1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/module.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
56
57 #include <asm/uaccess.h>
58 #include <asm/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62
63 /*
64 * Workqueue for cpuset related tasks.
65 *
66 * Using kevent workqueue may cause deadlock when memory_migrate
67 * is set. So we create a separate workqueue thread for cpuset.
68 */
69 static struct workqueue_struct *cpuset_wq;
70
71 /*
72 * Tracks how many cpusets are currently defined in system.
73 * When there is only one cpuset (the root cpuset) we can
74 * short circuit some hooks.
75 */
76 int number_of_cpusets __read_mostly;
77
78 /* Forward declare cgroup structures */
79 struct cgroup_subsys cpuset_subsys;
80 struct cpuset;
81
82 /* See "Frequency meter" comments, below. */
83
84 struct fmeter {
85 int cnt; /* unprocessed events count */
86 int val; /* most recent output value */
87 time_t time; /* clock (secs) when val computed */
88 spinlock_t lock; /* guards read or write of above */
89 };
90
91 struct cpuset {
92 struct cgroup_subsys_state css;
93
94 unsigned long flags; /* "unsigned long" so bitops work */
95 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
96 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
97
98 struct cpuset *parent; /* my parent */
99
100 struct fmeter fmeter; /* memory_pressure filter */
101
102 /* partition number for rebuild_sched_domains() */
103 int pn;
104
105 /* for custom sched domain */
106 int relax_domain_level;
107
108 /* used for walking a cpuset hierarchy */
109 struct list_head stack_list;
110 };
111
112 /* Retrieve the cpuset for a cgroup */
cgroup_cs(struct cgroup * cont)113 static inline struct cpuset *cgroup_cs(struct cgroup *cont)
114 {
115 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
116 struct cpuset, css);
117 }
118
119 /* Retrieve the cpuset for a task */
task_cs(struct task_struct * task)120 static inline struct cpuset *task_cs(struct task_struct *task)
121 {
122 return container_of(task_subsys_state(task, cpuset_subsys_id),
123 struct cpuset, css);
124 }
125
126 /* bits in struct cpuset flags field */
127 typedef enum {
128 CS_CPU_EXCLUSIVE,
129 CS_MEM_EXCLUSIVE,
130 CS_MEM_HARDWALL,
131 CS_MEMORY_MIGRATE,
132 CS_SCHED_LOAD_BALANCE,
133 CS_SPREAD_PAGE,
134 CS_SPREAD_SLAB,
135 } cpuset_flagbits_t;
136
137 /* convenient tests for these bits */
is_cpu_exclusive(const struct cpuset * cs)138 static inline int is_cpu_exclusive(const struct cpuset *cs)
139 {
140 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
141 }
142
is_mem_exclusive(const struct cpuset * cs)143 static inline int is_mem_exclusive(const struct cpuset *cs)
144 {
145 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
146 }
147
is_mem_hardwall(const struct cpuset * cs)148 static inline int is_mem_hardwall(const struct cpuset *cs)
149 {
150 return test_bit(CS_MEM_HARDWALL, &cs->flags);
151 }
152
is_sched_load_balance(const struct cpuset * cs)153 static inline int is_sched_load_balance(const struct cpuset *cs)
154 {
155 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
156 }
157
is_memory_migrate(const struct cpuset * cs)158 static inline int is_memory_migrate(const struct cpuset *cs)
159 {
160 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
161 }
162
is_spread_page(const struct cpuset * cs)163 static inline int is_spread_page(const struct cpuset *cs)
164 {
165 return test_bit(CS_SPREAD_PAGE, &cs->flags);
166 }
167
is_spread_slab(const struct cpuset * cs)168 static inline int is_spread_slab(const struct cpuset *cs)
169 {
170 return test_bit(CS_SPREAD_SLAB, &cs->flags);
171 }
172
173 static struct cpuset top_cpuset = {
174 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
175 };
176
177 /*
178 * There are two global mutexes guarding cpuset structures. The first
179 * is the main control groups cgroup_mutex, accessed via
180 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
181 * callback_mutex, below. They can nest. It is ok to first take
182 * cgroup_mutex, then nest callback_mutex. We also require taking
183 * task_lock() when dereferencing a task's cpuset pointer. See "The
184 * task_lock() exception", at the end of this comment.
185 *
186 * A task must hold both mutexes to modify cpusets. If a task
187 * holds cgroup_mutex, then it blocks others wanting that mutex,
188 * ensuring that it is the only task able to also acquire callback_mutex
189 * and be able to modify cpusets. It can perform various checks on
190 * the cpuset structure first, knowing nothing will change. It can
191 * also allocate memory while just holding cgroup_mutex. While it is
192 * performing these checks, various callback routines can briefly
193 * acquire callback_mutex to query cpusets. Once it is ready to make
194 * the changes, it takes callback_mutex, blocking everyone else.
195 *
196 * Calls to the kernel memory allocator can not be made while holding
197 * callback_mutex, as that would risk double tripping on callback_mutex
198 * from one of the callbacks into the cpuset code from within
199 * __alloc_pages().
200 *
201 * If a task is only holding callback_mutex, then it has read-only
202 * access to cpusets.
203 *
204 * Now, the task_struct fields mems_allowed and mempolicy may be changed
205 * by other task, we use alloc_lock in the task_struct fields to protect
206 * them.
207 *
208 * The cpuset_common_file_read() handlers only hold callback_mutex across
209 * small pieces of code, such as when reading out possibly multi-word
210 * cpumasks and nodemasks.
211 *
212 * Accessing a task's cpuset should be done in accordance with the
213 * guidelines for accessing subsystem state in kernel/cgroup.c
214 */
215
216 static DEFINE_MUTEX(callback_mutex);
217
218 /*
219 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
220 * buffers. They are statically allocated to prevent using excess stack
221 * when calling cpuset_print_task_mems_allowed().
222 */
223 #define CPUSET_NAME_LEN (128)
224 #define CPUSET_NODELIST_LEN (256)
225 static char cpuset_name[CPUSET_NAME_LEN];
226 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
227 static DEFINE_SPINLOCK(cpuset_buffer_lock);
228
229 /*
230 * This is ugly, but preserves the userspace API for existing cpuset
231 * users. If someone tries to mount the "cpuset" filesystem, we
232 * silently switch it to mount "cgroup" instead
233 */
cpuset_mount(struct file_system_type * fs_type,int flags,const char * unused_dev_name,void * data)234 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
235 int flags, const char *unused_dev_name, void *data)
236 {
237 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
238 struct dentry *ret = ERR_PTR(-ENODEV);
239 if (cgroup_fs) {
240 char mountopts[] =
241 "cpuset,noprefix,"
242 "release_agent=/sbin/cpuset_release_agent";
243 ret = cgroup_fs->mount(cgroup_fs, flags,
244 unused_dev_name, mountopts);
245 put_filesystem(cgroup_fs);
246 }
247 return ret;
248 }
249
250 static struct file_system_type cpuset_fs_type = {
251 .name = "cpuset",
252 .mount = cpuset_mount,
253 };
254
255 /*
256 * Return in pmask the portion of a cpusets's cpus_allowed that
257 * are online. If none are online, walk up the cpuset hierarchy
258 * until we find one that does have some online cpus. If we get
259 * all the way to the top and still haven't found any online cpus,
260 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
261 * task, return cpu_online_map.
262 *
263 * One way or another, we guarantee to return some non-empty subset
264 * of cpu_online_map.
265 *
266 * Call with callback_mutex held.
267 */
268
guarantee_online_cpus(const struct cpuset * cs,struct cpumask * pmask)269 static void guarantee_online_cpus(const struct cpuset *cs,
270 struct cpumask *pmask)
271 {
272 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
273 cs = cs->parent;
274 if (cs)
275 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
276 else
277 cpumask_copy(pmask, cpu_online_mask);
278 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
279 }
280
281 /*
282 * Return in *pmask the portion of a cpusets's mems_allowed that
283 * are online, with memory. If none are online with memory, walk
284 * up the cpuset hierarchy until we find one that does have some
285 * online mems. If we get all the way to the top and still haven't
286 * found any online mems, return node_states[N_HIGH_MEMORY].
287 *
288 * One way or another, we guarantee to return some non-empty subset
289 * of node_states[N_HIGH_MEMORY].
290 *
291 * Call with callback_mutex held.
292 */
293
guarantee_online_mems(const struct cpuset * cs,nodemask_t * pmask)294 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
295 {
296 while (cs && !nodes_intersects(cs->mems_allowed,
297 node_states[N_HIGH_MEMORY]))
298 cs = cs->parent;
299 if (cs)
300 nodes_and(*pmask, cs->mems_allowed,
301 node_states[N_HIGH_MEMORY]);
302 else
303 *pmask = node_states[N_HIGH_MEMORY];
304 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
305 }
306
307 /*
308 * update task's spread flag if cpuset's page/slab spread flag is set
309 *
310 * Called with callback_mutex/cgroup_mutex held
311 */
cpuset_update_task_spread_flag(struct cpuset * cs,struct task_struct * tsk)312 static void cpuset_update_task_spread_flag(struct cpuset *cs,
313 struct task_struct *tsk)
314 {
315 if (is_spread_page(cs))
316 tsk->flags |= PF_SPREAD_PAGE;
317 else
318 tsk->flags &= ~PF_SPREAD_PAGE;
319 if (is_spread_slab(cs))
320 tsk->flags |= PF_SPREAD_SLAB;
321 else
322 tsk->flags &= ~PF_SPREAD_SLAB;
323 }
324
325 /*
326 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
327 *
328 * One cpuset is a subset of another if all its allowed CPUs and
329 * Memory Nodes are a subset of the other, and its exclusive flags
330 * are only set if the other's are set. Call holding cgroup_mutex.
331 */
332
is_cpuset_subset(const struct cpuset * p,const struct cpuset * q)333 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
334 {
335 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
336 nodes_subset(p->mems_allowed, q->mems_allowed) &&
337 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
338 is_mem_exclusive(p) <= is_mem_exclusive(q);
339 }
340
341 /**
342 * alloc_trial_cpuset - allocate a trial cpuset
343 * @cs: the cpuset that the trial cpuset duplicates
344 */
alloc_trial_cpuset(const struct cpuset * cs)345 static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
346 {
347 struct cpuset *trial;
348
349 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
350 if (!trial)
351 return NULL;
352
353 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
354 kfree(trial);
355 return NULL;
356 }
357 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
358
359 return trial;
360 }
361
362 /**
363 * free_trial_cpuset - free the trial cpuset
364 * @trial: the trial cpuset to be freed
365 */
free_trial_cpuset(struct cpuset * trial)366 static void free_trial_cpuset(struct cpuset *trial)
367 {
368 free_cpumask_var(trial->cpus_allowed);
369 kfree(trial);
370 }
371
372 /*
373 * validate_change() - Used to validate that any proposed cpuset change
374 * follows the structural rules for cpusets.
