1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Main SSAM/SSH controller structure and functionality.
4 *
5 * Copyright (C) 2019-2022 Maximilian Luz <luzmaximilian@gmail.com>
6 */
7
8 #include <linux/acpi.h>
9 #include <linux/atomic.h>
10 #include <linux/completion.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/interrupt.h>
13 #include <linux/kref.h>
14 #include <linux/limits.h>
15 #include <linux/list.h>
16 #include <linux/lockdep.h>
17 #include <linux/mutex.h>
18 #include <linux/rculist.h>
19 #include <linux/rbtree.h>
20 #include <linux/rwsem.h>
21 #include <linux/serdev.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 #include <linux/srcu.h>
25 #include <linux/types.h>
26 #include <linux/workqueue.h>
27
28 #include <linux/surface_aggregator/controller.h>
29 #include <linux/surface_aggregator/serial_hub.h>
30
31 #include "controller.h"
32 #include "ssh_msgb.h"
33 #include "ssh_request_layer.h"
34
35 #include "trace.h"
36
37
38 /* -- Safe counters. -------------------------------------------------------- */
39
40 /**
41 * ssh_seq_reset() - Reset/initialize sequence ID counter.
42 * @c: The counter to reset.
43 */
ssh_seq_reset(struct ssh_seq_counter * c)44 static void ssh_seq_reset(struct ssh_seq_counter *c)
45 {
46 WRITE_ONCE(c->value, 0);
47 }
48
49 /**
50 * ssh_seq_next() - Get next sequence ID.
51 * @c: The counter providing the sequence IDs.
52 *
53 * Return: Returns the next sequence ID of the counter.
54 */
ssh_seq_next(struct ssh_seq_counter * c)55 static u8 ssh_seq_next(struct ssh_seq_counter *c)
56 {
57 u8 old = READ_ONCE(c->value);
58 u8 new = old + 1;
59 u8 ret;
60
61 while (unlikely((ret = cmpxchg(&c->value, old, new)) != old)) {
62 old = ret;
63 new = old + 1;
64 }
65
66 return old;
67 }
68
69 /**
70 * ssh_rqid_reset() - Reset/initialize request ID counter.
71 * @c: The counter to reset.
72 */
ssh_rqid_reset(struct ssh_rqid_counter * c)73 static void ssh_rqid_reset(struct ssh_rqid_counter *c)
74 {
75 WRITE_ONCE(c->value, 0);
76 }
77
78 /**
79 * ssh_rqid_next() - Get next request ID.
80 * @c: The counter providing the request IDs.
81 *
82 * Return: Returns the next request ID of the counter, skipping any reserved
83 * request IDs.
84 */
ssh_rqid_next(struct ssh_rqid_counter * c)85 static u16 ssh_rqid_next(struct ssh_rqid_counter *c)
86 {
87 u16 old = READ_ONCE(c->value);
88 u16 new = ssh_rqid_next_valid(old);
89 u16 ret;
90
91 while (unlikely((ret = cmpxchg(&c->value, old, new)) != old)) {
92 old = ret;
93 new = ssh_rqid_next_valid(old);
94 }
95
96 return old;
97 }
98
99
100 /* -- Event notifier/callbacks. --------------------------------------------- */
101 /*
102 * The notifier system is based on linux/notifier.h, specifically the SRCU
103 * implementation. The difference to that is, that some bits of the notifier
104 * call return value can be tracked across multiple calls. This is done so
105 * that handling of events can be tracked and a warning can be issued in case
106 * an event goes unhandled. The idea of that warning is that it should help
107 * discover and identify new/currently unimplemented features.
108 */
109
110 /**
111 * ssam_event_matches_notifier() - Test if an event matches a notifier.
112 * @n: The event notifier to test against.
113 * @event: The event to test.
114 *
115 * Return: Returns %true if the given event matches the given notifier
116 * according to the rules set in the notifier's event mask, %false otherwise.
117 */
ssam_event_matches_notifier(const struct ssam_event_notifier * n,const struct ssam_event * event)118 static bool ssam_event_matches_notifier(const struct ssam_event_notifier *n,
119 const struct ssam_event *event)
120 {
121 bool match = n->event.id.target_category == event->target_category;
122
123 if (n->event.mask & SSAM_EVENT_MASK_TARGET)
124 match &= n->event.reg.target_id == event->target_id;
125
126 if (n->event.mask & SSAM_EVENT_MASK_INSTANCE)
127 match &= n->event.id.instance == event->instance_id;
128
129 return match;
130 }
131
132 /**
133 * ssam_nfblk_call_chain() - Call event notifier callbacks of the given chain.
134 * @nh: The notifier head for which the notifier callbacks should be called.
135 * @event: The event data provided to the callbacks.
136 *
137 * Call all registered notifier callbacks in order of their priority until
138 * either no notifier is left or a notifier returns a value with the
139 * %SSAM_NOTIF_STOP bit set. Note that this bit is automatically set via
140 * ssam_notifier_from_errno() on any non-zero error value.
141 *
142 * Return: Returns the notifier status value, which contains the notifier
143 * status bits (%SSAM_NOTIF_HANDLED and %SSAM_NOTIF_STOP) as well as a
144 * potential error value returned from the last executed notifier callback.
145 * Use ssam_notifier_to_errno() to convert this value to the original error
146 * value.
147 */
ssam_nfblk_call_chain(struct ssam_nf_head * nh,struct ssam_event * event)148 static int ssam_nfblk_call_chain(struct ssam_nf_head *nh, struct ssam_event *event)
149 {
150 struct ssam_event_notifier *nf;
151 int ret = 0, idx;
152
153 idx = srcu_read_lock(&nh->srcu);
154
155 list_for_each_entry_rcu(nf, &nh->head, base.node,
156 srcu_read_lock_held(&nh->srcu)) {
157 if (ssam_event_matches_notifier(nf, event)) {
158 ret = (ret & SSAM_NOTIF_STATE_MASK) | nf->base.fn(nf, event);
159 if (ret & SSAM_NOTIF_STOP)
160 break;
161 }
162 }
163
164 srcu_read_unlock(&nh->srcu, idx);
165 return ret;
166 }
167
168 /**
169 * ssam_nfblk_insert() - Insert a new notifier block into the given notifier
170 * list.
171 * @nh: The notifier head into which the block should be inserted.
172 * @nb: The notifier block to add.
173 *
174 * Note: This function must be synchronized by the caller with respect to other
175 * insert, find, and/or remove calls by holding ``struct ssam_nf.lock``.
176 *
177 * Return: Returns zero on success, %-EEXIST if the notifier block has already
178 * been registered.
179 */
ssam_nfblk_insert(struct ssam_nf_head * nh,struct ssam_notifier_block * nb)180 static int ssam_nfblk_insert(struct ssam_nf_head *nh, struct ssam_notifier_block *nb)
181 {
182 struct ssam_notifier_block *p;
183 struct list_head *h;
184
185 /* Runs under lock, no need for RCU variant. */
186 list_for_each(h, &nh->head) {
187 p = list_entry(h, struct ssam_notifier_block, node);
188
189 if (unlikely(p == nb)) {
190 WARN(1, "double register detected");
191 return -EEXIST;
192 }
193
194 if (nb->priority > p->priority)
195 break;
196 }
197
198 list_add_tail_rcu(&nb->node, h);
199 return 0;
200 }
201
202 /**
203 * ssam_nfblk_find() - Check if a notifier block is registered on the given
204 * notifier head.
205 * list.
206 * @nh: The notifier head on which to search.
207 * @nb: The notifier block to search for.
208 *
209 * Note: This function must be synchronized by the caller with respect to other
210 * insert, find, and/or remove calls by holding ``struct ssam_nf.lock``.
211 *
212 * Return: Returns true if the given notifier block is registered on the given
213 * notifier head, false otherwise.
214 */
ssam_nfblk_find(struct ssam_nf_head * nh,struct ssam_notifier_block * nb)215 static bool ssam_nfblk_find(struct ssam_nf_head *nh, struct ssam_notifier_block *nb)
216 {
217 struct ssam_notifier_block *p;
218
219 /* Runs under lock, no need for RCU variant. */
220 list_for_each_entry(p, &nh->head, node) {
221 if (p == nb)
222 return true;
223 }
224
225 return false;
226 }
227
228 /**
229 * ssam_nfblk_remove() - Remove a notifier block from its notifier list.
230 * @nb: The notifier block to be removed.
231 *
232 * Note: This function must be synchronized by the caller with respect to
233 * other insert, find, and/or remove calls by holding ``struct ssam_nf.lock``.
234 * Furthermore, the caller _must_ ensure SRCU synchronization by calling
235 * synchronize_srcu() with ``nh->srcu`` after leaving the critical section, to
236 * ensure that the removed notifier block is not in use any more.
237 */
ssam_nfblk_remove(struct ssam_notifier_block * nb)238 static void ssam_nfblk_remove(struct ssam_notifier_block *nb)
239 {
240 list_del_rcu(&nb->node);
241 }
242
243 /**
244 * ssam_nf_head_init() - Initialize the given notifier head.
245 * @nh: The notifier head to initialize.
246 */
ssam_nf_head_init(struct ssam_nf_head * nh)247 static int ssam_nf_head_init(struct ssam_nf_head *nh)
248 {
249 int status;
250
251 status = init_srcu_struct(&nh->srcu);
252 if (status)
253 return status;
254
255 INIT_LIST_HEAD(&nh->head);
256 return 0;
257 }
258
259 /**
260 * ssam_nf_head_destroy() - Deinitialize the given notifier head.
261 * @nh: The notifier head to deinitialize.
262 */
ssam_nf_head_destroy(struct ssam_nf_head * nh)263 static void ssam_nf_head_destroy(struct ssam_nf_head *nh)
264 {
265 cleanup_srcu_struct(&nh->srcu);
266 }
267
268
269 /* -- Event/notification registry. ------------------------------------------ */
270
271 /**
272 * struct ssam_nf_refcount_key - Key used for event activation reference
273 * counting.
274 * @reg: The registry via which the event is enabled/disabled.
275 * @id: The ID uniquely describing the event.
276 */
277 struct ssam_nf_refcount_key {
278 struct ssam_event_registry reg;
279 struct ssam_event_id id;
280 };
281
282 /**
283 * struct ssam_nf_refcount_entry - RB-tree entry for reference counting event
284 * activations.
285 * @node: The node of this entry in the rb-tree.
286 * @key: The key of the event.
287 * @refcount: The reference-count of the event.
288 * @flags: The flags used when enabling the event.
289 */
290 struct ssam_nf_refcount_entry {
291 struct rb_node node;
292 struct ssam_nf_refcount_key key;
293 int refcount;
294 u8 flags;
295 };
296
297 /**
298 * ssam_nf_refcount_inc() - Increment reference-/activation-count of the given
299 * event.
300 * @nf: The notifier system reference.
301 * @reg: The registry used to enable/disable the event.
302 * @id: The event ID.
303 *
304 * Increments the reference-/activation-count associated with the specified
305 * event type/ID, allocating a new entry for this event ID if necessary. A
306 * newly allocated entry will have a refcount of one.
307 *
308 * Note: ``nf->lock`` must be held when calling this function.
309 *
310 * Return: Returns the refcount entry on success. Returns an error pointer
311 * with %-ENOSPC if there have already been %INT_MAX events of the specified
312 * ID and type registered, or %-ENOMEM if the entry could not be allocated.
313 */
314 static struct ssam_nf_refcount_entry *
ssam_nf_refcount_inc(struct ssam_nf * nf,struct ssam_event_registry reg,struct ssam_event_id id)315 ssam_nf_refcount_inc(struct ssam_nf *nf, struct ssam_event_registry reg,
316 struct ssam_event_id id)
317 {
318 struct ssam_nf_refcount_entry *entry;
319 struct ssam_nf_refcount_key key;
320 struct rb_node **link = &nf->refcount.rb_node;
321 struct rb_node *parent = NULL;
322 int cmp;
323
324 lockdep_assert_held(&nf->lock);
325
326 key.reg = reg;
327 key.id = id;
328
329 while (*link) {
330 entry = rb_entry(*link, struct ssam_nf_refcount_entry, node);
331 parent = *link;
332
333 cmp = memcmp(&key, &entry->key, sizeof(key));
334 if (cmp < 0) {
335 link = &(*link)->rb_left;
336 } else if (cmp > 0) {
337 link = &(*link)->rb_right;
338 } else if (entry->refcount < INT_MAX) {
339 entry->refcount++;
340 return entry;
341 } else {
342 WARN_ON(1);
343 return ERR_PTR(-ENOSPC);
344 }
345 }
346
347 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
348 if (!entry)
349 return ERR_PTR(-ENOMEM);
350
351 entry->key = key;
352 entry->refcount = 1;
353
354 rb_link_node(&entry->node, parent, link);
355 rb_insert_color(&entry->node, &nf->refcount);
356
357 return entry;
358 }
359
360 /**
361 * ssam_nf_refcount_dec() - Decrement reference-/activation-count of the given
362 * event.
