby-4", BRD_BRUMBY },
338 	{ "brumby8", BRD_BRUMBY },
339 	{ "brumby/8", BRD_BRUMBY },
340 	{ "brumby-8", BRD_BRUMBY },
341 	{ "brumby16", BRD_BRUMBY },
342 	{ "brumby/16", BRD_BRUMBY },
343 	{ "brumby-16", BRD_BRUMBY },
344 	{ "2", BRD_BRUMBY },
345 	{ "onboard2", BRD_ONBOARD2 },
346 	{ "onboard-2", BRD_ONBOARD2 },
347 	{ "onboard/2", BRD_ONBOARD2 },
348 	{ "onboard-mc", BRD_ONBOARD2 },
349 	{ "onboard/mc", BRD_ONBOARD2 },
350 	{ "onboard-mca", BRD_ONBOARD2 },
351 	{ "onboard/mca", BRD_ONBOARD2 },
352 	{ "3", BRD_ONBOARD2 },
353 	{ "onboard", BRD_ONBOARD },
354 	{ "onboardat", BRD_ONBOARD },
355 	{ "4", BRD_ONBOARD },
356 	{ "onboarde", BRD_ONBOARDE },
357 	{ "onboard-e", BRD_ONBOARDE },
358 	{ "onboard/e", BRD_ONBOARDE },
359 	{ "onboard-ei", BRD_ONBOARDE },
360 	{ "onboard/ei", BRD_ONBOARDE },
361 	{ "7", BRD_ONBOARDE },
362 	{ "ecp", BRD_ECP },
363 	{ "ecpat", BRD_ECP },
364 	{ "ec8/64", BRD_ECP },
365 	{ "ec8/64-at", BRD_ECP },
366 	{ "ec8/64-isa", BRD_ECP },
367 	{ "23", BRD_ECP },
368 	{ "ecpe", BRD_ECPE },
369 	{ "ecpei", BRD_ECPE },
370 	{ "ec8/64-e", BRD_ECPE },
371 	{ "ec8/64-ei", BRD_ECPE },
372 	{ "24", BRD_ECPE },
373 	{ "ecpmc", BRD_ECPMC },
374 	{ "ec8/64-mc", BRD_ECPMC },
375 	{ "ec8/64-mca", BRD_ECPMC },
376 	{ "25", BRD_ECPMC },
377 	{ "ecppci", BRD_ECPPCI },
378 	{ "ec/ra", BRD_ECPPCI },
379 	{ "ec/ra-pc", BRD_ECPPCI },
380 	{ "ec/ra-pci", BRD_ECPPCI },
381 	{ "29", BRD_ECPPCI },
382 };
383 
384 /*
385  *	Define the module agruments.
386  */
387 MODULE_AUTHOR("Greg Ungerer");
388 MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
389 MODULE_LICENSE("GPL");
390 
391 
392 MODULE_PARM(board0, "1-3s");
393 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
394 MODULE_PARM(board1, "1-3s");
395 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
396 MODULE_PARM(board2, "1-3s");
397 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
398 MODULE_PARM(board3, "1-3s");
399 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
400 
401 #endif
402 
403 /*
404  *	Set up a default memory address table for EISA board probing.
405  *	The default addresses are all bellow 1Mbyte, which has to be the
406  *	case anyway. They should be safe, since we only read values from
407  *	them, and interrupts are disabled while we do it. If the higher
408  *	memory support is compiled in then we also try probing around
409  *	the 1Gb, 2Gb and 3Gb areas as well...
410  */
411 static unsigned long	stli_eisamemprobeaddrs[] = {
412 	0xc0000,    0xd0000,    0xe0000,    0xf0000,
413 	0x80000000, 0x80010000, 0x80020000, 0x80030000,
414 	0x40000000, 0x40010000, 0x40020000, 0x40030000,
415 	0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
416 	0xff000000, 0xff010000, 0xff020000, 0xff030000,
417 };
418 
419 static int	stli_eisamempsize = sizeof(stli_eisamemprobeaddrs) / sizeof(unsigned long);
420 int		stli_eisaprobe = STLI_EISAPROBE;
421 
422 /*
423  *	Define the Stallion PCI vendor and device IDs.
424  */
425 #ifdef CONFIG_PCI
426 #ifndef	PCI_VENDOR_ID_STALLION
427 #define	PCI_VENDOR_ID_STALLION		0x124d
428 #endif
429 #ifndef PCI_DEVICE_ID_ECRA
430 #define	PCI_DEVICE_ID_ECRA		0x0004
431 #endif
432 #endif
433 
434 static struct pci_device_id istallion_pci_tbl[] = {
435 	{ PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
436 	{ 0 }
437 };
438 MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
439 
440 /*****************************************************************************/
441 
442 /*
443  *	Hardware configuration info for ECP boards. These defines apply
444  *	to the directly accessible io ports of the ECP. There is a set of
445  *	defines for each ECP board type, ISA, EISA, MCA and PCI.
446  */
447 #define	ECP_IOSIZE	4
448 
449 #define	ECP_MEMSIZE	(128 * 1024)
450 #define	ECP_PCIMEMSIZE	(256 * 1024)
451 
452 #define	ECP_ATPAGESIZE	(4 * 1024)
453 #define	ECP_MCPAGESIZE	(4 * 1024)
454 #define	ECP_EIPAGESIZE	(64 * 1024)
455 #define	ECP_PCIPAGESIZE	(64 * 1024)
456 
457 #define	STL_EISAID	0x8c4e
458 
459 /*
460  *	Important defines for the ISA class of ECP board.
461  */
462 #define	ECP_ATIREG	0
463 #define	ECP_ATCONFR	1
464 #define	ECP_ATMEMAR	2
465 #define	ECP_ATMEMPR	3
466 #define	ECP_ATSTOP	0x1
467 #define	ECP_ATINTENAB	0x10
468 #define	ECP_ATENABLE	0x20
469 #define	ECP_ATDISABLE	0x00
470 #define	ECP_ATADDRMASK	0x3f000
471 #define	ECP_ATADDRSHFT	12
472 
473 /*
474  *	Important defines for the EISA class of ECP board.
475  */
476 #define	ECP_EIIREG	0
477 #define	ECP_EIMEMARL	1
478 #define	ECP_EICONFR	2
479 #define	ECP_EIMEMARH	3
480 #define	ECP_EIENABLE	0x1
481 #define	ECP_EIDISABLE	0x0
482 #define	ECP_EISTOP	0x4
483 #define	ECP_EIEDGE	0x00
484 #define	ECP_EILEVEL	0x80
485 #define	ECP_EIADDRMASKL	0x00ff0000
486 #define	ECP_EIADDRSHFTL	16
487 #define	ECP_EIADDRMASKH	0xff000000
488 #define	ECP_EIADDRSHFTH	24
489 #define	ECP_EIBRDENAB	0xc84
490 
491 #define	ECP_EISAID	0x4
492 
493 /*
494  *	Important defines for the Micro-channel class of ECP board.
495  *	(It has a lot in common with the ISA boards.)
496  */
497 #define	ECP_MCIREG	0
498 #define	ECP_MCCONFR	1
499 #define	ECP_MCSTOP	0x20
500 #define	ECP_MCENABLE	0x80
501 #define	ECP_MCDISABLE	0x00
502 
503 /*
504  *	Important defines for the PCI class of ECP board.
505  *	(It has a lot in common with the other ECP boards.)
506  */
507 #define	ECP_PCIIREG	0
508 #define	ECP_PCICONFR	1
509 #define	ECP_PCISTOP	0x01
510 
511 /*
512  *	Hardware configuration info for ONboard and Brumby boards. These
513  *	defines apply to the directly accessible io ports of these boards.
514  */
515 #define	ONB_IOSIZE	16
516 #define	ONB_MEMSIZE	(64 * 1024)
517 #define	ONB_ATPAGESIZE	(64 * 1024)
518 #define	ONB_MCPAGESIZE	(64 * 1024)
519 #define	ONB_EIMEMSIZE	(128 * 1024)
520 #define	ONB_EIPAGESIZE	(64 * 1024)
521 
522 /*
523  *	Important defines for the ISA class of ONboard board.
524  */
525 #define	ONB_ATIREG	0
526 #define	ONB_ATMEMAR	1
527 #define	ONB_ATCONFR	2
528 #define	ONB_ATSTOP	0x4
529 #define	ONB_ATENABLE	0x01
530 #define	ONB_ATDISABLE	0x00
531 #define	ONB_ATADDRMASK	0xff0000
532 #define	ONB_ATADDRSHFT	16
533 
534 #define	ONB_MEMENABLO	0
535 #define	ONB_MEMENABHI	0x02
536 
537 /*
538  *	Important defines for the EISA class of ONboard board.
539  */
540 #define	ONB_EIIREG	0
541 #define	ONB_EIMEMARL	1
542 #define	ONB_EICONFR	2
543 #define	ONB_EIMEMARH	3
544 #define	ONB_EIENABLE	0x1
545 #define	ONB_EIDISABLE	0x0
546 #define	ONB_EISTOP	0x4
547 #define	ONB_EIEDGE	0x00
548 #define	ONB_EILEVEL	0x80
549 #define	ONB_EIADDRMASKL	0x00ff0000
550 #define	ONB_EIADDRSHFTL	16
551 #define	ONB_EIADDRMASKH	0xff000000
552 #define	ONB_EIADDRSHFTH	24
553 #define	ONB_EIBRDENAB	0xc84
554 
555 #define	ONB_EISAID	0x1
556 
557 /*
558  *	Important defines for the Brumby boards. They are pretty simple,
559  *	there is not much that is programmably configurable.
560  */
561 #define	BBY_IOSIZE	16
562 #define	BBY_MEMSIZE	(64 * 1024)
563 #define	BBY_PAGESIZE	(16 * 1024)
564 
565 #define	BBY_ATIREG	0
566 #define	BBY_ATCONFR	1
567 #define	BBY_ATSTOP	0x4
568 
569 /*
570  *	Important defines for the Stallion boards. They are pretty simple,
571  *	there is not much that is programmably configurable.
572  */
573 #define	STAL_IOSIZE	16
574 #define	STAL_MEMSIZE	(64 * 1024)
575 #define	STAL_PAGESIZE	(64 * 1024)
576 
577 /*
578  *	Define the set of status register values for EasyConnection panels.
579  *	The signature will return with the status value for each panel. From
580  *	this we can determine what is attached to the board - before we have
581  *	actually down loaded any code to it.
582  */
583 #define	ECH_PNLSTATUS	2
584 #define	ECH_PNL16PORT	0x20
585 #define	ECH_PNLIDMASK	0x07
586 #define	ECH_PNLXPID	0x40
587 #define	ECH_PNLINTRPEND	0x80
588 
589 /*
590  *	Define some macros to do things to the board. Even those these boards
591  *	are somewhat related there is often significantly different ways of
592  *	doing some operation on it (like enable, paging, reset, etc). So each
593  *	board class has a set of functions which do the commonly required
594  *	operations. The macros below basically just call these functions,
595  *	generally checking for a NULL function - which means that the board
596  *	needs nothing done to it to achieve this operation!
597  */
598 #define	EBRDINIT(brdp)						\
599 	if (brdp->init != NULL)					\
600 		(* brdp->init)(brdp)
601 
602 #define	EBRDENABLE(brdp)					\
603 	if (brdp->enable != NULL)				\
604 		(* brdp->enable)(brdp);
605 
606 #define	EBRDDISABLE(brdp)					\
607 	if (brdp->disable != NULL)				\
608 		(* brdp->disable)(brdp);
609 
610 #define	EBRDINTR(brdp)						\
611 	if (brdp->intr != NULL)					\
612 		(* brdp->intr)(brdp);
613 
614 #define	EBRDRESET(brdp)						\
615 	if (brdp->reset != NULL)				\
616 		(* brdp->reset)(brdp);
617 
618 #define	EBRDGETMEMPTR(brdp,offset)				\
619 	(* brdp->getmemptr)(brdp, offset, __LINE__)
620 
621 /*
622  *	Define the maximal baud rate, and the default baud base for ports.
623  */
624 #define	STL_MAXBAUD	460800
625 #define	STL_BAUDBASE	115200
626 #define	STL_CLOSEDELAY	(5 * HZ / 10)
627 
628 /*****************************************************************************/
629 
630 /*
631  *	Define macros to extract a brd or port number from a minor number.
632  */
633 #define	MINOR2BRD(min)		(((min) & 0xc0) >> 6)
634 #define	MINOR2PORT(min)		((min) & 0x3f)
635 
636 /*
637  *	Define a baud rate table that converts termios baud rate selector
638  *	into the actual baud rate value. All baud rate calculations are based
639  *	on the actual baud rate required.
640  */
641 static unsigned int	stli_baudrates[] = {
642 	0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
643 	9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
644 };
645 
646 /*****************************************************************************/
647 
648 /*
649  *	Define some handy local macros...
650  */
651 #undef MIN
652 #define	MIN(a,b)	(((a) <= (b)) ? (a) : (b))
653 
654 #undef	TOLOWER
655 #define	TOLOWER(x)	((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
656 
657 /*****************************************************************************/
658 
659 /*
660  *	Prototype all functions in this driver!
661  */
662 
663 #ifdef MODULE
664 int		init_module(void);
665 void		cleanup_module(void);
666 static void	stli_argbrds(void);
667 static int	stli_parsebrd(stlconf_t *confp, char **argp);
668 
669 static unsigned long	stli_atol(char *str);
670 #endif
671 
672 int		stli_init(void);
673 static int	stli_open(struct tty_struct *tty, struct file *filp);
674 static void	stli_close(struct tty_struct *tty, struct file *filp);
675 static int	stli_write(struct tty_struct *tty, int from_user, const unsigned char *buf, int count);
676 static void	stli_putchar(struct tty_struct *tty, unsigned char ch);
677 static void	stli_flushchars(struct tty_struct *tty);
678 static int	stli_writeroom(struct tty_struct *tty);
679 static int	stli_charsinbuffer(struct tty_struct *tty);
680 static int	stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
681 static void	stli_settermios(struct tty_struct *tty, struct termios *old);
682 static void	stli_throttle(struct tty_struct *tty);
683 static void	stli_unthrottle(struct tty_struct *tty);
684 static void	stli_stop(struct tty_struct *tty);
685 static void	stli_start(struct tty_struct *tty);
686 static void	stli_flushbuffer(struct tty_struct *tty);
687 static void	stli_breakctl(struct tty_struct *tty, int state);
688 static void	stli_waituntilsent(struct tty_struct *tty, int timeout);
689 static void	stli_sendxchar(struct tty_struct *tty, char ch);
690 static void	stli_hangup(struct tty_struct *tty);
691 static int	stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos);
692 
693 static int	stli_brdinit(stlibrd_t *brdp);
694 static int	stli_startbrd(stlibrd_t *brdp);
695 static ssize_t	stli_memread(struct file *fp, char *buf, size_t count, loff_t *offp);
696 static ssize_t	stli_memwrite(struct file *fp, const char *buf, size_t count, loff_t *offp);
697 static int	stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
698 static void	stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp);
699 static void	stli_poll(unsigned long arg);
700 static int	stli_hostcmd(stlibrd_t *brdp, stliport_t *portp);
701 static int	stli_initopen(stlibrd_t *brdp, stliport_t *portp);
702 static int	stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
703 static int	stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
704 static int	stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp);
705 static void	stli_dohangup(void *arg);
706 static void	stli_delay(int len);
707 static int	stli_setport(stliport_t *portp);
708 static int	stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
709 static void	stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
710 static void	stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp);
711 static void	stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp);
712 static void	stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
713 static long	stli_mktiocm(unsigned long sigvalue);
714 static void	stli_read(stlibrd_t *brdp, stliport_t *portp);
715 static void	stli_getserial(stliport_t *portp, struct serial_struct *sp);
716 static int	stli_setserial(stliport_t *portp, struct serial_struct *sp);
717 static int	stli_getbrdstats(combrd_t *bp);
718 static int	stli_getportstats(stliport_t *portp, comstats_t *cp);
719 static int	stli_portcmdstats(stliport_t *portp);
720 static int	stli_clrportstats(stliport_t *portp, comstats_t *cp);
721 static int	stli_getportstruct(unsigned long arg);
722 static int	stli_getbrdstruct(unsigned long arg);
723 static void	*stli_memalloc(int len);
724 static stlibrd_t *stli_allocbrd(void);
725 
726 static void	stli_ecpinit(stlibrd_t *brdp);
727 static void	stli_ecpenable(stlibrd_t *brdp);
728 static void	stli_ecpdisable(stlibrd_t *brdp);
729 static char	*stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
730 static void	stli_ecpreset(stlibrd_t *brdp);
731 static void	stli_ecpintr(stlibrd_t *brdp);
732 static void	stli_ecpeiinit(stlibrd_t *brdp);
733 static void	stli_ecpeienable(stlibrd_t *brdp);
734 static void	stli_ecpeidisable(stlibrd_t *brdp);
735 static char	*stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
736 static void	stli_ecpeireset(stlibrd_t *brdp);
737 static void	stli_ecpmcenable(stlibrd_t *brdp);
738 static void	stli_ecpmcdisable(stlibrd_t *brdp);
739 static char	*stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
740 static void	stli_ecpmcreset(stlibrd_t *brdp);
741 static void	stli_ecppciinit(stlibrd_t *brdp);
742 static char	*stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
743 static void	stli_ecppcireset(stlibrd_t *brdp);
744 
745 static void	stli_onbinit(stlibrd_t *brdp);
746 static void	stli_onbenable(stlibrd_t *brdp);
747 static void	stli_onbdisable(stlibrd_t *brdp);
748 static char	*stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
749 static void	stli_onbreset(stlibrd_t *brdp);
750 static void	stli_onbeinit(stlibrd_t *brdp);
751 static void	stli_onbeenable(stlibrd_t *brdp);
752 static void	stli_onbedisable(stlibrd_t *brdp);
753 static char	*stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
754 static void	stli_onbereset(stlibrd_t *brdp);
755 static void	stli_bbyinit(stlibrd_t *brdp);
756 static char	*stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
757 static void	stli_bbyreset(stlibrd_t *brdp);
758 static void	stli_stalinit(stlibrd_t *brdp);
759 static char	*stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
760 static void	stli_stalreset(stlibrd_t *brdp);
761 
762 static stliport_t *stli_getport(int brdnr, int panelnr, int portnr);
763 
764 static inline int	stli_initbrds(void);
765 static inline int	stli_initecp(stlibrd_t *brdp);
766 static inline int	stli_initonb(stlibrd_t *brdp);
767 static inline int	stli_findeisabrds(void);
768 static inline int	stli_eisamemprobe(stlibrd_t *brdp);
769 static inline int	stli_initports(stlibrd_t *brdp);
770 static inline int	stli_getbrdnr(void);
771 
772 #ifdef	CONFIG_PCI
773 static inline int	stli_findpcibrds(void);
774 static inline int	stli_initpcibrd(int brdtype, struct pci_dev *devp);
775 #endif
776 
777 /*****************************************************************************/
778 
779 /*
780  *	Define the driver info for a user level shared memory device. This
781  *	device will work sort of like the /dev/kmem device - except that it
782  *	will give access to the shared memory on the Stallion intelligent
783  *	board. This is also a very useful debugging tool.
784  */
785 static struct file_operations	stli_fsiomem = {
786 	owner:		THIS_MODULE,
787 	read:		stli_memread,
788 	write:		stli_memwrite,
789 	ioctl:		stli_memioctl,
790 };
791 
792 /*****************************************************************************/
793 
794 /*
795  *	Define a timer_list entry for our poll routine. The slave board
796  *	is polled every so often to see if anything needs doing. This is
797  *	much cheaper on host cpu than using interrupts. It turns out to
798  *	not increase character latency by much either...
799  */
800 static struct timer_list	stli_timerlist = {
801 	function: stli_poll
802 };
803 
804 static int	stli_timeron;
805 
806 /*
807  *	Define the calculation for the timeout routine.
808  */
809 #define	STLI_TIMEOUT	(jiffies + 1)
810 
811 /*****************************************************************************/
812 
813 #ifdef MODULE
814 
815 /*
816  *	Loadable module initialization stuff.
817  */
818 
init_module()819 int init_module()
820 {
821 	unsigned long	flags;
822 
823 #if DEBUG
824 	printk("init_module()\n");
825 #endif
826 
827 	save_flags(flags);
828 	cli();
829 	stli_init();
830 	restore_flags(flags);
831 
832 	return(0);
833 }
834 
835 /*****************************************************************************/
836 
cleanup_module()837 void cleanup_module()
838 {
839 	stlibrd_t	*brdp;
840 	stliport_t	*portp;
841 	unsigned long	flags;
842 	int		i, j;
843 
844 #if DEBUG
845 	printk("cleanup_module()\n");
846 #endif
847 
848 	printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
849 		stli_drvversion);
850 
851 	save_flags(flags);
852 	cli();
853 
854 /*
855  *	Free up all allocated resources used by the ports. This includes
856  *	memory and interrupts.
857  */
858 	if (stli_timeron) {
859 		stli_timeron = 0;
860 		del_timer(&stli_timerlist);
861 	}
862 
863 	i = tty_unregister_driver(&stli_serial);
864 	j = tty_unregister_driver(&stli_callout);
865 	if (i || j) {
866 		printk("STALLION: failed to un-register tty driver, "
867 			"errno=%d,%d\n", -i, -j);
868 		restore_flags(flags);
869 		return;
870 	}
871 	devfs_unregister (devfs_handle);
872 	if ((i = devfs_unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
873 		printk("STALLION: failed to un-register serial memory device, "
874 			"errno=%d\n", -i);
875 	if (stli_tmpwritebuf != (char *) NULL)
876 		kfree(stli_tmpwritebuf);
877 	if (stli_txcookbuf != (char *) NULL)
878 		kfree(stli_txcookbuf);
879 
880 	for (i = 0; (i < stli_nrbrds); i++) {
881 		if ((brdp = stli_brds[i]) == (stlibrd_t *) NULL)
882 			continue;
883 		for (j = 0; (j < STL_MAXPORTS); j++) {
884 			portp = brdp->ports[j];
885 			if (portp != (stliport_t *) NULL) {
886 				if (portp->tty != (struct tty_struct *) NULL)
887 					tty_hangup(portp->tty);
888 				kfree(portp);
889 			}
890 		}
891 
892 		iounmap(brdp->membase);
893 		if (brdp->iosize > 0)
894 			release_region(brdp->iobase, brdp->iosize);
895 		kfree(brdp);
896 		stli_brds[i] = (stlibrd_t *) NULL;
897 	}
898 
899 	restore_flags(flags);
900 }
901 
902 /*****************************************************************************/
903 
904 /*
905  *	Check for any arguments passed in on the module load command line.
906  */
907 
stli_argbrds()908 static void stli_argbrds()
909 {
910 	stlconf_t	conf;
911 	stlibrd_t	*brdp;
912 	int		nrargs, i;
913 
914 #if DEBUG
915 	printk("stli_argbrds()\n");
916 #endif
917 
918 	nrargs = sizeof(stli_brdsp) / sizeof(char **);
919 
920 	for (i = stli_nrbrds; (i < nrargs); i++) {
921 		memset(&conf, 0, sizeof(conf));
922 		if (stli_parsebrd(&conf, stli_brdsp[i]) == 0)
923 			continue;
924 		if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
925 			continue;
926 		stli_nrbrds = i + 1;
927 		brdp->brdnr = i;
928 		brdp->brdtype = conf.brdtype;
929 		brdp->iobase = conf.ioaddr1;
930 		brdp->memaddr = conf.memaddr;
931 		stli_brdinit(brdp);
932 	}
933 }
934 
935 /*****************************************************************************/
936 
937 /*
938  *	Convert an ascii string number into an unsigned long.