375 *
376 * If we replaced the flag and mask values of the current cpuset
377 * (cur) with those values in the trial cpuset (trial), would
378 * our various subset and exclusive rules still be valid? Presumes
379 * cgroup_mutex held.
380 *
381 * 'cur' is the address of an actual, in-use cpuset. Operations
382 * such as list traversal that depend on the actual address of the
383 * cpuset in the list must use cur below, not trial.
384 *
385 * 'trial' is the address of bulk structure copy of cur, with
386 * perhaps one or more of the fields cpus_allowed, mems_allowed,
387 * or flags changed to new, trial values.
388 *
389 * Return 0 if valid, -errno if not.
390 */
391
validate_change(const struct cpuset * cur,const struct cpuset * trial)392 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
393 {
394 struct cgroup *cont;
395 struct cpuset *c, *par;
396
397 /* Each of our child cpusets must be a subset of us */
398 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
399 if (!is_cpuset_subset(cgroup_cs(cont), trial))
400 return -EBUSY;
401 }
402
403 /* Remaining checks don't apply to root cpuset */
404 if (cur == &top_cpuset)
405 return 0;
406
407 par = cur->parent;
408
409 /* We must be a subset of our parent cpuset */
410 if (!is_cpuset_subset(trial, par))
411 return -EACCES;
412
413 /*
414 * If either I or some sibling (!= me) is exclusive, we can't
415 * overlap
416 */
417 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
418 c = cgroup_cs(cont);
419 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
420 c != cur &&
421 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
422 return -EINVAL;
423 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
424 c != cur &&
425 nodes_intersects(trial->mems_allowed, c->mems_allowed))
426 return -EINVAL;
427 }
428
429 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
430 if (cgroup_task_count(cur->css.cgroup)) {
431 if (cpumask_empty(trial->cpus_allowed) ||
432 nodes_empty(trial->mems_allowed)) {
433 return -ENOSPC;
434 }
435 }
436
437 return 0;
438 }
439
440 #ifdef CONFIG_SMP
441 /*
442 * Helper routine for generate_sched_domains().
443 * Do cpusets a, b have overlapping cpus_allowed masks?
444 */
cpusets_overlap(struct cpuset * a,struct cpuset * b)445 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
446 {
447 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
448 }
449
450 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)451 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
452 {
453 if (dattr->relax_domain_level < c->relax_domain_level)
454 dattr->relax_domain_level = c->relax_domain_level;
455 return;
456 }
457
458 static void
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * c)459 update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
460 {
461 LIST_HEAD(q);
462
463 list_add(&c->stack_list, &q);
464 while (!list_empty(&q)) {
465 struct cpuset *cp;
466 struct cgroup *cont;
467 struct cpuset *child;
468
469 cp = list_first_entry(&q, struct cpuset, stack_list);
470 list_del(q.next);
471
472 if (cpumask_empty(cp->cpus_allowed))
473 continue;
474
475 if (is_sched_load_balance(cp))
476 update_domain_attr(dattr, cp);
477
478 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
479 child = cgroup_cs(cont);
480 list_add_tail(&child->stack_list, &q);
481 }
482 }
483 }
484
485 /*
486 * generate_sched_domains()
487 *
488 * This function builds a partial partition of the systems CPUs
489 * A 'partial partition' is a set of non-overlapping subsets whose
490 * union is a subset of that set.
491 * The output of this function needs to be passed to kernel/sched.c
492 * partition_sched_domains() routine, which will rebuild the scheduler's
493 * load balancing domains (sched domains) as specified by that partial
494 * partition.
495 *
496 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
497 * for a background explanation of this.
498 *
499 * Does not return errors, on the theory that the callers of this
500 * routine would rather not worry about failures to rebuild sched
501 * domains when operating in the severe memory shortage situations
502 * that could cause allocation failures below.
503 *
504 * Must be called with cgroup_lock held.
505 *
506 * The three key local variables below are:
507 * q - a linked-list queue of cpuset pointers, used to implement a
508 * top-down scan of all cpusets. This scan loads a pointer
509 * to each cpuset marked is_sched_load_balance into the
510 * array 'csa'. For our purposes, rebuilding the schedulers
511 * sched domains, we can ignore !is_sched_load_balance cpusets.
512 * csa - (for CpuSet Array) Array of pointers to all the cpusets
513 * that need to be load balanced, for convenient iterative
514 * access by the subsequent code that finds the best partition,
515 * i.e the set of domains (subsets) of CPUs such that the
516 * cpus_allowed of every cpuset marked is_sched_load_balance
517 * is a subset of one of these domains, while there are as
518 * many such domains as possible, each as small as possible.
519 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
520 * the kernel/sched.c routine partition_sched_domains() in a
521 * convenient format, that can be easily compared to the prior
522 * value to determine what partition elements (sched domains)
523 * were changed (added or removed.)
524 *
525 * Finding the best partition (set of domains):
526 * The triple nested loops below over i, j, k scan over the
527 * load balanced cpusets (using the array of cpuset pointers in
528 * csa[]) looking for pairs of cpusets that have overlapping
529 * cpus_allowed, but which don't have the same 'pn' partition
530 * number and gives them in the same partition number. It keeps
531 * looping on the 'restart' label until it can no longer find
532 * any such pairs.
533 *
534 * The union of the cpus_allowed masks from the set of
535 * all cpusets having the same 'pn' value then form the one
536 * element of the partition (one sched domain) to be passed to
537 * partition_sched_domains().
538 */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)539 static int generate_sched_domains(cpumask_var_t **domains,
540 struct sched_domain_attr **attributes)
541 {
542 LIST_HEAD(q); /* queue of cpusets to be scanned */
543 struct cpuset *cp; /* scans q */
544 struct cpuset **csa; /* array of all cpuset ptrs */
545 int csn; /* how many cpuset ptrs in csa so far */
546 int i, j, k; /* indices for partition finding loops */
547 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
548 struct sched_domain_attr *dattr; /* attributes for custom domains */
549 int ndoms = 0; /* number of sched domains in result */
550 int nslot; /* next empty doms[] struct cpumask slot */
551
552 doms = NULL;
553 dattr = NULL;
554 csa = NULL;
555
556 /* Special case for the 99% of systems with one, full, sched domain */
557 if (is_sched_load_balance(&top_cpuset)) {
558 ndoms = 1;
559 doms = alloc_sched_domains(ndoms);
560 if (!doms)
561 goto done;
562
563 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
564 if (dattr) {
565 *dattr = SD_ATTR_INIT;
566 update_domain_attr_tree(dattr, &top_cpuset);
567 }
568 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
569
570 goto done;
571 }
572
573 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
574 if (!csa)
575 goto done;
576 csn = 0;
577
578 list_add(&top_cpuset.stack_list, &q);
579 while (!list_empty(&q)) {
580 struct cgroup *cont;
581 struct cpuset *child; /* scans child cpusets of cp */
582
583 cp = list_first_entry(&q, struct cpuset, stack_list);
584 list_del(q.next);
585
586 if (cpumask_empty(cp->cpus_allowed))
587 continue;
588
589 /*
590 * All child cpusets contain a subset of the parent's cpus, so
591 * just skip them, and then we call update_domain_attr_tree()
592 * to calc relax_domain_level of the corresponding sched
593 * domain.
594 */
595 if (is_sched_load_balance(cp)) {
596 csa[csn++] = cp;
597 continue;
598 }
599
600 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
601 child = cgroup_cs(cont);
602 list_add_tail(&child->stack_list, &q);
603 }
604 }
605
606 for (i = 0; i < csn; i++)
607 csa[i]->pn = i;
608 ndoms = csn;
609
610 restart:
611 /* Find the best partition (set of sched domains) */
612 for (i = 0; i < csn; i++) {
613 struct cpuset *a = csa[i];
614 int apn = a->pn;
615
616 for (j = 0; j < csn; j++) {
617 struct cpuset *b = csa[j];
618 int bpn = b->pn;
619
620 if (apn != bpn && cpusets_overlap(a, b)) {
621 for (k = 0; k < csn; k++) {
622 struct cpuset *c = csa[k];
623
624 if (c->pn == bpn)
625 c->pn = apn;
626 }
627 ndoms--; /* one less element */
628 goto restart;
629 }
630 }
631 }
632
633 /*
634 * Now we know how many domains to create.
635 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
636 */
637 doms = alloc_sched_domains(ndoms);
638 if (!doms)
639 goto done;
640
641 /*
642 * The rest of the code, including the scheduler, can deal with
643 * dattr==NULL case. No need to abort if alloc fails.
644 */
645 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
646
647 for (nslot = 0, i = 0; i < csn; i++) {
648 struct cpuset *a = csa[i];
649 struct cpumask *dp;
650 int apn = a->pn;
651
652 if (apn < 0) {
653 /* Skip completed partitions */
654 continue;
655 }
656
657 dp = doms[nslot];
658
659 if (nslot == ndoms) {
660 static int warnings = 10;
661 if (warnings) {
662 printk(KERN_WARNING
663 "rebuild_sched_domains confused:"
664 " nslot %d, ndoms %d, csn %d, i %d,"
665 " apn %d\n",
666 nslot, ndoms, csn, i, apn);
667 warnings--;
668 }
669 continue;
670 }
671
672 cpumask_clear(dp);
673 if (dattr)
674 *(dattr + nslot) = SD_ATTR_INIT;
675 for (j = i; j < csn; j++) {
676 struct cpuset *b = csa[j];
677
678 if (apn == b->pn) {
679 cpumask_or(dp, dp, b->cpus_allowed);
680 if (dattr)
681 update_domain_attr_tree(dattr + nslot, b);
682
683 /* Done with this partition */
684 b->pn = -1;
685 }
686 }
687 nslot++;
688 }
689 BUG_ON(nslot != ndoms);
690
691 done:
692 kfree(csa);
693
694 /*
695 * Fallback to the default domain if kmalloc() failed.
696 * See comments in partition_sched_domains().
697 */
698 if (doms == NULL)
699 ndoms = 1;
700
701 *domains = doms;
702 *attributes = dattr;
703 return ndoms;
704 }
705
706 /*
707 * Rebuild scheduler domains.
708 *
709 * Call with neither cgroup_mutex held nor within get_online_cpus().