363 * @nf: The notifier system reference.
364 * @reg: The registry used to enable/disable the event.
365 * @id: The event ID.
366 *
367 * Decrements the reference-/activation-count of the specified event,
368 * returning its entry. If the returned entry has a refcount of zero, the
369 * caller is responsible for freeing it using kfree().
370 *
371 * Note: ``nf->lock`` must be held when calling this function.
372 *
373 * Return: Returns the refcount entry on success or %NULL if the entry has not
374 * been found.
375 */
376 static struct ssam_nf_refcount_entry *
ssam_nf_refcount_dec(struct ssam_nf * nf,struct ssam_event_registry reg,struct ssam_event_id id)377 ssam_nf_refcount_dec(struct ssam_nf *nf, struct ssam_event_registry reg,
378 struct ssam_event_id id)
379 {
380 struct ssam_nf_refcount_entry *entry;
381 struct ssam_nf_refcount_key key;
382 struct rb_node *node = nf->refcount.rb_node;
383 int cmp;
384
385 lockdep_assert_held(&nf->lock);
386
387 key.reg = reg;
388 key.id = id;
389
390 while (node) {
391 entry = rb_entry(node, struct ssam_nf_refcount_entry, node);
392
393 cmp = memcmp(&key, &entry->key, sizeof(key));
394 if (cmp < 0) {
395 node = node->rb_left;
396 } else if (cmp > 0) {
397 node = node->rb_right;
398 } else {
399 entry->refcount--;
400 if (entry->refcount == 0)
401 rb_erase(&entry->node, &nf->refcount);
402
403 return entry;
404 }
405 }
406
407 return NULL;
408 }
409
410 /**
411 * ssam_nf_refcount_dec_free() - Decrement reference-/activation-count of the
412 * given event and free its entry if the reference count reaches zero.
413 * @nf: The notifier system reference.
414 * @reg: The registry used to enable/disable the event.
415 * @id: The event ID.
416 *
417 * Decrements the reference-/activation-count of the specified event, freeing
418 * its entry if it reaches zero.
419 *
420 * Note: ``nf->lock`` must be held when calling this function.
421 */
ssam_nf_refcount_dec_free(struct ssam_nf * nf,struct ssam_event_registry reg,struct ssam_event_id id)422 static void ssam_nf_refcount_dec_free(struct ssam_nf *nf,
423 struct ssam_event_registry reg,
424 struct ssam_event_id id)
425 {
426 struct ssam_nf_refcount_entry *entry;
427
428 lockdep_assert_held(&nf->lock);
429
430 entry = ssam_nf_refcount_dec(nf, reg, id);
431 if (entry && entry->refcount == 0)
432 kfree(entry);
433 }
434
435 /**
436 * ssam_nf_refcount_empty() - Test if the notification system has any
437 * enabled/active events.
438 * @nf: The notification system.
439 */
ssam_nf_refcount_empty(struct ssam_nf * nf)440 static bool ssam_nf_refcount_empty(struct ssam_nf *nf)
441 {
442 return RB_EMPTY_ROOT(&nf->refcount);
443 }
444
445 /**
446 * ssam_nf_call() - Call notification callbacks for the provided event.
447 * @nf: The notifier system
448 * @dev: The associated device, only used for logging.
449 * @rqid: The request ID of the event.
450 * @event: The event provided to the callbacks.
451 *
452 * Execute registered callbacks in order of their priority until either no
453 * callback is left or a callback returns a value with the %SSAM_NOTIF_STOP
454 * bit set. Note that this bit is set automatically when converting non-zero
455 * error values via ssam_notifier_from_errno() to notifier values.
456 *
457 * Also note that any callback that could handle an event should return a value
458 * with bit %SSAM_NOTIF_HANDLED set, indicating that the event does not go
459 * unhandled/ignored. In case no registered callback could handle an event,
460 * this function will emit a warning.
461 *
462 * In case a callback failed, this function will emit an error message.
463 */
ssam_nf_call(struct ssam_nf * nf,struct device * dev,u16 rqid,struct ssam_event * event)464 static void ssam_nf_call(struct ssam_nf *nf, struct device *dev, u16 rqid,
465 struct ssam_event *event)
466 {
467 struct ssam_nf_head *nf_head;
468 int status, nf_ret;
469
470 if (!ssh_rqid_is_event(rqid)) {
471 dev_warn(dev, "event: unsupported rqid: %#06x\n", rqid);
472 return;
473 }
474
475 nf_head = &nf->head[ssh_rqid_to_event(rqid)];
476 nf_ret = ssam_nfblk_call_chain(nf_head, event);
477 status = ssam_notifier_to_errno(nf_ret);
478
479 if (status < 0) {
480 dev_err(dev,
481 "event: error handling event: %d (tc: %#04x, tid: %#04x, cid: %#04x, iid: %#04x)\n",
482 status, event->target_category, event->target_id,
483 event->command_id, event->instance_id);
484 } else if (!(nf_ret & SSAM_NOTIF_HANDLED)) {
485 dev_warn(dev,
486 "event: unhandled event (rqid: %#04x, tc: %#04x, tid: %#04x, cid: %#04x, iid: %#04x)\n",
487 rqid, event->target_category, event->target_id,
488 event->command_id, event->instance_id);
489 }
490 }
491
492 /**
493 * ssam_nf_init() - Initialize the notifier system.
494 * @nf: The notifier system to initialize.
495 */
ssam_nf_init(struct ssam_nf * nf)496 static int ssam_nf_init(struct ssam_nf *nf)
497 {
498 int i, status;
499
500 for (i = 0; i < SSH_NUM_EVENTS; i++) {
501 status = ssam_nf_head_init(&nf->head[i]);
502 if (status)
503 break;
504 }
505
506 if (status) {
507 while (i--)
508 ssam_nf_head_destroy(&nf->head[i]);
509
510 return status;
511 }
512
513 mutex_init(&nf->lock);
514 return 0;
515 }
516
517 /**
518 * ssam_nf_destroy() - Deinitialize the notifier system.
519 * @nf: The notifier system to deinitialize.
520 */
ssam_nf_destroy(struct ssam_nf * nf)521 static void ssam_nf_destroy(struct ssam_nf *nf)
522 {
523 int i;
524
525 for (i = 0; i < SSH_NUM_EVENTS; i++)
526 ssam_nf_head_destroy(&nf->head[i]);
527
528 mutex_destroy(&nf->lock);
529 }
530
531
532 /* -- Event/async request completion system. -------------------------------- */
533
534 #define SSAM_CPLT_WQ_NAME "ssam_cpltq"
535
536 /*
537 * SSAM_CPLT_WQ_BATCH - Maximum number of event item completions executed per
538 * work execution. Used to prevent livelocking of the workqueue. Value chosen
539 * via educated guess, may be adjusted.
540 */
541 #define SSAM_CPLT_WQ_BATCH 10
542
543 /*
544 * SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN - Maximum payload length for a cached
545 * &struct ssam_event_item.
546 *
547 * This length has been chosen to be accommodate standard touchpad and
548 * keyboard input events. Events with larger payloads will be allocated
549 * separately.
550 */
551 #define SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN 32
552
553 static struct kmem_cache *ssam_event_item_cache;
554
555 /**
556 * ssam_event_item_cache_init() - Initialize the event item cache.
557 */
ssam_event_item_cache_init(void)558 int ssam_event_item_cache_init(void)
559 {
560 const unsigned int size = sizeof(struct ssam_event_item)
561 + SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN;
562 const unsigned int align = __alignof__(struct ssam_event_item);
563 struct kmem_cache *cache;
564
565 cache = kmem_cache_create("ssam_event_item", size, align, 0, NULL);
566 if (!cache)
567 return -ENOMEM;
568
569 ssam_event_item_cache = cache;
570 return 0;
571 }
572
573 /**
574 * ssam_event_item_cache_destroy() - Deinitialize the event item cache.
575 */
ssam_event_item_cache_destroy(void)576 void ssam_event_item_cache_destroy(void)
577 {
578 kmem_cache_destroy(ssam_event_item_cache);
579 ssam_event_item_cache = NULL;
580 }
581
__ssam_event_item_free_cached(struct ssam_event_item * item)582 static void __ssam_event_item_free_cached(struct ssam_event_item *item)
583 {
584 kmem_cache_free(ssam_event_item_cache, item);
585 }
586
__ssam_event_item_free_generic(struct ssam_event_item * item)587 static void __ssam_event_item_free_generic(struct ssam_event_item *item)
588 {
589 kfree(item);
590 }
591
592 /**
593 * ssam_event_item_free() - Free the provided event item.
594 * @item: The event item to free.
595 */
ssam_event_item_free(struct ssam_event_item * item)596 static void ssam_event_item_free(struct ssam_event_item *item)
597 {
598 trace_ssam_event_item_free(item);
599 item->ops.free(item);
600 }
601
602 /**
603 * ssam_event_item_alloc() - Allocate an event item with the given payload size.
604 * @len: The event payload length.
605 * @flags: The flags used for allocation.
606 *
607 * Allocate an event item with the given payload size, preferring allocation
608 * from the event item cache if the payload is small enough (i.e. smaller than
609 * %SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN). Sets the item operations and payload
610 * length values. The item free callback (``ops.free``) should not be
611 * overwritten after this call.
612 *
613 * Return: Returns the newly allocated event item.
614 */
ssam_event_item_alloc(size_t len,gfp_t flags)615 static struct ssam_event_item *ssam_event_item_alloc(size_t len, gfp_t flags)
616 {
617 struct ssam_event_item *item;
618
619 if (len <= SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN) {
620 item = kmem_cache_alloc(ssam_event_item_cache, flags);
621 if (!item)
622 return NULL;
623
624 item->ops.free = __ssam_event_item_free_cached;
625 } else {
626 item = kzalloc(struct_size(item, event.data, len), flags);
627 if (!item)
628 return NULL;
629
630 item->ops.free = __ssam_event_item_free_generic;
631 }
632
633 item->event.length = len;
634
635 trace_ssam_event_item_alloc(item, len);
636 return item;
637 }
638
639 /**
640 * ssam_event_queue_push() - Push an event item to the event queue.
641 * @q: The event queue.
642 * @item: The item to add.
643 */
ssam_event_queue_push(struct ssam_event_queue * q,struct ssam_event_item * item)644 static void ssam_event_queue_push(struct ssam_event_queue *q,
645 struct ssam_event_item *item)
646 {
647 spin_lock(&q->lock);
648 list_add_tail(&item->node, &q->head);
649 spin_unlock(&q->lock);
650 }
651
652 /**
653 * ssam_event_queue_pop() - Pop the next event item from the event queue.
654 * @q: The event queue.
655 *
656 * Returns and removes the next event item from the queue. Returns %NULL If
657 * there is no event item left.
658 */
ssam_event_queue_pop(struct ssam_event_queue * q)659 static struct ssam_event_item *ssam_event_queue_pop(struct ssam_event_queue *q)
660 {
661 struct ssam_event_item *item;
662
663 spin_lock(&q->lock);
664 item = list_first_entry_or_null(&q->head, struct ssam_event_item, node);
665 if (item)
666 list_del(&item->node);
667 spin_unlock(&q->lock);
668
669 return item;
670 }
671
672 /**
673 * ssam_event_queue_is_empty() - Check if the event queue is empty.
674 * @q: The event queue.
675 */
ssam_event_queue_is_empty(struct ssam_event_queue * q)676 static bool ssam_event_queue_is_empty(struct ssam_event_queue *q)
677 {
678 bool empty;
679
680 spin_lock(&q->lock);
681 empty = list_empty(&q->head);
682 spin_unlock(&q->lock);
683
684 return empty;
685 }
686
687 /**
688 * ssam_cplt_get_event_queue() - Get the event queue for the given parameters.
689 * @cplt: The completion system on which to look for the queue.
690 * @tid: The target ID of the queue.
691 * @rqid: The request ID representing the event ID for which to get the queue.