939  */
940 
stli_atol(char * str)941 static unsigned long stli_atol(char *str)
942 {
943 	unsigned long	val;
944 	int		base, c;
945 	char		*sp;
946 
947 	val = 0;
948 	sp = str;
949 	if ((*sp == '0') && (*(sp+1) == 'x')) {
950 		base = 16;
951 		sp += 2;
952 	} else if (*sp == '0') {
953 		base = 8;
954 		sp++;
955 	} else {
956 		base = 10;
957 	}
958 
959 	for (; (*sp != 0); sp++) {
960 		c = (*sp > '9') ? (TOLOWER(*sp) - 'a' + 10) : (*sp - '0');
961 		if ((c < 0) || (c >= base)) {
962 			printk("STALLION: invalid argument %s\n", str);
963 			val = 0;
964 			break;
965 		}
966 		val = (val * base) + c;
967 	}
968 	return(val);
969 }
970 
971 /*****************************************************************************/
972 
973 /*
974  *	Parse the supplied argument string, into the board conf struct.
975  */
976 
stli_parsebrd(stlconf_t * confp,char ** argp)977 static int stli_parsebrd(stlconf_t *confp, char **argp)
978 {
979 	char	*sp;
980 	int	nrbrdnames, i;
981 
982 #if DEBUG
983 	printk("stli_parsebrd(confp=%x,argp=%x)\n", (int) confp, (int) argp);
984 #endif
985 
986 	if ((argp[0] == (char *) NULL) || (*argp[0] == 0))
987 		return(0);
988 
989 	for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
990 		*sp = TOLOWER(*sp);
991 
992 	nrbrdnames = sizeof(stli_brdstr) / sizeof(stlibrdtype_t);
993 	for (i = 0; (i < nrbrdnames); i++) {
994 		if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
995 			break;
996 	}
997 	if (i >= nrbrdnames) {
998 		printk("STALLION: unknown board name, %s?\n", argp[0]);
999 		return(0);
1000 	}
1001 
1002 	confp->brdtype = stli_brdstr[i].type;
1003 	if ((argp[1] != (char *) NULL) && (*argp[1] != 0))
1004 		confp->ioaddr1 = stli_atol(argp[1]);
1005 	if ((argp[2] != (char *) NULL) && (*argp[2] != 0))
1006 		confp->memaddr = stli_atol(argp[2]);
1007 	return(1);
1008 }
1009 
1010 #endif
1011 
1012 /*****************************************************************************/
1013 
1014 /*
1015  *	Local driver kernel malloc routine.
1016  */
1017 
stli_memalloc(int len)1018 static void *stli_memalloc(int len)
1019 {
1020 	return((void *) kmalloc(len, GFP_KERNEL));
1021 }
1022 
1023 /*****************************************************************************/
1024 
stli_open(struct tty_struct * tty,struct file * filp)1025 static int stli_open(struct tty_struct *tty, struct file *filp)
1026 {
1027 	stlibrd_t	*brdp;
1028 	stliport_t	*portp;
1029 	unsigned int	minordev;
1030 	int		brdnr, portnr, rc;
1031 
1032 #if DEBUG
1033 	printk("stli_open(tty=%x,filp=%x): device=%x\n", (int) tty,
1034 		(int) filp, tty->device);
1035 #endif
1036 
1037 	minordev = MINOR(tty->device);
1038 	brdnr = MINOR2BRD(minordev);
1039 	if (brdnr >= stli_nrbrds)
1040 		return(-ENODEV);
1041 	brdp = stli_brds[brdnr];
1042 	if (brdp == (stlibrd_t *) NULL)
1043 		return(-ENODEV);
1044 	if ((brdp->state & BST_STARTED) == 0)
1045 		return(-ENODEV);
1046 	portnr = MINOR2PORT(minordev);
1047 	if ((portnr < 0) || (portnr > brdp->nrports))
1048 		return(-ENODEV);
1049 
1050 	portp = brdp->ports[portnr];
1051 	if (portp == (stliport_t *) NULL)
1052 		return(-ENODEV);
1053 	if (portp->devnr < 1)
1054 		return(-ENODEV);
1055 
1056 	MOD_INC_USE_COUNT;
1057 
1058 /*
1059  *	Check if this port is in the middle of closing. If so then wait
1060  *	until it is closed then return error status based on flag settings.
1061  *	The sleep here does not need interrupt protection since the wakeup
1062  *	for it is done with the same context.
1063  */
1064 	if (portp->flags & ASYNC_CLOSING) {
1065 		interruptible_sleep_on(&portp->close_wait);
1066 		if (portp->flags & ASYNC_HUP_NOTIFY)
1067 			return(-EAGAIN);
1068 		return(-ERESTARTSYS);
1069 	}
1070 
1071 /*
1072  *	On the first open of the device setup the port hardware, and
1073  *	initialize the per port data structure. Since initializing the port
1074  *	requires several commands to the board we will need to wait for any
1075  *	other open that is already initializing the port.
1076  */
1077 	portp->tty = tty;
1078 	tty->driver_data = portp;
1079 	portp->refcount++;
1080 
1081 	while (test_bit(ST_INITIALIZING, &portp->state)) {
1082 		if (signal_pending(current))
1083 			return(-ERESTARTSYS);
1084 		interruptible_sleep_on(&portp->raw_wait);
1085 	}
1086 
1087 	if ((portp->flags & ASYNC_INITIALIZED) == 0) {
1088 		set_bit(ST_INITIALIZING, &portp->state);
1089 		if ((rc = stli_initopen(brdp, portp)) >= 0) {
1090 			portp->flags |= ASYNC_INITIALIZED;
1091 			clear_bit(TTY_IO_ERROR, &tty->flags);
1092 		}
1093 		clear_bit(ST_INITIALIZING, &portp->state);
1094 		wake_up_interruptible(&portp->raw_wait);
1095 		if (rc < 0)
1096 			return(rc);
1097 	}
1098 
1099 /*
1100  *	Check if this port is in the middle of closing. If so then wait
1101  *	until it is closed then return error status, based on flag settings.
1102  *	The sleep here does not need interrupt protection since the wakeup
1103  *	for it is done with the same context.
1104  */
1105 	if (portp->flags & ASYNC_CLOSING) {
1106 		interruptible_sleep_on(&portp->close_wait);
1107 		if (portp->flags & ASYNC_HUP_NOTIFY)
1108 			return(-EAGAIN);
1109 		return(-ERESTARTSYS);
1110 	}
1111 
1112 /*
1113  *	Based on type of open being done check if it can overlap with any
1114  *	previous opens still in effect. If we are a normal serial device
1115  *	then also we might have to wait for carrier.
1116  */
1117 	if (tty->driver.subtype == STL_DRVTYPCALLOUT) {
1118 		if (portp->flags & ASYNC_NORMAL_ACTIVE)
1119 			return(-EBUSY);
1120 		if (portp->flags & ASYNC_CALLOUT_ACTIVE) {
1121 			if ((portp->flags & ASYNC_SESSION_LOCKOUT) &&
1122 			    (portp->session != current->session))
1123 				return(-EBUSY);
1124 			if ((portp->flags & ASYNC_PGRP_LOCKOUT) &&
1125 			    (portp->pgrp != current->pgrp))
1126 				return(-EBUSY);
1127 		}
1128 		portp->flags |= ASYNC_CALLOUT_ACTIVE;
1129 	} else {
1130 		if (filp->f_flags & O_NONBLOCK) {
1131 			if (portp->flags & ASYNC_CALLOUT_ACTIVE)
1132 				return(-EBUSY);
1133 		} else {
1134 			if ((rc = stli_waitcarrier(brdp, portp, filp)) != 0)
1135 				return(rc);
1136 		}
1137 		portp->flags |= ASYNC_NORMAL_ACTIVE;
1138 	}
1139 
1140 	if ((portp->refcount == 1) && (portp->flags & ASYNC_SPLIT_TERMIOS)) {
1141 		if (tty->driver.subtype == STL_DRVTYPSERIAL)
1142 			*tty->termios = portp->normaltermios;
1143 		else
1144 			*tty->termios = portp->callouttermios;
1145 		stli_setport(portp);
1146 	}
1147 
1148 	portp->session = current->session;
1149 	portp->pgrp = current->pgrp;
1150 	return(0);
1151 }
1152 
1153 /*****************************************************************************/
1154 
stli_close(struct tty_struct * tty,struct file * filp)1155 static void stli_close(struct tty_struct *tty, struct file *filp)
1156 {
1157 	stlibrd_t	*brdp;
1158 	stliport_t	*portp;
1159 	unsigned long	flags;
1160 
1161 #if DEBUG
1162 	printk("stli_close(tty=%x,filp=%x)\n", (int) tty, (int) filp);
1163 #endif
1164 
1165 	portp = tty->driver_data;
1166 	if (portp == (stliport_t *) NULL)
1167 		return;
1168 
1169 	save_flags(flags);
1170 	cli();
1171 	if (tty_hung_up_p(filp)) {
1172 		MOD_DEC_USE_COUNT;
1173 		restore_flags(flags);
1174 		return;
1175 	}
1176 	if ((tty->count == 1) && (portp->refcount != 1))
1177 		portp->refcount = 1;
1178 	if (portp->refcount-- > 1) {
1179 		MOD_DEC_USE_COUNT;
1180 		restore_flags(flags);
1181 		return;
1182 	}
1183 
1184 	portp->flags |= ASYNC_CLOSING;
1185 
1186 	if (portp->flags & ASYNC_NORMAL_ACTIVE)
1187 		portp->normaltermios = *tty->termios;
1188 	if (portp->flags & ASYNC_CALLOUT_ACTIVE)
1189 		portp->callouttermios = *tty->termios;
1190 
1191 /*
1192  *	May want to wait for data to drain before closing. The BUSY flag
1193  *	keeps track of whether we are still transmitting or not. It is
1194  *	updated by messages from the slave - indicating when all chars
1195  *	really have drained.
1196  */
1197 	if (tty == stli_txcooktty)
1198 		stli_flushchars(tty);
1199 	tty->closing = 1;
1200 	if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
1201 		tty_wait_until_sent(tty, portp->closing_wait);
1202 
1203 	portp->flags &= ~ASYNC_INITIALIZED;
1204 	brdp = stli_brds[portp->brdnr];
1205 	stli_rawclose(brdp, portp, 0, 0);
1206 	if (tty->termios->c_cflag & HUPCL) {
1207 		stli_mkasysigs(&portp->asig, 0, 0);
1208 		if (test_bit(ST_CMDING, &portp->state))
1209 			set_bit(ST_DOSIGS, &portp->state);
1210 		else
1211 			stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig,
1212 				sizeof(asysigs_t), 0);
1213 	}
1214 	clear_bit(ST_TXBUSY, &portp->state);
1215 	clear_bit(ST_RXSTOP, &portp->state);
1216 	set_bit(TTY_IO_ERROR, &tty->flags);
1217 	tty_ldisc_flush(tty);
1218 	set_bit(ST_DOFLUSHRX, &portp->state);
1219 	stli_flushbuffer(tty);
1220 
1221 	tty->closing = 0;
1222 	portp->tty = (struct tty_struct *) NULL;
1223 
1224 	if (portp->openwaitcnt) {
1225 		if (portp->close_delay)
1226 			stli_delay(portp->close_delay);
1227 		wake_up_interruptible(&portp->open_wait);
1228 	}
1229 
1230 	portp->flags &= ~(ASYNC_CALLOUT_ACTIVE | ASYNC_NORMAL_ACTIVE |
1231 		ASYNC_CLOSING);
1232 	wake_up_interruptible(&portp->close_wait);
1233 	MOD_DEC_USE_COUNT;
1234 	restore_flags(flags);
1235 }
1236 
1237 /*****************************************************************************/
1238 
1239 /*
1240  *	Carry out first open operations on a port. This involves a number of
1241  *	commands to be sent to the slave. We need to open the port, set the
1242  *	notification events, set the initial port settings, get and set the
1243  *	initial signal values. We sleep and wait in between each one. But
1244  *	this still all happens pretty quickly.
1245  */
1246 
stli_initopen(stlibrd_t * brdp,stliport_t * portp)1247 static int stli_initopen(stlibrd_t *brdp, stliport_t *portp)
1248 {
1249 	struct tty_struct	*tty;
1250 	asynotify_t		nt;
1251 	asyport_t		aport;
1252 	int			rc;
1253 
1254 #if DEBUG
1255 	printk("stli_initopen(brdp=%x,portp=%x)\n", (int) brdp, (int) portp);
1256 #endif
1257 
1258 	if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
1259 		return(rc);
1260 
1261 	memset(&nt, 0, sizeof(asynotify_t));
1262 	nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
1263 	nt.signal = SG_DCD;
1264 	if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
1265 	    sizeof(asynotify_t), 0)) < 0)
1266 		return(rc);
1267 
1268 	tty = portp->tty;
1269 	if (tty == (struct tty_struct *) NULL)
1270 		return(-ENODEV);
1271 	stli_mkasyport(portp, &aport, tty->termios);
1272 	if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
1273 	    sizeof(asyport_t), 0)) < 0)
1274 		return(rc);
1275 
1276 	set_bit(ST_GETSIGS, &portp->state);
1277 	if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
1278 	    sizeof(asysigs_t), 1)) < 0)
1279 		return(rc);
1280 	if (test_and_clear_bit(ST_GETSIGS, &portp->state))
1281 		portp->sigs = stli_mktiocm(portp->asig.sigvalue);
1282 	stli_mkasysigs(&portp->asig, 1, 1);
1283 	if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1284 	    sizeof(asysigs_t), 0)) < 0)
1285 		return(rc);
1286 
1287 	return(0);
1288 }
1289 
1290 /*****************************************************************************/
1291 
1292 /*
1293  *	Send an open message to the slave. This will sleep waiting for the
1294  *	acknowledgement, so must have user context. We need to co-ordinate
1295  *	with close events here, since we don't want open and close events
1296  *	to overlap.
1297  */
1298 
stli_rawopen(stlibrd_t * brdp,stliport_t * portp,unsigned long arg,int wait)1299 static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
1300 {
1301 	volatile cdkhdr_t	*hdrp;
1302 	volatile cdkctrl_t	*cp;
1303 	volatile unsigned char	*bits;
1304 	unsigned long		flags;
1305 	int			rc;
1306 
1307 #if DEBUG
1308 	printk("stli_rawopen(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1309 		(int) brdp, (int) portp, (int) arg, wait);
1310 #endif
1311 
1312 /*
1313  *	Send a message to the slave to open this port.
1314  */
1315 	save_flags(flags);
1316 	cli();
1317 
1318 /*
1319  *	Slave is already closing this port. This can happen if a hangup
1320  *	occurs on this port. So we must wait until it is complete. The
1321  *	order of opens and closes may not be preserved across shared
1322  *	memory, so we must wait until it is complete.
1323  */
1324 	while (test_bit(ST_CLOSING, &portp->state)) {
1325 		if (signal_pending(current)) {
1326 			restore_flags(flags);
1327 			return(-ERESTARTSYS);
1328 		}
1329 		interruptible_sleep_on(&portp->raw_wait);
1330 	}
1331 
1332 /*
1333  *	Everything is ready now, so write the open message into shared
1334  *	memory. Once the message is in set the service bits to say that
1335  *	this port wants service.
1336  */
1337 	EBRDENABLE(brdp);
1338 	cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1339 	cp->openarg = arg;
1340 	cp->open = 1;
1341 	hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1342 	bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1343 		portp->portidx;
1344 	*bits |= portp->portbit;
1345 	EBRDDISABLE(brdp);
1346 
1347 	if (wait == 0) {
1348 		restore_flags(flags);
1349 		return(0);
1350 	}
1351 
1352 /*
1353  *	Slave is in action, so now we must wait for the open acknowledgment
1354  *	to come back.
1355  */
1356 	rc = 0;
1357 	set_bit(ST_OPENING, &portp->state);
1358 	while (test_bit(ST_OPENING, &portp->state)) {
1359 		if (signal_pending(current)) {
1360 			rc = -ERESTARTSYS;
1361 			break;
1362 		}
1363 		interruptible_sleep_on(&portp->raw_wait);
1364 	}
1365 	restore_flags(flags);
1366 
1367 	if ((rc == 0) && (portp->rc != 0))
1368 		rc = -EIO;
1369 	return(rc);
1370 }
1371 
1372 /*****************************************************************************/
1373 
1374 /*
1375  *	Send a close message to the slave. Normally this will sleep waiting
1376  *	for the acknowledgement, but if wait parameter is 0 it will not. If
1377  *	wait is true then must have user context (to sleep).
1378  */
1379 
stli_rawclose(stlibrd_t * brdp,stliport_t * portp,unsigned long arg,int wait)1380 static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
1381 {
1382 	volatile cdkhdr_t	*hdrp;
1383 	volatile cdkctrl_t	*cp;
1384 	volatile unsigned char	*bits;
1385 	unsigned long		flags;
1386 	int			rc;
1387 
1388 #if DEBUG
1389 	printk("stli_rawclose(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1390 		(int) brdp, (int) portp, (int) arg, wait);
1391 #endif
1392 
1393 	save_flags(flags);
1394 	cli();
1395 
1396 /*
1397  *	Slave is already closing this port. This can happen if a hangup
1398  *	occurs on this port.
1399  */
1400 	if (wait) {
1401 		while (test_bit(ST_CLOSING, &portp->state)) {
1402 			if (signal_pending(current)) {
1403 				restore_flags(flags);
1404 				return(-ERESTARTSYS);
1405 			}
1406 			interruptible_sleep_on(&portp->raw_wait);
1407 		}
1408 	}
1409 
1410 /*
1411  *	Write the close command into shared memory.
1412  */
1413 	EBRDENABLE(brdp);
1414 	cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1415 	cp->closearg = arg;
1416 	cp->close = 1;
1417 	hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1418 	bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1419 		portp->portidx;
1420 	*bits |= portp->portbit;
1421 	EBRDDISABLE(brdp);
1422 
1423 	set_bit(ST_CLOSING, &portp->state);
1424 	if (wait == 0) {
1425 		restore_flags(flags);
1426 		return(0);
1427 	}
1428 
1429 /*
1430  *	Slave is in action, so now we must wait for the open acknowledgment
1431  *	to come back.
1432  */
1433 	rc = 0;
1434 	while (test_bit(ST_CLOSING, &portp->state)) {
1435 		if (signal_pending(current)) {
1436 			rc = -ERESTARTSYS;
1437 			break;
1438 		}
1439 		interruptible_sleep_on(&portp->raw_wait);
1440 	}
1441 	restore_flags(flags);
1442 
1443 	if ((rc == 0) && (portp->rc != 0))
1444 		rc = -EIO;
1445 	return(rc);
1446 }
1447 
1448 /*****************************************************************************/
1449 
1450 /*
1451  *	Send a command to the slave and wait for the response. This must
1452  *	have user context (it sleeps). This routine is generic in that it
1453  *	can send any type of command. Its purpose is to wait for that command
1454  *	to complete (as opposed to initiating the command then returning).
1455  */
1456 
stli_cmdwait(stlibrd_t * brdp,stliport_t * portp,unsigned long cmd,void * arg,int size,int copyback)1457 static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
1458 {
1459 	unsigned long	flags;
1460 
1461 #if DEBUG
1462 	printk("stli_cmdwait(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
1463 		"copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
1464 		(int) arg, size, copyback);
1465 #endif
1466 
1467 	save_flags(flags);
1468 	cli();
1469 	while (test_bit(ST_CMDING, &portp->state)) {
1470 		if (signal_pending(current)) {
1471 			restore_flags(flags);
1472 			return(-ERESTARTSYS);
1473 		}
1474 		interruptible_sleep_on(&portp->raw_wait);
1475 	}
1476 
1477 	stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1478 
1479 	while (test_bit(ST_CMDING, &portp->state)) {
1480 		if (signal_pending(current)) {
1481 			restore_flags(flags);
1482 			return(-ERESTARTSYS);
1483 		}
1484 		interruptible_sleep_on(&portp->raw_wait);
1485 	}
1486 	restore_flags(flags);
1487 
1488 	if (portp->rc != 0)
1489 		return(-EIO);
1490 	return(0);
1491 }
1492 
1493 /*****************************************************************************/
1494 
1495 /*
1496  *	Send the termios settings for this port to the slave. This sleeps
1497  *	waiting for the command to complete - so must have user context.
1498  */
1499 
stli_setport(stliport_t * portp)1500 static int stli_setport(stliport_t *portp)
1501 {
1502 	stlibrd_t	*brdp;
1503 	asyport_t	aport;
1504 
1505 #if DEBUG
1506 	printk("stli_setport(portp=%x)\n", (int) portp);
1507 #endif
1508 
1509 	if (portp == (stliport_t *) NULL)
1510 		return(-ENODEV);
1511 	if (portp->tty == (struct tty_struct *) NULL)
1512 		return(-ENODEV);
1513 	if ((portp->brdnr < 0) && (portp->brdnr >= stli_nrbrds))
1514 		return(-ENODEV);
1515 	brdp = stli_brds[portp->brdnr];
1516 	if (brdp == (stlibrd_t *) NULL)
1517 		return(-ENODEV);
1518 
1519 	stli_mkasyport(portp, &aport, portp->tty->termios);
1520 	return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1521 }
1522 
1523 /*****************************************************************************/
1524 
1525 /*
1526  *	Wait for a specified delay period, this is not a busy-loop. It will
1527  *	give up the processor while waiting. Unfortunately this has some
1528  *	rather intimate knowledge of the process management stuff.
1529  */
1530 
stli_delay(int len)1531 static void stli_delay(int len)
1532 {
1533 #if DEBUG
1534 	printk("stli_delay(len=%d)\n", len);
1535 #endif
1536 	if (len > 0) {
1537 		set_current_state(TASK_INTERRUPTIBLE);
1538 		schedule_timeout(len);
1539 		set_current_state(TASK_RUNNING);
1540 	}
1541 }
1542 
1543 /*****************************************************************************/
1544 
1545 /*
1546  *	Possibly need to wait for carrier (DCD signal) to come high. Say
1547  *	maybe because if we are clocal then we don't need to wait...
1548  */
1549 
stli_waitcarrier(stlibrd_t * brdp,stliport_t * portp,struct file * filp)1550 static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp)
1551 {
1552 	unsigned long	flags;
1553 	int		rc, doclocal;
1554 
1555 #if DEBUG
1556 	printk("stli_waitcarrier(brdp=%x,portp=%x,filp=%x)\n",
1557 		(int) brdp, (int) portp, (int) filp);
1558 #endif
1559 
1560 	rc = 0;
1561 	doclocal = 0;
1562 
1563 	if (portp->flags & ASYNC_CALLOUT_ACTIVE) {
1564 		if (portp->normaltermios.c_cflag & CLOCAL)
1565 			doclocal++;
1566 	} else {
1567 		if (portp->tty->termios->c_cflag & CLOCAL)
1568 			doclocal++;
1569 	}
1570 
1571 	save_flags(flags);
1572 	cli();
1573 	portp->openwaitcnt++;
1574 	if (! tty_hung_up_p(filp))
1575 		portp->refcount--;
1576 
1577 	for (;;) {
1578 		if ((portp->flags & ASYNC_CALLOUT_ACTIVE) == 0) {
1579 			stli_mkasysigs(&portp->asig, 1, 1);
1580 			if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS,
1581 			    &portp->asig, sizeof(asysigs_t), 0)) < 0)
1582 				break;
1583 		}
1584 		if (tty_hung_up_p(filp) ||
1585 		    ((portp->flags & ASYNC_INITIALIZED) == 0)) {
1586 			if (portp->flags & ASYNC_HUP_NOTIFY)
1587 				rc = -EBUSY;
1588 			else
1589 				rc = -ERESTARTSYS;
1590 			break;
1591 		}
1592 		if (((portp->flags & ASYNC_CALLOUT_ACTIVE) == 0) &&
1593 		    ((portp->flags & ASYNC_CLOSING) == 0) &&
1594 		    (doclocal || (portp->sigs & TIOCM_CD))) {
1595 			break;
1596 		}
1597 		if (signal_pending(current)) {
1598 			rc = -ERESTARTSYS;
1599 			break;
1600 		}
1601 		interruptible_sleep_on(&portp->open_wait);
1602 	}
1603 
1604 	if (! tty_hung_up_p(filp))
1605 		portp->refcount++;
1606 	portp->openwaitcnt--;
1607 	restore_flags(flags);
1608 
1609 	return(rc);
1610 }
1611 
1612 /*****************************************************************************/
1613 
1614 /*
1615  *	Write routine. Take the data and put it in the shared memory ring
1616  *	queue. If port is not already sending chars then need to mark the
1617  *	service bits for this port.