710 * Takes both cgroup_mutex and get_online_cpus().
711 *
712 * Cannot be directly called from cpuset code handling changes
713 * to the cpuset pseudo-filesystem, because it cannot be called
714 * from code that already holds cgroup_mutex.
715 */
do_rebuild_sched_domains(struct work_struct * unused)716 static void do_rebuild_sched_domains(struct work_struct *unused)
717 {
718 struct sched_domain_attr *attr;
719 cpumask_var_t *doms;
720 int ndoms;
721
722 get_online_cpus();
723
724 /* Generate domain masks and attrs */
725 cgroup_lock();
726 ndoms = generate_sched_domains(&doms, &attr);
727 cgroup_unlock();
728
729 /* Have scheduler rebuild the domains */
730 partition_sched_domains(ndoms, doms, attr);
731
732 put_online_cpus();
733 }
734 #else /* !CONFIG_SMP */
do_rebuild_sched_domains(struct work_struct * unused)735 static void do_rebuild_sched_domains(struct work_struct *unused)
736 {
737 }
738
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)739 static int generate_sched_domains(cpumask_var_t **domains,
740 struct sched_domain_attr **attributes)
741 {
742 *domains = NULL;
743 return 1;
744 }
745 #endif /* CONFIG_SMP */
746
747 static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
748
749 /*
750 * Rebuild scheduler domains, asynchronously via workqueue.
751 *
752 * If the flag 'sched_load_balance' of any cpuset with non-empty
753 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
754 * which has that flag enabled, or if any cpuset with a non-empty
755 * 'cpus' is removed, then call this routine to rebuild the
756 * scheduler's dynamic sched domains.
757 *
758 * The rebuild_sched_domains() and partition_sched_domains()
759 * routines must nest cgroup_lock() inside get_online_cpus(),
760 * but such cpuset changes as these must nest that locking the
761 * other way, holding cgroup_lock() for much of the code.
762 *
763 * So in order to avoid an ABBA deadlock, the cpuset code handling
764 * these user changes delegates the actual sched domain rebuilding
765 * to a separate workqueue thread, which ends up processing the
766 * above do_rebuild_sched_domains() function.
767 */
async_rebuild_sched_domains(void)768 static void async_rebuild_sched_domains(void)
769 {
770 queue_work(cpuset_wq, &rebuild_sched_domains_work);
771 }
772
773 /*
774 * Accomplishes the same scheduler domain rebuild as the above
775 * async_rebuild_sched_domains(), however it directly calls the
776 * rebuild routine synchronously rather than calling it via an
777 * asynchronous work thread.
778 *
779 * This can only be called from code that is not holding
780 * cgroup_mutex (not nested in a cgroup_lock() call.)
781 */
rebuild_sched_domains(void)782 void rebuild_sched_domains(void)
783 {
784 do_rebuild_sched_domains(NULL);
785 }
786
787 /**
788 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
789 * @tsk: task to test
790 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
791 *
792 * Call with cgroup_mutex held. May take callback_mutex during call.
793 * Called for each task in a cgroup by cgroup_scan_tasks().
794 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
795 * words, if its mask is not equal to its cpuset's mask).
796 */
cpuset_test_cpumask(struct task_struct * tsk,struct cgroup_scanner * scan)797 static int cpuset_test_cpumask(struct task_struct *tsk,
798 struct cgroup_scanner *scan)
799 {
800 return !cpumask_equal(&tsk->cpus_allowed,
801 (cgroup_cs(scan->cg))->cpus_allowed);
802 }
803
804 /**
805 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
806 * @tsk: task to test
807 * @scan: struct cgroup_scanner containing the cgroup of the task
808 *
809 * Called by cgroup_scan_tasks() for each task in a cgroup whose
810 * cpus_allowed mask needs to be changed.
811 *
812 * We don't need to re-check for the cgroup/cpuset membership, since we're
813 * holding cgroup_lock() at this point.
814 */
cpuset_change_cpumask(struct task_struct * tsk,struct cgroup_scanner * scan)815 static void cpuset_change_cpumask(struct task_struct *tsk,
816 struct cgroup_scanner *scan)
817 {
818 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
819 }
820
821 /**
822 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
823 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
824 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
825 *
826 * Called with cgroup_mutex held
827 *
828 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
829 * calling callback functions for each.
830 *
831 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
832 * if @heap != NULL.
833 */
update_tasks_cpumask(struct cpuset * cs,struct ptr_heap * heap)834 static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
835 {
836 struct cgroup_scanner scan;
837
838 scan.cg = cs->css.cgroup;
839 scan.test_task = cpuset_test_cpumask;
840 scan.process_task = cpuset_change_cpumask;
841 scan.heap = heap;
842 cgroup_scan_tasks(&scan);
843 }
844
845 /**
846 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
847 * @cs: the cpuset to consider
848 * @buf: buffer of cpu numbers written to this cpuset
849 */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)850 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
851 const char *buf)
852 {
853 struct ptr_heap heap;
854 int retval;
855 int is_load_balanced;
856
857 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
858 if (cs == &top_cpuset)
859 return -EACCES;
860
861 /*
862 * An empty cpus_allowed is ok only if the cpuset has no tasks.
863 * Since cpulist_parse() fails on an empty mask, we special case
864 * that parsing. The validate_change() call ensures that cpusets
865 * with tasks have cpus.
866 */
867 if (!*buf) {
868 cpumask_clear(trialcs->cpus_allowed);
869 } else {
870 retval = cpulist_parse(buf, trialcs->cpus_allowed);
871 if (retval < 0)
872 return retval;
873
874 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
875 return -EINVAL;
876 }
877 retval = validate_change(cs, trialcs);
878 if (retval < 0)
879 return retval;
880
881 /* Nothing to do if the cpus didn't change */
882 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
883 return 0;
884
885 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
886 if (retval)
887 return retval;
888
889 is_load_balanced = is_sched_load_balance(trialcs);
890
891 mutex_lock(&callback_mutex);
892 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
893 mutex_unlock(&callback_mutex);
894
895 /*
896 * Scan tasks in the cpuset, and update the cpumasks of any
897 * that need an update.
898 */
899 update_tasks_cpumask(cs, &heap);
900
901 heap_free(&heap);
902
903 if (is_load_balanced)
904 async_rebuild_sched_domains();
905 return 0;
906 }
907
908 /*
909 * cpuset_migrate_mm
910 *
911 * Migrate memory region from one set of nodes to another.
912 *
913 * Temporarilly set tasks mems_allowed to target nodes of migration,
914 * so that the migration code can allocate pages on these nodes.
915 *
916 * Call holding cgroup_mutex, so current's cpuset won't change
917 * during this call, as manage_mutex holds off any cpuset_attach()
918 * calls. Therefore we don't need to take task_lock around the
919 * call to guarantee_online_mems(), as we know no one is changing
920 * our task's cpuset.
921 *
922 * While the mm_struct we are migrating is typically from some
923 * other task, the task_struct mems_allowed that we are hacking
924 * is for our current task, which must allocate new pages for that
925 * migrating memory region.
926 */
927
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)928 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
929 const nodemask_t *to)
930 {
931 struct task_struct *tsk = current;
932
933 tsk->mems_allowed = *to;
934
935 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
936
937 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
938 }
939
940 /*
941 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
942 * @tsk: the task to change
943 * @newmems: new nodes that the task will be set
944 *
945 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
946 * we structure updates as setting all new allowed nodes, then clearing newly
947 * disallowed ones.
948 */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)949 static void cpuset_change_task_nodemask(struct task_struct *tsk,
950 nodemask_t *newmems)
951 {
952 repeat:
953 /*
954 * Allow tasks that have access to memory reserves because they have
955 * been OOM killed to get memory anywhere.
956 */
957 if (unlikely(test_thread_flag(TIF_MEMDIE)))
958 return;
959 if (current->flags & PF_EXITING) /* Let dying task have memory */
960 return;
961
962 task_lock(tsk);
963 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
964 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
965
966
967 /*
968 * ensure checking ->mems_allowed_change_disable after setting all new
969 * allowed nodes.
970 *
971 * the read-side task can see an nodemask with new allowed nodes and
972 * old allowed nodes. and if it allocates page when cpuset clears newly
973 * disallowed ones continuous, it can see the new allowed bits.
974 *
975 * And if setting all new allowed nodes is after the checking, setting
976 * all new allowed nodes and clearing newly disallowed ones will be done
977 * continuous, and the read-side task may find no node to alloc page.
978 */
979 smp_mb();
980
981 /*
982 * Allocation of memory is very fast, we needn't sleep when waiting
983 * for the read-side.
984 */
985 while (ACCESS_ONCE(tsk->mems_allowed_change_disable)) {
986 task_unlock(tsk);
987 if (!task_curr(tsk))
988 yield();
989 goto repeat;
990 }
991
992 /*
993 * ensure checking ->mems_allowed_change_disable before clearing all new
994 * disallowed nodes.
995 *
996 * if clearing newly disallowed bits before the checking, the read-side
997 * task may find no node to alloc page.
998 */
999 smp_mb();
1000
1001 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1002 tsk->mems_allowed = *newmems;
1003 task_unlock(tsk);
1004 }
1005
1006 /*
1007 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1008 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1009 * memory_migrate flag is set. Called with cgroup_mutex held.
1010 */
cpuset_change_nodemask(struct task_struct * p,struct cgroup_scanner * scan)1011 static void cpuset_change_nodemask(struct task_struct *p,
1012 struct cgroup_scanner *scan)
1013 {
1014 struct mm_struct *mm;
1015 struct cpuset *cs;
1016 int migrate;
1017 const nodemask_t *oldmem = scan->data;
1018 static nodemask_t newmems; /* protected by cgroup_mutex */
1019
1020 cs = cgroup_cs(scan->cg);
1021 guarantee_online_mems(cs, &newmems);
1022
1023 cpuset_change_task_nodemask(p, &newmems);
1024
1025 mm = get_task_mm(p);
1026 if (!mm)
1027 return;
1028
1029 migrate = is_memory_migrate(cs);
1030
1031 mpol_rebind_mm(mm, &cs->mems_allowed);
1032 if (migrate)
1033 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1034 mmput(mm);
1035 }
1036
1037 static void *cpuset_being_rebound;
1038
1039 /**
1040 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1041 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1042 * @oldmem: old mems_allowed of cpuset cs
1043 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1044 *
1045 * Called with cgroup_mutex held
1046 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1047 * if @heap != NULL.