692 *
693 * Return: Returns the event queue corresponding to the event type described
694 * by the given parameters. If the request ID does not represent an event,
695 * this function returns %NULL. If the target ID is not supported, this
696 * function will fall back to the default target ID (``tid = 1``).
697 */
698 static
ssam_cplt_get_event_queue(struct ssam_cplt * cplt,u8 tid,u16 rqid)699 struct ssam_event_queue *ssam_cplt_get_event_queue(struct ssam_cplt *cplt,
700 u8 tid, u16 rqid)
701 {
702 u16 event = ssh_rqid_to_event(rqid);
703 u16 tidx = ssh_tid_to_index(tid);
704
705 if (!ssh_rqid_is_event(rqid)) {
706 dev_err(cplt->dev, "event: unsupported request ID: %#06x\n", rqid);
707 return NULL;
708 }
709
710 if (!ssh_tid_is_valid(tid)) {
711 dev_warn(cplt->dev, "event: unsupported target ID: %u\n", tid);
712 tidx = 0;
713 }
714
715 return &cplt->event.target[tidx].queue[event];
716 }
717
718 /**
719 * ssam_cplt_submit() - Submit a work item to the completion system workqueue.
720 * @cplt: The completion system.
721 * @work: The work item to submit.
722 */
ssam_cplt_submit(struct ssam_cplt * cplt,struct work_struct * work)723 static bool ssam_cplt_submit(struct ssam_cplt *cplt, struct work_struct *work)
724 {
725 return queue_work(cplt->wq, work);
726 }
727
728 /**
729 * ssam_cplt_submit_event() - Submit an event to the completion system.
730 * @cplt: The completion system.
731 * @item: The event item to submit.
732 *
733 * Submits the event to the completion system by queuing it on the event item
734 * queue and queuing the respective event queue work item on the completion
735 * workqueue, which will eventually complete the event.
736 *
737 * Return: Returns zero on success, %-EINVAL if there is no event queue that
738 * can handle the given event item.
739 */
ssam_cplt_submit_event(struct ssam_cplt * cplt,struct ssam_event_item * item)740 static int ssam_cplt_submit_event(struct ssam_cplt *cplt,
741 struct ssam_event_item *item)
742 {
743 struct ssam_event_queue *evq;
744
745 evq = ssam_cplt_get_event_queue(cplt, item->event.target_id, item->rqid);
746 if (!evq)
747 return -EINVAL;
748
749 ssam_event_queue_push(evq, item);
750 ssam_cplt_submit(cplt, &evq->work);
751 return 0;
752 }
753
754 /**
755 * ssam_cplt_flush() - Flush the completion system.
756 * @cplt: The completion system.
757 *
758 * Flush the completion system by waiting until all currently submitted work
759 * items have been completed.
760 *
761 * Note: This function does not guarantee that all events will have been
762 * handled once this call terminates. In case of a larger number of
763 * to-be-completed events, the event queue work function may re-schedule its
764 * work item, which this flush operation will ignore.
765 *
766 * This operation is only intended to, during normal operation prior to
767 * shutdown, try to complete most events and requests to get them out of the
768 * system while the system is still fully operational. It does not aim to
769 * provide any guarantee that all of them have been handled.
770 */
ssam_cplt_flush(struct ssam_cplt * cplt)771 static void ssam_cplt_flush(struct ssam_cplt *cplt)
772 {
773 flush_workqueue(cplt->wq);
774 }
775
ssam_event_queue_work_fn(struct work_struct * work)776 static void ssam_event_queue_work_fn(struct work_struct *work)
777 {
778 struct ssam_event_queue *queue;
779 struct ssam_event_item *item;
780 struct ssam_nf *nf;
781 struct device *dev;
782 unsigned int iterations = SSAM_CPLT_WQ_BATCH;
783
784 queue = container_of(work, struct ssam_event_queue, work);
785 nf = &queue->cplt->event.notif;
786 dev = queue->cplt->dev;
787
788 /* Limit number of processed events to avoid livelocking. */
789 do {
790 item = ssam_event_queue_pop(queue);
791 if (!item)
792 return;
793
794 ssam_nf_call(nf, dev, item->rqid, &item->event);
795 ssam_event_item_free(item);
796 } while (--iterations);
797
798 if (!ssam_event_queue_is_empty(queue))
799 ssam_cplt_submit(queue->cplt, &queue->work);
800 }
801
802 /**
803 * ssam_event_queue_init() - Initialize an event queue.
804 * @cplt: The completion system on which the queue resides.
805 * @evq: The event queue to initialize.
806 */
ssam_event_queue_init(struct ssam_cplt * cplt,struct ssam_event_queue * evq)807 static void ssam_event_queue_init(struct ssam_cplt *cplt,
808 struct ssam_event_queue *evq)
809 {
810 evq->cplt = cplt;
811 spin_lock_init(&evq->lock);
812 INIT_LIST_HEAD(&evq->head);
813 INIT_WORK(&evq->work, ssam_event_queue_work_fn);
814 }
815
816 /**
817 * ssam_cplt_init() - Initialize completion system.
818 * @cplt: The completion system to initialize.
819 * @dev: The device used for logging.
820 */
ssam_cplt_init(struct ssam_cplt * cplt,struct device * dev)821 static int ssam_cplt_init(struct ssam_cplt *cplt, struct device *dev)
822 {
823 struct ssam_event_target *target;
824 int status, c, i;
825
826 cplt->dev = dev;
827
828 cplt->wq = alloc_workqueue(SSAM_CPLT_WQ_NAME, WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
829 if (!cplt->wq)
830 return -ENOMEM;
831
832 for (c = 0; c < ARRAY_SIZE(cplt->event.target); c++) {
833 target = &cplt->event.target[c];
834
835 for (i = 0; i < ARRAY_SIZE(target->queue); i++)
836 ssam_event_queue_init(cplt, &target->queue[i]);
837 }
838
839 status = ssam_nf_init(&cplt->event.notif);
840 if (status)
841 destroy_workqueue(cplt->wq);
842
843 return status;
844 }
845
846 /**
847 * ssam_cplt_destroy() - Deinitialize the completion system.
848 * @cplt: The completion system to deinitialize.
849 *
850 * Deinitialize the given completion system and ensure that all pending, i.e.
851 * yet-to-be-completed, event items and requests have been handled.
852 */
ssam_cplt_destroy(struct ssam_cplt * cplt)853 static void ssam_cplt_destroy(struct ssam_cplt *cplt)
854 {
855 /*
856 * Note: destroy_workqueue ensures that all currently queued work will
857 * be fully completed and the workqueue drained. This means that this
858 * call will inherently also free any queued ssam_event_items, thus we
859 * don't have to take care of that here explicitly.
860 */
861 destroy_workqueue(cplt->wq);
862 ssam_nf_destroy(&cplt->event.notif);
863 }
864
865
866 /* -- Main SSAM device structures. ------------------------------------------ */
867
868 /**
869 * ssam_controller_device() - Get the &struct device associated with this
870 * controller.
871 * @c: The controller for which to get the device.
872 *
873 * Return: Returns the &struct device associated with this controller,
874 * providing its lower-level transport.
875 */
ssam_controller_device(struct ssam_controller * c)876 struct device *ssam_controller_device(struct ssam_controller *c)
877 {
878 return ssh_rtl_get_device(&c->rtl);
879 }
880 EXPORT_SYMBOL_GPL(ssam_controller_device);
881
__ssam_controller_release(struct kref * kref)882 static void __ssam_controller_release(struct kref *kref)
883 {
884 struct ssam_controller *ctrl = to_ssam_controller(kref, kref);
885
886 /*
887 * The lock-call here is to satisfy lockdep. At this point we really
888 * expect this to be the last remaining reference to the controller.
889 * Anything else is a bug.
890 */
891 ssam_controller_lock(ctrl);
892 ssam_controller_destroy(ctrl);
893 ssam_controller_unlock(ctrl);
894
895 kfree(ctrl);
896 }
897
898 /**
899 * ssam_controller_get() - Increment reference count of controller.
900 * @c: The controller.
901 *
902 * Return: Returns the controller provided as input.
903 */
ssam_controller_get(struct ssam_controller * c)904 struct ssam_controller *ssam_controller_get(struct ssam_controller *c)
905 {
906 if (c)
907 kref_get(&c->kref);
908 return c;
909 }
910 EXPORT_SYMBOL_GPL(ssam_controller_get);
911
912 /**
913 * ssam_controller_put() - Decrement reference count of controller.
914 * @c: The controller.
915 */
ssam_controller_put(struct ssam_controller * c)916 void ssam_controller_put(struct ssam_controller *c)
917 {
918 if (c)
919 kref_put(&c->kref, __ssam_controller_release);
920 }
921 EXPORT_SYMBOL_GPL(ssam_controller_put);
922
923 /**
924 * ssam_controller_statelock() - Lock the controller against state transitions.
925 * @c: The controller to lock.
926 *
927 * Lock the controller against state transitions. Holding this lock guarantees
928 * that the controller will not transition between states, i.e. if the
929 * controller is in state "started", when this lock has been acquired, it will
930 * remain in this state at least until the lock has been released.
931 *
932 * Multiple clients may concurrently hold this lock. In other words: The
933 * ``statelock`` functions represent the read-lock part of a r/w-semaphore.
934 * Actions causing state transitions of the controller must be executed while
935 * holding the write-part of this r/w-semaphore (see ssam_controller_lock()
936 * and ssam_controller_unlock() for that).
937 *
938 * See ssam_controller_stateunlock() for the corresponding unlock function.
939 */
ssam_controller_statelock(struct ssam_controller * c)940 void ssam_controller_statelock(struct ssam_controller *c)
941 {
942 down_read(&c->lock);
943 }
944 EXPORT_SYMBOL_GPL(ssam_controller_statelock);
945
946 /**
947 * ssam_controller_stateunlock() - Unlock controller state transitions.
948 * @c: The controller to unlock.
949 *
950 * See ssam_controller_statelock() for the corresponding lock function.
951 */
ssam_controller_stateunlock(struct ssam_controller * c)952 void ssam_controller_stateunlock(struct ssam_controller *c)
953 {
954 up_read(&c->lock);
955 }
956 EXPORT_SYMBOL_GPL(ssam_controller_stateunlock);
957
958 /**
959 * ssam_controller_lock() - Acquire the main controller lock.
960 * @c: The controller to lock.
961 *
962 * This lock must be held for any state transitions, including transition to
963 * suspend/resumed states and during shutdown. See ssam_controller_statelock()
964 * for more details on controller locking.
965 *
966 * See ssam_controller_unlock() for the corresponding unlock function.
967 */
ssam_controller_lock(struct ssam_controller * c)968 void ssam_controller_lock(struct ssam_controller *c)
969 {
970 down_write(&c->lock);
971 }
972
973 /*
974 * ssam_controller_unlock() - Release the main controller lock.
975 * @c: The controller to unlock.
976 *
977 * See ssam_controller_lock() for the corresponding lock function.
978 */
ssam_controller_unlock(struct ssam_controller * c)979 void ssam_controller_unlock(struct ssam_controller *c)
980 {
981 up_write(&c->lock);
982 }
983
ssam_handle_event(struct ssh_rtl * rtl,const struct ssh_command * cmd,const struct ssam_span * data)984 static void ssam_handle_event(struct ssh_rtl *rtl,
985 const struct ssh_command *cmd,
986 const struct ssam_span *data)
987 {
988 struct ssam_controller *ctrl = to_ssam_controller(rtl, rtl);
989 struct ssam_event_item *item;
990
991 item = ssam_event_item_alloc(data->len, GFP_KERNEL);
992 if (!item)
993 return;
994
995 item->rqid = get_unaligned_le16(&cmd->rqid);
996 item->event.target_category = cmd->tc;
997 item->event.target_id = cmd->sid;
998 item->event.command_id = cmd->cid;
999 item->event.instance_id = cmd->iid;
1000 memcpy(&item->event.data[0], data->ptr, data->len);
1001
1002 if (WARN_ON(ssam_cplt_submit_event(&ctrl->cplt, item)))
1003 ssam_event_item_free(item);
1004 }
1005
1006 static const struct ssh_rtl_ops ssam_rtl_ops = {
1007 .handle_event = ssam_handle_event,
1008 };
1009
1010 static bool ssam_notifier_is_empty(struct ssam_controller *ctrl);
1011 static void ssam_notifier_unregister_all(struct ssam_controller *ctrl);
1012
1013 #define SSAM_SSH_DSM_REVISION 0
1014
1015 /* d5e383e1-d892-4a76-89fc-f6aaae7ed5b5 */
1016 static const guid_t SSAM_SSH_DSM_GUID =
1017 GUID_INIT(0xd5e383e1, 0xd892, 0x4a76,
1018 0x89, 0xfc, 0xf6, 0xaa, 0xae, 0x7e, 0xd5, 0xb5);
1019
1020 enum ssh_dsm_fn {
1021 SSH_DSM_FN_SSH_POWER_PROFILE = 0x05,
1022 SSH_DSM_FN_SCREEN_ON_SLEEP_IDLE_TIMEOUT = 0x06,
1023 SSH_DSM_FN_SCREEN_OFF_SLEEP_IDLE_TIMEOUT = 0x07,
1024 SSH_DSM_FN_D3_CLOSES_HANDLE = 0x08,
1025 SSH_DSM_FN_SSH_BUFFER_SIZE = 0x09,
1026 };
1027
ssam_dsm_get_functions(acpi_handle handle,u64 * funcs)1028 static int ssam_dsm_get_functions(acpi_handle handle, u64 *funcs)
1029 {
1030 union acpi_object *obj;
1031 u64 mask = 0;
1032 int i;
1033
1034 *funcs = 0;
1035
1036 /*
1037 * The _DSM function is only present on newer models. It is not
1038 * present on 5th and 6th generation devices (i.e. up to and including
1039 * Surface Pro 6, Surface Laptop 2, Surface Book 2).