1618  */
1619 
stli_write(struct tty_struct * tty,int from_user,const unsigned char * buf,int count)1620 static int stli_write(struct tty_struct *tty, int from_user, const unsigned char *buf, int count)
1621 {
1622 	volatile cdkasy_t	*ap;
1623 	volatile cdkhdr_t	*hdrp;
1624 	volatile unsigned char	*bits;
1625 	unsigned char		*shbuf, *chbuf;
1626 	stliport_t		*portp;
1627 	stlibrd_t		*brdp;
1628 	unsigned int		len, stlen, head, tail, size;
1629 	unsigned long		flags;
1630 
1631 #if DEBUG
1632 	printk("stli_write(tty=%x,from_user=%d,buf=%x,count=%d)\n",
1633 		(int) tty, from_user, (int) buf, count);
1634 #endif
1635 
1636 	if ((tty == (struct tty_struct *) NULL) ||
1637 	    (stli_tmpwritebuf == (char *) NULL))
1638 		return(0);
1639 	if (tty == stli_txcooktty)
1640 		stli_flushchars(tty);
1641 	portp = tty->driver_data;
1642 	if (portp == (stliport_t *) NULL)
1643 		return(0);
1644 	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1645 		return(0);
1646 	brdp = stli_brds[portp->brdnr];
1647 	if (brdp == (stlibrd_t *) NULL)
1648 		return(0);
1649 	chbuf = (unsigned char *) buf;
1650 
1651 /*
1652  *	If copying direct from user space we need to be able to handle page
1653  *	faults while we are copying. To do this copy as much as we can now
1654  *	into a kernel buffer. From there we copy it into shared memory. The
1655  *	big problem is that we do not want shared memory enabled when we are
1656  *	sleeping (other boards may be serviced while asleep). Something else
1657  *	to note here is the reading of the tail twice. Since the boards
1658  *	shared memory can be on an 8-bit bus then we need to be very careful
1659  *	reading 16 bit quantities - since both the board (slave) and host
1660  *	could be writing and reading at the same time.
1661  */
1662 	if (from_user) {
1663 		save_flags(flags);
1664 		cli();
1665 		EBRDENABLE(brdp);
1666 		ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1667 		head = (unsigned int) ap->txq.head;
1668 		tail = (unsigned int) ap->txq.tail;
1669 		if (tail != ((unsigned int) ap->txq.tail))
1670 			tail = (unsigned int) ap->txq.tail;
1671 		len = (head >= tail) ? (portp->txsize - (head - tail) - 1) :
1672 			(tail - head - 1);
1673 		count = MIN(len, count);
1674 		EBRDDISABLE(brdp);
1675 		restore_flags(flags);
1676 
1677 		down(&stli_tmpwritesem);
1678 		copy_from_user(stli_tmpwritebuf, chbuf, count);
1679 		chbuf = &stli_tmpwritebuf[0];
1680 	}
1681 
1682 /*
1683  *	All data is now local, shove as much as possible into shared memory.
1684  */
1685 	save_flags(flags);
1686 	cli();
1687 	EBRDENABLE(brdp);
1688 	ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1689 	head = (unsigned int) ap->txq.head;
1690 	tail = (unsigned int) ap->txq.tail;
1691 	if (tail != ((unsigned int) ap->txq.tail))
1692 		tail = (unsigned int) ap->txq.tail;
1693 	size = portp->txsize;
1694 	if (head >= tail) {
1695 		len = size - (head - tail) - 1;
1696 		stlen = size - head;
1697 	} else {
1698 		len = tail - head - 1;
1699 		stlen = len;
1700 	}
1701 
1702 	len = MIN(len, count);
1703 	count = 0;
1704 	shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
1705 
1706 	while (len > 0) {
1707 		stlen = MIN(len, stlen);
1708 		memcpy((shbuf + head), chbuf, stlen);
1709 		chbuf += stlen;
1710 		len -= stlen;
1711 		count += stlen;
1712 		head += stlen;
1713 		if (head >= size) {
1714 			head = 0;
1715 			stlen = tail;
1716 		}
1717 	}
1718 
1719 	ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1720 	ap->txq.head = head;
1721 	if (test_bit(ST_TXBUSY, &portp->state)) {
1722 		if (ap->changed.data & DT_TXEMPTY)
1723 			ap->changed.data &= ~DT_TXEMPTY;
1724 	}
1725 	hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1726 	bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1727 		portp->portidx;
1728 	*bits |= portp->portbit;
1729 	set_bit(ST_TXBUSY, &portp->state);
1730 	EBRDDISABLE(brdp);
1731 
1732 	if (from_user)
1733 		up(&stli_tmpwritesem);
1734 	restore_flags(flags);
1735 
1736 	return(count);
1737 }
1738 
1739 /*****************************************************************************/
1740 
1741 /*
1742  *	Output a single character. We put it into a temporary local buffer
1743  *	(for speed) then write out that buffer when the flushchars routine
1744  *	is called. There is a safety catch here so that if some other port
1745  *	writes chars before the current buffer has been, then we write them
1746  *	first them do the new ports.
1747  */
1748 
stli_putchar(struct tty_struct * tty,unsigned char ch)1749 static void stli_putchar(struct tty_struct *tty, unsigned char ch)
1750 {
1751 #if DEBUG
1752 	printk("stli_putchar(tty=%x,ch=%x)\n", (int) tty, (int) ch);
1753 #endif
1754 
1755 	if (tty == (struct tty_struct *) NULL)
1756 		return;
1757 	if (tty != stli_txcooktty) {
1758 		if (stli_txcooktty != (struct tty_struct *) NULL)
1759 			stli_flushchars(stli_txcooktty);
1760 		stli_txcooktty = tty;
1761 	}
1762 
1763 	stli_txcookbuf[stli_txcooksize++] = ch;
1764 }
1765 
1766 /*****************************************************************************/
1767 
1768 /*
1769  *	Transfer characters from the local TX cooking buffer to the board.
1770  *	We sort of ignore the tty that gets passed in here. We rely on the
1771  *	info stored with the TX cook buffer to tell us which port to flush
1772  *	the data on. In any case we clean out the TX cook buffer, for re-use
1773  *	by someone else.
1774  */
1775 
stli_flushchars(struct tty_struct * tty)1776 static void stli_flushchars(struct tty_struct *tty)
1777 {
1778 	volatile cdkhdr_t	*hdrp;
1779 	volatile unsigned char	*bits;
1780 	volatile cdkasy_t	*ap;
1781 	struct tty_struct	*cooktty;
1782 	stliport_t		*portp;
1783 	stlibrd_t		*brdp;
1784 	unsigned int		len, stlen, head, tail, size, count, cooksize;
1785 	unsigned char		*buf, *shbuf;
1786 	unsigned long		flags;
1787 
1788 #if DEBUG
1789 	printk("stli_flushchars(tty=%x)\n", (int) tty);
1790 #endif
1791 
1792 	cooksize = stli_txcooksize;
1793 	cooktty = stli_txcooktty;
1794 	stli_txcooksize = 0;
1795 	stli_txcookrealsize = 0;
1796 	stli_txcooktty = (struct tty_struct *) NULL;
1797 
1798 	if (tty == (struct tty_struct *) NULL)
1799 		return;
1800 	if (cooktty == (struct tty_struct *) NULL)
1801 		return;
1802 	if (tty != cooktty)
1803 		tty = cooktty;
1804 	if (cooksize == 0)
1805 		return;
1806 
1807 	portp = tty->driver_data;
1808 	if (portp == (stliport_t *) NULL)
1809 		return;
1810 	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1811 		return;
1812 	brdp = stli_brds[portp->brdnr];
1813 	if (brdp == (stlibrd_t *) NULL)
1814 		return;
1815 
1816 	save_flags(flags);
1817 	cli();
1818 	EBRDENABLE(brdp);
1819 
1820 	ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1821 	head = (unsigned int) ap->txq.head;
1822 	tail = (unsigned int) ap->txq.tail;
1823 	if (tail != ((unsigned int) ap->txq.tail))
1824 		tail = (unsigned int) ap->txq.tail;
1825 	size = portp->txsize;
1826 	if (head >= tail) {
1827 		len = size - (head - tail) - 1;
1828 		stlen = size - head;
1829 	} else {
1830 		len = tail - head - 1;
1831 		stlen = len;
1832 	}
1833 
1834 	len = MIN(len, cooksize);
1835 	count = 0;
1836 	shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
1837 	buf = stli_txcookbuf;
1838 
1839 	while (len > 0) {
1840 		stlen = MIN(len, stlen);
1841 		memcpy((shbuf + head), buf, stlen);
1842 		buf += stlen;
1843 		len -= stlen;
1844 		count += stlen;
1845 		head += stlen;
1846 		if (head >= size) {
1847 			head = 0;
1848 			stlen = tail;
1849 		}
1850 	}
1851 
1852 	ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1853 	ap->txq.head = head;
1854 
1855 	if (test_bit(ST_TXBUSY, &portp->state)) {
1856 		if (ap->changed.data & DT_TXEMPTY)
1857 			ap->changed.data &= ~DT_TXEMPTY;
1858 	}
1859 	hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1860 	bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1861 		portp->portidx;
1862 	*bits |= portp->portbit;
1863 	set_bit(ST_TXBUSY, &portp->state);
1864 
1865 	EBRDDISABLE(brdp);
1866 	restore_flags(flags);
1867 }
1868 
1869 /*****************************************************************************/
1870 
stli_writeroom(struct tty_struct * tty)1871 static int stli_writeroom(struct tty_struct *tty)
1872 {
1873 	volatile cdkasyrq_t	*rp;
1874 	stliport_t		*portp;
1875 	stlibrd_t		*brdp;
1876 	unsigned int		head, tail, len;
1877 	unsigned long		flags;
1878 
1879 #if DEBUG
1880 	printk("stli_writeroom(tty=%x)\n", (int) tty);
1881 #endif
1882 
1883 	if (tty == (struct tty_struct *) NULL)
1884 		return(0);
1885 	if (tty == stli_txcooktty) {
1886 		if (stli_txcookrealsize != 0) {
1887 			len = stli_txcookrealsize - stli_txcooksize;
1888 			return(len);
1889 		}
1890 	}
1891 
1892 	portp = tty->driver_data;
1893 	if (portp == (stliport_t *) NULL)
1894 		return(0);
1895 	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1896 		return(0);
1897 	brdp = stli_brds[portp->brdnr];
1898 	if (brdp == (stlibrd_t *) NULL)
1899 		return(0);
1900 
1901 	save_flags(flags);
1902 	cli();
1903 	EBRDENABLE(brdp);
1904 	rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1905 	head = (unsigned int) rp->head;
1906 	tail = (unsigned int) rp->tail;
1907 	if (tail != ((unsigned int) rp->tail))
1908 		tail = (unsigned int) rp->tail;
1909 	len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1910 	len--;
1911 	EBRDDISABLE(brdp);
1912 	restore_flags(flags);
1913 
1914 	if (tty == stli_txcooktty) {
1915 		stli_txcookrealsize = len;
1916 		len -= stli_txcooksize;
1917 	}
1918 	return(len);
1919 }
1920 
1921 /*****************************************************************************/
1922 
1923 /*
1924  *	Return the number of characters in the transmit buffer. Normally we
1925  *	will return the number of chars in the shared memory ring queue.
1926  *	We need to kludge around the case where the shared memory buffer is
1927  *	empty but not all characters have drained yet, for this case just
1928  *	return that there is 1 character in the buffer!
1929  */
1930 
stli_charsinbuffer(struct tty_struct * tty)1931 static int stli_charsinbuffer(struct tty_struct *tty)
1932 {
1933 	volatile cdkasyrq_t	*rp;
1934 	stliport_t		*portp;
1935 	stlibrd_t		*brdp;
1936 	unsigned int		head, tail, len;
1937 	unsigned long		flags;
1938 
1939 #if DEBUG
1940 	printk("stli_charsinbuffer(tty=%x)\n", (int) tty);
1941 #endif
1942 
1943 	if (tty == (struct tty_struct *) NULL)
1944 		return(0);
1945 	if (tty == stli_txcooktty)
1946 		stli_flushchars(tty);
1947 	portp = tty->driver_data;
1948 	if (portp == (stliport_t *) NULL)
1949 		return(0);
1950 	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1951 		return(0);
1952 	brdp = stli_brds[portp->brdnr];
1953 	if (brdp == (stlibrd_t *) NULL)
1954 		return(0);
1955 
1956 	save_flags(flags);
1957 	cli();
1958 	EBRDENABLE(brdp);
1959 	rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1960 	head = (unsigned int) rp->head;
1961 	tail = (unsigned int) rp->tail;
1962 	if (tail != ((unsigned int) rp->tail))
1963 		tail = (unsigned int) rp->tail;
1964 	len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1965 	if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1966 		len = 1;
1967 	EBRDDISABLE(brdp);
1968 	restore_flags(flags);
1969 
1970 	return(len);
1971 }
1972 
1973 /*****************************************************************************/
1974 
1975 /*
1976  *	Generate the serial struct info.
1977  */
1978 
stli_getserial(stliport_t * portp,struct serial_struct * sp)1979 static void stli_getserial(stliport_t *portp, struct serial_struct *sp)
1980 {
1981 	struct serial_struct	sio;
1982 	stlibrd_t		*brdp;
1983 
1984 #if DEBUG
1985 	printk("stli_getserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
1986 #endif
1987 
1988 	memset(&sio, 0, sizeof(struct serial_struct));
1989 	sio.type = PORT_UNKNOWN;
1990 	sio.line = portp->portnr;
1991 	sio.irq = 0;
1992 	sio.flags = portp->flags;
1993 	sio.baud_base = portp->baud_base;
1994 	sio.close_delay = portp->close_delay;
1995 	sio.closing_wait = portp->closing_wait;
1996 	sio.custom_divisor = portp->custom_divisor;
1997 	sio.xmit_fifo_size = 0;
1998 	sio.hub6 = 0;
1999 
2000 	brdp = stli_brds[portp->brdnr];
2001 	if (brdp != (stlibrd_t *) NULL)
2002 		sio.port = brdp->iobase;
2003 
2004 	copy_to_user(sp, &sio, sizeof(struct serial_struct));
2005 }
2006 
2007 /*****************************************************************************/
2008 
2009 /*
2010  *	Set port according to the serial struct info.
2011  *	At this point we do not do any auto-configure stuff, so we will
2012  *	just quietly ignore any requests to change irq, etc.
2013  */
2014 
stli_setserial(stliport_t * portp,struct serial_struct * sp)2015 static int stli_setserial(stliport_t *portp, struct serial_struct *sp)
2016 {
2017 	struct serial_struct	sio;
2018 	int			rc;
2019 
2020 #if DEBUG
2021 	printk("stli_setserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
2022 #endif
2023 
2024 	if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
2025 		return -EFAULT;
2026 	if (!capable(CAP_SYS_ADMIN)) {
2027 		if ((sio.baud_base != portp->baud_base) ||
2028 		    (sio.close_delay != portp->close_delay) ||
2029 		    ((sio.flags & ~ASYNC_USR_MASK) !=
2030 		    (portp->flags & ~ASYNC_USR_MASK)))
2031 			return(-EPERM);
2032 	}
2033 
2034 	portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
2035 		(sio.flags & ASYNC_USR_MASK);
2036 	portp->baud_base = sio.baud_base;
2037 	portp->close_delay = sio.close_delay;
2038 	portp->closing_wait = sio.closing_wait;
2039 	portp->custom_divisor = sio.custom_divisor;
2040 
2041 	if ((rc = stli_setport(portp)) < 0)
2042 		return(rc);
2043 	return(0);
2044 }
2045 
2046 /*****************************************************************************/
2047 
stli_ioctl(struct tty_struct * tty,struct file * file,unsigned int cmd,unsigned long arg)2048 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
2049 {
2050 	stliport_t	*portp;
2051 	stlibrd_t	*brdp;
2052 	unsigned long	lval;
2053 	unsigned int	ival;
2054 	int		rc;
2055 
2056 #if DEBUG
2057 	printk("stli_ioctl(tty=%x,file=%x,cmd=%x,arg=%x)\n",
2058 		(int) tty, (int) file, cmd, (int) arg);
2059 #endif
2060 
2061 	if (tty == (struct tty_struct *) NULL)
2062 		return(-ENODEV);
2063 	portp = tty->driver_data;
2064 	if (portp == (stliport_t *) NULL)
2065 		return(-ENODEV);
2066 	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2067 		return(0);
2068 	brdp = stli_brds[portp->brdnr];
2069 	if (brdp == (stlibrd_t *) NULL)
2070 		return(0);
2071 
2072 	if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
2073  	    (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
2074 		if (tty->flags & (1 << TTY_IO_ERROR))
2075 			return(-EIO);
2076 	}
2077 
2078 	rc = 0;
2079 
2080 	switch (cmd) {
2081 	case TIOCGSOFTCAR:
2082 		rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
2083 			(unsigned int *) arg);
2084 		break;
2085 	case TIOCSSOFTCAR:
2086 		if ((rc = get_user(ival, (unsigned int *) arg)) == 0)
2087 			tty->termios->c_cflag =
2088 				(tty->termios->c_cflag & ~CLOCAL) |
2089 				(ival ? CLOCAL : 0);
2090 		break;
2091 	case TIOCMGET:
2092 		if ((rc = verify_area(VERIFY_WRITE, (void *) arg,
2093 		    sizeof(unsigned int))) == 0) {
2094 			if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
2095 			    &portp->asig, sizeof(asysigs_t), 1)) < 0)
2096 				return(rc);
2097 			lval = stli_mktiocm(portp->asig.sigvalue);
2098 			put_user(lval, (unsigned int *) arg);
2099 		}
2100 		break;
2101 	case TIOCMBIS:
2102 		if ((rc = get_user(ival, (unsigned int *) arg)) == 0) {
2103 			stli_mkasysigs(&portp->asig,
2104 				((ival & TIOCM_DTR) ? 1 : -1),
2105 				((ival & TIOCM_RTS) ? 1 : -1));
2106 			rc = stli_cmdwait(brdp, portp, A_SETSIGNALS,
2107 				&portp->asig, sizeof(asysigs_t), 0);
2108 		}
2109 		break;
2110 	case TIOCMBIC:
2111 		if ((rc = get_user(ival, (unsigned int *) arg)) == 0) {
2112 			stli_mkasysigs(&portp->asig,
2113 				((ival & TIOCM_DTR) ? 0 : -1),
2114 				((ival & TIOCM_RTS) ? 0 : -1));
2115 			rc = stli_cmdwait(brdp, portp, A_SETSIGNALS,
2116 				&portp->asig, sizeof(asysigs_t), 0);
2117 		}
2118 		break;
2119 	case TIOCMSET:
2120 		if ((rc = get_user(ival, (unsigned int *) arg)) == 0) {
2121 			stli_mkasysigs(&portp->asig,
2122 				((ival & TIOCM_DTR) ? 1 : 0),
2123 				((ival & TIOCM_RTS) ? 1 : 0));
2124 			rc = stli_cmdwait(brdp, portp, A_SETSIGNALS,
2125 				&portp->asig, sizeof(asysigs_t), 0);
2126 		}
2127 		break;
2128 	case TIOCGSERIAL:
2129 		if ((rc = verify_area(VERIFY_WRITE, (void *) arg,
2130 		    sizeof(struct serial_struct))) == 0)
2131 			stli_getserial(portp, (struct serial_struct *) arg);
2132 		break;
2133 	case TIOCSSERIAL:
2134 		if ((rc = verify_area(VERIFY_READ, (void *) arg,
2135 		    sizeof(struct serial_struct))) == 0)
2136 			rc = stli_setserial(portp, (struct serial_struct *)arg);
2137 		break;
2138 	case STL_GETPFLAG:
2139 		rc = put_user(portp->pflag, (unsigned int *) arg);
2140 		break;
2141 	case STL_SETPFLAG:
2142 		if ((rc = get_user(portp->pflag, (unsigned int *) arg)) == 0)
2143 			stli_setport(portp);
2144 		break;
2145 	case COM_GETPORTSTATS:
2146 		if ((rc = verify_area(VERIFY_WRITE, (void *) arg,
2147 		    sizeof(comstats_t))) == 0)
2148 			rc = stli_getportstats(portp, (comstats_t *) arg);
2149 		break;
2150 	case COM_CLRPORTSTATS:
2151 		if ((rc = verify_area(VERIFY_WRITE, (void *) arg,
2152 		    sizeof(comstats_t))) == 0)
2153 			rc = stli_clrportstats(portp, (comstats_t *) arg);
2154 		break;
2155 	case TIOCSERCONFIG:
2156 	case TIOCSERGWILD:
2157 	case TIOCSERSWILD:
2158 	case TIOCSERGETLSR:
2159 	case TIOCSERGSTRUCT:
2160 	case TIOCSERGETMULTI:
2161 	case TIOCSERSETMULTI:
2162 	default:
2163 		rc = -ENOIOCTLCMD;
2164 		break;
2165 	}
2166 
2167 	return(rc);
2168 }
2169 
2170 /*****************************************************************************/
2171 
2172 /*
2173  *	This routine assumes that we have user context and can sleep.
2174  *	Looks like it is true for the current ttys implementation..!!
2175  */
2176 
stli_settermios(struct tty_struct * tty,struct termios * old)2177 static void stli_settermios(struct tty_struct *tty, struct termios *old)
2178 {
2179 	stliport_t	*portp;
2180 	stlibrd_t	*brdp;
2181 	struct termios	*tiosp;
2182 	asyport_t	aport;
2183 
2184 #if DEBUG
2185 	printk("stli_settermios(tty=%x,old=%x)\n", (int) tty, (int) old);
2186 #endif
2187 
2188 	if (tty == (struct tty_struct *) NULL)
2189 		return;
2190 	portp = tty->driver_data;
2191 	if (portp == (stliport_t *) NULL)
2192 		return;
2193 	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2194 		return;
2195 	brdp = stli_brds[portp->brdnr];
2196 	if (brdp == (stlibrd_t *) NULL)
2197 		return;
2198 
2199 	tiosp = tty->termios;
2200 	if ((tiosp->c_cflag == old->c_cflag) &&
2201 	    (tiosp->c_iflag == old->c_iflag))
2202 		return;
2203 
2204 	stli_mkasyport(portp, &aport, tiosp);
2205 	stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
2206 	stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
2207 	stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
2208 		sizeof(asysigs_t), 0);
2209 	if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
2210 		tty->hw_stopped = 0;
2211 	if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
2212 		wake_up_interruptible(&portp->open_wait);
2213 }
2214 
2215 /*****************************************************************************/
2216 
2217 /*
2218  *	Attempt to flow control who ever is sending us data. We won't really
2219  *	do any flow control action here. We can't directly, and even if we
2220  *	wanted to we would have to send a command to the slave. The slave
2221  *	knows how to flow control, and will do so when its buffers reach its
2222  *	internal high water marks. So what we will do is set a local state
2223  *	bit that will stop us sending any RX data up from the poll routine
2224  *	(which is the place where RX data from the slave is handled).