1048 */
update_tasks_nodemask(struct cpuset * cs,const nodemask_t * oldmem,struct ptr_heap * heap)1049 static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1050 struct ptr_heap *heap)
1051 {
1052 struct cgroup_scanner scan;
1053
1054 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1055
1056 scan.cg = cs->css.cgroup;
1057 scan.test_task = NULL;
1058 scan.process_task = cpuset_change_nodemask;
1059 scan.heap = heap;
1060 scan.data = (nodemask_t *)oldmem;
1061
1062 /*
1063 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1064 * take while holding tasklist_lock. Forks can happen - the
1065 * mpol_dup() cpuset_being_rebound check will catch such forks,
1066 * and rebind their vma mempolicies too. Because we still hold
1067 * the global cgroup_mutex, we know that no other rebind effort
1068 * will be contending for the global variable cpuset_being_rebound.
1069 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1070 * is idempotent. Also migrate pages in each mm to new nodes.
1071 */
1072 cgroup_scan_tasks(&scan);
1073
1074 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1075 cpuset_being_rebound = NULL;
1076 }
1077
1078 /*
1079 * Handle user request to change the 'mems' memory placement
1080 * of a cpuset. Needs to validate the request, update the
1081 * cpusets mems_allowed, and for each task in the cpuset,
1082 * update mems_allowed and rebind task's mempolicy and any vma
1083 * mempolicies and if the cpuset is marked 'memory_migrate',
1084 * migrate the tasks pages to the new memory.
1085 *
1086 * Call with cgroup_mutex held. May take callback_mutex during call.
1087 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1088 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1089 * their mempolicies to the cpusets new mems_allowed.
1090 */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1091 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1092 const char *buf)
1093 {
1094 NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
1095 int retval;
1096 struct ptr_heap heap;
1097
1098 if (!oldmem)
1099 return -ENOMEM;
1100
1101 /*
1102 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1103 * it's read-only
1104 */
1105 if (cs == &top_cpuset) {
1106 retval = -EACCES;
1107 goto done;
1108 }
1109
1110 /*
1111 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1112 * Since nodelist_parse() fails on an empty mask, we special case
1113 * that parsing. The validate_change() call ensures that cpusets
1114 * with tasks have memory.
1115 */
1116 if (!*buf) {
1117 nodes_clear(trialcs->mems_allowed);
1118 } else {
1119 retval = nodelist_parse(buf, trialcs->mems_allowed);
1120 if (retval < 0)
1121 goto done;
1122
1123 if (!nodes_subset(trialcs->mems_allowed,
1124 node_states[N_HIGH_MEMORY])) {
1125 retval = -EINVAL;
1126 goto done;
1127 }
1128 }
1129 *oldmem = cs->mems_allowed;
1130 if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
1131 retval = 0; /* Too easy - nothing to do */
1132 goto done;
1133 }
1134 retval = validate_change(cs, trialcs);
1135 if (retval < 0)
1136 goto done;
1137
1138 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1139 if (retval < 0)
1140 goto done;
1141
1142 mutex_lock(&callback_mutex);
1143 cs->mems_allowed = trialcs->mems_allowed;
1144 mutex_unlock(&callback_mutex);
1145
1146 update_tasks_nodemask(cs, oldmem, &heap);
1147
1148 heap_free(&heap);
1149 done:
1150 NODEMASK_FREE(oldmem);
1151 return retval;
1152 }
1153
current_cpuset_is_being_rebound(void)1154 int current_cpuset_is_being_rebound(void)
1155 {
1156 return task_cs(current) == cpuset_being_rebound;
1157 }
1158
update_relax_domain_level(struct cpuset * cs,s64 val)1159 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1160 {
1161 #ifdef CONFIG_SMP
1162 if (val < -1 || val >= SD_LV_MAX)
1163 return -EINVAL;
1164 #endif
1165
1166 if (val != cs->relax_domain_level) {
1167 cs->relax_domain_level = val;
1168 if (!cpumask_empty(cs->cpus_allowed) &&
1169 is_sched_load_balance(cs))
1170 async_rebuild_sched_domains();
1171 }
1172
1173 return 0;
1174 }
1175
1176 /*
1177 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1178 * @tsk: task to be updated
1179 * @scan: struct cgroup_scanner containing the cgroup of the task
1180 *
1181 * Called by cgroup_scan_tasks() for each task in a cgroup.
1182 *
1183 * We don't need to re-check for the cgroup/cpuset membership, since we're
1184 * holding cgroup_lock() at this point.
1185 */
cpuset_change_flag(struct task_struct * tsk,struct cgroup_scanner * scan)1186 static void cpuset_change_flag(struct task_struct *tsk,
1187 struct cgroup_scanner *scan)
1188 {
1189 cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1190 }
1191
1192 /*
1193 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1194 * @cs: the cpuset in which each task's spread flags needs to be changed
1195 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1196 *
1197 * Called with cgroup_mutex held
1198 *
1199 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1200 * calling callback functions for each.
1201 *
1202 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1203 * if @heap != NULL.
1204 */
update_tasks_flags(struct cpuset * cs,struct ptr_heap * heap)1205 static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1206 {
1207 struct cgroup_scanner scan;
1208
1209 scan.cg = cs->css.cgroup;
1210 scan.test_task = NULL;
1211 scan.process_task = cpuset_change_flag;
1212 scan.heap = heap;
1213 cgroup_scan_tasks(&scan);
1214 }
1215
1216 /*
1217 * update_flag - read a 0 or a 1 in a file and update associated flag
1218 * bit: the bit to update (see cpuset_flagbits_t)
1219 * cs: the cpuset to update
1220 * turning_on: whether the flag is being set or cleared
1221 *
1222 * Call with cgroup_mutex held.
1223 */
1224
update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)1225 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1226 int turning_on)
1227 {
1228 struct cpuset *trialcs;
1229 int balance_flag_changed;
1230 int spread_flag_changed;
1231 struct ptr_heap heap;
1232 int err;
1233
1234 trialcs = alloc_trial_cpuset(cs);
1235 if (!trialcs)
1236 return -ENOMEM;
1237
1238 if (turning_on)
1239 set_bit(bit, &trialcs->flags);
1240 else
1241 clear_bit(bit, &trialcs->flags);
1242
1243 err = validate_change(cs, trialcs);
1244 if (err < 0)
1245 goto out;
1246
1247 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1248 if (err < 0)
1249 goto out;
1250
1251 balance_flag_changed = (is_sched_load_balance(cs) !=
1252 is_sched_load_balance(trialcs));
1253
1254 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1255 || (is_spread_page(cs) != is_spread_page(trialcs)));
1256
1257 mutex_lock(&callback_mutex);
1258 cs->flags = trialcs->flags;
1259 mutex_unlock(&callback_mutex);
1260
1261 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1262 async_rebuild_sched_domains();
1263
1264 if (spread_flag_changed)
1265 update_tasks_flags(cs, &heap);
1266 heap_free(&heap);
1267 out:
1268 free_trial_cpuset(trialcs);
1269 return err;
1270 }
1271
1272 /*
1273 * Frequency meter - How fast is some event occurring?
1274 *
1275 * These routines manage a digitally filtered, constant time based,
1276 * event frequency meter. There are four routines:
1277 * fmeter_init() - initialize a frequency meter.
1278 * fmeter_markevent() - called each time the event happens.
1279 * fmeter_getrate() - returns the recent rate of such events.
1280 * fmeter_update() - internal routine used to update fmeter.
1281 *
1282 * A common data structure is passed to each of these routines,
1283 * which is used to keep track of the state required to manage the
1284 * frequency meter and its digital filter.
1285 *
1286 * The filter works on the number of events marked per unit time.
1287 * The filter is single-pole low-pass recursive (IIR). The time unit
1288 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1289 * simulate 3 decimal digits of precision (multiplied by 1000).
1290 *
1291 * With an FM_COEF of 933, and a time base of 1 second, the filter
1292 * has a half-life of 10 seconds, meaning that if the events quit
1293 * happening, then the rate returned from the fmeter_getrate()
1294 * will be cut in half each 10 seconds, until it converges to zero.
1295 *
1296 * It is not worth doing a real infinitely recursive filter. If more
1297 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1298 * just compute FM_MAXTICKS ticks worth, by which point the level
1299 * will be stable.
1300 *
1301 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1302 * arithmetic overflow in the fmeter_update() routine.
1303 *
1304 * Given the simple 32 bit integer arithmetic used, this meter works
1305 * best for reporting rates between one per millisecond (msec) and
1306 * one per 32 (approx) seconds. At constant rates faster than one
1307 * per msec it maxes out at values just under 1,000,000. At constant
1308 * rates between one per msec, and one per second it will stabilize
1309 * to a value N*1000, where N is the rate of events per second.
1310 * At constant rates between one per second and one per 32 seconds,
1311 * it will be choppy, moving up on the seconds that have an event,
1312 * and then decaying until the next event. At rates slower than
1313 * about one in 32 seconds, it decays all the way back to zero between
1314 * each event.
1315 */
1316
1317 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1318 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1319 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1320 #define FM_SCALE 1000 /* faux fixed point scale */
1321
1322 /* Initialize a frequency meter */
fmeter_init(struct fmeter * fmp)1323 static void fmeter_init(struct fmeter *fmp)
1324 {
1325 fmp->cnt = 0;
1326 fmp->val = 0;
1327 fmp->time = 0;
1328 spin_lock_init(&fmp->lock);
1329 }
1330
1331 /* Internal meter update - process cnt events and update value */
fmeter_update(struct fmeter * fmp)1332 static void fmeter_update(struct fmeter *fmp)
1333 {
1334 time_t now = get_seconds();
1335 time_t ticks = now - fmp->time;
1336
1337 if (ticks == 0)
1338 return;
1339
1340 ticks = min(FM_MAXTICKS, ticks);
1341 while (ticks-- > 0)
1342 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1343 fmp->time = now;
1344
1345 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1346 fmp->cnt = 0;
1347 }
1348
1349 /* Process any previous ticks, then bump cnt by one (times scale). */
fmeter_markevent(struct fmeter * fmp)1350 static void fmeter_markevent(struct fmeter *fmp)
1351 {
1352 spin_lock(&fmp->lock);
1353 fmeter_update(fmp);
1354 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1355 spin_unlock(&fmp->lock);
1356 }
1357
1358 /* Process any previous ticks, then return current value. */
fmeter_getrate(struct fmeter * fmp)1359 static int fmeter_getrate(struct fmeter *fmp)
1360 {
1361 int val;
1362
1363 spin_lock(&fmp->lock);
1364 fmeter_update(fmp);
1365 val = fmp->val;
1366 spin_unlock(&fmp->lock);
1367 return val;
1368 }
1369
1370 /* Protected by cgroup_lock */
1371 static cpumask_var_t cpus_attach;
1372
1373 /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
cpuset_can_attach(struct cgroup_subsys * ss,struct cgroup * cont,struct task_struct * tsk,bool threadgroup)1374 static int cpuset_can_attach(struct cgroup_subsys *ss, struct cgroup *cont,
1375 struct task_struct *tsk, bool threadgroup)
1376 {
1377 int ret;
1378 struct cpuset *cs = cgroup_cs(cont);
1379
1380 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1381 return -ENOSPC;
1382
1383 /*
1384 * Kthreads bound to specific cpus cannot be moved to a new cpuset; we
1385 * cannot change their cpu affinity and isolating such threads by their
1386 * set of allowed nodes is unnecessary. Thus, cpusets are not
1387 * applicable for such threads. This prevents checking for success of
1388 * set_cpus_allowed_ptr() on all attached tasks before cpus_allowed may
1389 * be changed.