1040 *
1041 * If the _DSM is not present, indicate that no function is supported.
1042 * This will result in default values being set.
1043 */
1044 if (!acpi_has_method(handle, "_DSM"))
1045 return 0;
1046
1047 obj = acpi_evaluate_dsm_typed(handle, &SSAM_SSH_DSM_GUID,
1048 SSAM_SSH_DSM_REVISION, 0, NULL,
1049 ACPI_TYPE_BUFFER);
1050 if (!obj)
1051 return -EIO;
1052
1053 for (i = 0; i < obj->buffer.length && i < 8; i++)
1054 mask |= (((u64)obj->buffer.pointer[i]) << (i * 8));
1055
1056 if (mask & BIT(0))
1057 *funcs = mask;
1058
1059 ACPI_FREE(obj);
1060 return 0;
1061 }
1062
ssam_dsm_load_u32(acpi_handle handle,u64 funcs,u64 func,u32 * ret)1063 static int ssam_dsm_load_u32(acpi_handle handle, u64 funcs, u64 func, u32 *ret)
1064 {
1065 union acpi_object *obj;
1066 u64 val;
1067
1068 if (!(funcs & BIT_ULL(func)))
1069 return 0; /* Not supported, leave *ret at its default value */
1070
1071 obj = acpi_evaluate_dsm_typed(handle, &SSAM_SSH_DSM_GUID,
1072 SSAM_SSH_DSM_REVISION, func, NULL,
1073 ACPI_TYPE_INTEGER);
1074 if (!obj)
1075 return -EIO;
1076
1077 val = obj->integer.value;
1078 ACPI_FREE(obj);
1079
1080 if (val > U32_MAX)
1081 return -ERANGE;
1082
1083 *ret = val;
1084 return 0;
1085 }
1086
1087 /**
1088 * ssam_controller_caps_load_from_acpi() - Load controller capabilities from
1089 * ACPI _DSM.
1090 * @handle: The handle of the ACPI controller/SSH device.
1091 * @caps: Where to store the capabilities in.
1092 *
1093 * Initializes the given controller capabilities with default values, then
1094 * checks and, if the respective _DSM functions are available, loads the
1095 * actual capabilities from the _DSM.
1096 *
1097 * Return: Returns zero on success, a negative error code on failure.
1098 */
1099 static
ssam_controller_caps_load_from_acpi(acpi_handle handle,struct ssam_controller_caps * caps)1100 int ssam_controller_caps_load_from_acpi(acpi_handle handle,
1101 struct ssam_controller_caps *caps)
1102 {
1103 u32 d3_closes_handle = false;
1104 u64 funcs;
1105 int status;
1106
1107 /* Set defaults. */
1108 caps->ssh_power_profile = U32_MAX;
1109 caps->screen_on_sleep_idle_timeout = U32_MAX;
1110 caps->screen_off_sleep_idle_timeout = U32_MAX;
1111 caps->d3_closes_handle = false;
1112 caps->ssh_buffer_size = U32_MAX;
1113
1114 /* Pre-load supported DSM functions. */
1115 status = ssam_dsm_get_functions(handle, &funcs);
1116 if (status)
1117 return status;
1118
1119 /* Load actual values from ACPI, if present. */
1120 status = ssam_dsm_load_u32(handle, funcs, SSH_DSM_FN_SSH_POWER_PROFILE,
1121 &caps->ssh_power_profile);
1122 if (status)
1123 return status;
1124
1125 status = ssam_dsm_load_u32(handle, funcs,
1126 SSH_DSM_FN_SCREEN_ON_SLEEP_IDLE_TIMEOUT,
1127 &caps->screen_on_sleep_idle_timeout);
1128 if (status)
1129 return status;
1130
1131 status = ssam_dsm_load_u32(handle, funcs,
1132 SSH_DSM_FN_SCREEN_OFF_SLEEP_IDLE_TIMEOUT,
1133 &caps->screen_off_sleep_idle_timeout);
1134 if (status)
1135 return status;
1136
1137 status = ssam_dsm_load_u32(handle, funcs, SSH_DSM_FN_D3_CLOSES_HANDLE,
1138 &d3_closes_handle);
1139 if (status)
1140 return status;
1141
1142 caps->d3_closes_handle = !!d3_closes_handle;
1143
1144 status = ssam_dsm_load_u32(handle, funcs, SSH_DSM_FN_SSH_BUFFER_SIZE,
1145 &caps->ssh_buffer_size);
1146 if (status)
1147 return status;
1148
1149 return 0;
1150 }
1151
1152 /**
1153 * ssam_controller_init() - Initialize SSAM controller.
1154 * @ctrl: The controller to initialize.
1155 * @serdev: The serial device representing the underlying data transport.
1156 *
1157 * Initializes the given controller. Does neither start receiver nor
1158 * transmitter threads. After this call, the controller has to be hooked up to
1159 * the serdev core separately via &struct serdev_device_ops, relaying calls to
1160 * ssam_controller_receive_buf() and ssam_controller_write_wakeup(). Once the
1161 * controller has been hooked up, transmitter and receiver threads may be
1162 * started via ssam_controller_start(). These setup steps need to be completed
1163 * before controller can be used for requests.
1164 */
ssam_controller_init(struct ssam_controller * ctrl,struct serdev_device * serdev)1165 int ssam_controller_init(struct ssam_controller *ctrl,
1166 struct serdev_device *serdev)
1167 {
1168 acpi_handle handle = ACPI_HANDLE(&serdev->dev);
1169 int status;
1170
1171 init_rwsem(&ctrl->lock);
1172 kref_init(&ctrl->kref);
1173
1174 status = ssam_controller_caps_load_from_acpi(handle, &ctrl->caps);
1175 if (status)
1176 return status;
1177
1178 dev_dbg(&serdev->dev,
1179 "device capabilities:\n"
1180 " ssh_power_profile: %u\n"
1181 " ssh_buffer_size: %u\n"
1182 " screen_on_sleep_idle_timeout: %u\n"
1183 " screen_off_sleep_idle_timeout: %u\n"
1184 " d3_closes_handle: %u\n",
1185 ctrl->caps.ssh_power_profile,
1186 ctrl->caps.ssh_buffer_size,
1187 ctrl->caps.screen_on_sleep_idle_timeout,
1188 ctrl->caps.screen_off_sleep_idle_timeout,
1189 ctrl->caps.d3_closes_handle);
1190
1191 ssh_seq_reset(&ctrl->counter.seq);
1192 ssh_rqid_reset(&ctrl->counter.rqid);
1193
1194 /* Initialize event/request completion system. */
1195 status = ssam_cplt_init(&ctrl->cplt, &serdev->dev);
1196 if (status)
1197 return status;
1198
1199 /* Initialize request and packet transport layers. */
1200 status = ssh_rtl_init(&ctrl->rtl, serdev, &ssam_rtl_ops);
1201 if (status) {
1202 ssam_cplt_destroy(&ctrl->cplt);
1203 return status;
1204 }
1205
1206 /*
1207 * Set state via write_once even though we expect to be in an
1208 * exclusive context, due to smoke-testing in
1209 * ssam_request_sync_submit().
1210 */
1211 WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_INITIALIZED);
1212 return 0;
1213 }
1214
1215 /**
1216 * ssam_controller_start() - Start the receiver and transmitter threads of the
1217 * controller.
1218 * @ctrl: The controller.
1219 *
1220 * Note: When this function is called, the controller should be properly
1221 * hooked up to the serdev core via &struct serdev_device_ops. Please refer
1222 * to ssam_controller_init() for more details on controller initialization.
1223 *
1224 * This function must be called with the main controller lock held (i.e. by
1225 * calling ssam_controller_lock()).
1226 */
ssam_controller_start(struct ssam_controller * ctrl)1227 int ssam_controller_start(struct ssam_controller *ctrl)
1228 {
1229 int status;
1230
1231 lockdep_assert_held_write(&ctrl->lock);
1232
1233 if (ctrl->state != SSAM_CONTROLLER_INITIALIZED)
1234 return -EINVAL;
1235
1236 status = ssh_rtl_start(&ctrl->rtl);
1237 if (status)
1238 return status;
1239
1240 /*
1241 * Set state via write_once even though we expect to be locked/in an
1242 * exclusive context, due to smoke-testing in
1243 * ssam_request_sync_submit().
1244 */
1245 WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_STARTED);
1246 return 0;
1247 }
1248
1249 /*
1250 * SSAM_CTRL_SHUTDOWN_FLUSH_TIMEOUT - Timeout for flushing requests during
1251 * shutdown.
1252 *
1253 * Chosen to be larger than one full request timeout, including packets timing
1254 * out. This value should give ample time to complete any outstanding requests
1255 * during normal operation and account for the odd package timeout.
1256 */
1257 #define SSAM_CTRL_SHUTDOWN_FLUSH_TIMEOUT msecs_to_jiffies(5000)
1258
1259 /**
1260 * ssam_controller_shutdown() - Shut down the controller.
1261 * @ctrl: The controller.
1262 *
1263 * Shuts down the controller by flushing all pending requests and stopping the
1264 * transmitter and receiver threads. All requests submitted after this call
1265 * will fail with %-ESHUTDOWN. While it is discouraged to do so, this function
1266 * is safe to use in parallel with ongoing request submission.
1267 *
1268 * In the course of this shutdown procedure, all currently registered
1269 * notifiers will be unregistered. It is, however, strongly recommended to not
1270 * rely on this behavior, and instead the party registering the notifier
1271 * should unregister it before the controller gets shut down, e.g. via the
1272 * SSAM bus which guarantees client devices to be removed before a shutdown.
1273 *
1274 * Note that events may still be pending after this call, but, due to the
1275 * notifiers being unregistered, these events will be dropped when the
1276 * controller is subsequently destroyed via ssam_controller_destroy().
1277 *
1278 * This function must be called with the main controller lock held (i.e. by
1279 * calling ssam_controller_lock()).
1280 */
ssam_controller_shutdown(struct ssam_controller * ctrl)1281 void ssam_controller_shutdown(struct ssam_controller *ctrl)
1282 {
1283 enum ssam_controller_state s = ctrl->state;
1284 int status;
1285
1286 lockdep_assert_held_write(&ctrl->lock);
1287
1288 if (s == SSAM_CONTROLLER_UNINITIALIZED || s == SSAM_CONTROLLER_STOPPED)
1289 return;
1290
1291 /*
1292 * Try to flush pending events and requests while everything still
1293 * works. Note: There may still be packets and/or requests in the
1294 * system after this call (e.g. via control packets submitted by the
1295 * packet transport layer or flush timeout / failure, ...). Those will
1296 * be handled with the ssh_rtl_shutdown() call below.
1297 */
1298 status = ssh_rtl_flush(&ctrl->rtl, SSAM_CTRL_SHUTDOWN_FLUSH_TIMEOUT);
1299 if (status) {
1300 ssam_err(ctrl, "failed to flush request transport layer: %d\n",
1301 status);
1302 }
1303
1304 /* Try to flush all currently completing requests and events. */
1305 ssam_cplt_flush(&ctrl->cplt);
1306
1307 /*
1308 * We expect all notifiers to have been removed by the respective client
1309 * driver that set them up at this point. If this warning occurs, some
1310 * client driver has not done that...