2225  */
2226 
stli_throttle(struct tty_struct * tty)2227 static void stli_throttle(struct tty_struct *tty)
2228 {
2229 	stliport_t	*portp;
2230 
2231 #if DEBUG
2232 	printk("stli_throttle(tty=%x)\n", (int) tty);
2233 #endif
2234 
2235 	if (tty == (struct tty_struct *) NULL)
2236 		return;
2237 	portp = tty->driver_data;
2238 	if (portp == (stliport_t *) NULL)
2239 		return;
2240 
2241 	set_bit(ST_RXSTOP, &portp->state);
2242 }
2243 
2244 /*****************************************************************************/
2245 
2246 /*
2247  *	Unflow control the device sending us data... That means that all
2248  *	we have to do is clear the RXSTOP state bit. The next poll call
2249  *	will then be able to pass the RX data back up.
2250  */
2251 
stli_unthrottle(struct tty_struct * tty)2252 static void stli_unthrottle(struct tty_struct *tty)
2253 {
2254 	stliport_t	*portp;
2255 
2256 #if DEBUG
2257 	printk("stli_unthrottle(tty=%x)\n", (int) tty);
2258 #endif
2259 
2260 	if (tty == (struct tty_struct *) NULL)
2261 		return;
2262 	portp = tty->driver_data;
2263 	if (portp == (stliport_t *) NULL)
2264 		return;
2265 
2266 	clear_bit(ST_RXSTOP, &portp->state);
2267 }
2268 
2269 /*****************************************************************************/
2270 
2271 /*
2272  *	Stop the transmitter. Basically to do this we will just turn TX
2273  *	interrupts off.
2274  */
2275 
stli_stop(struct tty_struct * tty)2276 static void stli_stop(struct tty_struct *tty)
2277 {
2278 	stlibrd_t	*brdp;
2279 	stliport_t	*portp;
2280 	asyctrl_t	actrl;
2281 
2282 #if DEBUG
2283 	printk("stli_stop(tty=%x)\n", (int) tty);
2284 #endif
2285 
2286 	if (tty == (struct tty_struct *) NULL)
2287 		return;
2288 	portp = tty->driver_data;
2289 	if (portp == (stliport_t *) NULL)
2290 		return;
2291 	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2292 		return;
2293 	brdp = stli_brds[portp->brdnr];
2294 	if (brdp == (stlibrd_t *) NULL)
2295 		return;
2296 
2297 	memset(&actrl, 0, sizeof(asyctrl_t));
2298 	actrl.txctrl = CT_STOPFLOW;
2299 #if 0
2300 	stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2301 #endif
2302 }
2303 
2304 /*****************************************************************************/
2305 
2306 /*
2307  *	Start the transmitter again. Just turn TX interrupts back on.
2308  */
2309 
stli_start(struct tty_struct * tty)2310 static void stli_start(struct tty_struct *tty)
2311 {
2312 	stliport_t	*portp;
2313 	stlibrd_t	*brdp;
2314 	asyctrl_t	actrl;
2315 
2316 #if DEBUG
2317 	printk("stli_start(tty=%x)\n", (int) tty);
2318 #endif
2319 
2320 	if (tty == (struct tty_struct *) NULL)
2321 		return;
2322 	portp = tty->driver_data;
2323 	if (portp == (stliport_t *) NULL)
2324 		return;
2325 	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2326 		return;
2327 	brdp = stli_brds[portp->brdnr];
2328 	if (brdp == (stlibrd_t *) NULL)
2329 		return;
2330 
2331 	memset(&actrl, 0, sizeof(asyctrl_t));
2332 	actrl.txctrl = CT_STARTFLOW;
2333 #if 0
2334 	stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2335 #endif
2336 }
2337 
2338 /*****************************************************************************/
2339 
2340 /*
2341  *	Scheduler called hang up routine. This is called from the scheduler,
2342  *	not direct from the driver "poll" routine. We can't call it there
2343  *	since the real local hangup code will enable/disable the board and
2344  *	other things that we can't do while handling the poll. Much easier
2345  *	to deal with it some time later (don't really care when, hangups
2346  *	aren't that time critical).
2347  */
2348 
stli_dohangup(void * arg)2349 static void stli_dohangup(void *arg)
2350 {
2351 	stliport_t	*portp;
2352 
2353 #if DEBUG
2354 	printk(KERN_DEBUG "stli_dohangup(portp=%x)\n", (int) arg);
2355 #endif
2356 
2357 	/*
2358 	 * FIXME: There's a module removal race here: tty_hangup
2359 	 * calls schedule_task which will call into this
2360 	 * driver later.
2361 	 */
2362 	portp = (stliport_t *) arg;
2363 	if (portp != (stliport_t *) NULL) {
2364 		if (portp->tty != (struct tty_struct *) NULL) {
2365 			tty_hangup(portp->tty);
2366 		}
2367 	}
2368 	MOD_DEC_USE_COUNT;
2369 }
2370 
2371 /*****************************************************************************/
2372 
2373 /*
2374  *	Hangup this port. This is pretty much like closing the port, only
2375  *	a little more brutal. No waiting for data to drain. Shutdown the
2376  *	port and maybe drop signals. This is rather tricky really. We want
2377  *	to close the port as well.
2378  */
2379 
stli_hangup(struct tty_struct * tty)2380 static void stli_hangup(struct tty_struct *tty)
2381 {
2382 	stliport_t	*portp;
2383 	stlibrd_t	*brdp;
2384 	unsigned long	flags;
2385 
2386 #if DEBUG
2387 	printk(KERN_DEBUG "stli_hangup(tty=%x)\n", (int) tty);
2388 #endif
2389 
2390 	if (tty == (struct tty_struct *) NULL)
2391 		return;
2392 	portp = tty->driver_data;
2393 	if (portp == (stliport_t *) NULL)
2394 		return;
2395 	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2396 		return;
2397 	brdp = stli_brds[portp->brdnr];
2398 	if (brdp == (stlibrd_t *) NULL)
2399 		return;
2400 
2401 	portp->flags &= ~ASYNC_INITIALIZED;
2402 
2403 	save_flags(flags);
2404 	cli();
2405 	if (! test_bit(ST_CLOSING, &portp->state))
2406 		stli_rawclose(brdp, portp, 0, 0);
2407 	if (tty->termios->c_cflag & HUPCL) {
2408 		stli_mkasysigs(&portp->asig, 0, 0);
2409 		if (test_bit(ST_CMDING, &portp->state)) {
2410 			set_bit(ST_DOSIGS, &portp->state);
2411 			set_bit(ST_DOFLUSHTX, &portp->state);
2412 			set_bit(ST_DOFLUSHRX, &portp->state);
2413 		} else {
2414 			stli_sendcmd(brdp, portp, A_SETSIGNALSF,
2415 				&portp->asig, sizeof(asysigs_t), 0);
2416 		}
2417 	}
2418 	restore_flags(flags);
2419 
2420 	clear_bit(ST_TXBUSY, &portp->state);
2421 	clear_bit(ST_RXSTOP, &portp->state);
2422 	set_bit(TTY_IO_ERROR, &tty->flags);
2423 	portp->tty = (struct tty_struct *) NULL;
2424 	portp->flags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_CALLOUT_ACTIVE);
2425 	portp->refcount = 0;
2426 	wake_up_interruptible(&portp->open_wait);
2427 }
2428 
2429 /*****************************************************************************/
2430 
2431 /*
2432  *	Flush characters from the lower buffer. We may not have user context
2433  *	so we cannot sleep waiting for it to complete. Also we need to check
2434  *	if there is chars for this port in the TX cook buffer, and flush them
2435  *	as well.
2436  */
2437 
stli_flushbuffer(struct tty_struct * tty)2438 static void stli_flushbuffer(struct tty_struct *tty)
2439 {
2440 	stliport_t	*portp;
2441 	stlibrd_t	*brdp;
2442 	unsigned long	ftype, flags;
2443 
2444 #if DEBUG
2445 	printk(KERN_DEBUG "stli_flushbuffer(tty=%x)\n", (int) tty);
2446 #endif
2447 
2448 	if (tty == (struct tty_struct *) NULL)
2449 		return;
2450 	portp = tty->driver_data;
2451 	if (portp == (stliport_t *) NULL)
2452 		return;
2453 	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2454 		return;
2455 	brdp = stli_brds[portp->brdnr];
2456 	if (brdp == (stlibrd_t *) NULL)
2457 		return;
2458 
2459 	save_flags(flags);
2460 	cli();
2461 	if (tty == stli_txcooktty) {
2462 		stli_txcooktty = (struct tty_struct *) NULL;
2463 		stli_txcooksize = 0;
2464 		stli_txcookrealsize = 0;
2465 	}
2466 	if (test_bit(ST_CMDING, &portp->state)) {
2467 		set_bit(ST_DOFLUSHTX, &portp->state);
2468 	} else {
2469 		ftype = FLUSHTX;
2470 		if (test_bit(ST_DOFLUSHRX, &portp->state)) {
2471 			ftype |= FLUSHRX;
2472 			clear_bit(ST_DOFLUSHRX, &portp->state);
2473 		}
2474 		stli_sendcmd(brdp, portp, A_FLUSH, &ftype,
2475 			sizeof(unsigned long), 0);
2476 	}
2477 	restore_flags(flags);
2478 
2479 	tty_wakeup(tty);
2480 }
2481 
2482 /*****************************************************************************/
2483 
stli_breakctl(struct tty_struct * tty,int state)2484 static void stli_breakctl(struct tty_struct *tty, int state)
2485 {
2486 	stlibrd_t	*brdp;
2487 	stliport_t	*portp;
2488 	long		arg;
2489 	/* long savestate, savetime; */
2490 
2491 #if DEBUG
2492 	printk(KERN_DEBUG "stli_breakctl(tty=%x,state=%d)\n", (int) tty, state);
2493 #endif
2494 
2495 	if (tty == (struct tty_struct *) NULL)
2496 		return;
2497 	portp = tty->driver_data;
2498 	if (portp == (stliport_t *) NULL)
2499 		return;
2500 	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2501 		return;
2502 	brdp = stli_brds[portp->brdnr];
2503 	if (brdp == (stlibrd_t *) NULL)
2504 		return;
2505 
2506 /*
2507  *	Due to a bug in the tty send_break() code we need to preserve
2508  *	the current process state and timeout...
2509 	savetime = current->timeout;
2510 	savestate = current->state;
2511  */
2512 
2513 	arg = (state == -1) ? BREAKON : BREAKOFF;
2514 	stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
2515 
2516 /*
2517  *
2518 	current->timeout = savetime;
2519 	current->state = savestate;
2520  */
2521 }
2522 
2523 /*****************************************************************************/
2524 
stli_waituntilsent(struct tty_struct * tty,int timeout)2525 static void stli_waituntilsent(struct tty_struct *tty, int timeout)
2526 {
2527 	stliport_t	*portp;
2528 	unsigned long	tend;
2529 
2530 #if DEBUG
2531 	printk(KERN_DEBUG "stli_waituntilsent(tty=%x,timeout=%x)\n", (int) tty, timeout);
2532 #endif
2533 
2534 	if (tty == (struct tty_struct *) NULL)
2535 		return;
2536 	portp = tty->driver_data;
2537 	if (portp == (stliport_t *) NULL)
2538 		return;
2539 
2540 	if (timeout == 0)
2541 		timeout = HZ;
2542 	tend = jiffies + timeout;
2543 
2544 	while (test_bit(ST_TXBUSY, &portp->state)) {
2545 		if (signal_pending(current))
2546 			break;
2547 		stli_delay(2);
2548 		if (time_after_eq(jiffies, tend))
2549 			break;
2550 	}
2551 }
2552 
2553 /*****************************************************************************/
2554 
stli_sendxchar(struct tty_struct * tty,char ch)2555 static void stli_sendxchar(struct tty_struct *tty, char ch)
2556 {
2557 	stlibrd_t	*brdp;
2558 	stliport_t	*portp;
2559 	asyctrl_t	actrl;
2560 
2561 #if DEBUG
2562 	printk(KERN_DEBUG "stli_sendxchar(tty=%x,ch=%x)\n", (int) tty, ch);
2563 #endif
2564 
2565 	if (tty == (struct tty_struct *) NULL)
2566 		return;
2567 	portp = tty->driver_data;
2568 	if (portp == (stliport_t *) NULL)
2569 		return;
2570 	if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2571 		return;
2572 	brdp = stli_brds[portp->brdnr];
2573 	if (brdp == (stlibrd_t *) NULL)
2574 		return;
2575 
2576 	memset(&actrl, 0, sizeof(asyctrl_t));
2577 	if (ch == STOP_CHAR(tty)) {
2578 		actrl.rxctrl = CT_STOPFLOW;
2579 	} else if (ch == START_CHAR(tty)) {
2580 		actrl.rxctrl = CT_STARTFLOW;
2581 	} else {
2582 		actrl.txctrl = CT_SENDCHR;
2583 		actrl.tximdch = ch;
2584 	}
2585 
2586 	stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2587 }
2588 
2589 /*****************************************************************************/
2590 
2591 #define	MAXLINE		80
2592 
2593 /*
2594  *	Format info for a specified port. The line is deliberately limited
2595  *	to 80 characters. (If it is too long it will be truncated, if too
2596  *	short then padded with spaces).
2597  */
2598 
stli_portinfo(stlibrd_t * brdp,stliport_t * portp,int portnr,char * pos)2599 static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos)
2600 {
2601 	char	*sp, *uart;
2602 	int	rc, cnt;
2603 
2604 	rc = stli_portcmdstats(portp);
2605 
2606 	uart = "UNKNOWN";
2607 	if (brdp->state & BST_STARTED) {
2608 		switch (stli_comstats.hwid) {
2609 		case 0:		uart = "2681"; break;
2610 		case 1:		uart = "SC26198"; break;
2611 		default:	uart = "CD1400"; break;
2612 		}
2613 	}
2614 
2615 	sp = pos;
2616 	sp += sprintf(sp, "%d: uart:%s ", portnr, uart);
2617 
2618 	if ((brdp->state & BST_STARTED) && (rc >= 0)) {
2619 		sp += sprintf(sp, "tx:%d rx:%d", (int) stli_comstats.txtotal,
2620 			(int) stli_comstats.rxtotal);
2621 
2622 		if (stli_comstats.rxframing)
2623 			sp += sprintf(sp, " fe:%d",
2624 				(int) stli_comstats.rxframing);
2625 		if (stli_comstats.rxparity)
2626 			sp += sprintf(sp, " pe:%d",
2627 				(int) stli_comstats.rxparity);
2628 		if (stli_comstats.rxbreaks)
2629 			sp += sprintf(sp, " brk:%d",
2630 				(int) stli_comstats.rxbreaks);
2631 		if (stli_comstats.rxoverrun)
2632 			sp += sprintf(sp, " oe:%d",
2633 				(int) stli_comstats.rxoverrun);
2634 
2635 		cnt = sprintf(sp, "%s%s%s%s%s ",
2636 			(stli_comstats.signals & TIOCM_RTS) ? "|RTS" : "",
2637 			(stli_comstats.signals & TIOCM_CTS) ? "|CTS" : "",
2638 			(stli_comstats.signals & TIOCM_DTR) ? "|DTR" : "",
2639 			(stli_comstats.signals & TIOCM_CD) ? "|DCD" : "",
2640 			(stli_comstats.signals & TIOCM_DSR) ? "|DSR" : "");
2641 		*sp = ' ';
2642 		sp += cnt;
2643 	}
2644 
2645 	for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
2646 		*sp++ = ' ';
2647 	if (cnt >= MAXLINE)
2648 		pos[(MAXLINE - 2)] = '+';
2649 	pos[(MAXLINE - 1)] = '\n';
2650 
2651 	return(MAXLINE);
2652 }
2653 
2654 /*****************************************************************************/
2655 
2656 /*
2657  *	Port info, read from the /proc file system.
2658  */
2659 
stli_readproc(char * page,char ** start,off_t off,int count,int * eof,void * data)2660 static int stli_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
2661 {
2662 	stlibrd_t	*brdp;
2663 	stliport_t	*portp;
2664 	int		brdnr, portnr, totalport;
2665 	int		curoff, maxoff;
2666 	char		*pos;
2667 
2668 #if DEBUG
2669 	printk(KERN_DEBUG "stli_readproc(page=%x,start=%x,off=%x,count=%d,eof=%x,"
2670 		"data=%x\n", (int) page, (int) start, (int) off, count,
2671 		(int) eof, (int) data);
2672 #endif
2673 
2674 	pos = page;
2675 	totalport = 0;
2676 	curoff = 0;
2677 
2678 	if (off == 0) {
2679 		pos += sprintf(pos, "%s: version %s", stli_drvtitle,
2680 			stli_drvversion);
2681 		while (pos < (page + MAXLINE - 1))
2682 			*pos++ = ' ';
2683 		*pos++ = '\n';
2684 	}
2685 	curoff =  MAXLINE;
2686 
2687 /*
2688  *	We scan through for each board, panel and port. The offset is
2689  *	calculated on the fly, and irrelevant ports are skipped.
2690  */
2691 	for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2692 		brdp = stli_brds[brdnr];
2693 		if (brdp == (stlibrd_t *) NULL)
2694 			continue;
2695 		if (brdp->state == 0)
2696 			continue;
2697 
2698 		maxoff = curoff + (brdp->nrports * MAXLINE);
2699 		if (off >= maxoff) {
2700 			curoff = maxoff;
2701 			continue;
2702 		}
2703 
2704 		totalport = brdnr * STL_MAXPORTS;
2705 		for (portnr = 0; (portnr < brdp->nrports); portnr++,
2706 		    totalport++) {
2707 			portp = brdp->ports[portnr];
2708 			if (portp == (stliport_t *) NULL)
2709 				continue;
2710 			if (off >= (curoff += MAXLINE))
2711 				continue;
2712 			if ((pos - page + MAXLINE) > count)
2713 				goto stli_readdone;
2714 			pos += stli_portinfo(brdp, portp, totalport, pos);
2715 		}
2716 	}
2717 
2718 	*eof = 1;
2719 
2720 stli_readdone:
2721 	*start = page;
2722 	return(pos - page);
2723 }
2724 
2725 /*****************************************************************************/
2726 
2727 /*
2728  *	Generic send command routine. This will send a message to the slave,
2729  *	of the specified type with the specified argument. Must be very
2730  *	careful of data that will be copied out from shared memory -
2731  *	containing command results. The command completion is all done from
2732  *	a poll routine that does not have user context. Therefore you cannot
2733  *	copy back directly into user space, or to the kernel stack of a
2734  *	process. This routine does not sleep, so can be called from anywhere.
2735  */
2736 
stli_sendcmd(stlibrd_t * brdp,stliport_t * portp,unsigned long cmd,void * arg,int size,int copyback)2737 static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
2738 {
2739 	volatile cdkhdr_t	*hdrp;
2740 	volatile cdkctrl_t	*cp;
2741 	volatile unsigned char	*bits;
2742 	unsigned long		flags;
2743 
2744 #if DEBUG
2745 	printk(KERN_DEBUG "stli_sendcmd(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
2746 		"copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
2747 		(int) arg, size, copyback);
2748 #endif
2749 
2750 	save_flags(flags);
2751 	cli();
2752 
2753 	if (test_bit(ST_CMDING, &portp->state)) {
2754 		printk(KERN_ERR "STALLION: command already busy, cmd=%x!\n",
2755 				(int) cmd);
2756 		restore_flags(flags);
2757 		return;
2758 	}
2759 
2760 	EBRDENABLE(brdp);
2761 	cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
2762 	if (size > 0) {
2763 		memcpy((void *) &(cp->args[0]), arg, size);
2764 		if (copyback) {
2765 			portp->argp = arg;
2766 			portp->argsize = size;
2767 		}
2768 	}
2769 	cp->status = 0;
2770 	cp->cmd = cmd;
2771 	hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2772 	bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
2773 		portp->portidx;
2774 	*bits |= portp->portbit;
2775 	set_bit(ST_CMDING, &portp->state);
2776 	EBRDDISABLE(brdp);
2777 	restore_flags(flags);
2778 }
2779 
2780 /*****************************************************************************/
2781 
2782 /*
2783  *	Read data from shared memory. This assumes that the shared memory
2784  *	is enabled and that interrupts are off. Basically we just empty out
2785  *	the shared memory buffer into the tty buffer. Must be careful to
2786  *	handle the case where we fill up the tty buffer, but still have
2787  *	more chars to unload.
2788  */
2789 
stli_read(stlibrd_t * brdp,stliport_t * portp)2790 static inline void stli_read(stlibrd_t *brdp, stliport_t *portp)
2791 {
2792 	volatile cdkasyrq_t	*rp;
2793 	volatile char		*shbuf;
2794 	struct tty_struct	*tty;
2795 	unsigned int		head, tail, size;
2796 	unsigned int		len, stlen;
2797 
2798 #if DEBUG
2799 	printk(KERN_DEBUG "stli_read(brdp=%x,portp=%d)\n",
2800 			(int) brdp, (int) portp);
2801 #endif
2802 
2803 	if (test_bit(ST_RXSTOP, &portp->state))
2804 		return;
2805 	tty = portp->tty;
2806 	if (tty == (struct tty_struct *) NULL)
2807 		return;
2808 
2809 	rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2810 	head = (unsigned int) rp->head;
2811 	if (head != ((unsigned int) rp->head))
2812 		head = (unsigned int) rp->head;
2813 	tail = (unsigned int) rp->tail;
2814 	size = portp->rxsize;
2815 	if (head >= tail) {
2816 		len = head - tail;
2817 		stlen = len;
2818 	} else {
2819 		len = size - (tail - head);
2820 		stlen = size - tail;
2821 	}
2822 
2823 	len = MIN(len, (TTY_FLIPBUF_SIZE - tty->flip.count));
2824 	shbuf = (volatile char *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2825 
2826 	while (len > 0) {
2827 		stlen = MIN(len, stlen);
2828 		memcpy(tty->flip.char_buf_ptr, (char *) (shbuf + tail), stlen);
2829 		memset(tty->flip.flag_buf_ptr, 0, stlen);
2830 		tty->flip.char_buf_ptr += stlen;
2831 		tty->flip.flag_buf_ptr += stlen;
2832 		tty->flip.count += stlen;
2833 
2834 		len -= stlen;
2835 		tail += stlen;
2836 		if (tail >= size) {
2837 			tail = 0;
2838 			stlen = head;
2839 		}
2840 	}
2841 	rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2842 	rp->tail = tail;
2843 
2844 	if (head != tail)
2845 		set_bit(ST_RXING, &portp->state);
2846 
2847 	tty_schedule_flip(tty);
2848 }
2849 
2850 /*****************************************************************************/
2851 
2852 /*
2853  *	Set up and carry out any delayed commands. There is only a small set
2854  *	of slave commands that can be done "off-level". So it is not too
2855  *	difficult to deal with them here.