1390 */
1391 if (tsk->flags & PF_THREAD_BOUND)
1392 return -EINVAL;
1393
1394 ret = security_task_setscheduler(tsk);
1395 if (ret)
1396 return ret;
1397 if (threadgroup) {
1398 struct task_struct *c;
1399
1400 rcu_read_lock();
1401 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
1402 ret = security_task_setscheduler(c);
1403 if (ret) {
1404 rcu_read_unlock();
1405 return ret;
1406 }
1407 }
1408 rcu_read_unlock();
1409 }
1410 return 0;
1411 }
1412
cpuset_attach_task(struct task_struct * tsk,nodemask_t * to,struct cpuset * cs)1413 static void cpuset_attach_task(struct task_struct *tsk, nodemask_t *to,
1414 struct cpuset *cs)
1415 {
1416 int err;
1417 /*
1418 * can_attach beforehand should guarantee that this doesn't fail.
1419 * TODO: have a better way to handle failure here
1420 */
1421 err = set_cpus_allowed_ptr(tsk, cpus_attach);
1422 WARN_ON_ONCE(err);
1423
1424 cpuset_change_task_nodemask(tsk, to);
1425 cpuset_update_task_spread_flag(cs, tsk);
1426
1427 }
1428
cpuset_attach(struct cgroup_subsys * ss,struct cgroup * cont,struct cgroup * oldcont,struct task_struct * tsk,bool threadgroup)1429 static void cpuset_attach(struct cgroup_subsys *ss, struct cgroup *cont,
1430 struct cgroup *oldcont, struct task_struct *tsk,
1431 bool threadgroup)
1432 {
1433 struct mm_struct *mm;
1434 struct cpuset *cs = cgroup_cs(cont);
1435 struct cpuset *oldcs = cgroup_cs(oldcont);
1436 static nodemask_t to; /* protected by cgroup_mutex */
1437
1438 if (cs == &top_cpuset) {
1439 cpumask_copy(cpus_attach, cpu_possible_mask);
1440 } else {
1441 guarantee_online_cpus(cs, cpus_attach);
1442 }
1443 guarantee_online_mems(cs, &to);
1444
1445 /* do per-task migration stuff possibly for each in the threadgroup */
1446 cpuset_attach_task(tsk, &to, cs);
1447 if (threadgroup) {
1448 struct task_struct *c;
1449 rcu_read_lock();
1450 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
1451 cpuset_attach_task(c, &to, cs);
1452 }
1453 rcu_read_unlock();
1454 }
1455
1456 /* change mm; only needs to be done once even if threadgroup */
1457 to = cs->mems_allowed;
1458 mm = get_task_mm(tsk);
1459 if (mm) {
1460 mpol_rebind_mm(mm, &to);
1461 if (is_memory_migrate(cs))
1462 cpuset_migrate_mm(mm, &oldcs->mems_allowed, &to);
1463 mmput(mm);
1464 }
1465 }
1466
1467 /* The various types of files and directories in a cpuset file system */
1468
1469 typedef enum {
1470 FILE_MEMORY_MIGRATE,
1471 FILE_CPULIST,
1472 FILE_MEMLIST,
1473 FILE_CPU_EXCLUSIVE,
1474 FILE_MEM_EXCLUSIVE,
1475 FILE_MEM_HARDWALL,
1476 FILE_SCHED_LOAD_BALANCE,
1477 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1478 FILE_MEMORY_PRESSURE_ENABLED,
1479 FILE_MEMORY_PRESSURE,
1480 FILE_SPREAD_PAGE,
1481 FILE_SPREAD_SLAB,
1482 } cpuset_filetype_t;
1483
cpuset_write_u64(struct cgroup * cgrp,struct cftype * cft,u64 val)1484 static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1485 {
1486 int retval = 0;
1487 struct cpuset *cs = cgroup_cs(cgrp);
1488 cpuset_filetype_t type = cft->private;
1489
1490 if (!cgroup_lock_live_group(cgrp))
1491 return -ENODEV;
1492
1493 switch (type) {
1494 case FILE_CPU_EXCLUSIVE:
1495 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1496 break;
1497 case FILE_MEM_EXCLUSIVE:
1498 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1499 break;
1500 case FILE_MEM_HARDWALL:
1501 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1502 break;
1503 case FILE_SCHED_LOAD_BALANCE:
1504 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1505 break;
1506 case FILE_MEMORY_MIGRATE:
1507 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1508 break;
1509 case FILE_MEMORY_PRESSURE_ENABLED:
1510 cpuset_memory_pressure_enabled = !!val;
1511 break;
1512 case FILE_MEMORY_PRESSURE:
1513 retval = -EACCES;
1514 break;
1515 case FILE_SPREAD_PAGE:
1516 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1517 break;
1518 case FILE_SPREAD_SLAB:
1519 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1520 break;
1521 default:
1522 retval = -EINVAL;
1523 break;
1524 }
1525 cgroup_unlock();
1526 return retval;
1527 }
1528
cpuset_write_s64(struct cgroup * cgrp,struct cftype * cft,s64 val)1529 static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1530 {
1531 int retval = 0;
1532 struct cpuset *cs = cgroup_cs(cgrp);
1533 cpuset_filetype_t type = cft->private;
1534
1535 if (!cgroup_lock_live_group(cgrp))
1536 return -ENODEV;
1537
1538 switch (type) {
1539 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1540 retval = update_relax_domain_level(cs, val);
1541 break;
1542 default:
1543 retval = -EINVAL;
1544 break;
1545 }
1546 cgroup_unlock();
1547 return retval;
1548 }
1549
1550 /*
1551 * Common handling for a write to a "cpus" or "mems" file.
1552 */
cpuset_write_resmask(struct cgroup * cgrp,struct cftype * cft,const char * buf)1553 static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1554 const char *buf)
1555 {
1556 int retval = 0;
1557 struct cpuset *cs = cgroup_cs(cgrp);
1558 struct cpuset *trialcs;
1559
1560 if (!cgroup_lock_live_group(cgrp))
1561 return -ENODEV;
1562
1563 trialcs = alloc_trial_cpuset(cs);
1564 if (!trialcs) {
1565 retval = -ENOMEM;
1566 goto out;
1567 }
1568
1569 switch (cft->private) {
1570 case FILE_CPULIST:
1571 retval = update_cpumask(cs, trialcs, buf);
1572 break;
1573 case FILE_MEMLIST:
1574 retval = update_nodemask(cs, trialcs, buf);
1575 break;
1576 default:
1577 retval = -EINVAL;
1578 break;
1579 }
1580
1581 free_trial_cpuset(trialcs);
1582 out:
1583 cgroup_unlock();
1584 return retval;
1585 }
1586
1587 /*
1588 * These ascii lists should be read in a single call, by using a user
1589 * buffer large enough to hold the entire map. If read in smaller
1590 * chunks, there is no guarantee of atomicity. Since the display format
1591 * used, list of ranges of sequential numbers, is variable length,
1592 * and since these maps can change value dynamically, one could read
1593 * gibberish by doing partial reads while a list was changing.
1594 * A single large read to a buffer that crosses a page boundary is
1595 * ok, because the result being copied to user land is not recomputed
1596 * across a page fault.