1311 */
1312 WARN_ON(!ssam_notifier_is_empty(ctrl));
1313
1314 /*
1315 * Nevertheless, we should still take care of drivers that don't behave
1316 * well. Thus disable all enabled events, unregister all notifiers.
1317 */
1318 ssam_notifier_unregister_all(ctrl);
1319
1320 /*
1321 * Cancel remaining requests. Ensure no new ones can be queued and stop
1322 * threads.
1323 */
1324 ssh_rtl_shutdown(&ctrl->rtl);
1325
1326 /*
1327 * Set state via write_once even though we expect to be locked/in an
1328 * exclusive context, due to smoke-testing in
1329 * ssam_request_sync_submit().
1330 */
1331 WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_STOPPED);
1332 ctrl->rtl.ptl.serdev = NULL;
1333 }
1334
1335 /**
1336 * ssam_controller_destroy() - Destroy the controller and free its resources.
1337 * @ctrl: The controller.
1338 *
1339 * Ensures that all resources associated with the controller get freed. This
1340 * function should only be called after the controller has been stopped via
1341 * ssam_controller_shutdown(). In general, this function should not be called
1342 * directly. The only valid place to call this function directly is during
1343 * initialization, before the controller has been fully initialized and passed
1344 * to other processes. This function is called automatically when the
1345 * reference count of the controller reaches zero.
1346 *
1347 * This function must be called with the main controller lock held (i.e. by
1348 * calling ssam_controller_lock()).
1349 */
ssam_controller_destroy(struct ssam_controller * ctrl)1350 void ssam_controller_destroy(struct ssam_controller *ctrl)
1351 {
1352 lockdep_assert_held_write(&ctrl->lock);
1353
1354 if (ctrl->state == SSAM_CONTROLLER_UNINITIALIZED)
1355 return;
1356
1357 WARN_ON(ctrl->state != SSAM_CONTROLLER_STOPPED);
1358
1359 /*
1360 * Note: New events could still have been received after the previous
1361 * flush in ssam_controller_shutdown, before the request transport layer
1362 * has been shut down. At this point, after the shutdown, we can be sure
1363 * that no new events will be queued. The call to ssam_cplt_destroy will
1364 * ensure that those remaining are being completed and freed.
1365 */
1366
1367 /* Actually free resources. */
1368 ssam_cplt_destroy(&ctrl->cplt);
1369 ssh_rtl_destroy(&ctrl->rtl);
1370
1371 /*
1372 * Set state via write_once even though we expect to be locked/in an
1373 * exclusive context, due to smoke-testing in
1374 * ssam_request_sync_submit().
1375 */
1376 WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_UNINITIALIZED);
1377 }
1378
1379 /**
1380 * ssam_controller_suspend() - Suspend the controller.
1381 * @ctrl: The controller to suspend.
1382 *
1383 * Marks the controller as suspended. Note that display-off and D0-exit
1384 * notifications have to be sent manually before transitioning the controller
1385 * into the suspended state via this function.
1386 *
1387 * See ssam_controller_resume() for the corresponding resume function.
1388 *
1389 * Return: Returns %-EINVAL if the controller is currently not in the
1390 * "started" state.
1391 */
ssam_controller_suspend(struct ssam_controller * ctrl)1392 int ssam_controller_suspend(struct ssam_controller *ctrl)
1393 {
1394 ssam_controller_lock(ctrl);
1395
1396 if (ctrl->state != SSAM_CONTROLLER_STARTED) {
1397 ssam_controller_unlock(ctrl);
1398 return -EINVAL;
1399 }
1400
1401 ssam_dbg(ctrl, "pm: suspending controller\n");
1402
1403 /*
1404 * Set state via write_once even though we're locked, due to
1405 * smoke-testing in ssam_request_sync_submit().
1406 */
1407 WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_SUSPENDED);
1408
1409 ssam_controller_unlock(ctrl);
1410 return 0;
1411 }
1412
1413 /**
1414 * ssam_controller_resume() - Resume the controller from suspend.
1415 * @ctrl: The controller to resume.
1416 *
1417 * Resume the controller from the suspended state it was put into via
1418 * ssam_controller_suspend(). This function does not issue display-on and
1419 * D0-entry notifications. If required, those have to be sent manually after
1420 * this call.
1421 *
1422 * Return: Returns %-EINVAL if the controller is currently not suspended.
1423 */
ssam_controller_resume(struct ssam_controller * ctrl)1424 int ssam_controller_resume(struct ssam_controller *ctrl)
1425 {
1426 ssam_controller_lock(ctrl);
1427
1428 if (ctrl->state != SSAM_CONTROLLER_SUSPENDED) {
1429 ssam_controller_unlock(ctrl);
1430 return -EINVAL;
1431 }
1432
1433 ssam_dbg(ctrl, "pm: resuming controller\n");
1434
1435 /*
1436 * Set state via write_once even though we're locked, due to
1437 * smoke-testing in ssam_request_sync_submit().
1438 */
1439 WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_STARTED);
1440
1441 ssam_controller_unlock(ctrl);
1442 return 0;
1443 }
1444
1445
1446 /* -- Top-level request interface ------------------------------------------- */
1447
1448 /**
1449 * ssam_request_write_data() - Construct and write SAM request message to
1450 * buffer.
1451 * @buf: The buffer to write the data to.
1452 * @ctrl: The controller via which the request will be sent.
1453 * @spec: The request data and specification.
1454 *
1455 * Constructs a SAM/SSH request message and writes it to the provided buffer.
1456 * The request and transport counters, specifically RQID and SEQ, will be set
1457 * in this call. These counters are obtained from the controller. It is thus
1458 * only valid to send the resulting message via the controller specified here.
1459 *
1460 * For calculation of the required buffer size, refer to the
1461 * SSH_COMMAND_MESSAGE_LENGTH() macro.
1462 *
1463 * Return: Returns the number of bytes used in the buffer on success. Returns
1464 * %-EINVAL if the payload length provided in the request specification is too
1465 * large (larger than %SSH_COMMAND_MAX_PAYLOAD_SIZE) or if the provided buffer
1466 * is too small.
1467 */
ssam_request_write_data(struct ssam_span * buf,struct ssam_controller * ctrl,const struct ssam_request * spec)1468 ssize_t ssam_request_write_data(struct ssam_span *buf,
1469 struct ssam_controller *ctrl,
1470 const struct ssam_request *spec)
1471 {
1472 struct msgbuf msgb;
1473 u16 rqid;
1474 u8 seq;
1475
1476 if (spec->length > SSH_COMMAND_MAX_PAYLOAD_SIZE)
1477 return -EINVAL;
1478
1479 if (SSH_COMMAND_MESSAGE_LENGTH(spec->length) > buf->len)
1480 return -EINVAL;
1481
1482 msgb_init(&msgb, buf->ptr, buf->len);
1483 seq = ssh_seq_next(&ctrl->counter.seq);
1484 rqid = ssh_rqid_next(&ctrl->counter.rqid);
1485 msgb_push_cmd(&msgb, seq, rqid, spec);
1486
1487 return msgb_bytes_used(&msgb);
1488 }
1489 EXPORT_SYMBOL_GPL(ssam_request_write_data);
1490
ssam_request_sync_complete(struct ssh_request * rqst,const struct ssh_command * cmd,const struct ssam_span * data,int status)1491 static void ssam_request_sync_complete(struct ssh_request *rqst,
1492 const struct ssh_command *cmd,
1493 const struct ssam_span *data, int status)
1494 {
1495 struct ssh_rtl *rtl = ssh_request_rtl(rqst);
1496 struct ssam_request_sync *r;
1497
1498 r = container_of(rqst, struct ssam_request_sync, base);
1499 r->status = status;
1500
1501 if (r->resp)
1502 r->resp->length = 0;
1503
1504 if (status) {
1505 rtl_dbg_cond(rtl, "rsp: request failed: %d\n", status);
1506 return;
1507 }
1508
1509 if (!data) /* Handle requests without a response. */
1510 return;
1511
1512 if (!r->resp || !r->resp->pointer) {
1513 if (data->len)
1514 rtl_warn(rtl, "rsp: no response buffer provided, dropping data\n");
1515 return;
1516 }
1517
1518 if (data->len > r->resp->capacity) {
1519 rtl_err(rtl,
1520 "rsp: response buffer too small, capacity: %zu bytes, got: %zu bytes\n",
1521 r->resp->capacity, data->len);
1522 r->status = -ENOSPC;
1523 return;
1524 }
1525
1526 r->resp->length = data->len;
1527 memcpy(r->resp->pointer, data->ptr, data->len);
1528 }
1529
ssam_request_sync_release(struct ssh_request * rqst)1530 static void ssam_request_sync_release(struct ssh_request *rqst)
1531 {
1532 complete_all(&container_of(rqst, struct ssam_request_sync, base)->comp);
1533 }
1534
1535 static const struct ssh_request_ops ssam_request_sync_ops = {
1536 .release = ssam_request_sync_release,
1537 .complete = ssam_request_sync_complete,
1538 };
1539
1540 /**
1541 * ssam_request_sync_alloc() - Allocate a synchronous request.
1542 * @payload_len: The length of the request payload.
1543 * @flags: Flags used for allocation.
1544 * @rqst: Where to store the pointer to the allocated request.
1545 * @buffer: Where to store the buffer descriptor for the message buffer of
1546 * the request.
1547 *
1548 * Allocates a synchronous request with corresponding message buffer. The
1549 * request still needs to be initialized ssam_request_sync_init() before
1550 * it can be submitted, and the message buffer data must still be set to the
1551 * returned buffer via ssam_request_sync_set_data() after it has been filled,
1552 * if need be with adjusted message length.
1553 *
1554 * After use, the request and its corresponding message buffer should be freed
1555 * via ssam_request_sync_free(). The buffer must not be freed separately.
1556 *
1557 * Return: Returns zero on success, %-ENOMEM if the request could not be
1558 * allocated.
1559 */
ssam_request_sync_alloc(size_t payload_len,gfp_t flags,struct ssam_request_sync ** rqst,struct ssam_span * buffer)1560 int ssam_request_sync_alloc(size_t payload_len, gfp_t flags,
1561 struct ssam_request_sync **rqst,
1562 struct ssam_span *buffer)
1563 {
1564 size_t msglen = SSH_COMMAND_MESSAGE_LENGTH(payload_len);
1565
1566 *rqst = kzalloc(sizeof(**rqst) + msglen, flags);
1567 if (!*rqst)
1568 return -ENOMEM;
1569
1570 buffer->ptr = (u8 *)(*rqst + 1);
1571 buffer->len = msglen;
1572
1573 return 0;
1574 }
1575 EXPORT_SYMBOL_GPL(ssam_request_sync_alloc);
1576
1577 /**
1578 * ssam_request_sync_free() - Free a synchronous request.
1579 * @rqst: The request to be freed.
1580 *
1581 * Free a synchronous request and its corresponding buffer allocated with
1582 * ssam_request_sync_alloc(). Do not use for requests allocated on the stack
1583 * or via any other function.
1584 *
1585 * Warning: The caller must ensure that the request is not in use any more.
1586 * I.e. the caller must ensure that it has the only reference to the request
1587 * and the request is not currently pending. This means that the caller has
1588 * either never submitted the request, request submission has failed, or the
1589 * caller has waited until the submitted request has been completed via
1590 * ssam_request_sync_wait().
1591 */
ssam_request_sync_free(struct ssam_request_sync * rqst)1592 void ssam_request_sync_free(struct ssam_request_sync *rqst)
1593 {
1594 kfree(rqst);
1595 }
1596 EXPORT_SYMBOL_GPL(ssam_request_sync_free);
1597
1598 /**
1599 * ssam_request_sync_init() - Initialize a synchronous request struct.
1600 * @rqst: The request to initialize.
1601 * @flags: The request flags.
1602 *
1603 * Initializes the given request struct. Does not initialize the request
1604 * message data. This has to be done explicitly after this call via
1605 * ssam_request_sync_set_data() and the actual message data has to be written
1606 * via ssam_request_write_data().
1607 *
1608 * Return: Returns zero on success or %-EINVAL if the given flags are invalid.