2856  */
2857 
stli_dodelaycmd(stliport_t * portp,volatile cdkctrl_t * cp)2858 static inline void stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp)
2859 {
2860 	int	cmd;
2861 
2862 	if (test_bit(ST_DOSIGS, &portp->state)) {
2863 		if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2864 		    test_bit(ST_DOFLUSHRX, &portp->state))
2865 			cmd = A_SETSIGNALSF;
2866 		else if (test_bit(ST_DOFLUSHTX, &portp->state))
2867 			cmd = A_SETSIGNALSFTX;
2868 		else if (test_bit(ST_DOFLUSHRX, &portp->state))
2869 			cmd = A_SETSIGNALSFRX;
2870 		else
2871 			cmd = A_SETSIGNALS;
2872 		clear_bit(ST_DOFLUSHTX, &portp->state);
2873 		clear_bit(ST_DOFLUSHRX, &portp->state);
2874 		clear_bit(ST_DOSIGS, &portp->state);
2875 		memcpy((void *) &(cp->args[0]), (void *) &portp->asig,
2876 			sizeof(asysigs_t));
2877 		cp->status = 0;
2878 		cp->cmd = cmd;
2879 		set_bit(ST_CMDING, &portp->state);
2880 	} else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2881 	    test_bit(ST_DOFLUSHRX, &portp->state)) {
2882 		cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2883 		cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2884 		clear_bit(ST_DOFLUSHTX, &portp->state);
2885 		clear_bit(ST_DOFLUSHRX, &portp->state);
2886 		memcpy((void *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2887 		cp->status = 0;
2888 		cp->cmd = A_FLUSH;
2889 		set_bit(ST_CMDING, &portp->state);
2890 	}
2891 }
2892 
2893 /*****************************************************************************/
2894 
2895 /*
2896  *	Host command service checking. This handles commands or messages
2897  *	coming from the slave to the host. Must have board shared memory
2898  *	enabled and interrupts off when called. Notice that by servicing the
2899  *	read data last we don't need to change the shared memory pointer
2900  *	during processing (which is a slow IO operation).
2901  *	Return value indicates if this port is still awaiting actions from
2902  *	the slave (like open, command, or even TX data being sent). If 0
2903  *	then port is still busy, otherwise no longer busy.
2904  */
2905 
stli_hostcmd(stlibrd_t * brdp,stliport_t * portp)2906 static inline int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp)
2907 {
2908 	volatile cdkasy_t	*ap;
2909 	volatile cdkctrl_t	*cp;
2910 	struct tty_struct	*tty;
2911 	asynotify_t		nt;
2912 	unsigned long		oldsigs;
2913 	int			rc, donerx;
2914 	struct tty_ldisc	*ld;
2915 
2916 #if DEBUG
2917 	printk(KERN_DEBUG "stli_hostcmd(brdp=%x,channr=%d)\n",
2918 			(int) brdp, channr);
2919 #endif
2920 
2921 	ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
2922 	cp = &ap->ctrl;
2923 
2924 /*
2925  *	Check if we are waiting for an open completion message.
2926  */
2927 	if (test_bit(ST_OPENING, &portp->state)) {
2928 		rc = (int) cp->openarg;
2929 		if ((cp->open == 0) && (rc != 0)) {
2930 			if (rc > 0)
2931 				rc--;
2932 			cp->openarg = 0;
2933 			portp->rc = rc;
2934 			clear_bit(ST_OPENING, &portp->state);
2935 			wake_up_interruptible(&portp->raw_wait);
2936 		}
2937 	}
2938 
2939 /*
2940  *	Check if we are waiting for a close completion message.
2941  */
2942 	if (test_bit(ST_CLOSING, &portp->state)) {
2943 		rc = (int) cp->closearg;
2944 		if ((cp->close == 0) && (rc != 0)) {
2945 			if (rc > 0)
2946 				rc--;
2947 			cp->closearg = 0;
2948 			portp->rc = rc;
2949 			clear_bit(ST_CLOSING, &portp->state);
2950 			wake_up_interruptible(&portp->raw_wait);
2951 		}
2952 	}
2953 
2954 /*
2955  *	Check if we are waiting for a command completion message. We may
2956  *	need to copy out the command results associated with this command.
2957  */
2958 	if (test_bit(ST_CMDING, &portp->state)) {
2959 		rc = cp->status;
2960 		if ((cp->cmd == 0) && (rc != 0)) {
2961 			if (rc > 0)
2962 				rc--;
2963 			if (portp->argp != (void *) NULL) {
2964 				memcpy(portp->argp, (void *) &(cp->args[0]),
2965 					portp->argsize);
2966 				portp->argp = (void *) NULL;
2967 			}
2968 			cp->status = 0;
2969 			portp->rc = rc;
2970 			clear_bit(ST_CMDING, &portp->state);
2971 			stli_dodelaycmd(portp, cp);
2972 			wake_up_interruptible(&portp->raw_wait);
2973 		}
2974 	}
2975 
2976 /*
2977  *	Check for any notification messages ready. This includes lots of
2978  *	different types of events - RX chars ready, RX break received,
2979  *	TX data low or empty in the slave, modem signals changed state.
2980  */
2981 	donerx = 0;
2982 
2983 	if (ap->notify) {
2984 		nt = ap->changed;
2985 		ap->notify = 0;
2986 		tty = portp->tty;
2987 
2988 		if (nt.signal & SG_DCD) {
2989 			oldsigs = portp->sigs;
2990 			portp->sigs = stli_mktiocm(nt.sigvalue);
2991 			clear_bit(ST_GETSIGS, &portp->state);
2992 			if ((portp->sigs & TIOCM_CD) &&
2993 			    ((oldsigs & TIOCM_CD) == 0))
2994 				wake_up_interruptible(&portp->open_wait);
2995 			if ((oldsigs & TIOCM_CD) &&
2996 			    ((portp->sigs & TIOCM_CD) == 0)) {
2997 				if (portp->flags & ASYNC_CHECK_CD) {
2998 					if (! ((portp->flags & ASYNC_CALLOUT_ACTIVE) &&
2999 					    (portp->flags & ASYNC_CALLOUT_NOHUP))) {
3000 						if (tty != (struct tty_struct *) NULL) {
3001 							MOD_INC_USE_COUNT;
3002 							if (schedule_task(&portp->tqhangup) == 0)
3003 								MOD_DEC_USE_COUNT;
3004 						}
3005 					}
3006 				}
3007 			}
3008 		}
3009 
3010 		if (nt.data & DT_TXEMPTY)
3011 			clear_bit(ST_TXBUSY, &portp->state);
3012 		if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
3013 			if (tty != (struct tty_struct *) NULL) {
3014 				if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP))) {
3015 					ld = tty_ldisc_ref(tty);
3016 					if(ld) {
3017 						if(ld->write_wakeup) {
3018 							ld->write_wakeup(tty);
3019 							EBRDENABLE(brdp);
3020 						}
3021 						tty_ldisc_deref(ld);
3022 					}
3023 				}
3024 				wake_up_interruptible(&tty->write_wait);
3025 			}
3026 		}
3027 
3028 		if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
3029 			if (tty != (struct tty_struct *) NULL) {
3030 				if (tty->flip.count < TTY_FLIPBUF_SIZE) {
3031 					tty->flip.count++;
3032 					*tty->flip.flag_buf_ptr++ = TTY_BREAK;
3033 					*tty->flip.char_buf_ptr++ = 0;
3034 					if (portp->flags & ASYNC_SAK) {
3035 						do_SAK(tty);
3036 						EBRDENABLE(brdp);
3037 					}
3038 					tty_schedule_flip(tty);
3039 				}
3040 			}
3041 		}
3042 
3043 		if (nt.data & DT_RXBUSY) {
3044 			donerx++;
3045 			stli_read(brdp, portp);
3046 		}
3047 	}
3048 
3049 /*
3050  *	It might seem odd that we are checking for more RX chars here.
3051  *	But, we need to handle the case where the tty buffer was previously
3052  *	filled, but we had more characters to pass up. The slave will not
3053  *	send any more RX notify messages until the RX buffer has been emptied.
3054  *	But it will leave the service bits on (since the buffer is not empty).
3055  *	So from here we can try to process more RX chars.
3056  */
3057 	if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
3058 		clear_bit(ST_RXING, &portp->state);
3059 		stli_read(brdp, portp);
3060 	}
3061 
3062 	return((test_bit(ST_OPENING, &portp->state) ||
3063 		test_bit(ST_CLOSING, &portp->state) ||
3064 		test_bit(ST_CMDING, &portp->state) ||
3065 		test_bit(ST_TXBUSY, &portp->state) ||
3066 		test_bit(ST_RXING, &portp->state)) ? 0 : 1);
3067 }
3068 
3069 /*****************************************************************************/
3070 
3071 /*
3072  *	Service all ports on a particular board. Assumes that the boards
3073  *	shared memory is enabled, and that the page pointer is pointed
3074  *	at the cdk header structure.
3075  */
3076 
stli_brdpoll(stlibrd_t * brdp,volatile cdkhdr_t * hdrp)3077 static inline void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp)
3078 {
3079 	stliport_t	*portp;
3080 	unsigned char	hostbits[(STL_MAXCHANS / 8) + 1];
3081 	unsigned char	slavebits[(STL_MAXCHANS / 8) + 1];
3082 	unsigned char	*slavep;
3083 	int		bitpos, bitat, bitsize;
3084 	int 		channr, nrdevs, slavebitchange;
3085 
3086 	bitsize = brdp->bitsize;
3087 	nrdevs = brdp->nrdevs;
3088 
3089 /*
3090  *	Check if slave wants any service. Basically we try to do as
3091  *	little work as possible here. There are 2 levels of service
3092  *	bits. So if there is nothing to do we bail early. We check
3093  *	8 service bits at a time in the inner loop, so we can bypass
3094  *	the lot if none of them want service.
3095  */
3096 	memcpy(&hostbits[0], (((unsigned char *) hdrp) + brdp->hostoffset),
3097 		bitsize);
3098 
3099 	memset(&slavebits[0], 0, bitsize);
3100 	slavebitchange = 0;
3101 
3102 	for (bitpos = 0; (bitpos < bitsize); bitpos++) {
3103 		if (hostbits[bitpos] == 0)
3104 			continue;
3105 		channr = bitpos * 8;
3106 		for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
3107 			if (hostbits[bitpos] & bitat) {
3108 				portp = brdp->ports[(channr - 1)];
3109 				if (stli_hostcmd(brdp, portp)) {
3110 					slavebitchange++;
3111 					slavebits[bitpos] |= bitat;
3112 				}
3113 			}
3114 		}
3115 	}
3116 
3117 /*
3118  *	If any of the ports are no longer busy then update them in the
3119  *	slave request bits. We need to do this after, since a host port
3120  *	service may initiate more slave requests.
3121  */
3122 	if (slavebitchange) {
3123 		hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3124 		slavep = ((unsigned char *) hdrp) + brdp->slaveoffset;
3125 		for (bitpos = 0; (bitpos < bitsize); bitpos++) {
3126 			if (slavebits[bitpos])
3127 				slavep[bitpos] &= ~slavebits[bitpos];
3128 		}
3129 	}
3130 }
3131 
3132 /*****************************************************************************/
3133 
3134 /*
3135  *	Driver poll routine. This routine polls the boards in use and passes
3136  *	messages back up to host when necessary. This is actually very
3137  *	CPU efficient, since we will always have the kernel poll clock, it
3138  *	adds only a few cycles when idle (since board service can be
3139  *	determined very easily), but when loaded generates no interrupts
3140  *	(with their expensive associated context change).
3141  */
3142 
stli_poll(unsigned long arg)3143 static void stli_poll(unsigned long arg)
3144 {
3145 	volatile cdkhdr_t	*hdrp;
3146 	stlibrd_t		*brdp;
3147 	int 			brdnr;
3148 
3149 	stli_timerlist.expires = STLI_TIMEOUT;
3150 	add_timer(&stli_timerlist);
3151 
3152 /*
3153  *	Check each board and do any servicing required.
3154  */
3155 	for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
3156 		brdp = stli_brds[brdnr];
3157 		if (brdp == (stlibrd_t *) NULL)
3158 			continue;
3159 		if ((brdp->state & BST_STARTED) == 0)
3160 			continue;
3161 
3162 		EBRDENABLE(brdp);
3163 		hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3164 		if (hdrp->hostreq)
3165 			stli_brdpoll(brdp, hdrp);
3166 		EBRDDISABLE(brdp);
3167 	}
3168 }
3169 
3170 /*****************************************************************************/
3171 
3172 /*
3173  *	Translate the termios settings into the port setting structure of
3174  *	the slave.
3175  */
3176 
stli_mkasyport(stliport_t * portp,asyport_t * pp,struct termios * tiosp)3177 static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp)
3178 {
3179 #if DEBUG
3180 	printk(KERN_DEBUG "stli_mkasyport(portp=%x,pp=%x,tiosp=%d)\n",
3181 		(int) portp, (int) pp, (int) tiosp);
3182 #endif
3183 
3184 	memset(pp, 0, sizeof(asyport_t));
3185 
3186 /*
3187  *	Start of by setting the baud, char size, parity and stop bit info.
3188  */
3189 	pp->baudout = tiosp->c_cflag & CBAUD;
3190 	if (pp->baudout & CBAUDEX) {
3191 		pp->baudout &= ~CBAUDEX;
3192 		if ((pp->baudout < 1) || (pp->baudout > 4))
3193 			tiosp->c_cflag &= ~CBAUDEX;
3194 		else
3195 			pp->baudout += 15;
3196 	}
3197 	pp->baudout = stli_baudrates[pp->baudout];
3198 	if ((tiosp->c_cflag & CBAUD) == B38400) {
3199 		if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3200 			pp->baudout = 57600;
3201 		else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3202 			pp->baudout = 115200;
3203 		else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3204 			pp->baudout = 230400;
3205 		else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3206 			pp->baudout = 460800;
3207 		else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3208 			pp->baudout = (portp->baud_base / portp->custom_divisor);
3209 	}
3210 	if (pp->baudout > STL_MAXBAUD)
3211 		pp->baudout = STL_MAXBAUD;
3212 	pp->baudin = pp->baudout;
3213 
3214 	switch (tiosp->c_cflag & CSIZE) {
3215 	case CS5:
3216 		pp->csize = 5;
3217 		break;
3218 	case CS6:
3219 		pp->csize = 6;
3220 		break;
3221 	case CS7:
3222 		pp->csize = 7;
3223 		break;
3224 	default:
3225 		pp->csize = 8;
3226 		break;
3227 	}
3228 
3229 	if (tiosp->c_cflag & CSTOPB)
3230 		pp->stopbs = PT_STOP2;
3231 	else
3232 		pp->stopbs = PT_STOP1;
3233 
3234 	if (tiosp->c_cflag & PARENB) {
3235 		if (tiosp->c_cflag & PARODD)
3236 			pp->parity = PT_ODDPARITY;
3237 		else
3238 			pp->parity = PT_EVENPARITY;
3239 	} else {
3240 		pp->parity = PT_NOPARITY;
3241 	}
3242 
3243 /*
3244  *	Set up any flow control options enabled.
3245  */
3246 	if (tiosp->c_iflag & IXON) {
3247 		pp->flow |= F_IXON;
3248 		if (tiosp->c_iflag & IXANY)
3249 			pp->flow |= F_IXANY;
3250 	}
3251 	if (tiosp->c_cflag & CRTSCTS)
3252 		pp->flow |= (F_RTSFLOW | F_CTSFLOW);
3253 
3254 	pp->startin = tiosp->c_cc[VSTART];
3255 	pp->stopin = tiosp->c_cc[VSTOP];
3256 	pp->startout = tiosp->c_cc[VSTART];
3257 	pp->stopout = tiosp->c_cc[VSTOP];
3258 
3259 /*
3260  *	Set up the RX char marking mask with those RX error types we must
3261  *	catch. We can get the slave to help us out a little here, it will
3262  *	ignore parity errors and breaks for us, and mark parity errors in
3263  *	the data stream.
3264  */
3265 	if (tiosp->c_iflag & IGNPAR)
3266 		pp->iflag |= FI_IGNRXERRS;
3267 	if (tiosp->c_iflag & IGNBRK)
3268 		pp->iflag |= FI_IGNBREAK;
3269 
3270 	portp->rxmarkmsk = 0;
3271 	if (tiosp->c_iflag & (INPCK | PARMRK))
3272 		pp->iflag |= FI_1MARKRXERRS;
3273 	if (tiosp->c_iflag & BRKINT)
3274 		portp->rxmarkmsk |= BRKINT;
3275 
3276 /*
3277  *	Set up clocal processing as required.
3278  */
3279 	if (tiosp->c_cflag & CLOCAL)
3280 		portp->flags &= ~ASYNC_CHECK_CD;
3281 	else
3282 		portp->flags |= ASYNC_CHECK_CD;
3283 
3284 /*
3285  *	Transfer any persistent flags into the asyport structure.
3286  */
3287 	pp->pflag = (portp->pflag & 0xffff);
3288 	pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
3289 	pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
3290 	pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
3291 }
3292 
3293 /*****************************************************************************/
3294 
3295 /*
3296  *	Construct a slave signals structure for setting the DTR and RTS
3297  *	signals as specified.
3298  */
3299 
stli_mkasysigs(asysigs_t * sp,int dtr,int rts)3300 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
3301 {
3302 #if DEBUG
3303 	printk(KERN_DEBUG "stli_mkasysigs(sp=%x,dtr=%d,rts=%d)\n",
3304 			(int) sp, dtr, rts);
3305 #endif
3306 
3307 	memset(sp, 0, sizeof(asysigs_t));
3308 	if (dtr >= 0) {
3309 		sp->signal |= SG_DTR;
3310 		sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
3311 	}
3312 	if (rts >= 0) {
3313 		sp->signal |= SG_RTS;
3314 		sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
3315 	}
3316 }
3317 
3318 /*****************************************************************************/
3319 
3320 /*
3321  *	Convert the signals returned from the slave into a local TIOCM type
3322  *	signals value. We keep them locally in TIOCM format.
3323  */
3324 
stli_mktiocm(unsigned long sigvalue)3325 static long stli_mktiocm(unsigned long sigvalue)
3326 {
3327 	long	tiocm;
3328 
3329 #if DEBUG
3330 	printk(KERN_DEBUG "stli_mktiocm(sigvalue=%x)\n", (int) sigvalue);
3331 #endif
3332 
3333 	tiocm = 0;
3334 	tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
3335 	tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
3336 	tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
3337 	tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
3338 	tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
3339 	tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
3340 	return(tiocm);
3341 }
3342 
3343 /*****************************************************************************/
3344 
3345 /*
3346  *	All panels and ports actually attached have been worked out. All
3347  *	we need to do here is set up the appropriate per port data structures.
3348  */
3349 
stli_initports(stlibrd_t * brdp)3350 static inline int stli_initports(stlibrd_t *brdp)
3351 {
3352 	stliport_t	*portp;
3353 	int		i, panelnr, panelport;
3354 
3355 #if DEBUG
3356 	printk(KERN_DEBUG "stli_initports(brdp=%x)\n", (int) brdp);
3357 #endif
3358 
3359 	for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
3360 		portp = (stliport_t *) stli_memalloc(sizeof(stliport_t));
3361 		if (portp == (stliport_t *) NULL) {
3362 			printk("STALLION: failed to allocate port structure\n");
3363 			continue;
3364 		}
3365 
3366 		memset(portp, 0, sizeof(stliport_t));
3367 		portp->magic = STLI_PORTMAGIC;
3368 		portp->portnr = i;
3369 		portp->brdnr = brdp->brdnr;
3370 		portp->panelnr = panelnr;
3371 		portp->baud_base = STL_BAUDBASE;
3372 		portp->close_delay = STL_CLOSEDELAY;
3373 		portp->closing_wait = 30 * HZ;
3374 		portp->tqhangup.routine = stli_dohangup;
3375 		portp->tqhangup.data = portp;
3376 		init_waitqueue_head(&portp->open_wait);
3377 		init_waitqueue_head(&portp->close_wait);
3378 		init_waitqueue_head(&portp->raw_wait);
3379 		portp->normaltermios = stli_deftermios;
3380 		portp->callouttermios = stli_deftermios;
3381 		panelport++;
3382 		if (panelport >= brdp->panels[panelnr]) {
3383 			panelport = 0;
3384 			panelnr++;
3385 		}
3386 		brdp->ports[i] = portp;
3387 	}
3388 
3389 	return(0);
3390 }
3391 
3392 /*****************************************************************************/
3393 
3394 /*
3395  *	All the following routines are board specific hardware operations.
3396  */
3397 
stli_ecpinit(stlibrd_t * brdp)3398 static void stli_ecpinit(stlibrd_t *brdp)
3399 {
3400 	unsigned long	memconf;
3401 
3402 #if DEBUG
3403 	printk(KERN_DEBUG "stli_ecpinit(brdp=%d)\n", (int) brdp);
3404 #endif
3405 
3406 	outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
3407 	udelay(10);
3408 	outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3409 	udelay(100);
3410 
3411 	memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
3412 	outb(memconf, (brdp->iobase + ECP_ATMEMAR));
3413 }
3414 
3415 /*****************************************************************************/
3416 
stli_ecpenable(stlibrd_t * brdp)3417 static void stli_ecpenable(stlibrd_t *brdp)
3418 {
3419 #if DEBUG
3420 	printk(KERN_DEBUG "stli_ecpenable(brdp=%x)\n", (int) brdp);
3421 #endif
3422 	outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
3423 }
3424 
3425 /*****************************************************************************/
3426 
stli_ecpdisable(stlibrd_t * brdp)3427 static void stli_ecpdisable(stlibrd_t *brdp)
3428 {
3429 #if DEBUG
3430 	printk(KERN_DEBUG "stli_ecpdisable(brdp=%x)\n", (int) brdp);
3431 #endif
3432 	outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3433 }
3434 
3435 /*****************************************************************************/
3436 
stli_ecpgetmemptr(stlibrd_t * brdp,unsigned long offset,int line)3437 static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3438 {
3439 	void		*ptr;
3440 	unsigned char	val;
3441 
3442 #if DEBUG
3443 	printk(KERN_DEBUG "stli_ecpgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3444 		(int) offset);
3445 #endif
3446 
3447 	if (offset > brdp->memsize) {
3448 		printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3449 				"range at line=%d(%d), brd=%d\n",
3450 			(int) offset, line, __LINE__, brdp->brdnr);
3451 		ptr = 0;
3452 		val = 0;
3453 	} else {
3454 		ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
3455 		val = (unsigned char) (offset / ECP_ATPAGESIZE);
3456 	}
3457 	outb(val, (brdp->iobase + ECP_ATMEMPR));
3458 	return(ptr);
3459 }
3460 
3461 /*****************************************************************************/
3462 
stli_ecpreset(stlibrd_t * brdp)3463 static void stli_ecpreset(stlibrd_t *brdp)
3464 {
3465 #if DEBUG
3466 	printk(KERN_DEBUG "stli_ecpreset(brdp=%x)\n", (int) brdp);
3467 #endif
3468 
3469 	outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
3470 	udelay(10);
3471 	outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3472 	udelay(500);
3473 }
3474 
3475 /*****************************************************************************/
3476 
stli_ecpintr(stlibrd_t * brdp)3477 static void stli_ecpintr(stlibrd_t *brdp)
3478 {
3479 #if DEBUG
3480 	printk(KERN_DEBUG "stli_ecpintr(brdp=%x)\n", (int) brdp);
3481 #endif
3482 	outb(0x1, brdp->iobase);
3483 }
3484 
3485 /*****************************************************************************/
3486 
3487 /*
3488  *	The following set of functions act on ECP EISA boards.