1597 */
1598
cpuset_sprintf_cpulist(char * page,struct cpuset * cs)1599 static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1600 {
1601 size_t count;
1602
1603 mutex_lock(&callback_mutex);
1604 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1605 mutex_unlock(&callback_mutex);
1606
1607 return count;
1608 }
1609
cpuset_sprintf_memlist(char * page,struct cpuset * cs)1610 static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1611 {
1612 size_t count;
1613
1614 mutex_lock(&callback_mutex);
1615 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
1616 mutex_unlock(&callback_mutex);
1617
1618 return count;
1619 }
1620
cpuset_common_file_read(struct cgroup * cont,struct cftype * cft,struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)1621 static ssize_t cpuset_common_file_read(struct cgroup *cont,
1622 struct cftype *cft,
1623 struct file *file,
1624 char __user *buf,
1625 size_t nbytes, loff_t *ppos)
1626 {
1627 struct cpuset *cs = cgroup_cs(cont);
1628 cpuset_filetype_t type = cft->private;
1629 char *page;
1630 ssize_t retval = 0;
1631 char *s;
1632
1633 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1634 return -ENOMEM;
1635
1636 s = page;
1637
1638 switch (type) {
1639 case FILE_CPULIST:
1640 s += cpuset_sprintf_cpulist(s, cs);
1641 break;
1642 case FILE_MEMLIST:
1643 s += cpuset_sprintf_memlist(s, cs);
1644 break;
1645 default:
1646 retval = -EINVAL;
1647 goto out;
1648 }
1649 *s++ = '\n';
1650
1651 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1652 out:
1653 free_page((unsigned long)page);
1654 return retval;
1655 }
1656
cpuset_read_u64(struct cgroup * cont,struct cftype * cft)1657 static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1658 {
1659 struct cpuset *cs = cgroup_cs(cont);
1660 cpuset_filetype_t type = cft->private;
1661 switch (type) {
1662 case FILE_CPU_EXCLUSIVE:
1663 return is_cpu_exclusive(cs);
1664 case FILE_MEM_EXCLUSIVE:
1665 return is_mem_exclusive(cs);
1666 case FILE_MEM_HARDWALL:
1667 return is_mem_hardwall(cs);
1668 case FILE_SCHED_LOAD_BALANCE:
1669 return is_sched_load_balance(cs);
1670 case FILE_MEMORY_MIGRATE:
1671 return is_memory_migrate(cs);
1672 case FILE_MEMORY_PRESSURE_ENABLED:
1673 return cpuset_memory_pressure_enabled;
1674 case FILE_MEMORY_PRESSURE:
1675 return fmeter_getrate(&cs->fmeter);
1676 case FILE_SPREAD_PAGE:
1677 return is_spread_page(cs);
1678 case FILE_SPREAD_SLAB:
1679 return is_spread_slab(cs);
1680 default:
1681 BUG();
1682 }
1683
1684 /* Unreachable but makes gcc happy */
1685 return 0;
1686 }
1687
cpuset_read_s64(struct cgroup * cont,struct cftype * cft)1688 static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1689 {
1690 struct cpuset *cs = cgroup_cs(cont);
1691 cpuset_filetype_t type = cft->private;
1692 switch (type) {
1693 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1694 return cs->relax_domain_level;
1695 default:
1696 BUG();
1697 }
1698
1699 /* Unrechable but makes gcc happy */
1700 return 0;
1701 }
1702
1703
1704 /*
1705 * for the common functions, 'private' gives the type of file
1706 */
1707
1708 static struct cftype files[] = {
1709 {
1710 .name = "cpus",
1711 .read = cpuset_common_file_read,
1712 .write_string = cpuset_write_resmask,
1713 .max_write_len = (100U + 6 * NR_CPUS),
1714 .private = FILE_CPULIST,
1715 },
1716
1717 {
1718 .name = "mems",
1719 .read = cpuset_common_file_read,
1720 .write_string = cpuset_write_resmask,
1721 .max_write_len = (100U + 6 * MAX_NUMNODES),
1722 .private = FILE_MEMLIST,
1723 },
1724
1725 {
1726 .name = "cpu_exclusive",
1727 .read_u64 = cpuset_read_u64,
1728 .write_u64 = cpuset_write_u64,
1729 .private = FILE_CPU_EXCLUSIVE,
1730 },
1731
1732 {
1733 .name = "mem_exclusive",
1734 .read_u64 = cpuset_read_u64,
1735 .write_u64 = cpuset_write_u64,
1736 .private = FILE_MEM_EXCLUSIVE,
1737 },
1738
1739 {
1740 .name = "mem_hardwall",
1741 .read_u64 = cpuset_read_u64,
1742 .write_u64 = cpuset_write_u64,
1743 .private = FILE_MEM_HARDWALL,
1744 },
1745
1746 {
1747 .name = "sched_load_balance",
1748 .read_u64 = cpuset_read_u64,
1749 .write_u64 = cpuset_write_u64,
1750 .private = FILE_SCHED_LOAD_BALANCE,
1751 },
1752
1753 {
1754 .name = "sched_relax_domain_level",
1755 .read_s64 = cpuset_read_s64,
1756 .write_s64 = cpuset_write_s64,
1757 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1758 },
1759
1760 {
1761 .name = "memory_migrate",
1762 .read_u64 = cpuset_read_u64,
1763 .write_u64 = cpuset_write_u64,
1764 .private = FILE_MEMORY_MIGRATE,
1765 },
1766
1767 {
1768 .name = "memory_pressure",
1769 .read_u64 = cpuset_read_u64,
1770 .write_u64 = cpuset_write_u64,
1771 .private = FILE_MEMORY_PRESSURE,
1772 .mode = S_IRUGO,
1773 },
1774
1775 {
1776 .name = "memory_spread_page",
1777 .read_u64 = cpuset_read_u64,
1778 .write_u64 = cpuset_write_u64,
1779 .private = FILE_SPREAD_PAGE,
1780 },
1781
1782 {
1783 .name = "memory_spread_slab",
1784 .read_u64 = cpuset_read_u64,
1785 .write_u64 = cpuset_write_u64,
1786 .private = FILE_SPREAD_SLAB,
1787 },
1788 };
1789
1790 static struct cftype cft_memory_pressure_enabled = {
1791 .name = "memory_pressure_enabled",
1792 .read_u64 = cpuset_read_u64,
1793 .write_u64 = cpuset_write_u64,
1794 .private = FILE_MEMORY_PRESSURE_ENABLED,
1795 };
1796
cpuset_populate(struct cgroup_subsys * ss,struct cgroup * cont)1797 static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1798 {
1799 int err;
1800
1801 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1802 if (err)
1803 return err;
1804 /* memory_pressure_enabled is in root cpuset only */
1805 if (!cont->parent)
1806 err = cgroup_add_file(cont, ss,
1807 &cft_memory_pressure_enabled);
1808 return err;
1809 }
1810
1811 /*
1812 * post_clone() is called at the end of cgroup_clone().
1813 * 'cgroup' was just created automatically as a result of
1814 * a cgroup_clone(), and the current task is about to
1815 * be moved into 'cgroup'.
1816 *
1817 * Currently we refuse to set up the cgroup - thereby
1818 * refusing the task to be entered, and as a result refusing
1819 * the sys_unshare() or clone() which initiated it - if any
1820 * sibling cpusets have exclusive cpus or mem.
1821 *
1822 * If this becomes a problem for some users who wish to
1823 * allow that scenario, then cpuset_post_clone() could be
1824 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1825 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1826 * held.
1827 */
cpuset_post_clone(struct cgroup_subsys * ss,struct cgroup * cgroup)1828 static void cpuset_post_clone(struct cgroup_subsys *ss,
1829 struct cgroup *cgroup)
1830 {
1831 struct cgroup *parent, *child;
1832 struct cpuset *cs, *parent_cs;
1833
1834 parent = cgroup->parent;
1835 list_for_each_entry(child, &parent->children, sibling) {
1836 cs = cgroup_cs(child);
1837 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1838 return;
1839 }
1840 cs = cgroup_cs(cgroup);
1841 parent_cs = cgroup_cs(parent);
1842
1843 mutex_lock(&callback_mutex);
1844 cs->mems_allowed = parent_cs->mems_allowed;
1845 cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
1846 mutex_unlock(&callback_mutex);
1847 return;
1848 }
1849
1850 /*
1851 * cpuset_create - create a cpuset
1852 * ss: cpuset cgroup subsystem
1853 * cont: control group that the new cpuset will be part of
1854 */
1855
cpuset_create(struct cgroup_subsys * ss,struct cgroup * cont)1856 static struct cgroup_subsys_state *cpuset_create(
1857 struct cgroup_subsys *ss,
1858 struct cgroup *cont)
1859 {
1860 struct cpuset *cs;
1861 struct cpuset *parent;
1862
1863 if (!cont->parent) {
1864 return &top_cpuset.css;
1865 }
1866 parent = cgroup_cs(cont->parent);
1867 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1868 if (!cs)
1869 return ERR_PTR(-ENOMEM);
1870 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1871 kfree(cs);
1872 return ERR_PTR(-ENOMEM);
1873 }
1874
1875 cs->flags = 0;
1876 if (is_spread_page(parent))
1877 set_bit(CS_SPREAD_PAGE, &cs->flags);
1878 if (is_spread_slab(parent))
1879 set_bit(CS_SPREAD_SLAB, &cs->flags);
1880 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1881 cpumask_clear(cs->cpus_allowed);
1882 nodes_clear(cs->mems_allowed);
1883 fmeter_init(&cs->fmeter);
1884 cs->relax_domain_level = -1;
1885
1886 cs->parent = parent;
1887 number_of_cpusets++;
1888 return &cs->css ;
1889 }
1890
1891 /*
1892 * If the cpuset being removed has its flag 'sched_load_balance'
1893 * enabled, then simulate turning sched_load_balance off, which
1894 * will call async_rebuild_sched_domains().
1895 */
1896
cpuset_destroy(struct cgroup_subsys * ss,struct cgroup * cont)1897 static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1898 {
1899 struct cpuset *cs = cgroup_cs(cont);
1900
1901 if (is_sched_load_balance(cs))
1902 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1903
1904 number_of_cpusets--;
1905 free_cpumask_var(cs->cpus_allowed);
1906 kfree(cs);
1907 }
1908
1909 struct cgroup_subsys cpuset_subsys = {
1910 .name = "cpuset",
1911 .create = cpuset_create,
1912 .destroy = cpuset_destroy,
1913 .can_attach = cpuset_can_attach,
1914 .attach = cpuset_attach,
1915 .populate = cpuset_populate,
1916 .post_clone = cpuset_post_clone,
1917 .subsys_id = cpuset_subsys_id,
1918 .early_init = 1,
1919 };
1920
1921 /**
1922 * cpuset_init - initialize cpusets at system boot
1923 *
1924 * Description: Initialize top_cpuset and the cpuset internal file system,
1925 **/
1926
cpuset_init(void)1927 int __init cpuset_init(void)
1928 {
1929 int err = 0;
1930
1931 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1932 BUG();
1933
1934 cpumask_setall(top_cpuset.cpus_allowed);
1935 nodes_setall(top_cpuset.mems_allowed);
1936
1937 fmeter_init(&top_cpuset.fmeter);
1938 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1939 top_cpuset.relax_domain_level = -1;
1940
1941 err = register_filesystem(&cpuset_fs_type);
1942 if (err < 0)
1943 return err;
1944
1945 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1946 BUG();
1947
1948 number_of_cpusets = 1;
1949 return 0;
1950 }
1951
1952 /**
1953 * cpuset_do_move_task - move a given task to another cpuset
1954 * @tsk: pointer to task_struct the task to move
1955 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1956 *
1957 * Called by cgroup_scan_tasks() for each task in a cgroup.
1958 * Return nonzero to stop the walk through the tasks.
1959 */
cpuset_do_move_task(struct task_struct * tsk,struct cgroup_scanner * scan)1960 static void cpuset_do_move_task(struct task_struct *tsk,
1961 struct cgroup_scanner *scan)
1962 {
1963 struct cgroup *new_cgroup = scan->data;
1964
1965 cgroup_attach_task(new_cgroup, tsk);
1966 }
1967
1968 /**
1969 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1970 * @from: cpuset in which the tasks currently reside
1971 * @to: cpuset to which the tasks will be moved
1972 *
1973 * Called with cgroup_mutex held
1974 * callback_mutex must not be held, as cpuset_attach() will take it.
1975 *
1976 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1977 * calling callback functions for each.
1978 */
move_member_tasks_to_cpuset(struct cpuset * from,struct cpuset * to)1979 static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1980 {
1981 struct cgroup_scanner scan;
1982
1983 scan.cg = from->css.cgroup;
1984 scan.test_task = NULL; /* select all tasks in cgroup */
1985 scan.process_task = cpuset_do_move_task;
1986 scan.heap = NULL;
1987 scan.data = to->css.cgroup;
1988
1989 if (cgroup_scan_tasks(&scan))
1990 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1991 "cgroup_scan_tasks failed\n");
1992 }
1993
1994 /*
1995 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
1996 * or memory nodes, we need to walk over the cpuset hierarchy,
1997 * removing that CPU or node from all cpusets. If this removes the
1998 * last CPU or node from a cpuset, then move the tasks in the empty
1999 * cpuset to its next-highest non-empty parent.