1609 */
ssam_request_sync_init(struct ssam_request_sync * rqst,enum ssam_request_flags flags)1610 int ssam_request_sync_init(struct ssam_request_sync *rqst,
1611 enum ssam_request_flags flags)
1612 {
1613 int status;
1614
1615 status = ssh_request_init(&rqst->base, flags, &ssam_request_sync_ops);
1616 if (status)
1617 return status;
1618
1619 init_completion(&rqst->comp);
1620 rqst->resp = NULL;
1621 rqst->status = 0;
1622
1623 return 0;
1624 }
1625 EXPORT_SYMBOL_GPL(ssam_request_sync_init);
1626
1627 /**
1628 * ssam_request_sync_submit() - Submit a synchronous request.
1629 * @ctrl: The controller with which to submit the request.
1630 * @rqst: The request to submit.
1631 *
1632 * Submit a synchronous request. The request has to be initialized and
1633 * properly set up, including response buffer (may be %NULL if no response is
1634 * expected) and command message data. This function does not wait for the
1635 * request to be completed.
1636 *
1637 * If this function succeeds, ssam_request_sync_wait() must be used to ensure
1638 * that the request has been completed before the response data can be
1639 * accessed and/or the request can be freed. On failure, the request may
1640 * immediately be freed.
1641 *
1642 * This function may only be used if the controller is active, i.e. has been
1643 * initialized and not suspended.
1644 */
ssam_request_sync_submit(struct ssam_controller * ctrl,struct ssam_request_sync * rqst)1645 int ssam_request_sync_submit(struct ssam_controller *ctrl,
1646 struct ssam_request_sync *rqst)
1647 {
1648 int status;
1649
1650 /*
1651 * This is only a superficial check. In general, the caller needs to
1652 * ensure that the controller is initialized and is not (and does not
1653 * get) suspended during use, i.e. until the request has been completed
1654 * (if _absolutely_ necessary, by use of ssam_controller_statelock/
1655 * ssam_controller_stateunlock, but something like ssam_client_link
1656 * should be preferred as this needs to last until the request has been
1657 * completed).
1658 *
1659 * Note that it is actually safe to use this function while the
1660 * controller is in the process of being shut down (as ssh_rtl_submit
1661 * is safe with regards to this), but it is generally discouraged to do
1662 * so.
1663 */
1664 if (WARN_ON(READ_ONCE(ctrl->state) != SSAM_CONTROLLER_STARTED)) {
1665 ssh_request_put(&rqst->base);
1666 return -ENODEV;
1667 }
1668
1669 status = ssh_rtl_submit(&ctrl->rtl, &rqst->base);
1670 ssh_request_put(&rqst->base);
1671
1672 return status;
1673 }
1674 EXPORT_SYMBOL_GPL(ssam_request_sync_submit);
1675
1676 /**
1677 * ssam_request_do_sync() - Execute a synchronous request.
1678 * @ctrl: The controller via which the request will be submitted.
1679 * @spec: The request specification and payload.
1680 * @rsp: The response buffer.
1681 *
1682 * Allocates a synchronous request with its message data buffer on the heap
1683 * via ssam_request_sync_alloc(), fully initializes it via the provided
1684 * request specification, submits it, and finally waits for its completion
1685 * before freeing it and returning its status.
1686 *
1687 * Return: Returns the status of the request or any failure during setup.
1688 */
ssam_request_do_sync(struct ssam_controller * ctrl,const struct ssam_request * spec,struct ssam_response * rsp)1689 int ssam_request_do_sync(struct ssam_controller *ctrl,
1690 const struct ssam_request *spec,
1691 struct ssam_response *rsp)
1692 {
1693 struct ssam_request_sync *rqst;
1694 struct ssam_span buf;
1695 ssize_t len;
1696 int status;
1697
1698 status = ssam_request_sync_alloc(spec->length, GFP_KERNEL, &rqst, &buf);
1699 if (status)
1700 return status;
1701
1702 status = ssam_request_sync_init(rqst, spec->flags);
1703 if (status) {
1704 ssam_request_sync_free(rqst);
1705 return status;
1706 }
1707
1708 ssam_request_sync_set_resp(rqst, rsp);
1709
1710 len = ssam_request_write_data(&buf, ctrl, spec);
1711 if (len < 0) {
1712 ssam_request_sync_free(rqst);
1713 return len;
1714 }
1715
1716 ssam_request_sync_set_data(rqst, buf.ptr, len);
1717
1718 status = ssam_request_sync_submit(ctrl, rqst);
1719 if (!status)
1720 status = ssam_request_sync_wait(rqst);
1721
1722 ssam_request_sync_free(rqst);
1723 return status;
1724 }
1725 EXPORT_SYMBOL_GPL(ssam_request_do_sync);
1726
1727 /**
1728 * ssam_request_do_sync_with_buffer() - Execute a synchronous request with the
1729 * provided buffer as back-end for the message buffer.
1730 * @ctrl: The controller via which the request will be submitted.
1731 * @spec: The request specification and payload.
1732 * @rsp: The response buffer.
1733 * @buf: The buffer for the request message data.
1734 *
1735 * Allocates a synchronous request struct on the stack, fully initializes it
1736 * using the provided buffer as message data buffer, submits it, and then
1737 * waits for its completion before returning its status. The
1738 * SSH_COMMAND_MESSAGE_LENGTH() macro can be used to compute the required
1739 * message buffer size.
1740 *
1741 * This function does essentially the same as ssam_request_do_sync(), but
1742 * instead of dynamically allocating the request and message data buffer, it
1743 * uses the provided message data buffer and stores the (small) request struct
1744 * on the heap.
1745 *
1746 * Return: Returns the status of the request or any failure during setup.
1747 */
ssam_request_do_sync_with_buffer(struct ssam_controller * ctrl,const struct ssam_request * spec,struct ssam_response * rsp,struct ssam_span * buf)1748 int ssam_request_do_sync_with_buffer(struct ssam_controller *ctrl,
1749 const struct ssam_request *spec,
1750 struct ssam_response *rsp,
1751 struct ssam_span *buf)
1752 {
1753 struct ssam_request_sync rqst;
1754 ssize_t len;
1755 int status;
1756
1757 status = ssam_request_sync_init(&rqst, spec->flags);
1758 if (status)
1759 return status;
1760
1761 ssam_request_sync_set_resp(&rqst, rsp);
1762
1763 len = ssam_request_write_data(buf, ctrl, spec);
1764 if (len < 0)
1765 return len;
1766
1767 ssam_request_sync_set_data(&rqst, buf->ptr, len);
1768
1769 status = ssam_request_sync_submit(ctrl, &rqst);
1770 if (!status)
1771 status = ssam_request_sync_wait(&rqst);
1772
1773 return status;
1774 }
1775 EXPORT_SYMBOL_GPL(ssam_request_do_sync_with_buffer);
1776
1777
1778 /* -- Internal SAM requests. ------------------------------------------------ */
1779
1780 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_get_firmware_version, __le32, {
1781 .target_category = SSAM_SSH_TC_SAM,
1782 .target_id = SSAM_SSH_TID_SAM,
1783 .command_id = 0x13,
1784 .instance_id = 0x00,
1785 });
1786
1787 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_display_off, u8, {
1788 .target_category = SSAM_SSH_TC_SAM,
1789 .target_id = SSAM_SSH_TID_SAM,
1790 .command_id = 0x15,
1791 .instance_id = 0x00,
1792 });
1793
1794 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_display_on, u8, {
1795 .target_category = SSAM_SSH_TC_SAM,
1796 .target_id = SSAM_SSH_TID_SAM,
1797 .command_id = 0x16,
1798 .instance_id = 0x00,
1799 });
1800
1801 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_d0_exit, u8, {
1802 .target_category = SSAM_SSH_TC_SAM,
1803 .target_id = SSAM_SSH_TID_SAM,
1804 .command_id = 0x33,
1805 .instance_id = 0x00,
1806 });
1807
1808 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_d0_entry, u8, {
1809 .target_category = SSAM_SSH_TC_SAM,
1810 .target_id = SSAM_SSH_TID_SAM,
1811 .command_id = 0x34,
1812 .instance_id = 0x00,
1813 });
1814
1815 /**
1816 * struct ssh_notification_params - Command payload to enable/disable SSH
1817 * notifications.
1818 * @target_category: The target category for which notifications should be
1819 * enabled/disabled.
1820 * @flags: Flags determining how notifications are being sent.
1821 * @request_id: The request ID that is used to send these notifications.
1822 * @instance_id: The specific instance in the given target category for
1823 * which notifications should be enabled.
1824 */
1825 struct ssh_notification_params {
1826 u8 target_category;
1827 u8 flags;
1828 __le16 request_id;
1829 u8 instance_id;
1830 } __packed;
1831
1832 static_assert(sizeof(struct ssh_notification_params) == 5);
1833
__ssam_ssh_event_request(struct ssam_controller * ctrl,struct ssam_event_registry reg,u8 cid,struct ssam_event_id id,u8 flags)1834 static int __ssam_ssh_event_request(struct ssam_controller *ctrl,
1835 struct ssam_event_registry reg, u8 cid,
1836 struct ssam_event_id id, u8 flags)
1837 {
1838 struct ssh_notification_params params;
1839 struct ssam_request rqst;
1840 struct ssam_response result;
1841 int status;
1842
1843 u16 rqid = ssh_tc_to_rqid(id.target_category);
1844 u8 buf = 0;
1845
1846 /* Only allow RQIDs that lie within the event spectrum. */
1847 if (!ssh_rqid_is_event(rqid))
1848 return -EINVAL;
1849
1850 params.target_category = id.target_category;
1851 params.instance_id = id.instance;
1852 params.flags = flags;
1853 put_unaligned_le16(rqid, ¶ms.request_id);
1854
1855 rqst.target_category = reg.target_category;
1856 rqst.target_id = reg.target_id;
1857 rqst.command_id = cid;
1858 rqst.instance_id = 0x00;
1859 rqst.flags = SSAM_REQUEST_HAS_RESPONSE;
1860 rqst.length = sizeof(params);
1861 rqst.payload = (u8 *)¶ms;
1862
1863 result.capacity = sizeof(buf);
1864 result.length = 0;
1865 result.pointer = &buf;
1866
1867 status = ssam_retry(ssam_request_do_sync_onstack, ctrl, &rqst, &result,
1868 sizeof(params));
1869
1870 return status < 0 ? status : buf;
1871 }
1872
1873 /**
1874 * ssam_ssh_event_enable() - Enable SSH event.
1875 * @ctrl: The controller for which to enable the event.
1876 * @reg: The event registry describing what request to use for enabling and
1877 * disabling the event.
1878 * @id: The event identifier.
1879 * @flags: The event flags.
1880 *
1881 * Enables the specified event on the EC. This function does not manage
1882 * reference counting of enabled events and is basically only a wrapper for
1883 * the raw EC request. If the specified event is already enabled, the EC will
1884 * ignore this request.
1885 *
1886 * Return: Returns the status of the executed SAM request (zero on success and
1887 * negative on direct failure) or %-EPROTO if the request response indicates a
1888 * failure.
1889 */
ssam_ssh_event_enable(struct ssam_controller * ctrl,struct ssam_event_registry reg,struct ssam_event_id id,u8 flags)1890 static int ssam_ssh_event_enable(struct ssam_controller *ctrl,
1891 struct ssam_event_registry reg,
1892 struct ssam_event_id id, u8 flags)
1893 {
1894 int status;
1895
1896 status = __ssam_ssh_event_request(ctrl, reg, reg.cid_enable, id, flags);
1897
1898 if (status < 0 && status != -EINVAL) {
1899 ssam_err(ctrl,
1900 "failed to enable event source (tc: %#04x, iid: %#04x, reg: %#04x)\n",
1901 id.target_category, id.instance, reg.target_category);
1902 }
1903
1904 if (status > 0) {
1905 ssam_err(ctrl,
1906 "unexpected result while enabling event source: %#04x (tc: %#04x, iid: %#04x, reg: %#04x)\n",
1907 status, id.target_category, id.instance, reg.target_category);
1908 return -EPROTO;
1909 }
1910
1911 return status;
1912 }
1913
1914 /**
1915 * ssam_ssh_event_disable() - Disable SSH event.
1916 * @ctrl: The controller for which to disable the event.
1917 * @reg: The event registry describing what request to use for enabling and
1918 * disabling the event (must be same as used when enabling the event).
1919 * @id: The event identifier.
1920 * @flags: The event flags (likely ignored for disabling of events).