3489  */
3490 
stli_ecpeiinit(stlibrd_t * brdp)3491 static void stli_ecpeiinit(stlibrd_t *brdp)
3492 {
3493 	unsigned long	memconf;
3494 
3495 #if DEBUG
3496 	printk(KERN_DEBUG "stli_ecpeiinit(brdp=%x)\n", (int) brdp);
3497 #endif
3498 
3499 	outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3500 	outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3501 	udelay(10);
3502 	outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3503 	udelay(500);
3504 
3505 	memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
3506 	outb(memconf, (brdp->iobase + ECP_EIMEMARL));
3507 	memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
3508 	outb(memconf, (brdp->iobase + ECP_EIMEMARH));
3509 }
3510 
3511 /*****************************************************************************/
3512 
stli_ecpeienable(stlibrd_t * brdp)3513 static void stli_ecpeienable(stlibrd_t *brdp)
3514 {
3515 	outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
3516 }
3517 
3518 /*****************************************************************************/
3519 
stli_ecpeidisable(stlibrd_t * brdp)3520 static void stli_ecpeidisable(stlibrd_t *brdp)
3521 {
3522 	outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3523 }
3524 
3525 /*****************************************************************************/
3526 
stli_ecpeigetmemptr(stlibrd_t * brdp,unsigned long offset,int line)3527 static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3528 {
3529 	void		*ptr;
3530 	unsigned char	val;
3531 
3532 #if DEBUG
3533 	printk(KERN_DEBUG "stli_ecpeigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3534 		(int) brdp, (int) offset, line);
3535 #endif
3536 
3537 	if (offset > brdp->memsize) {
3538 		printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3539 				"range at line=%d(%d), brd=%d\n",
3540 			(int) offset, line, __LINE__, brdp->brdnr);
3541 		ptr = 0;
3542 		val = 0;
3543 	} else {
3544 		ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
3545 		if (offset < ECP_EIPAGESIZE)
3546 			val = ECP_EIENABLE;
3547 		else
3548 			val = ECP_EIENABLE | 0x40;
3549 	}
3550 	outb(val, (brdp->iobase + ECP_EICONFR));
3551 	return(ptr);
3552 }
3553 
3554 /*****************************************************************************/
3555 
stli_ecpeireset(stlibrd_t * brdp)3556 static void stli_ecpeireset(stlibrd_t *brdp)
3557 {
3558 	outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3559 	udelay(10);
3560 	outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3561 	udelay(500);
3562 }
3563 
3564 /*****************************************************************************/
3565 
3566 /*
3567  *	The following set of functions act on ECP MCA boards.
3568  */
3569 
stli_ecpmcenable(stlibrd_t * brdp)3570 static void stli_ecpmcenable(stlibrd_t *brdp)
3571 {
3572 	outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
3573 }
3574 
3575 /*****************************************************************************/
3576 
stli_ecpmcdisable(stlibrd_t * brdp)3577 static void stli_ecpmcdisable(stlibrd_t *brdp)
3578 {
3579 	outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3580 }
3581 
3582 /*****************************************************************************/
3583 
stli_ecpmcgetmemptr(stlibrd_t * brdp,unsigned long offset,int line)3584 static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3585 {
3586 	void		*ptr;
3587 	unsigned char	val;
3588 
3589 	if (offset > brdp->memsize) {
3590 		printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3591 				"range at line=%d(%d), brd=%d\n",
3592 			(int) offset, line, __LINE__, brdp->brdnr);
3593 		ptr = 0;
3594 		val = 0;
3595 	} else {
3596 		ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
3597 		val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
3598 	}
3599 	outb(val, (brdp->iobase + ECP_MCCONFR));
3600 	return(ptr);
3601 }
3602 
3603 /*****************************************************************************/
3604 
stli_ecpmcreset(stlibrd_t * brdp)3605 static void stli_ecpmcreset(stlibrd_t *brdp)
3606 {
3607 	outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
3608 	udelay(10);
3609 	outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3610 	udelay(500);
3611 }
3612 
3613 /*****************************************************************************/
3614 
3615 /*
3616  *	The following set of functions act on ECP PCI boards.
3617  */
3618 
stli_ecppciinit(stlibrd_t * brdp)3619 static void stli_ecppciinit(stlibrd_t *brdp)
3620 {
3621 #if DEBUG
3622 	printk(KERN_DEBUG "stli_ecppciinit(brdp=%x)\n", (int) brdp);
3623 #endif
3624 
3625 	outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3626 	udelay(10);
3627 	outb(0, (brdp->iobase + ECP_PCICONFR));
3628 	udelay(500);
3629 }
3630 
3631 /*****************************************************************************/
3632 
stli_ecppcigetmemptr(stlibrd_t * brdp,unsigned long offset,int line)3633 static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3634 {
3635 	void		*ptr;
3636 	unsigned char	val;
3637 
3638 #if DEBUG
3639 	printk(KERN_DEBUG "stli_ecppcigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3640 		(int) brdp, (int) offset, line);
3641 #endif
3642 
3643 	if (offset > brdp->memsize) {
3644 		printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3645 				"range at line=%d(%d), board=%d\n",
3646 				(int) offset, line, __LINE__, brdp->brdnr);
3647 		ptr = 0;
3648 		val = 0;
3649 	} else {
3650 		ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
3651 		val = (offset / ECP_PCIPAGESIZE) << 1;
3652 	}
3653 	outb(val, (brdp->iobase + ECP_PCICONFR));
3654 	return(ptr);
3655 }
3656 
3657 /*****************************************************************************/
3658 
stli_ecppcireset(stlibrd_t * brdp)3659 static void stli_ecppcireset(stlibrd_t *brdp)
3660 {
3661 	outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3662 	udelay(10);
3663 	outb(0, (brdp->iobase + ECP_PCICONFR));
3664 	udelay(500);
3665 }
3666 
3667 /*****************************************************************************/
3668 
3669 /*
3670  *	The following routines act on ONboards.
3671  */
3672 
stli_onbinit(stlibrd_t * brdp)3673 static void stli_onbinit(stlibrd_t *brdp)
3674 {
3675 	unsigned long	memconf;
3676 
3677 #if DEBUG
3678 	printk(KERN_DEBUG "stli_onbinit(brdp=%d)\n", (int) brdp);
3679 #endif
3680 
3681 	outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3682 	udelay(10);
3683 	outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3684 	mdelay(1000);
3685 
3686 	memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
3687 	outb(memconf, (brdp->iobase + ONB_ATMEMAR));
3688 	outb(0x1, brdp->iobase);
3689 	mdelay(1);
3690 }
3691 
3692 /*****************************************************************************/
3693 
stli_onbenable(stlibrd_t * brdp)3694 static void stli_onbenable(stlibrd_t *brdp)
3695 {
3696 #if DEBUG
3697 	printk(KERN_DEBUG "stli_onbenable(brdp=%x)\n", (int) brdp);
3698 #endif
3699 	outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
3700 }
3701 
3702 /*****************************************************************************/
3703 
stli_onbdisable(stlibrd_t * brdp)3704 static void stli_onbdisable(stlibrd_t *brdp)
3705 {
3706 #if DEBUG
3707 	printk(KERN_DEBUG "stli_onbdisable(brdp=%x)\n", (int) brdp);
3708 #endif
3709 	outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
3710 }
3711 
3712 /*****************************************************************************/
3713 
stli_onbgetmemptr(stlibrd_t * brdp,unsigned long offset,int line)3714 static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3715 {
3716 	void	*ptr;
3717 
3718 #if DEBUG
3719 	printk(KERN_DEBUG "stli_onbgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3720 		(int) offset);
3721 #endif
3722 
3723 	if (offset > brdp->memsize) {
3724 		printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3725 				"range at line=%d(%d), brd=%d\n",
3726 				(int) offset, line, __LINE__, brdp->brdnr);
3727 		ptr = 0;
3728 	} else {
3729 		ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
3730 	}
3731 	return(ptr);
3732 }
3733 
3734 /*****************************************************************************/
3735 
stli_onbreset(stlibrd_t * brdp)3736 static void stli_onbreset(stlibrd_t *brdp)
3737 {
3738 
3739 #if DEBUG
3740 	printk(KERN_DEBUG "stli_onbreset(brdp=%x)\n", (int) brdp);
3741 #endif
3742 
3743 	outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3744 	udelay(10);
3745 	outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3746 	mdelay(1000);
3747 }
3748 
3749 /*****************************************************************************/
3750 
3751 /*
3752  *	The following routines act on ONboard EISA.
3753  */
3754 
stli_onbeinit(stlibrd_t * brdp)3755 static void stli_onbeinit(stlibrd_t *brdp)
3756 {
3757 	unsigned long	memconf;
3758 
3759 #if DEBUG
3760 	printk(KERN_DEBUG "stli_onbeinit(brdp=%d)\n", (int) brdp);
3761 #endif
3762 
3763 	outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3764 	outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3765 	udelay(10);
3766 	outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3767 	mdelay(1000);
3768 
3769 	memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
3770 	outb(memconf, (brdp->iobase + ONB_EIMEMARL));
3771 	memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
3772 	outb(memconf, (brdp->iobase + ONB_EIMEMARH));
3773 	outb(0x1, brdp->iobase);
3774 	mdelay(1);
3775 }
3776 
3777 /*****************************************************************************/
3778 
stli_onbeenable(stlibrd_t * brdp)3779 static void stli_onbeenable(stlibrd_t *brdp)
3780 {
3781 #if DEBUG
3782 	printk(KERN_DEBUG "stli_onbeenable(brdp=%x)\n", (int) brdp);
3783 #endif
3784 	outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
3785 }
3786 
3787 /*****************************************************************************/
3788 
stli_onbedisable(stlibrd_t * brdp)3789 static void stli_onbedisable(stlibrd_t *brdp)
3790 {
3791 #if DEBUG
3792 	printk(KERN_DEBUG "stli_onbedisable(brdp=%x)\n", (int) brdp);
3793 #endif
3794 	outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3795 }
3796 
3797 /*****************************************************************************/
3798 
stli_onbegetmemptr(stlibrd_t * brdp,unsigned long offset,int line)3799 static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3800 {
3801 	void		*ptr;
3802 	unsigned char	val;
3803 
3804 #if DEBUG
3805 	printk(KERN_DEBUG "stli_onbegetmemptr(brdp=%x,offset=%x,line=%d)\n",
3806 		(int) brdp, (int) offset, line);
3807 #endif
3808 
3809 	if (offset > brdp->memsize) {
3810 		printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3811 				"range at line=%d(%d), brd=%d\n",
3812 			(int) offset, line, __LINE__, brdp->brdnr);
3813 		ptr = 0;
3814 		val = 0;
3815 	} else {
3816 		ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
3817 		if (offset < ONB_EIPAGESIZE)
3818 			val = ONB_EIENABLE;
3819 		else
3820 			val = ONB_EIENABLE | 0x40;
3821 	}
3822 	outb(val, (brdp->iobase + ONB_EICONFR));
3823 	return(ptr);
3824 }
3825 
3826 /*****************************************************************************/
3827 
stli_onbereset(stlibrd_t * brdp)3828 static void stli_onbereset(stlibrd_t *brdp)
3829 {
3830 
3831 #if DEBUG
3832 	printk(KERN_ERR "stli_onbereset(brdp=%x)\n", (int) brdp);
3833 #endif
3834 
3835 	outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3836 	udelay(10);
3837 	outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3838 	mdelay(1000);
3839 }
3840 
3841 /*****************************************************************************/
3842 
3843 /*
3844  *	The following routines act on Brumby boards.
3845  */
3846 
stli_bbyinit(stlibrd_t * brdp)3847 static void stli_bbyinit(stlibrd_t *brdp)
3848 {
3849 
3850 #if DEBUG
3851 	printk(KERN_ERR "stli_bbyinit(brdp=%d)\n", (int) brdp);
3852 #endif
3853 
3854 	outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3855 	udelay(10);
3856 	outb(0, (brdp->iobase + BBY_ATCONFR));
3857 	mdelay(1000);
3858 	outb(0x1, brdp->iobase);
3859 	mdelay(1);
3860 }
3861 
3862 /*****************************************************************************/
3863 
stli_bbygetmemptr(stlibrd_t * brdp,unsigned long offset,int line)3864 static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3865 {
3866 	void		*ptr;
3867 	unsigned char	val;
3868 
3869 #if DEBUG
3870 	printk(KERN_ERR "stli_bbygetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3871 		(int) offset);
3872 #endif
3873 
3874 	if (offset > brdp->memsize) {
3875 		printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3876 				"range at line=%d(%d), brd=%d\n",
3877 				(int) offset, line, __LINE__, brdp->brdnr);
3878 		ptr = 0;
3879 		val = 0;
3880 	} else {
3881 		ptr = brdp->membase + (offset % BBY_PAGESIZE);
3882 		val = (unsigned char) (offset / BBY_PAGESIZE);
3883 	}
3884 	outb(val, (brdp->iobase + BBY_ATCONFR));
3885 	return(ptr);
3886 }
3887 
3888 /*****************************************************************************/
3889 
stli_bbyreset(stlibrd_t * brdp)3890 static void stli_bbyreset(stlibrd_t *brdp)
3891 {
3892 
3893 #if DEBUG
3894 	printk(KERN_DEBUG "stli_bbyreset(brdp=%x)\n", (int) brdp);
3895 #endif
3896 
3897 	outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3898 	udelay(10);
3899 	outb(0, (brdp->iobase + BBY_ATCONFR));
3900 	mdelay(1000);
3901 }
3902 
3903 /*****************************************************************************/
3904 
3905 /*
3906  *	The following routines act on original old Stallion boards.
3907  */
3908 
stli_stalinit(stlibrd_t * brdp)3909 static void stli_stalinit(stlibrd_t *brdp)
3910 {
3911 
3912 #if DEBUG
3913 	printk(KERN_DEBUG "stli_stalinit(brdp=%d)\n", (int) brdp);
3914 #endif
3915 
3916 	outb(0x1, brdp->iobase);
3917 	mdelay(1000);
3918 }
3919 
3920 /*****************************************************************************/
3921 
stli_stalgetmemptr(stlibrd_t * brdp,unsigned long offset,int line)3922 static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3923 {
3924 	void	*ptr;
3925 
3926 #if DEBUG
3927 	printk(KERN_DEBUG "stli_stalgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3928 		(int) offset);
3929 #endif
3930 
3931 	if (offset > brdp->memsize) {
3932 		printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3933 				"range at line=%d(%d), brd=%d\n",
3934 				(int) offset, line, __LINE__, brdp->brdnr);
3935 		ptr = 0;
3936 	} else {
3937 		ptr = brdp->membase + (offset % STAL_PAGESIZE);
3938 	}
3939 	return(ptr);
3940 }
3941 
3942 /*****************************************************************************/
3943 
stli_stalreset(stlibrd_t * brdp)3944 static void stli_stalreset(stlibrd_t *brdp)
3945 {
3946 	volatile unsigned long	*vecp;
3947 
3948 #if DEBUG
3949 	printk(KERN_DEBUG "stli_stalreset(brdp=%x)\n", (int) brdp);
3950 #endif
3951 
3952 	vecp = (volatile unsigned long *) (brdp->membase + 0x30);
3953 	*vecp = 0xffff0000;
3954 	outb(0, brdp->iobase);
3955 	mdelay(1000);
3956 }
3957 
3958 /*****************************************************************************/
3959 
3960 /*
3961  *	Try to find an ECP board and initialize it. This handles only ECP
3962  *	board types.
3963  */
3964 
stli_initecp(stlibrd_t * brdp)3965 static inline int stli_initecp(stlibrd_t *brdp)
3966 {
3967 	cdkecpsig_t	sig;
3968 	cdkecpsig_t	*sigsp;
3969 	unsigned int	status, nxtid;
3970 	char		*name;
3971 	int		panelnr, nrports;
3972 
3973 #if DEBUG
3974 	printk(KERN_DEBUG "stli_initecp(brdp=%x)\n", (int) brdp);
3975 #endif
3976 
3977 /*
3978  *	Do a basic sanity check on the IO and memory addresses.
3979  */
3980 	if ((brdp->iobase == 0) || (brdp->memaddr == 0))
3981 		return(-ENODEV);
3982 
3983 	brdp->iosize = ECP_IOSIZE;
3984 	if (check_region(brdp->iobase, brdp->iosize))
3985 		printk(KERN_ERR "STALLION: Warning, board %d I/O address %x "
3986 				"conflicts with another device\n",
3987 				brdp->brdnr, brdp->iobase);
3988 
3989 /*
3990  *	Based on the specific board type setup the common vars to access
3991  *	and enable shared memory. Set all board specific information now
3992  *	as well.
3993  */
3994 	switch (brdp->brdtype) {
3995 	case BRD_ECP:
3996 		brdp->membase = (void *) brdp->memaddr;
3997 		brdp->memsize = ECP_MEMSIZE;
3998 		brdp->pagesize = ECP_ATPAGESIZE;
3999 		brdp->init = stli_ecpinit;
4000 		brdp->enable = stli_ecpenable;
4001 		brdp->reenable = stli_ecpenable;
4002 		brdp->disable = stli_ecpdisable;
4003 		brdp->getmemptr = stli_ecpgetmemptr;
4004 		brdp->intr = stli_ecpintr;
4005 		brdp->reset = stli_ecpreset;
4006 		name = "serial(EC8/64)";
4007 		break;
4008 
4009 	case BRD_ECPE:
4010 		brdp->membase = (void *) brdp->memaddr;
4011 		brdp->memsize = ECP_MEMSIZE;
4012 		brdp->pagesize = ECP_EIPAGESIZE;
4013 		brdp->init = stli_ecpeiinit;
4014 		brdp->enable = stli_ecpeienable;
4015 		brdp->reenable = stli_ecpeienable;
4016 		brdp->disable = stli_ecpeidisable;
4017 		brdp->getmemptr = stli_ecpeigetmemptr;
4018 		brdp->intr = stli_ecpintr;
4019 		brdp->reset = stli_ecpeireset;
4020 		name = "serial(EC8/64-EI)";
4021 		break;
4022 
4023 	case BRD_ECPMC:
4024 		brdp->membase = (void *) brdp->memaddr;
4025 		brdp->memsize = ECP_MEMSIZE;
4026 		brdp->pagesize = ECP_MCPAGESIZE;
4027 		brdp->init = NULL;
4028 		brdp->enable = stli_ecpmcenable;
4029 		brdp->reenable = stli_ecpmcenable;
4030 		brdp->disable = stli_ecpmcdisable;
4031 		brdp->getmemptr = stli_ecpmcgetmemptr;
4032 		brdp->intr = stli_ecpintr;
4033 		brdp->reset = stli_ecpmcreset;
4034 		name = "serial(EC8/64-MCA)";
4035 		break;
4036 
4037 	case BRD_ECPPCI:
4038 		brdp->membase = (void *) brdp->memaddr;
4039 		brdp->memsize = ECP_PCIMEMSIZE;
4040 		brdp->pagesize = ECP_PCIPAGESIZE;
4041 		brdp->init = stli_ecppciinit;
4042 		brdp->enable = NULL;
4043 		brdp->reenable = NULL;
4044 		brdp->disable = NULL;
4045 		brdp->getmemptr = stli_ecppcigetmemptr;
4046 		brdp->intr = stli_ecpintr;
4047 		brdp->reset = stli_ecppcireset;
4048 		name = "serial(EC/RA-PCI)";
4049 		break;
4050 
4051 	default:
4052 		return(-EINVAL);
4053 	}
4054 
4055 /*
4056  *	The per-board operations structure is all set up, so now let's go
4057  *	and get the board operational. Firstly initialize board configuration
4058  *	registers. Set the memory mapping info so we can get at the boards
4059  *	shared memory.
4060  */
4061 	EBRDINIT(brdp);
4062 
4063 	brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
4064 	if (brdp->membase == (void *) NULL)
4065 		return(-ENOMEM);
4066 
4067 /*
4068  *	Now that all specific code is set up, enable the shared memory and
4069  *	look for the a signature area that will tell us exactly what board
4070  *	this is, and what it is connected to it.
4071  */
4072 	EBRDENABLE(brdp);
4073 	sigsp = (cdkecpsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
4074 	memcpy(&sig, sigsp, sizeof(cdkecpsig_t));
4075 	EBRDDISABLE(brdp);
4076 
4077 #if 0
4078 	printk("%s(%d): sig-> magic=%x rom=%x panel=%x,%x,%x,%x,%x,%x,%x,%x\n",
4079 		__FILE__, __LINE__, (int) sig.magic, sig.romver, sig.panelid[0],
4080 		(int) sig.panelid[1], (int) sig.panelid[2],
4081 		(int) sig.panelid[3], (int) sig.panelid[4],
4082 		(int) sig.panelid[5], (int) sig.panelid[6],
4083 		(int) sig.panelid[7]);
4084 #endif
4085 
4086 	if (sig.magic != ECP_MAGIC)
4087 		return(-ENODEV);
4088 
4089 /*
4090  *	Scan through the signature looking at the panels connected to the
4091  *	board. Calculate the total number of ports as we go.
4092  */
4093 	for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
4094 		status = sig.panelid[nxtid];
4095 		if ((status & ECH_PNLIDMASK) != nxtid)
4096 			break;
4097 
4098 		brdp->panelids[panelnr] = status;
4099 		nrports = (status & ECH_PNL16PORT) ? 16 : 8;
4100 		if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
4101 			nxtid++;
4102 		brdp->panels[panelnr] = nrports;
4103 		brdp->nrports += nrports;
4104 		nxtid++;
4105 		brdp->nrpanels++;
4106 	}
4107 
4108 	request_region(brdp->iobase, brdp->iosize, name);
4109 	brdp->state |= BST_FOUND;
4110 	return(0);
4111 }
4112 
4113 /*****************************************************************************/
4114 
4115 /*
4116  *	Try to find an ONboard, Brumby or Stallion board and initialize it.
4117  *	This handles only these board types.
4118  */
4119 
stli_initonb(stlibrd_t * brdp)4120 static inline int stli_initonb(stlibrd_t *brdp)
4121 {
4122 	cdkonbsig_t	sig;
4123 	cdkonbsig_t	*sigsp;
4124 	char		*name;
4125 	int		i;
4126 
4127 #if DEBUG
4128 	printk(KERN_DEBUG "stli_initonb(brdp=%x)\n", (int) brdp);
4129 #endif
4130 
4131 /*
4132  *	Do a basic sanity check on the IO and memory addresses.
4133  */
4134 	if ((brdp->iobase == 0) || (brdp->memaddr == 0))
4135 		return(-ENODEV);
4136 
4137 	brdp->iosize = ONB_IOSIZE;
4138 	if (check_region(brdp->iobase, brdp->iosize))
4139 		printk(KERN_ERR "STALLION: Warning, board %d I/O address %x "
4140 				"conflicts with another device\n",
4141 				brdp->brdnr, brdp->iobase);
4142 
4143 /*
4144  *	Based on the specific board type setup the common vars to access
4145  *	and enable shared memory. Set all board specific information now
4146  *	as well.