2000 *
2001 * Called with cgroup_mutex held
2002 * callback_mutex must not be held, as cpuset_attach() will take it.
2003 */
remove_tasks_in_empty_cpuset(struct cpuset * cs)2004 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2005 {
2006 struct cpuset *parent;
2007
2008 /*
2009 * The cgroup's css_sets list is in use if there are tasks
2010 * in the cpuset; the list is empty if there are none;
2011 * the cs->css.refcnt seems always 0.
2012 */
2013 if (list_empty(&cs->css.cgroup->css_sets))
2014 return;
2015
2016 /*
2017 * Find its next-highest non-empty parent, (top cpuset
2018 * has online cpus, so can't be empty).
2019 */
2020 parent = cs->parent;
2021 while (cpumask_empty(parent->cpus_allowed) ||
2022 nodes_empty(parent->mems_allowed))
2023 parent = parent->parent;
2024
2025 move_member_tasks_to_cpuset(cs, parent);
2026 }
2027
2028 /*
2029 * Walk the specified cpuset subtree and look for empty cpusets.
2030 * The tasks of such cpuset must be moved to a parent cpuset.
2031 *
2032 * Called with cgroup_mutex held. We take callback_mutex to modify
2033 * cpus_allowed and mems_allowed.
2034 *
2035 * This walk processes the tree from top to bottom, completing one layer
2036 * before dropping down to the next. It always processes a node before
2037 * any of its children.
2038 *
2039 * For now, since we lack memory hot unplug, we'll never see a cpuset
2040 * that has tasks along with an empty 'mems'. But if we did see such
2041 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
2042 */
scan_for_empty_cpusets(struct cpuset * root)2043 static void scan_for_empty_cpusets(struct cpuset *root)
2044 {
2045 LIST_HEAD(queue);
2046 struct cpuset *cp; /* scans cpusets being updated */
2047 struct cpuset *child; /* scans child cpusets of cp */
2048 struct cgroup *cont;
2049 static nodemask_t oldmems; /* protected by cgroup_mutex */
2050
2051 list_add_tail((struct list_head *)&root->stack_list, &queue);
2052
2053 while (!list_empty(&queue)) {
2054 cp = list_first_entry(&queue, struct cpuset, stack_list);
2055 list_del(queue.next);
2056 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
2057 child = cgroup_cs(cont);
2058 list_add_tail(&child->stack_list, &queue);
2059 }
2060
2061 /* Continue past cpusets with all cpus, mems online */
2062 if (cpumask_subset(cp->cpus_allowed, cpu_active_mask) &&
2063 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
2064 continue;
2065
2066 oldmems = cp->mems_allowed;
2067
2068 /* Remove offline cpus and mems from this cpuset. */
2069 mutex_lock(&callback_mutex);
2070 cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2071 cpu_active_mask);
2072 nodes_and(cp->mems_allowed, cp->mems_allowed,
2073 node_states[N_HIGH_MEMORY]);
2074 mutex_unlock(&callback_mutex);
2075
2076 /* Move tasks from the empty cpuset to a parent */
2077 if (cpumask_empty(cp->cpus_allowed) ||
2078 nodes_empty(cp->mems_allowed))
2079 remove_tasks_in_empty_cpuset(cp);
2080 else {
2081 update_tasks_cpumask(cp, NULL);
2082 update_tasks_nodemask(cp, &oldmems, NULL);
2083 }
2084 }
2085 }
2086
2087 /*
2088 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2089 * period. This is necessary in order to make cpusets transparent
2090 * (of no affect) on systems that are actively using CPU hotplug
2091 * but making no active use of cpusets.
2092 *
2093 * This routine ensures that top_cpuset.cpus_allowed tracks
2094 * cpu_active_mask on each CPU hotplug (cpuhp) event.
2095 *
2096 * Called within get_online_cpus(). Needs to call cgroup_lock()
2097 * before calling generate_sched_domains().
2098 */
cpuset_update_active_cpus(void)2099 void cpuset_update_active_cpus(void)
2100 {
2101 struct sched_domain_attr *attr;
2102 cpumask_var_t *doms;
2103 int ndoms;
2104
2105 cgroup_lock();
2106 mutex_lock(&callback_mutex);
2107 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2108 mutex_unlock(&callback_mutex);
2109 scan_for_empty_cpusets(&top_cpuset);
2110 ndoms = generate_sched_domains(&doms, &attr);
2111 cgroup_unlock();
2112
2113 /* Have scheduler rebuild the domains */
2114 partition_sched_domains(ndoms, doms, attr);
2115 }
2116
2117 #ifdef CONFIG_MEMORY_HOTPLUG
2118 /*
2119 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
2120 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2121 * See also the previous routine cpuset_track_online_cpus().
2122 */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)2123 static int cpuset_track_online_nodes(struct notifier_block *self,
2124 unsigned long action, void *arg)
2125 {
2126 static nodemask_t oldmems; /* protected by cgroup_mutex */
2127
2128 cgroup_lock();
2129 switch (action) {
2130 case MEM_ONLINE:
2131 oldmems = top_cpuset.mems_allowed;
2132 mutex_lock(&callback_mutex);
2133 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2134 mutex_unlock(&callback_mutex);
2135 update_tasks_nodemask(&top_cpuset, &oldmems, NULL);
2136 break;
2137 case MEM_OFFLINE:
2138 /*
2139 * needn't update top_cpuset.mems_allowed explicitly because
2140 * scan_for_empty_cpusets() will update it.
2141 */
2142 scan_for_empty_cpusets(&top_cpuset);
2143 break;
2144 default:
2145 break;
2146 }
2147 cgroup_unlock();
2148
2149 return NOTIFY_OK;
2150 }
2151 #endif
2152
2153 /**
2154 * cpuset_init_smp - initialize cpus_allowed
2155 *
2156 * Description: Finish top cpuset after cpu, node maps are initialized
2157 **/
2158
cpuset_init_smp(void)2159 void __init cpuset_init_smp(void)
2160 {
2161 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2162 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2163
2164 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2165
2166 cpuset_wq = create_singlethread_workqueue("cpuset");
2167 BUG_ON(!cpuset_wq);
2168 }
2169
2170 /**
2171 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2172 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2173 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2174 *
2175 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2176 * attached to the specified @tsk. Guaranteed to return some non-empty
2177 * subset of cpu_online_map, even if this means going outside the
2178 * tasks cpuset.
2179 **/
2180
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)2181 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2182 {
2183 mutex_lock(&callback_mutex);
2184 task_lock(tsk);
2185 guarantee_online_cpus(task_cs(tsk), pmask);
2186 task_unlock(tsk);
2187 mutex_unlock(&callback_mutex);
2188 }
2189
cpuset_cpus_allowed_fallback(struct task_struct * tsk)2190 int cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2191 {
2192 const struct cpuset *cs;
2193 int cpu;
2194
2195 rcu_read_lock();
2196 cs = task_cs(tsk);
2197 if (cs)
2198 cpumask_copy(&tsk->cpus_allowed, cs->cpus_allowed);
2199 rcu_read_unlock();
2200
2201 /*
2202 * We own tsk->cpus_allowed, nobody can change it under us.
2203 *
2204 * But we used cs && cs->cpus_allowed lockless and thus can
2205 * race with cgroup_attach_task() or update_cpumask() and get
2206 * the wrong tsk->cpus_allowed. However, both cases imply the
2207 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2208 * which takes task_rq_lock().
2209 *
2210 * If we are called after it dropped the lock we must see all
2211 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2212 * set any mask even if it is not right from task_cs() pov,
2213 * the pending set_cpus_allowed_ptr() will fix things.
2214 */
2215
2216 cpu = cpumask_any_and(&tsk->cpus_allowed, cpu_active_mask);
2217 if (cpu >= nr_cpu_ids) {
2218 /*
2219 * Either tsk->cpus_allowed is wrong (see above) or it
2220 * is actually empty. The latter case is only possible
2221 * if we are racing with remove_tasks_in_empty_cpuset().
2222 * Like above we can temporary set any mask and rely on
2223 * set_cpus_allowed_ptr() as synchronization point.
2224 */
2225 cpumask_copy(&tsk->cpus_allowed, cpu_possible_mask);
2226 cpu = cpumask_any(cpu_active_mask);
2227 }
2228
2229 return cpu;
2230 }
2231
cpuset_init_current_mems_allowed(void)2232 void cpuset_init_current_mems_allowed(void)
2233 {
2234 nodes_setall(current->mems_allowed);
2235 }
2236
2237 /**
2238 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2239 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2240 *
2241 * Description: Returns the nodemask_t mems_allowed of the cpuset
2242 * attached to the specified @tsk. Guaranteed to return some non-empty
2243 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2244 * tasks cpuset.
2245 **/
2246
cpuset_mems_allowed(struct task_struct * tsk)2247 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2248 {
2249 nodemask_t mask;
2250
2251 mutex_lock(&callback_mutex);
2252 task_lock(tsk);
2253 guarantee_online_mems(task_cs(tsk), &mask);
2254 task_unlock(tsk);
2255 mutex_unlock(&callback_mutex);
2256
2257 return mask;
2258 }
2259
2260 /**
2261 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2262 * @nodemask: the nodemask to be checked
2263 *
2264 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2265 */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)2266 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2267 {
2268 return nodes_intersects(*nodemask, current->mems_allowed);
2269 }
2270
2271 /*
2272 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2273 * mem_hardwall ancestor to the specified cpuset. Call holding
2274 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2275 * (an unusual configuration), then returns the root cpuset.
2276 */
nearest_hardwall_ancestor(const struct cpuset * cs)2277 static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2278 {
2279 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2280 cs = cs->parent;
2281 return cs;
2282 }
2283
2284 /**
2285 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2286 * @node: is this an allowed node?
2287 * @gfp_mask: memory allocation flags
2288 *
2289 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2290 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2291 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2292 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2293 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2294 * flag, yes.
2295 * Otherwise, no.
2296 *
2297 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2298 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2299 * might sleep, and might allow a node from an enclosing cpuset.
2300 *
2301 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2302 * cpusets, and never sleeps.