1921 *
1922 * Disables the specified event on the EC. This function does not manage
1923 * reference counting of enabled events and is basically only a wrapper for
1924 * the raw EC request. If the specified event is already disabled, the EC will
1925 * ignore this request.
1926 *
1927 * Return: Returns the status of the executed SAM request (zero on success and
1928 * negative on direct failure) or %-EPROTO if the request response indicates a
1929 * failure.
1930 */
ssam_ssh_event_disable(struct ssam_controller * ctrl,struct ssam_event_registry reg,struct ssam_event_id id,u8 flags)1931 static int ssam_ssh_event_disable(struct ssam_controller *ctrl,
1932 struct ssam_event_registry reg,
1933 struct ssam_event_id id, u8 flags)
1934 {
1935 int status;
1936
1937 status = __ssam_ssh_event_request(ctrl, reg, reg.cid_disable, id, flags);
1938
1939 if (status < 0 && status != -EINVAL) {
1940 ssam_err(ctrl,
1941 "failed to disable event source (tc: %#04x, iid: %#04x, reg: %#04x)\n",
1942 id.target_category, id.instance, reg.target_category);
1943 }
1944
1945 if (status > 0) {
1946 ssam_err(ctrl,
1947 "unexpected result while disabling event source: %#04x (tc: %#04x, iid: %#04x, reg: %#04x)\n",
1948 status, id.target_category, id.instance, reg.target_category);
1949 return -EPROTO;
1950 }
1951
1952 return status;
1953 }
1954
1955
1956 /* -- Wrappers for internal SAM requests. ----------------------------------- */
1957
1958 /**
1959 * ssam_get_firmware_version() - Get the SAM/EC firmware version.
1960 * @ctrl: The controller.
1961 * @version: Where to store the version number.
1962 *
1963 * Return: Returns zero on success or the status of the executed SAM request
1964 * if that request failed.
1965 */
ssam_get_firmware_version(struct ssam_controller * ctrl,u32 * version)1966 int ssam_get_firmware_version(struct ssam_controller *ctrl, u32 *version)
1967 {
1968 __le32 __version;
1969 int status;
1970
1971 status = ssam_retry(ssam_ssh_get_firmware_version, ctrl, &__version);
1972 if (status)
1973 return status;
1974
1975 *version = le32_to_cpu(__version);
1976 return 0;
1977 }
1978
1979 /**
1980 * ssam_ctrl_notif_display_off() - Notify EC that the display has been turned
1981 * off.
1982 * @ctrl: The controller.
1983 *
1984 * Notify the EC that the display has been turned off and the driver may enter
1985 * a lower-power state. This will prevent events from being sent directly.
1986 * Rather, the EC signals an event by pulling the wakeup GPIO high for as long
1987 * as there are pending events. The events then need to be manually released,
1988 * one by one, via the GPIO callback request. All pending events accumulated
1989 * during this state can also be released by issuing the display-on
1990 * notification, e.g. via ssam_ctrl_notif_display_on(), which will also reset
1991 * the GPIO.
1992 *
1993 * On some devices, specifically ones with an integrated keyboard, the keyboard
1994 * backlight will be turned off by this call.
1995 *
1996 * This function will only send the display-off notification command if
1997 * display notifications are supported by the EC. Currently all known devices
1998 * support these notifications.
1999 *
2000 * Use ssam_ctrl_notif_display_on() to reverse the effects of this function.
2001 *
2002 * Return: Returns zero on success or if no request has been executed, the
2003 * status of the executed SAM request if that request failed, or %-EPROTO if
2004 * an unexpected response has been received.
2005 */
ssam_ctrl_notif_display_off(struct ssam_controller * ctrl)2006 int ssam_ctrl_notif_display_off(struct ssam_controller *ctrl)
2007 {
2008 int status;
2009 u8 response;
2010
2011 ssam_dbg(ctrl, "pm: notifying display off\n");
2012
2013 status = ssam_retry(ssam_ssh_notif_display_off, ctrl, &response);
2014 if (status)
2015 return status;
2016
2017 if (response != 0) {
2018 ssam_err(ctrl, "unexpected response from display-off notification: %#04x\n",
2019 response);
2020 return -EPROTO;
2021 }
2022
2023 return 0;
2024 }
2025
2026 /**
2027 * ssam_ctrl_notif_display_on() - Notify EC that the display has been turned on.
2028 * @ctrl: The controller.
2029 *
2030 * Notify the EC that the display has been turned back on and the driver has
2031 * exited its lower-power state. This notification is the counterpart to the
2032 * display-off notification sent via ssam_ctrl_notif_display_off() and will
2033 * reverse its effects, including resetting events to their default behavior.
2034 *
2035 * This function will only send the display-on notification command if display
2036 * notifications are supported by the EC. Currently all known devices support
2037 * these notifications.
2038 *
2039 * See ssam_ctrl_notif_display_off() for more details.
2040 *
2041 * Return: Returns zero on success or if no request has been executed, the
2042 * status of the executed SAM request if that request failed, or %-EPROTO if
2043 * an unexpected response has been received.
2044 */
ssam_ctrl_notif_display_on(struct ssam_controller * ctrl)2045 int ssam_ctrl_notif_display_on(struct ssam_controller *ctrl)
2046 {
2047 int status;
2048 u8 response;
2049
2050 ssam_dbg(ctrl, "pm: notifying display on\n");
2051
2052 status = ssam_retry(ssam_ssh_notif_display_on, ctrl, &response);
2053 if (status)
2054 return status;
2055
2056 if (response != 0) {
2057 ssam_err(ctrl, "unexpected response from display-on notification: %#04x\n",
2058 response);
2059 return -EPROTO;
2060 }
2061
2062 return 0;
2063 }
2064
2065 /**
2066 * ssam_ctrl_notif_d0_exit() - Notify EC that the driver/device exits the D0
2067 * power state.
2068 * @ctrl: The controller
2069 *
2070 * Notifies the EC that the driver prepares to exit the D0 power state in
2071 * favor of a lower-power state. Exact effects of this function related to the
2072 * EC are currently unknown.
2073 *
2074 * This function will only send the D0-exit notification command if D0-state
2075 * notifications are supported by the EC. Only newer Surface generations
2076 * support these notifications.
2077 *
2078 * Use ssam_ctrl_notif_d0_entry() to reverse the effects of this function.
2079 *
2080 * Return: Returns zero on success or if no request has been executed, the
2081 * status of the executed SAM request if that request failed, or %-EPROTO if
2082 * an unexpected response has been received.
2083 */
ssam_ctrl_notif_d0_exit(struct ssam_controller * ctrl)2084 int ssam_ctrl_notif_d0_exit(struct ssam_controller *ctrl)
2085 {
2086 int status;
2087 u8 response;
2088
2089 if (!ctrl->caps.d3_closes_handle)
2090 return 0;
2091
2092 ssam_dbg(ctrl, "pm: notifying D0 exit\n");
2093
2094 status = ssam_retry(ssam_ssh_notif_d0_exit, ctrl, &response);
2095 if (status)
2096 return status;
2097
2098 if (response != 0) {
2099 ssam_err(ctrl, "unexpected response from D0-exit notification: %#04x\n",
2100 response);
2101 return -EPROTO;
2102 }
2103
2104 return 0;
2105 }
2106
2107 /**
2108 * ssam_ctrl_notif_d0_entry() - Notify EC that the driver/device enters the D0
2109 * power state.
2110 * @ctrl: The controller
2111 *
2112 * Notifies the EC that the driver has exited a lower-power state and entered
2113 * the D0 power state. Exact effects of this function related to the EC are
2114 * currently unknown.
2115 *
2116 * This function will only send the D0-entry notification command if D0-state
2117 * notifications are supported by the EC. Only newer Surface generations
2118 * support these notifications.
2119 *
2120 * See ssam_ctrl_notif_d0_exit() for more details.
2121 *
2122 * Return: Returns zero on success or if no request has been executed, the
2123 * status of the executed SAM request if that request failed, or %-EPROTO if
2124 * an unexpected response has been received.
2125 */
ssam_ctrl_notif_d0_entry(struct ssam_controller * ctrl)2126 int ssam_ctrl_notif_d0_entry(struct ssam_controller *ctrl)
2127 {
2128 int status;
2129 u8 response;
2130
2131 if (!ctrl->caps.d3_closes_handle)
2132 return 0;
2133
2134 ssam_dbg(ctrl, "pm: notifying D0 entry\n");
2135
2136 status = ssam_retry(ssam_ssh_notif_d0_entry, ctrl, &response);
2137 if (status)
2138 return status;
2139
2140 if (response != 0) {
2141 ssam_err(ctrl, "unexpected response from D0-entry notification: %#04x\n",
2142 response);
2143 return -EPROTO;
2144 }
2145
2146 return 0;
2147 }
2148
2149
2150 /* -- Top-level event registry interface. ----------------------------------- */
2151
2152 /**
2153 * ssam_nf_refcount_enable() - Enable event for reference count entry if it has
2154 * not already been enabled.
2155 * @ctrl: The controller to enable the event on.
2156 * @entry: The reference count entry for the event to be enabled.
2157 * @flags: The flags used for enabling the event on the EC.
2158 *
2159 * Enable the event associated with the given reference count entry if the
2160 * reference count equals one, i.e. the event has not previously been enabled.
2161 * If the event has already been enabled (i.e. reference count not equal to
2162 * one), check that the flags used for enabling match and warn about this if
2163 * they do not.
2164 *
2165 * This does not modify the reference count itself, which is done with
2166 * ssam_nf_refcount_inc() / ssam_nf_refcount_dec().
2167 *
2168 * Note: ``nf->lock`` must be held when calling this function.
2169 *
2170 * Return: Returns zero on success. If the event is enabled by this call,
2171 * returns the status of the event-enable EC command.
2172 */
ssam_nf_refcount_enable(struct ssam_controller * ctrl,struct ssam_nf_refcount_entry * entry,u8 flags)2173 static int ssam_nf_refcount_enable(struct ssam_controller *ctrl,
2174 struct ssam_nf_refcount_entry *entry, u8 flags)
2175 {
2176 const struct ssam_event_registry reg = entry->key.reg;
2177 const struct ssam_event_id id = entry->key.id;
2178 struct ssam_nf *nf = &ctrl->cplt.event.notif;
2179 int status;
2180
2181 lockdep_assert_held(&nf->lock);
2182
2183 ssam_dbg(ctrl, "enabling event (reg: %#04x, tc: %#04x, iid: %#04x, rc: %d)\n",
2184 reg.target_category, id.target_category, id.instance, entry->refcount);
2185
2186 if (entry->refcount == 1) {
2187 status = ssam_ssh_event_enable(ctrl, reg, id, flags);
2188 if (status)
2189 return status;
2190
2191 entry->flags = flags;
2192
2193 } else if (entry->flags != flags) {
2194 ssam_warn(ctrl,
2195 "inconsistent flags when enabling event: got %#04x, expected %#04x (reg: %#04x, tc: %#04x, iid: %#04x)\n",
2196 flags, entry->flags, reg.target_category, id.target_category,
2197 id.instance);
2198 }
2199
2200 return 0;
2201 }
2202
2203 /**
2204 * ssam_nf_refcount_disable_free() - Disable event for reference count entry if
2205 * it is no longer in use and free the corresponding entry.
2206 * @ctrl: The controller to disable the event on.
2207 * @entry: The reference count entry for the event to be disabled.
2208 * @flags: The flags used for enabling the event on the EC.
2209 * @ec: Flag specifying if the event should actually be disabled on the EC.
2210 *
2211 * If ``ec`` equals ``true`` and the reference count equals zero (i.e. the
2212 * event is no longer requested by any client), the specified event will be
2213 * disabled on the EC via the corresponding request.
2214 *
2215 * If ``ec`` equals ``false``, no request will be sent to the EC and the event
2216 * can be considered in a detached state (i.e. no longer used but still
2217 * enabled). Disabling an event via this method may be required for
2218 * hot-removable devices, where event disable requests may time out after the
2219 * device has been physically removed.
2220 *
2221 * In both cases, if the reference count equals zero, the corresponding
2222 * reference count entry will be freed. The reference count entry must not be
2223 * used any more after a call to this function.
2224 *
2225 * Also checks if the flags used for disabling the event match the flags used
2226 * for enabling the event and warns if they do not (regardless of reference
2227 * count).
2228 *
2229 * This does not modify the reference count itself, which is done with
2230 * ssam_nf_refcount_inc() / ssam_nf_refcount_dec().
2231 *
2232 * Note: ``nf->lock`` must be held when calling this function.