4147  */
4148 	switch (brdp->brdtype) {
4149 	case BRD_ONBOARD:
4150 	case BRD_ONBOARD32:
4151 	case BRD_ONBOARD2:
4152 	case BRD_ONBOARD2_32:
4153 	case BRD_ONBOARDRS:
4154 		brdp->membase = (void *) brdp->memaddr;
4155 		brdp->memsize = ONB_MEMSIZE;
4156 		brdp->pagesize = ONB_ATPAGESIZE;
4157 		brdp->init = stli_onbinit;
4158 		brdp->enable = stli_onbenable;
4159 		brdp->reenable = stli_onbenable;
4160 		brdp->disable = stli_onbdisable;
4161 		brdp->getmemptr = stli_onbgetmemptr;
4162 		brdp->intr = stli_ecpintr;
4163 		brdp->reset = stli_onbreset;
4164 		if (brdp->memaddr > 0x100000)
4165 			brdp->enabval = ONB_MEMENABHI;
4166 		else
4167 			brdp->enabval = ONB_MEMENABLO;
4168 		name = "serial(ONBoard)";
4169 		break;
4170 
4171 	case BRD_ONBOARDE:
4172 		brdp->membase = (void *) brdp->memaddr;
4173 		brdp->memsize = ONB_EIMEMSIZE;
4174 		brdp->pagesize = ONB_EIPAGESIZE;
4175 		brdp->init = stli_onbeinit;
4176 		brdp->enable = stli_onbeenable;
4177 		brdp->reenable = stli_onbeenable;
4178 		brdp->disable = stli_onbedisable;
4179 		brdp->getmemptr = stli_onbegetmemptr;
4180 		brdp->intr = stli_ecpintr;
4181 		brdp->reset = stli_onbereset;
4182 		name = "serial(ONBoard/E)";
4183 		break;
4184 
4185 	case BRD_BRUMBY4:
4186 	case BRD_BRUMBY8:
4187 	case BRD_BRUMBY16:
4188 		brdp->membase = (void *) brdp->memaddr;
4189 		brdp->memsize = BBY_MEMSIZE;
4190 		brdp->pagesize = BBY_PAGESIZE;
4191 		brdp->init = stli_bbyinit;
4192 		brdp->enable = NULL;
4193 		brdp->reenable = NULL;
4194 		brdp->disable = NULL;
4195 		brdp->getmemptr = stli_bbygetmemptr;
4196 		brdp->intr = stli_ecpintr;
4197 		brdp->reset = stli_bbyreset;
4198 		name = "serial(Brumby)";
4199 		break;
4200 
4201 	case BRD_STALLION:
4202 		brdp->membase = (void *) brdp->memaddr;
4203 		brdp->memsize = STAL_MEMSIZE;
4204 		brdp->pagesize = STAL_PAGESIZE;
4205 		brdp->init = stli_stalinit;
4206 		brdp->enable = NULL;
4207 		brdp->reenable = NULL;
4208 		brdp->disable = NULL;
4209 		brdp->getmemptr = stli_stalgetmemptr;
4210 		brdp->intr = stli_ecpintr;
4211 		brdp->reset = stli_stalreset;
4212 		name = "serial(Stallion)";
4213 		break;
4214 
4215 	default:
4216 		return(-EINVAL);
4217 	}
4218 
4219 /*
4220  *	The per-board operations structure is all set up, so now let's go
4221  *	and get the board operational. Firstly initialize board configuration
4222  *	registers. Set the memory mapping info so we can get at the boards
4223  *	shared memory.
4224  */
4225 	EBRDINIT(brdp);
4226 
4227 	brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
4228 	if (brdp->membase == (void *) NULL)
4229 		return(-ENOMEM);
4230 
4231 /*
4232  *	Now that all specific code is set up, enable the shared memory and
4233  *	look for the a signature area that will tell us exactly what board
4234  *	this is, and how many ports.
4235  */
4236 	EBRDENABLE(brdp);
4237 	sigsp = (cdkonbsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
4238 	memcpy(&sig, sigsp, sizeof(cdkonbsig_t));
4239 	EBRDDISABLE(brdp);
4240 
4241 #if 0
4242 	printk("%s(%d): sig-> magic=%x:%x:%x:%x romver=%x amask=%x:%x:%x\n",
4243 		__FILE__, __LINE__, sig.magic0, sig.magic1, sig.magic2,
4244 		sig.magic3, sig.romver, sig.amask0, sig.amask1, sig.amask2);
4245 #endif
4246 
4247 	if ((sig.magic0 != ONB_MAGIC0) || (sig.magic1 != ONB_MAGIC1) ||
4248 	    (sig.magic2 != ONB_MAGIC2) || (sig.magic3 != ONB_MAGIC3))
4249 		return(-ENODEV);
4250 
4251 /*
4252  *	Scan through the signature alive mask and calculate how many ports
4253  *	there are on this board.
4254  */
4255 	brdp->nrpanels = 1;
4256 	if (sig.amask1) {
4257 		brdp->nrports = 32;
4258 	} else {
4259 		for (i = 0; (i < 16); i++) {
4260 			if (((sig.amask0 << i) & 0x8000) == 0)
4261 				break;
4262 		}
4263 		brdp->nrports = i;
4264 	}
4265 	brdp->panels[0] = brdp->nrports;
4266 
4267 	request_region(brdp->iobase, brdp->iosize, name);
4268 	brdp->state |= BST_FOUND;
4269 	return(0);
4270 }
4271 
4272 /*****************************************************************************/
4273 
4274 /*
4275  *	Start up a running board. This routine is only called after the
4276  *	code has been down loaded to the board and is operational. It will
4277  *	read in the memory map, and get the show on the road...
4278  */
4279 
stli_startbrd(stlibrd_t * brdp)4280 static int stli_startbrd(stlibrd_t *brdp)
4281 {
4282 	volatile cdkhdr_t	*hdrp;
4283 	volatile cdkmem_t	*memp;
4284 	volatile cdkasy_t	*ap;
4285 	unsigned long		flags;
4286 	stliport_t		*portp;
4287 	int			portnr, nrdevs, i, rc;
4288 
4289 #if DEBUG
4290 	printk(KERN_DEBUG "stli_startbrd(brdp=%x)\n", (int) brdp);
4291 #endif
4292 
4293 	rc = 0;
4294 
4295 	save_flags(flags);
4296 	cli();
4297 	EBRDENABLE(brdp);
4298 	hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
4299 	nrdevs = hdrp->nrdevs;
4300 
4301 #if 0
4302 	printk("%s(%d): CDK version %d.%d.%d --> "
4303 		"nrdevs=%d memp=%x hostp=%x slavep=%x\n",
4304 		 __FILE__, __LINE__, hdrp->ver_release, hdrp->ver_modification,
4305 		 hdrp->ver_fix, nrdevs, (int) hdrp->memp, (int) hdrp->hostp,
4306 		 (int) hdrp->slavep);
4307 #endif
4308 
4309 	if (nrdevs < (brdp->nrports + 1)) {
4310 		printk(KERN_ERR "STALLION: slave failed to allocate memory for "
4311 				"all devices, devices=%d\n", nrdevs);
4312 		brdp->nrports = nrdevs - 1;
4313 	}
4314 	brdp->nrdevs = nrdevs;
4315 	brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
4316 	brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
4317 	brdp->bitsize = (nrdevs + 7) / 8;
4318 	memp = (volatile cdkmem_t *) hdrp->memp;
4319 	if (((unsigned long) memp) > brdp->memsize) {
4320 		printk(KERN_ERR "STALLION: corrupted shared memory region?\n");
4321 		rc = -EIO;
4322 		goto stli_donestartup;
4323 	}
4324 	memp = (volatile cdkmem_t *) EBRDGETMEMPTR(brdp, (unsigned long) memp);
4325 	if (memp->dtype != TYP_ASYNCTRL) {
4326 		printk(KERN_ERR "STALLION: no slave control device found\n");
4327 		goto stli_donestartup;
4328 	}
4329 	memp++;
4330 
4331 /*
4332  *	Cycle through memory allocation of each port. We are guaranteed to
4333  *	have all ports inside the first page of slave window, so no need to
4334  *	change pages while reading memory map.
4335  */
4336 	for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
4337 		if (memp->dtype != TYP_ASYNC)
4338 			break;
4339 		portp = brdp->ports[portnr];
4340 		if (portp == (stliport_t *) NULL)
4341 			break;
4342 		portp->devnr = i;
4343 		portp->addr = memp->offset;
4344 		portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
4345 		portp->portidx = (unsigned char) (i / 8);
4346 		portp->portbit = (unsigned char) (0x1 << (i % 8));
4347 	}
4348 
4349 	hdrp->slavereq = 0xff;
4350 
4351 /*
4352  *	For each port setup a local copy of the RX and TX buffer offsets
4353  *	and sizes. We do this separate from the above, because we need to
4354  *	move the shared memory page...
4355  */
4356 	for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
4357 		portp = brdp->ports[portnr];
4358 		if (portp == (stliport_t *) NULL)
4359 			break;
4360 		if (portp->addr == 0)
4361 			break;
4362 		ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
4363 		if (ap != (volatile cdkasy_t *) NULL) {
4364 			portp->rxsize = ap->rxq.size;
4365 			portp->txsize = ap->txq.size;
4366 			portp->rxoffset = ap->rxq.offset;
4367 			portp->txoffset = ap->txq.offset;
4368 		}
4369 	}
4370 
4371 stli_donestartup:
4372 	EBRDDISABLE(brdp);
4373 	restore_flags(flags);
4374 
4375 	if (rc == 0)
4376 		brdp->state |= BST_STARTED;
4377 
4378 	if (! stli_timeron) {
4379 		stli_timeron++;
4380 		stli_timerlist.expires = STLI_TIMEOUT;
4381 		add_timer(&stli_timerlist);
4382 	}
4383 
4384 	return(rc);
4385 }
4386 
4387 /*****************************************************************************/
4388 
4389 /*
4390  *	Probe and initialize the specified board.
4391  */
4392 
stli_brdinit(stlibrd_t * brdp)4393 static int __init stli_brdinit(stlibrd_t *brdp)
4394 {
4395 #if DEBUG
4396 	printk(KERN_DEBUG "stli_brdinit(brdp=%x)\n", (int) brdp);
4397 #endif
4398 
4399 	stli_brds[brdp->brdnr] = brdp;
4400 
4401 	switch (brdp->brdtype) {
4402 	case BRD_ECP:
4403 	case BRD_ECPE:
4404 	case BRD_ECPMC:
4405 	case BRD_ECPPCI:
4406 		stli_initecp(brdp);
4407 		break;
4408 	case BRD_ONBOARD:
4409 	case BRD_ONBOARDE:
4410 	case BRD_ONBOARD2:
4411 	case BRD_ONBOARD32:
4412 	case BRD_ONBOARD2_32:
4413 	case BRD_ONBOARDRS:
4414 	case BRD_BRUMBY4:
4415 	case BRD_BRUMBY8:
4416 	case BRD_BRUMBY16:
4417 	case BRD_STALLION:
4418 		stli_initonb(brdp);
4419 		break;
4420 	case BRD_EASYIO:
4421 	case BRD_ECH:
4422 	case BRD_ECHMC:
4423 	case BRD_ECHPCI:
4424 		printk(KERN_ERR "STALLION: %s board type not supported in "
4425 				"this driver\n", stli_brdnames[brdp->brdtype]);
4426 		return(ENODEV);
4427 	default:
4428 		printk(KERN_ERR "STALLION: board=%d is unknown board "
4429 				"type=%d\n", brdp->brdnr, brdp->brdtype);
4430 		return(ENODEV);
4431 	}
4432 
4433 	if ((brdp->state & BST_FOUND) == 0) {
4434 		printk(KERN_ERR "STALLION: %s board not found, board=%d "
4435 				"io=%x mem=%x\n",
4436 			stli_brdnames[brdp->brdtype], brdp->brdnr,
4437 			brdp->iobase, (int) brdp->memaddr);
4438 		return(ENODEV);
4439 	}
4440 
4441 	stli_initports(brdp);
4442 	printk(KERN_INFO "STALLION: %s found, board=%d io=%x mem=%x "
4443 		"nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
4444 		brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
4445 		brdp->nrpanels, brdp->nrports);
4446 	return(0);
4447 }
4448 
4449 /*****************************************************************************/
4450 
4451 /*
4452  *	Probe around trying to find where the EISA boards shared memory
4453  *	might be. This is a bit if hack, but it is the best we can do.
4454  */
4455 
stli_eisamemprobe(stlibrd_t * brdp)4456 static inline int stli_eisamemprobe(stlibrd_t *brdp)
4457 {
4458 	cdkecpsig_t	ecpsig, *ecpsigp;
4459 	cdkonbsig_t	onbsig, *onbsigp;
4460 	int		i, foundit;
4461 
4462 #if DEBUG
4463 	printk(KERN_DEBUG "stli_eisamemprobe(brdp=%x)\n", (int) brdp);
4464 #endif
4465 
4466 /*
4467  *	First up we reset the board, to get it into a known state. There
4468  *	is only 2 board types here we need to worry about. Don;t use the
4469  *	standard board init routine here, it programs up the shared
4470  *	memory address, and we don't know it yet...
4471  */
4472 	if (brdp->brdtype == BRD_ECPE) {
4473 		outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
4474 		outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
4475 		udelay(10);
4476 		outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
4477 		udelay(500);
4478 		stli_ecpeienable(brdp);
4479 	} else if (brdp->brdtype == BRD_ONBOARDE) {
4480 		outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
4481 		outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
4482 		udelay(10);
4483 		outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
4484 		mdelay(100);
4485 		outb(0x1, brdp->iobase);
4486 		mdelay(1);
4487 		stli_onbeenable(brdp);
4488 	} else {
4489 		return(-ENODEV);
4490 	}
4491 
4492 	foundit = 0;
4493 	brdp->memsize = ECP_MEMSIZE;
4494 
4495 /*
4496  *	Board shared memory is enabled, so now we have a poke around and
4497  *	see if we can find it.
4498  */
4499 	for (i = 0; (i < stli_eisamempsize); i++) {
4500 		brdp->memaddr = stli_eisamemprobeaddrs[i];
4501 		brdp->membase = (void *) brdp->memaddr;
4502 		brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
4503 		if (brdp->membase == (void *) NULL)
4504 			continue;
4505 
4506 		if (brdp->brdtype == BRD_ECPE) {
4507 			ecpsigp = (cdkecpsig_t *) stli_ecpeigetmemptr(brdp,
4508 				CDK_SIGADDR, __LINE__);
4509 			memcpy(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
4510 			if (ecpsig.magic == ECP_MAGIC)
4511 				foundit = 1;
4512 		} else {
4513 			onbsigp = (cdkonbsig_t *) stli_onbegetmemptr(brdp,
4514 				CDK_SIGADDR, __LINE__);
4515 			memcpy(&onbsig, onbsigp, sizeof(cdkonbsig_t));
4516 			if ((onbsig.magic0 == ONB_MAGIC0) &&
4517 			    (onbsig.magic1 == ONB_MAGIC1) &&
4518 			    (onbsig.magic2 == ONB_MAGIC2) &&
4519 			    (onbsig.magic3 == ONB_MAGIC3))
4520 				foundit = 1;
4521 		}
4522 
4523 		iounmap(brdp->membase);
4524 		if (foundit)
4525 			break;
4526 	}
4527 
4528 /*
4529  *	Regardless of whether we found the shared memory or not we must
4530  *	disable the region. After that return success or failure.
4531  */
4532 	if (brdp->brdtype == BRD_ECPE)
4533 		stli_ecpeidisable(brdp);
4534 	else
4535 		stli_onbedisable(brdp);
4536 
4537 	if (! foundit) {
4538 		brdp->memaddr = 0;
4539 		brdp->membase = 0;
4540 		printk(KERN_ERR "STALLION: failed to probe shared memory "
4541 				"region for %s in EISA slot=%d\n",
4542 			stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
4543 		return(-ENODEV);
4544 	}
4545 	return(0);
4546 }
4547 
4548 /*****************************************************************************/
4549 
4550 /*
4551  *	Find the next available board number that is free.
4552  */
4553 
stli_getbrdnr()4554 static inline int stli_getbrdnr()
4555 {
4556 	int	i;
4557 
4558 	for (i = 0; (i < STL_MAXBRDS); i++) {
4559 		if (stli_brds[i] == (stlibrd_t *) NULL) {
4560 			if (i >= stli_nrbrds)
4561 				stli_nrbrds = i + 1;
4562 			return(i);
4563 		}
4564 	}
4565 	return(-1);
4566 }
4567 
4568 /*****************************************************************************/
4569 
4570 /*
4571  *	Probe around and try to find any EISA boards in system. The biggest
4572  *	problem here is finding out what memory address is associated with
4573  *	an EISA board after it is found. The registers of the ECPE and
4574  *	ONboardE are not readable - so we can't read them from there. We
4575  *	don't have access to the EISA CMOS (or EISA BIOS) so we don't
4576  *	actually have any way to find out the real value. The best we can
4577  *	do is go probing around in the usual places hoping we can find it.
4578  */
4579 
stli_findeisabrds()4580 static inline int stli_findeisabrds()
4581 {
4582 	stlibrd_t	*brdp;
4583 	unsigned int	iobase, eid;
4584 	int		i;
4585 
4586 #if DEBUG
4587 	printk(KERN_DEBUG "stli_findeisabrds()\n");
4588 #endif
4589 
4590 /*
4591  *	Firstly check if this is an EISA system. Do this by probing for
4592  *	the system board EISA ID. If this is not an EISA system then
4593  *	don't bother going any further!
4594  */
4595 	outb(0xff, 0xc80);
4596 	if (inb(0xc80) == 0xff)
4597 		return(0);
4598 
4599 /*
4600  *	Looks like an EISA system, so go searching for EISA boards.
4601  */
4602 	for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
4603 		outb(0xff, (iobase + 0xc80));
4604 		eid = inb(iobase + 0xc80);
4605 		eid |= inb(iobase + 0xc81) << 8;
4606 		if (eid != STL_EISAID)
4607 			continue;
4608 
4609 /*
4610  *		We have found a board. Need to check if this board was
4611  *		statically configured already (just in case!).
4612  */
4613 		for (i = 0; (i < STL_MAXBRDS); i++) {
4614 			brdp = stli_brds[i];
4615 			if (brdp == (stlibrd_t *) NULL)
4616 				continue;
4617 			if (brdp->iobase == iobase)
4618 				break;
4619 		}
4620 		if (i < STL_MAXBRDS)
4621 			continue;
4622 
4623 /*
4624  *		We have found a Stallion board and it is not configured already.
4625  *		Allocate a board structure and initialize it.
4626  */
4627 		if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4628 			return(-ENOMEM);
4629 		if ((brdp->brdnr = stli_getbrdnr()) < 0)
4630 			return(-ENOMEM);
4631 		eid = inb(iobase + 0xc82);
4632 		if (eid == ECP_EISAID)
4633 			brdp->brdtype = BRD_ECPE;
4634 		else if (eid == ONB_EISAID)
4635 			brdp->brdtype = BRD_ONBOARDE;
4636 		else
4637 			brdp->brdtype = BRD_UNKNOWN;
4638 		brdp->iobase = iobase;
4639 		outb(0x1, (iobase + 0xc84));
4640 		if (stli_eisamemprobe(brdp))
4641 			outb(0, (iobase + 0xc84));
4642 		stli_brdinit(brdp);
4643 	}
4644 
4645 	return(0);
4646 }
4647 
4648 /*****************************************************************************/
4649 
4650 #ifdef	CONFIG_PCI
4651 
4652 /*
4653  *	We have a Stallion board. Allocate a board structure and
4654  *	initialize it. Read its IO and MEMORY resources from PCI
4655  *	configuration space.
4656  */
4657 
stli_initpcibrd(int brdtype,struct pci_dev * devp)4658 static inline int stli_initpcibrd(int brdtype, struct pci_dev *devp)
4659 {
4660 	stlibrd_t	*brdp;
4661 
4662 #if DEBUG
4663 	printk(KERN_DEBUG "stli_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n",
4664 		brdtype, dev->bus->number, dev->devfn);
4665 #endif
4666 
4667 	if (pci_enable_device(devp))
4668 		return(-EIO);
4669 	if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4670 		return(-ENOMEM);
4671 	if ((brdp->brdnr = stli_getbrdnr()) < 0) {
4672 		printk(KERN_INFO "STALLION: too many boards found, "
4673 			"maximum supported %d\n", STL_MAXBRDS);
4674 		return(0);
4675 	}
4676 	brdp->brdtype = brdtype;
4677 
4678 #if DEBUG
4679 	printk(KERN_DEBUG "%s(%d): BAR[]=%lx,%lx,%lx,%lx\n", __FILE__, __LINE__,
4680 		pci_resource_start(devp, 0),
4681 		pci_resource_start(devp, 1),
4682 		pci_resource_start(devp, 2),
4683 		pci_resource_start(devp, 3));
4684 #endif
4685 
4686 /*
4687  *	We have all resources from the board, so lets setup the actual
4688  *	board structure now.
4689  */
4690 	brdp->iobase = pci_resource_start(devp, 3);
4691 	brdp->memaddr = pci_resource_start(devp, 2);
4692 	stli_brdinit(brdp);
4693 
4694 	return(0);
4695 }
4696 
4697 /*****************************************************************************/
4698 
4699 /*
4700  *	Find all Stallion PCI boards that might be installed. Initialize each
4701  *	one as it is found.
4702  */
4703 
stli_findpcibrds()4704 static inline int stli_findpcibrds()
4705 {
4706 	struct pci_dev	*dev = NULL;
4707 	int		rc;
4708 
4709 #if DEBUG
4710 	printk("stli_findpcibrds()\n");
4711 #endif
4712 
4713 	if (! pci_present())
4714 		return(0);
4715 
4716 	while ((dev = pci_find_device(PCI_VENDOR_ID_STALLION,
4717 	    PCI_DEVICE_ID_ECRA, dev))) {
4718 		if ((rc = stli_initpcibrd(BRD_ECPPCI, dev)))
4719 			return(rc);
4720 	}
4721 
4722 	return(0);
4723 }
4724 
4725 #endif
4726 
4727 /*****************************************************************************/
4728 
4729 /*
4730  *	Allocate a new board structure. Fill out the basic info in it.
4731  */
4732 
stli_allocbrd()4733 static stlibrd_t *stli_allocbrd()
4734 {
4735 	stlibrd_t	*brdp;
4736 
4737 	brdp = (stlibrd_t *) stli_memalloc(sizeof(stlibrd_t));
4738 	if (brdp == (stlibrd_t *) NULL) {
4739 		printk(KERN_ERR "STALLION: failed to allocate memory "
4740 				"(size=%d)\n", sizeof(stlibrd_t));
4741 		return((stlibrd_t *) NULL);
4742 	}
4743 
4744 	memset(brdp, 0, sizeof(stlibrd_t));
4745 	brdp->magic = STLI_BOARDMAGIC;
4746 	return(brdp);
4747 }
4748 
4749 /*****************************************************************************/
4750 
4751 /*
4752  *	Scan through all the boards in the configuration and see what we
4753  *	can find.
4754  */
4755 
stli_initbrds()4756 static inline int stli_initbrds()
4757 {
4758 	stlibrd_t	*brdp, *nxtbrdp;
4759 	stlconf_t	*confp;
4760 	int		i, j;
4761 
4762 #if DEBUG
4763 	printk(KERN_DEBUG "stli_initbrds()\n");
4764 #endif
4765 
4766 	if (stli_nrbrds > STL_MAXBRDS) {
4767 		printk(KERN_INFO "STALLION: too many boards in configuration "
4768 			"table, truncating to %d\n", STL_MAXBRDS);
4769 		stli_nrbrds = STL_MAXBRDS;
4770 	}
4771 
4772 /*
4773  *	Firstly scan the list of static boards configured. Allocate
4774  *	resources and initialize the boards as found. If this is a
4775  *	module then let the module args override static configuration.
4776  */
4777 	for (i = 0; (i < stli_nrbrds); i++) {
4778 		confp = &stli_brdconf[i];
4779 #ifdef MODULE
4780 		stli_parsebrd(confp, stli_brdsp[i]);
4781 #endif
4782 		if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4783 			return(-ENOMEM);
4784 		brdp->brdnr = i;
4785 		brdp->brdtype = confp->brdtype;
4786 		brdp->iobase = confp->ioaddr1;
4787 		brdp->memaddr = confp->memaddr;
4788 		stli_brdinit(brdp);
4789 	}
4790 
4791 /*
4792  *	Static configuration table done, so now use dynamic methods to
4793  *	see if any more boards should be configured.