2303 *
2304 * The __GFP_THISNODE placement logic is really handled elsewhere,
2305 * by forcibly using a zonelist starting at a specified node, and by
2306 * (in get_page_from_freelist()) refusing to consider the zones for
2307 * any node on the zonelist except the first. By the time any such
2308 * calls get to this routine, we should just shut up and say 'yes'.
2309 *
2310 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2311 * and do not allow allocations outside the current tasks cpuset
2312 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2313 * GFP_KERNEL allocations are not so marked, so can escape to the
2314 * nearest enclosing hardwalled ancestor cpuset.
2315 *
2316 * Scanning up parent cpusets requires callback_mutex. The
2317 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2318 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2319 * current tasks mems_allowed came up empty on the first pass over
2320 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2321 * cpuset are short of memory, might require taking the callback_mutex
2322 * mutex.
2323 *
2324 * The first call here from mm/page_alloc:get_page_from_freelist()
2325 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2326 * so no allocation on a node outside the cpuset is allowed (unless
2327 * in interrupt, of course).
2328 *
2329 * The second pass through get_page_from_freelist() doesn't even call
2330 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2331 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2332 * in alloc_flags. That logic and the checks below have the combined
2333 * affect that:
2334 * in_interrupt - any node ok (current task context irrelevant)
2335 * GFP_ATOMIC - any node ok
2336 * TIF_MEMDIE - any node ok
2337 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2338 * GFP_USER - only nodes in current tasks mems allowed ok.
2339 *
2340 * Rule:
2341 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2342 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2343 * the code that might scan up ancestor cpusets and sleep.
2344 */
__cpuset_node_allowed_softwall(int node,gfp_t gfp_mask)2345 int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2346 {
2347 const struct cpuset *cs; /* current cpuset ancestors */
2348 int allowed; /* is allocation in zone z allowed? */
2349
2350 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2351 return 1;
2352 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2353 if (node_isset(node, current->mems_allowed))
2354 return 1;
2355 /*
2356 * Allow tasks that have access to memory reserves because they have
2357 * been OOM killed to get memory anywhere.
2358 */
2359 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2360 return 1;
2361 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2362 return 0;
2363
2364 if (current->flags & PF_EXITING) /* Let dying task have memory */
2365 return 1;
2366
2367 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2368 mutex_lock(&callback_mutex);
2369
2370 task_lock(current);
2371 cs = nearest_hardwall_ancestor(task_cs(current));
2372 task_unlock(current);
2373
2374 allowed = node_isset(node, cs->mems_allowed);
2375 mutex_unlock(&callback_mutex);
2376 return allowed;
2377 }
2378
2379 /*
2380 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2381 * @node: is this an allowed node?
2382 * @gfp_mask: memory allocation flags
2383 *
2384 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2385 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2386 * yes. If the task has been OOM killed and has access to memory reserves as
2387 * specified by the TIF_MEMDIE flag, yes.
2388 * Otherwise, no.
2389 *
2390 * The __GFP_THISNODE placement logic is really handled elsewhere,
2391 * by forcibly using a zonelist starting at a specified node, and by
2392 * (in get_page_from_freelist()) refusing to consider the zones for
2393 * any node on the zonelist except the first. By the time any such
2394 * calls get to this routine, we should just shut up and say 'yes'.
2395 *
2396 * Unlike the cpuset_node_allowed_softwall() variant, above,
2397 * this variant requires that the node be in the current task's
2398 * mems_allowed or that we're in interrupt. It does not scan up the
2399 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2400 * It never sleeps.
2401 */
__cpuset_node_allowed_hardwall(int node,gfp_t gfp_mask)2402 int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2403 {
2404 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2405 return 1;
2406 if (node_isset(node, current->mems_allowed))
2407 return 1;
2408 /*
2409 * Allow tasks that have access to memory reserves because they have
2410 * been OOM killed to get memory anywhere.
2411 */
2412 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2413 return 1;
2414 return 0;
2415 }
2416
2417 /**
2418 * cpuset_unlock - release lock on cpuset changes
2419 *
2420 * Undo the lock taken in a previous cpuset_lock() call.
2421 */
2422
cpuset_unlock(void)2423 void cpuset_unlock(void)
2424 {
2425 mutex_unlock(&callback_mutex);
2426 }
2427
2428 /**
2429 * cpuset_mem_spread_node() - On which node to begin search for a file page
2430 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2431 *
2432 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2433 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2434 * and if the memory allocation used cpuset_mem_spread_node()
2435 * to determine on which node to start looking, as it will for
2436 * certain page cache or slab cache pages such as used for file
2437 * system buffers and inode caches, then instead of starting on the
2438 * local node to look for a free page, rather spread the starting
2439 * node around the tasks mems_allowed nodes.
2440 *
2441 * We don't have to worry about the returned node being offline
2442 * because "it can't happen", and even if it did, it would be ok.
2443 *
2444 * The routines calling guarantee_online_mems() are careful to
2445 * only set nodes in task->mems_allowed that are online. So it
2446 * should not be possible for the following code to return an
2447 * offline node. But if it did, that would be ok, as this routine
2448 * is not returning the node where the allocation must be, only
2449 * the node where the search should start. The zonelist passed to
2450 * __alloc_pages() will include all nodes. If the slab allocator
2451 * is passed an offline node, it will fall back to the local node.
2452 * See kmem_cache_alloc_node().
2453 */
2454
cpuset_spread_node(int * rotor)2455 static int cpuset_spread_node(int *rotor)
2456 {
2457 int node;
2458
2459 node = next_node(*rotor, current->mems_allowed);
2460 if (node == MAX_NUMNODES)
2461 node = first_node(current->mems_allowed);
2462 *rotor = node;
2463 return node;
2464 }
2465
cpuset_mem_spread_node(void)2466 int cpuset_mem_spread_node(void)
2467 {
2468 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor);
2469 }
2470
cpuset_slab_spread_node(void)2471 int cpuset_slab_spread_node(void)
2472 {
2473 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor);
2474 }
2475
2476 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2477
2478 /**
2479 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2480 * @tsk1: pointer to task_struct of some task.
2481 * @tsk2: pointer to task_struct of some other task.
2482 *
2483 * Description: Return true if @tsk1's mems_allowed intersects the
2484 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2485 * one of the task's memory usage might impact the memory available
2486 * to the other.
2487 **/
2488
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)2489 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2490 const struct task_struct *tsk2)
2491 {
2492 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2493 }
2494
2495 /**
2496 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2497 * @task: pointer to task_struct of some task.
2498 *
2499 * Description: Prints @task's name, cpuset name, and cached copy of its
2500 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2501 * dereferencing task_cs(task).
2502 */
cpuset_print_task_mems_allowed(struct task_struct * tsk)2503 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2504 {
2505 struct dentry *dentry;
2506
2507 dentry = task_cs(tsk)->css.cgroup->dentry;
2508 spin_lock(&cpuset_buffer_lock);
2509 snprintf(cpuset_name, CPUSET_NAME_LEN,
2510 dentry ? (const char *)dentry->d_name.name : "/");
2511 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2512 tsk->mems_allowed);
2513 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2514 tsk->comm, cpuset_name, cpuset_nodelist);
2515 spin_unlock(&cpuset_buffer_lock);
2516 }
2517
2518 /*
2519 * Collection of memory_pressure is suppressed unless
2520 * this flag is enabled by writing "1" to the special
2521 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2522 */
2523
2524 int cpuset_memory_pressure_enabled __read_mostly;
2525
2526 /**
2527 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2528 *
2529 * Keep a running average of the rate of synchronous (direct)
2530 * page reclaim efforts initiated by tasks in each cpuset.
2531 *
2532 * This represents the rate at which some task in the cpuset
2533 * ran low on memory on all nodes it was allowed to use, and
2534 * had to enter the kernels page reclaim code in an effort to
2535 * create more free memory by tossing clean pages or swapping
2536 * or writing dirty pages.
2537 *
2538 * Display to user space in the per-cpuset read-only file
2539 * "memory_pressure". Value displayed is an integer
2540 * representing the recent rate of entry into the synchronous
2541 * (direct) page reclaim by any task attached to the cpuset.
2542 **/
2543
__cpuset_memory_pressure_bump(void)2544 void __cpuset_memory_pressure_bump(void)
2545 {
2546 task_lock(current);
2547 fmeter_markevent(&task_cs(current)->fmeter);
2548 task_unlock(current);
2549 }
2550
2551 #ifdef CONFIG_PROC_PID_CPUSET
2552 /*
2553 * proc_cpuset_show()
2554 * - Print tasks cpuset path into seq_file.
2555 * - Used for /proc/<pid>/cpuset.
2556 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2557 * doesn't really matter if tsk->cpuset changes after we read it,
2558 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2559 * anyway.
2560 */
proc_cpuset_show(struct seq_file * m,void * unused_v)2561 static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2562 {
2563 struct pid *pid;
2564 struct task_struct *tsk;
2565 char *buf;
2566 struct cgroup_subsys_state *css;
2567 int retval;
2568
2569 retval = -ENOMEM;
2570 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2571 if (!buf)
2572 goto out;
2573
2574 retval = -ESRCH;
2575 pid = m->private;
2576 tsk = get_pid_task(pid, PIDTYPE_PID);
2577 if (!tsk)
2578 goto out_free;
2579
2580 retval = -EINVAL;
2581 cgroup_lock();
2582 css = task_subsys_state(tsk, cpuset_subsys_id);
2583 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2584 if (retval < 0)
2585 goto out_unlock;
2586 seq_puts(m, buf);
2587 seq_putc(m, '\n');
2588 out_unlock:
2589 cgroup_unlock();
2590 put_task_struct(tsk);
2591 out_free:
2592 kfree(buf);
2593 out:
2594 return retval;
2595 }
2596
cpuset_open(struct inode * inode,struct file * file)2597 static int cpuset_open(struct inode *inode, struct file *file)
2598 {
2599 struct pid *pid = PROC_I(inode)->pid;
2600 return single_open(file, proc_cpuset_show, pid);
2601 }
2602
2603 const struct file_operations proc_cpuset_operations = {
2604 .open = cpuset_open,
2605 .read = seq_read,
2606 .llseek = seq_lseek,
2607 .release = single_release,
2608 };
2609 #endif /* CONFIG_PROC_PID_CPUSET */
2610
2611 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)2612 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2613 {
2614 seq_printf(m, "Mems_allowed:\t");
2615 seq_nodemask(m, &task->mems_allowed);
2616 seq_printf(m, "\n");
2617 seq_printf(m, "Mems_allowed_list:\t");
2618 seq_nodemask_list(m, &task->mems_allowed);
2619 seq_printf(m, "\n");
2620 }
2621