4794  */
4795 #ifdef MODULE
4796 	stli_argbrds();
4797 #endif
4798 	if (stli_eisaprobe)
4799 		stli_findeisabrds();
4800 #ifdef CONFIG_PCI
4801 	stli_findpcibrds();
4802 #endif
4803 
4804 /*
4805  *	All found boards are initialized. Now for a little optimization, if
4806  *	no boards are sharing the "shared memory" regions then we can just
4807  *	leave them all enabled. This is in fact the usual case.
4808  */
4809 	stli_shared = 0;
4810 	if (stli_nrbrds > 1) {
4811 		for (i = 0; (i < stli_nrbrds); i++) {
4812 			brdp = stli_brds[i];
4813 			if (brdp == (stlibrd_t *) NULL)
4814 				continue;
4815 			for (j = i + 1; (j < stli_nrbrds); j++) {
4816 				nxtbrdp = stli_brds[j];
4817 				if (nxtbrdp == (stlibrd_t *) NULL)
4818 					continue;
4819 				if ((brdp->membase >= nxtbrdp->membase) &&
4820 				    (brdp->membase <= (nxtbrdp->membase +
4821 				    nxtbrdp->memsize - 1))) {
4822 					stli_shared++;
4823 					break;
4824 				}
4825 			}
4826 		}
4827 	}
4828 
4829 	if (stli_shared == 0) {
4830 		for (i = 0; (i < stli_nrbrds); i++) {
4831 			brdp = stli_brds[i];
4832 			if (brdp == (stlibrd_t *) NULL)
4833 				continue;
4834 			if (brdp->state & BST_FOUND) {
4835 				EBRDENABLE(brdp);
4836 				brdp->enable = NULL;
4837 				brdp->disable = NULL;
4838 			}
4839 		}
4840 	}
4841 
4842 	return(0);
4843 }
4844 
4845 /*****************************************************************************/
4846 
4847 /*
4848  *	Code to handle an "staliomem" read operation. This device is the
4849  *	contents of the board shared memory. It is used for down loading
4850  *	the slave image (and debugging :-)
4851  */
4852 
stli_memread(struct file * fp,char * buf,size_t count,loff_t * offp)4853 static ssize_t stli_memread(struct file *fp, char *buf, size_t count, loff_t *offp)
4854 {
4855 	unsigned long	flags;
4856 	void		*memptr;
4857 	stlibrd_t	*brdp;
4858 	int		brdnr, size, n;
4859 	loff_t		pos = *offp;
4860 
4861 #if DEBUG
4862 	printk(KERN_DEBUG "stli_memread(fp=%x,buf=%x,count=%x,offp=%x)\n",
4863 			(int) fp, (int) buf, count, (int) offp);
4864 #endif
4865 
4866 	brdnr = MINOR(fp->f_dentry->d_inode->i_rdev);
4867 	if (brdnr >= stli_nrbrds)
4868 		return(-ENODEV);
4869 	brdp = stli_brds[brdnr];
4870 	if (brdp == (stlibrd_t *) NULL)
4871 		return(-ENODEV);
4872 	if (brdp->state == 0)
4873 		return(-ENODEV);
4874 	if (pos != (unsigned)pos || pos >= brdp->memsize)
4875 		return(0);
4876 
4877 	size = MIN(count, (brdp->memsize - pos));
4878 
4879 	save_flags(flags);
4880 	cli();
4881 	EBRDENABLE(brdp);
4882 	while (size > 0) {
4883 		memptr = (void *) EBRDGETMEMPTR(brdp, pos);
4884 		n = MIN(size, (brdp->pagesize - (((unsigned long) pos) % brdp->pagesize)));
4885 		if (copy_to_user(buf, memptr, n)) {
4886 			count = -EFAULT;
4887 			goto out;
4888 		}
4889 		pos += n;
4890 		buf += n;
4891 		size -= n;
4892 	}
4893 	*offp = pos;
4894 out:
4895 	EBRDDISABLE(brdp);
4896 	restore_flags(flags);
4897 
4898 	return(count);
4899 }
4900 
4901 /*****************************************************************************/
4902 
4903 /*
4904  *	Code to handle an "staliomem" write operation. This device is the
4905  *	contents of the board shared memory. It is used for down loading
4906  *	the slave image (and debugging :-)
4907  */
4908 
stli_memwrite(struct file * fp,const char * buf,size_t count,loff_t * offp)4909 static ssize_t stli_memwrite(struct file *fp, const char *buf, size_t count, loff_t *offp)
4910 {
4911 	unsigned long	flags;
4912 	void		*memptr;
4913 	stlibrd_t	*brdp;
4914 	char		*chbuf;
4915 	int		brdnr, size, n;
4916 	loff_t		pos = *offp;
4917 
4918 #if DEBUG
4919 	printk(KERN_DEBUG "stli_memwrite(fp=%x,buf=%x,count=%x,offp=%x)\n",
4920 			(int) fp, (int) buf, count, (int) offp);
4921 #endif
4922 
4923 	brdnr = MINOR(fp->f_dentry->d_inode->i_rdev);
4924 	if (brdnr >= stli_nrbrds)
4925 		return(-ENODEV);
4926 	brdp = stli_brds[brdnr];
4927 	if (brdp == (stlibrd_t *) NULL)
4928 		return(-ENODEV);
4929 	if (brdp->state == 0)
4930 		return(-ENODEV);
4931 	if (pos != (unsigned)pos || pos >= brdp->memsize)
4932 		return(0);
4933 
4934 	chbuf = (char *) buf;
4935 	size = MIN(count, (brdp->memsize - pos));
4936 
4937 	save_flags(flags);
4938 	cli();
4939 	EBRDENABLE(brdp);
4940 	while (size > 0) {
4941 		memptr = (void *) EBRDGETMEMPTR(brdp, pos);
4942 		n = MIN(size, (brdp->pagesize - (((unsigned long) pos) % brdp->pagesize)));
4943 		if (copy_from_user(memptr, chbuf, n)) {
4944 			count = -EFAULT;
4945 			goto out;
4946 		}
4947 		pos += n;
4948 		chbuf += n;
4949 		size -= n;
4950 	}
4951 	*offp = pos;
4952 out:
4953 	EBRDDISABLE(brdp);
4954 	restore_flags(flags);
4955 
4956 	return(count);
4957 }
4958 
4959 /*****************************************************************************/
4960 
4961 /*
4962  *	Return the board stats structure to user app.
4963  */
4964 
stli_getbrdstats(combrd_t * bp)4965 static int stli_getbrdstats(combrd_t *bp)
4966 {
4967 	stlibrd_t	*brdp;
4968 	int		i;
4969 
4970 	if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4971 		return -EFAULT;
4972 	if (stli_brdstats.brd >= STL_MAXBRDS)
4973 		return(-ENODEV);
4974 	brdp = stli_brds[stli_brdstats.brd];
4975 	if (brdp == (stlibrd_t *) NULL)
4976 		return(-ENODEV);
4977 
4978 	memset(&stli_brdstats, 0, sizeof(combrd_t));
4979 	stli_brdstats.brd = brdp->brdnr;
4980 	stli_brdstats.type = brdp->brdtype;
4981 	stli_brdstats.hwid = 0;
4982 	stli_brdstats.state = brdp->state;
4983 	stli_brdstats.ioaddr = brdp->iobase;
4984 	stli_brdstats.memaddr = brdp->memaddr;
4985 	stli_brdstats.nrpanels = brdp->nrpanels;
4986 	stli_brdstats.nrports = brdp->nrports;
4987 	for (i = 0; (i < brdp->nrpanels); i++) {
4988 		stli_brdstats.panels[i].panel = i;
4989 		stli_brdstats.panels[i].hwid = brdp->panelids[i];
4990 		stli_brdstats.panels[i].nrports = brdp->panels[i];
4991 	}
4992 
4993 	if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4994 		return -EFAULT;
4995 	return(0);
4996 }
4997 
4998 /*****************************************************************************/
4999 
5000 /*
5001  *	Resolve the referenced port number into a port struct pointer.
5002  */
5003 
stli_getport(int brdnr,int panelnr,int portnr)5004 static stliport_t *stli_getport(int brdnr, int panelnr, int portnr)
5005 {
5006 	stlibrd_t	*brdp;
5007 	int		i;
5008 
5009 	if ((brdnr < 0) || (brdnr >= STL_MAXBRDS))
5010 		return((stliport_t *) NULL);
5011 	brdp = stli_brds[brdnr];
5012 	if (brdp == (stlibrd_t *) NULL)
5013 		return((stliport_t *) NULL);
5014 	for (i = 0; (i < panelnr); i++)
5015 		portnr += brdp->panels[i];
5016 	if ((portnr < 0) || (portnr >= brdp->nrports))
5017 		return((stliport_t *) NULL);
5018 	return(brdp->ports[portnr]);
5019 }
5020 
5021 /*****************************************************************************/
5022 
5023 /*
5024  *	Return the port stats structure to user app. A NULL port struct
5025  *	pointer passed in means that we need to find out from the app
5026  *	what port to get stats for (used through board control device).
5027  */
5028 
stli_portcmdstats(stliport_t * portp)5029 static int stli_portcmdstats(stliport_t *portp)
5030 {
5031 	unsigned long	flags;
5032 	stlibrd_t	*brdp;
5033 	int		rc;
5034 
5035 	memset(&stli_comstats, 0, sizeof(comstats_t));
5036 
5037 	if (portp == (stliport_t *) NULL)
5038 		return(-ENODEV);
5039 	brdp = stli_brds[portp->brdnr];
5040 	if (brdp == (stlibrd_t *) NULL)
5041 		return(-ENODEV);
5042 
5043 	if (brdp->state & BST_STARTED) {
5044 		if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
5045 		    &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
5046 			return(rc);
5047 	} else {
5048 		memset(&stli_cdkstats, 0, sizeof(asystats_t));
5049 	}
5050 
5051 	stli_comstats.brd = portp->brdnr;
5052 	stli_comstats.panel = portp->panelnr;
5053 	stli_comstats.port = portp->portnr;
5054 	stli_comstats.state = portp->state;
5055 	stli_comstats.flags = portp->flags;
5056 
5057 	save_flags(flags);
5058 	cli();
5059 	if (portp->tty != (struct tty_struct *) NULL) {
5060 		if (portp->tty->driver_data == portp) {
5061 			stli_comstats.ttystate = portp->tty->flags;
5062 			stli_comstats.rxbuffered = portp->tty->flip.count;
5063 			if (portp->tty->termios != (struct termios *) NULL) {
5064 				stli_comstats.cflags = portp->tty->termios->c_cflag;
5065 				stli_comstats.iflags = portp->tty->termios->c_iflag;
5066 				stli_comstats.oflags = portp->tty->termios->c_oflag;
5067 				stli_comstats.lflags = portp->tty->termios->c_lflag;
5068 			}
5069 		}
5070 	}
5071 	restore_flags(flags);
5072 
5073 	stli_comstats.txtotal = stli_cdkstats.txchars;
5074 	stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
5075 	stli_comstats.txbuffered = stli_cdkstats.txringq;
5076 	stli_comstats.rxbuffered += stli_cdkstats.rxringq;
5077 	stli_comstats.rxoverrun = stli_cdkstats.overruns;
5078 	stli_comstats.rxparity = stli_cdkstats.parity;
5079 	stli_comstats.rxframing = stli_cdkstats.framing;
5080 	stli_comstats.rxlost = stli_cdkstats.ringover;
5081 	stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
5082 	stli_comstats.txbreaks = stli_cdkstats.txbreaks;
5083 	stli_comstats.txxon = stli_cdkstats.txstart;
5084 	stli_comstats.txxoff = stli_cdkstats.txstop;
5085 	stli_comstats.rxxon = stli_cdkstats.rxstart;
5086 	stli_comstats.rxxoff = stli_cdkstats.rxstop;
5087 	stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
5088 	stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
5089 	stli_comstats.modem = stli_cdkstats.dcdcnt;
5090 	stli_comstats.hwid = stli_cdkstats.hwid;
5091 	stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
5092 
5093 	return(0);
5094 }
5095 
5096 /*****************************************************************************/
5097 
5098 /*
5099  *	Return the port stats structure to user app. A NULL port struct
5100  *	pointer passed in means that we need to find out from the app
5101  *	what port to get stats for (used through board control device).
5102  */
5103 
stli_getportstats(stliport_t * portp,comstats_t * cp)5104 static int stli_getportstats(stliport_t *portp, comstats_t *cp)
5105 {
5106 	stlibrd_t	*brdp;
5107 	int		rc;
5108 
5109 	if (portp == (stliport_t *) NULL) {
5110 		if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
5111 			return -EFAULT;
5112 		portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
5113 			stli_comstats.port);
5114 		if (portp == (stliport_t *) NULL)
5115 			return(-ENODEV);
5116 	}
5117 
5118 	brdp = stli_brds[portp->brdnr];
5119 	if (brdp == (stlibrd_t *) NULL)
5120 		return(-ENODEV);
5121 
5122 	if ((rc = stli_portcmdstats(portp)) < 0)
5123 		return(rc);
5124 
5125 	return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
5126 			-EFAULT : 0;
5127 }
5128 
5129 /*****************************************************************************/
5130 
5131 /*
5132  *	Clear the port stats structure. We also return it zeroed out...
5133  */
5134 
stli_clrportstats(stliport_t * portp,comstats_t * cp)5135 static int stli_clrportstats(stliport_t *portp, comstats_t *cp)
5136 {
5137 	stlibrd_t	*brdp;
5138 	int		rc;
5139 
5140 	if (portp == (stliport_t *) NULL) {
5141 		if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
5142 			return -EFAULT;
5143 		portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
5144 			stli_comstats.port);
5145 		if (portp == (stliport_t *) NULL)
5146 			return(-ENODEV);
5147 	}
5148 
5149 	brdp = stli_brds[portp->brdnr];
5150 	if (brdp == (stlibrd_t *) NULL)
5151 		return(-ENODEV);
5152 
5153 	if (brdp->state & BST_STARTED) {
5154 		if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, 0, 0, 0)) < 0)
5155 			return(rc);
5156 	}
5157 
5158 	memset(&stli_comstats, 0, sizeof(comstats_t));
5159 	stli_comstats.brd = portp->brdnr;
5160 	stli_comstats.panel = portp->panelnr;
5161 	stli_comstats.port = portp->portnr;
5162 
5163 	if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
5164 		return -EFAULT;
5165 	return(0);
5166 }
5167 
5168 /*****************************************************************************/
5169 
5170 /*
5171  *	Return the entire driver ports structure to a user app.
5172  */
5173 
stli_getportstruct(unsigned long arg)5174 static int stli_getportstruct(unsigned long arg)
5175 {
5176 	stliport_t	*portp;
5177 
5178 	if (copy_from_user(&stli_dummyport, (void *)arg, sizeof(stliport_t)))
5179 		return -EFAULT;
5180 	portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
5181 		 stli_dummyport.portnr);
5182 	if (portp == (stliport_t *) NULL)
5183 		return(-ENODEV);
5184 	if (copy_to_user((void *) arg, portp, sizeof(stliport_t)))
5185 		return -EFAULT;
5186 	return(0);
5187 }
5188 
5189 /*****************************************************************************/
5190 
5191 /*
5192  *	Return the entire driver board structure to a user app.
5193  */
5194 
stli_getbrdstruct(unsigned long arg)5195 static int stli_getbrdstruct(unsigned long arg)
5196 {
5197 	stlibrd_t	*brdp;
5198 
5199 	if (copy_from_user(&stli_dummybrd, (void *)arg, sizeof(stlibrd_t)))
5200 		return -EFAULT;
5201 	if ((stli_dummybrd.brdnr < 0) || (stli_dummybrd.brdnr >= STL_MAXBRDS))
5202 		return(-ENODEV);
5203 	brdp = stli_brds[stli_dummybrd.brdnr];
5204 	if (brdp == (stlibrd_t *) NULL)
5205 		return(-ENODEV);
5206 	if (copy_to_user((void *) arg, brdp, sizeof(stlibrd_t)))
5207 		return -EFAULT;
5208 	return(0);
5209 }
5210 
5211 /*****************************************************************************/
5212 
5213 /*
5214  *	The "staliomem" device is also required to do some special operations on
5215  *	the board. We need to be able to send an interrupt to the board,
5216  *	reset it, and start/stop it.
5217  */
5218 
stli_memioctl(struct inode * ip,struct file * fp,unsigned int cmd,unsigned long arg)5219 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
5220 {
5221 	stlibrd_t	*brdp;
5222 	int		brdnr, rc, done;
5223 
5224 #if DEBUG
5225 	printk(KERN_DEBUG "stli_memioctl(ip=%x,fp=%x,cmd=%x,arg=%x)\n",
5226 			(int) ip, (int) fp, cmd, (int) arg);
5227 #endif
5228 
5229 /*
5230  *	First up handle the board independent ioctls.
5231  */
5232 	done = 0;
5233 	rc = 0;
5234 
5235 	switch (cmd) {
5236 	case COM_GETPORTSTATS:
5237 		rc = stli_getportstats((stliport_t *)NULL, (comstats_t *)arg);
5238 		done++;
5239 		break;
5240 	case COM_CLRPORTSTATS:
5241 		rc = stli_clrportstats((stliport_t *)NULL, (comstats_t *)arg);
5242 		done++;
5243 		break;
5244 	case COM_GETBRDSTATS:
5245 		rc = stli_getbrdstats((combrd_t *) arg);
5246 		done++;
5247 		break;
5248 	case COM_READPORT:
5249 		rc = stli_getportstruct(arg);
5250 		done++;
5251 		break;
5252 	case COM_READBOARD:
5253 		rc = stli_getbrdstruct(arg);
5254 		done++;
5255 		break;
5256 	}
5257 
5258 	if (done)
5259 		return(rc);
5260 
5261 /*
5262  *	Now handle the board specific ioctls. These all depend on the
5263  *	minor number of the device they were called from.
5264  */
5265 	brdnr = MINOR(ip->i_rdev);
5266 	if (brdnr >= STL_MAXBRDS)
5267 		return(-ENODEV);
5268 	brdp = stli_brds[brdnr];
5269 	if (brdp == (stlibrd_t *) NULL)
5270 		return(-ENODEV);
5271 	if (brdp->state == 0)
5272 		return(-ENODEV);
5273 
5274 	switch (cmd) {
5275 	case STL_BINTR:
5276 		EBRDINTR(brdp);
5277 		break;
5278 	case STL_BSTART:
5279 		rc = stli_startbrd(brdp);
5280 		break;
5281 	case STL_BSTOP:
5282 		brdp->state &= ~BST_STARTED;
5283 		break;
5284 	case STL_BRESET:
5285 		brdp->state &= ~BST_STARTED;
5286 		EBRDRESET(brdp);
5287 		if (stli_shared == 0) {
5288 			if (brdp->reenable != NULL)
5289 				(* brdp->reenable)(brdp);
5290 		}
5291 		break;
5292 	default:
5293 		rc = -ENOIOCTLCMD;
5294 		break;
5295 	}
5296 
5297 	return(rc);
5298 }
5299 
5300 /*****************************************************************************/
5301 
stli_init(void)5302 int __init stli_init(void)
5303 {
5304 	printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
5305 
5306 	stli_initbrds();
5307 
5308 /*
5309  *	Allocate a temporary write buffer.
5310  */
5311 	stli_tmpwritebuf = (char *) stli_memalloc(STLI_TXBUFSIZE);
5312 	if (stli_tmpwritebuf == (char *) NULL)
5313 		printk(KERN_ERR "STALLION: failed to allocate memory "
5314 				"(size=%d)\n", STLI_TXBUFSIZE);
5315 	stli_txcookbuf = stli_memalloc(STLI_TXBUFSIZE);
5316 	if (stli_txcookbuf == (char *) NULL)
5317 		printk(KERN_ERR "STALLION: failed to allocate memory "
5318 				"(size=%d)\n", STLI_TXBUFSIZE);
5319 
5320 /*
5321  *	Set up a character driver for the shared memory region. We need this
5322  *	to down load the slave code image. Also it is a useful debugging tool.
5323  */
5324 	if (devfs_register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem))
5325 		printk(KERN_ERR "STALLION: failed to register serial memory "
5326 				"device\n");
5327 
5328 	devfs_handle = devfs_mk_dir (NULL, "staliomem", NULL);
5329 	devfs_register_series (devfs_handle, "%u", 4, DEVFS_FL_DEFAULT,
5330 			       STL_SIOMEMMAJOR, 0,
5331 			       S_IFCHR | S_IRUSR | S_IWUSR,
5332 			       &stli_fsiomem, NULL);
5333 
5334 /*
5335  *	Set up the tty driver structure and register us as a driver.
5336  *	Also setup the callout tty device.
5337  */
5338 	memset(&stli_serial, 0, sizeof(struct tty_driver));
5339 	stli_serial.magic = TTY_DRIVER_MAGIC;
5340 	stli_serial.driver_name = stli_drvname;
5341 	stli_serial.name = stli_serialname;
5342 	stli_serial.major = STL_SERIALMAJOR;
5343 	stli_serial.minor_start = 0;
5344 	stli_serial.num = STL_MAXBRDS * STL_MAXPORTS;
5345 	stli_serial.type = TTY_DRIVER_TYPE_SERIAL;
5346 	stli_serial.subtype = STL_DRVTYPSERIAL;
5347 	stli_serial.init_termios = stli_deftermios;
5348 	stli_serial.flags = TTY_DRIVER_REAL_RAW;
5349 	stli_serial.refcount = &stli_refcount;
5350 	stli_serial.table = stli_ttys;
5351 	stli_serial.termios = stli_termios;
5352 	stli_serial.termios_locked = stli_termioslocked;
5353 
5354 	stli_serial.open = stli_open;
5355 	stli_serial.close = stli_close;
5356 	stli_serial.write = stli_write;
5357 	stli_serial.put_char = stli_putchar;
5358 	stli_serial.flush_chars = stli_flushchars;
5359 	stli_serial.write_room = stli_writeroom;
5360 	stli_serial.chars_in_buffer = stli_charsinbuffer;
5361 	stli_serial.ioctl = stli_ioctl;
5362 	stli_serial.set_termios = stli_settermios;
5363 	stli_serial.throttle = stli_throttle;
5364 	stli_serial.unthrottle = stli_unthrottle;
5365 	stli_serial.stop = stli_stop;
5366 	stli_serial.start = stli_start;
5367 	stli_serial.hangup = stli_hangup;
5368 	stli_serial.flush_buffer = stli_flushbuffer;
5369 	stli_serial.break_ctl = stli_breakctl;
5370 	stli_serial.wait_until_sent = stli_waituntilsent;
5371 	stli_serial.send_xchar = stli_sendxchar;
5372 	stli_serial.read_proc = stli_readproc;
5373 
5374 	stli_callout = stli_serial;
5375 	stli_callout.name = stli_calloutname;
5376 	stli_callout.major = STL_CALLOUTMAJOR;
5377 	stli_callout.subtype = STL_DRVTYPCALLOUT;
5378 	stli_callout.read_proc = 0;
5379 
5380 	if (tty_register_driver(&stli_serial))
5381 		printk(KERN_ERR "STALLION: failed to register serial driver\n");
5382 	if (tty_register_driver(&stli_callout))
5383 		printk(KERN_ERR "STALLION: failed to register callout driver\n");
5384 
5385 	return(0);
5386 }
5387 
5388 /*****************************************************************************/
5389