2233 *
2234 * Return: Returns zero on success. If the event is disabled by this call,
2235 * returns the status of the event-enable EC command.
2236 */
ssam_nf_refcount_disable_free(struct ssam_controller * ctrl,struct ssam_nf_refcount_entry * entry,u8 flags,bool ec)2237 static int ssam_nf_refcount_disable_free(struct ssam_controller *ctrl,
2238 struct ssam_nf_refcount_entry *entry, u8 flags, bool ec)
2239 {
2240 const struct ssam_event_registry reg = entry->key.reg;
2241 const struct ssam_event_id id = entry->key.id;
2242 struct ssam_nf *nf = &ctrl->cplt.event.notif;
2243 int status = 0;
2244
2245 lockdep_assert_held(&nf->lock);
2246
2247 ssam_dbg(ctrl, "%s event (reg: %#04x, tc: %#04x, iid: %#04x, rc: %d)\n",
2248 ec ? "disabling" : "detaching", reg.target_category, id.target_category,
2249 id.instance, entry->refcount);
2250
2251 if (entry->flags != flags) {
2252 ssam_warn(ctrl,
2253 "inconsistent flags when disabling event: got %#04x, expected %#04x (reg: %#04x, tc: %#04x, iid: %#04x)\n",
2254 flags, entry->flags, reg.target_category, id.target_category,
2255 id.instance);
2256 }
2257
2258 if (ec && entry->refcount == 0) {
2259 status = ssam_ssh_event_disable(ctrl, reg, id, flags);
2260 kfree(entry);
2261 }
2262
2263 return status;
2264 }
2265
2266 /**
2267 * ssam_notifier_register() - Register an event notifier.
2268 * @ctrl: The controller to register the notifier on.
2269 * @n: The event notifier to register.
2270 *
2271 * Register an event notifier. Increment the usage counter of the associated
2272 * SAM event if the notifier is not marked as an observer. If the event is not
2273 * marked as an observer and is currently not enabled, it will be enabled
2274 * during this call. If the notifier is marked as an observer, no attempt will
2275 * be made at enabling any event and no reference count will be modified.
2276 *
2277 * Notifiers marked as observers do not need to be associated with one specific
2278 * event, i.e. as long as no event matching is performed, only the event target
2279 * category needs to be set.
2280 *
2281 * Return: Returns zero on success, %-ENOSPC if there have already been
2282 * %INT_MAX notifiers for the event ID/type associated with the notifier block
2283 * registered, %-ENOMEM if the corresponding event entry could not be
2284 * allocated. If this is the first time that a notifier block is registered
2285 * for the specific associated event, returns the status of the event-enable
2286 * EC-command.
2287 */
ssam_notifier_register(struct ssam_controller * ctrl,struct ssam_event_notifier * n)2288 int ssam_notifier_register(struct ssam_controller *ctrl, struct ssam_event_notifier *n)
2289 {
2290 u16 rqid = ssh_tc_to_rqid(n->event.id.target_category);
2291 struct ssam_nf_refcount_entry *entry = NULL;
2292 struct ssam_nf_head *nf_head;
2293 struct ssam_nf *nf;
2294 int status;
2295
2296 if (!ssh_rqid_is_event(rqid))
2297 return -EINVAL;
2298
2299 nf = &ctrl->cplt.event.notif;
2300 nf_head = &nf->head[ssh_rqid_to_event(rqid)];
2301
2302 mutex_lock(&nf->lock);
2303
2304 if (!(n->flags & SSAM_EVENT_NOTIFIER_OBSERVER)) {
2305 entry = ssam_nf_refcount_inc(nf, n->event.reg, n->event.id);
2306 if (IS_ERR(entry)) {
2307 mutex_unlock(&nf->lock);
2308 return PTR_ERR(entry);
2309 }
2310 }
2311
2312 status = ssam_nfblk_insert(nf_head, &n->base);
2313 if (status) {
2314 if (entry)
2315 ssam_nf_refcount_dec_free(nf, n->event.reg, n->event.id);
2316
2317 mutex_unlock(&nf->lock);
2318 return status;
2319 }
2320
2321 if (entry) {
2322 status = ssam_nf_refcount_enable(ctrl, entry, n->event.flags);
2323 if (status) {
2324 ssam_nfblk_remove(&n->base);
2325 ssam_nf_refcount_dec_free(nf, n->event.reg, n->event.id);
2326 mutex_unlock(&nf->lock);
2327 synchronize_srcu(&nf_head->srcu);
2328 return status;
2329 }
2330 }
2331
2332 mutex_unlock(&nf->lock);
2333 return 0;
2334 }
2335 EXPORT_SYMBOL_GPL(ssam_notifier_register);
2336
2337 /**
2338 * __ssam_notifier_unregister() - Unregister an event notifier.
2339 * @ctrl: The controller the notifier has been registered on.
2340 * @n: The event notifier to unregister.
2341 * @disable: Whether to disable the corresponding event on the EC.
2342 *
2343 * Unregister an event notifier. Decrement the usage counter of the associated
2344 * SAM event if the notifier is not marked as an observer. If the usage counter
2345 * reaches zero and ``disable`` equals ``true``, the event will be disabled.
2346 *
2347 * Useful for hot-removable devices, where communication may fail once the
2348 * device has been physically removed. In that case, specifying ``disable`` as
2349 * ``false`` avoids communication with the EC.
2350 *
2351 * Return: Returns zero on success, %-ENOENT if the given notifier block has
2352 * not been registered on the controller. If the given notifier block was the
2353 * last one associated with its specific event, returns the status of the
2354 * event-disable EC-command.
2355 */
__ssam_notifier_unregister(struct ssam_controller * ctrl,struct ssam_event_notifier * n,bool disable)2356 int __ssam_notifier_unregister(struct ssam_controller *ctrl, struct ssam_event_notifier *n,
2357 bool disable)
2358 {
2359 u16 rqid = ssh_tc_to_rqid(n->event.id.target_category);
2360 struct ssam_nf_refcount_entry *entry;
2361 struct ssam_nf_head *nf_head;
2362 struct ssam_nf *nf;
2363 int status = 0;
2364
2365 if (!ssh_rqid_is_event(rqid))
2366 return -EINVAL;
2367
2368 nf = &ctrl->cplt.event.notif;
2369 nf_head = &nf->head[ssh_rqid_to_event(rqid)];
2370
2371 mutex_lock(&nf->lock);
2372
2373 if (!ssam_nfblk_find(nf_head, &n->base)) {
2374 mutex_unlock(&nf->lock);
2375 return -ENOENT;
2376 }
2377
2378 /*
2379 * If this is an observer notifier, do not attempt to disable the
2380 * event, just remove it.
2381 */
2382 if (!(n->flags & SSAM_EVENT_NOTIFIER_OBSERVER)) {
2383 entry = ssam_nf_refcount_dec(nf, n->event.reg, n->event.id);
2384 if (WARN_ON(!entry)) {
2385 /*
2386 * If this does not return an entry, there's a logic
2387 * error somewhere: The notifier block is registered,
2388 * but the event refcount entry is not there. Remove
2389 * the notifier block anyways.
2390 */
2391 status = -ENOENT;
2392 goto remove;
2393 }
2394
2395 status = ssam_nf_refcount_disable_free(ctrl, entry, n->event.flags, disable);
2396 }
2397
2398 remove:
2399 ssam_nfblk_remove(&n->base);
2400 mutex_unlock(&nf->lock);
2401 synchronize_srcu(&nf_head->srcu);
2402
2403 return status;
2404 }
2405 EXPORT_SYMBOL_GPL(__ssam_notifier_unregister);
2406
2407 /**
2408 * ssam_controller_event_enable() - Enable the specified event.
2409 * @ctrl: The controller to enable the event for.
2410 * @reg: The event registry to use for enabling the event.
2411 * @id: The event ID specifying the event to be enabled.
2412 * @flags: The SAM event flags used for enabling the event.
2413 *
2414 * Increment the event reference count of the specified event. If the event has
2415 * not been enabled previously, it will be enabled by this call.
2416 *
2417 * Note: In general, ssam_notifier_register() with a non-observer notifier
2418 * should be preferred for enabling/disabling events, as this will guarantee
2419 * proper ordering and event forwarding in case of errors during event
2420 * enabling/disabling.
2421 *
2422 * Return: Returns zero on success, %-ENOSPC if the reference count for the
2423 * specified event has reached its maximum, %-ENOMEM if the corresponding event
2424 * entry could not be allocated. If this is the first time that this event has
2425 * been enabled (i.e. the reference count was incremented from zero to one by
2426 * this call), returns the status of the event-enable EC-command.
2427 */
ssam_controller_event_enable(struct ssam_controller * ctrl,struct ssam_event_registry reg,struct ssam_event_id id,u8 flags)2428 int ssam_controller_event_enable(struct ssam_controller *ctrl,
2429 struct ssam_event_registry reg,
2430 struct ssam_event_id id, u8 flags)
2431 {
2432 u16 rqid = ssh_tc_to_rqid(id.target_category);
2433 struct ssam_nf *nf = &ctrl->cplt.event.notif;
2434 struct ssam_nf_refcount_entry *entry;
2435 int status;
2436
2437 if (!ssh_rqid_is_event(rqid))
2438 return -EINVAL;
2439
2440 mutex_lock(&nf->lock);
2441
2442 entry = ssam_nf_refcount_inc(nf, reg, id);
2443 if (IS_ERR(entry)) {
2444 mutex_unlock(&nf->lock);
2445 return PTR_ERR(entry);
2446 }
2447
2448 status = ssam_nf_refcount_enable(ctrl, entry, flags);
2449 if (status) {
2450 ssam_nf_refcount_dec_free(nf, reg, id);
2451 mutex_unlock(&nf->lock);
2452 return status;
2453 }
2454
2455 mutex_unlock(&nf->lock);
2456 return 0;
2457 }
2458 EXPORT_SYMBOL_GPL(ssam_controller_event_enable);
2459
2460 /**
2461 * ssam_controller_event_disable() - Disable the specified event.
2462 * @ctrl: The controller to disable the event for.
2463 * @reg: The event registry to use for disabling the event.
2464 * @id: The event ID specifying the event to be disabled.
2465 * @flags: The flags used when enabling the event.
2466 *
2467 * Decrement the reference count of the specified event. If the reference count
2468 * reaches zero, the event will be disabled.
2469 *
2470 * Note: In general, ssam_notifier_register()/ssam_notifier_unregister() with a
2471 * non-observer notifier should be preferred for enabling/disabling events, as
2472 * this will guarantee proper ordering and event forwarding in case of errors
2473 * during event enabling/disabling.
2474 *
2475 * Return: Returns zero on success, %-ENOENT if the given event has not been
2476 * enabled on the controller. If the reference count of the event reaches zero
2477 * during this call, returns the status of the event-disable EC-command.
2478 */
ssam_controller_event_disable(struct ssam_controller * ctrl,struct ssam_event_registry reg,struct ssam_event_id id,u8 flags)2479 int ssam_controller_event_disable(struct ssam_controller *ctrl,
2480 struct ssam_event_registry reg,
2481 struct ssam_event_id id, u8 flags)
2482 {
2483 u16 rqid = ssh_tc_to_rqid(id.target_category);
2484 struct ssam_nf *nf = &ctrl->cplt.event.notif;
2485 struct ssam_nf_refcount_entry *entry;
2486 int status;
2487
2488 if (!ssh_rqid_is_event(rqid))
2489 return -EINVAL;
2490
2491 mutex_lock(&nf->lock);
2492
2493 entry = ssam_nf_refcount_dec(nf, reg, id);
2494 if (!entry) {
2495 mutex_unlock(&nf->lock);
2496 return -ENOENT;
2497 }
2498
2499 status = ssam_nf_refcount_disable_free(ctrl, entry, flags, true);
2500
2501 mutex_unlock(&nf->lock);
2502 return status;
2503 }
2504 EXPORT_SYMBOL_GPL(ssam_controller_event_disable);
2505
2506 /**
2507 * ssam_notifier_disable_registered() - Disable events for all registered
2508 * notifiers.
2509 * @ctrl: The controller for which to disable the notifiers/events.
2510 *
2511 * Disables events for all currently registered notifiers. In case of an error
2512 * (EC command failing), all previously disabled events will be restored and
2513 * the error code returned.
2514 *
2515 * This function is intended to disable all events prior to hibernation entry.
2516 * See ssam_notifier_restore_registered() to restore/re-enable all events
2517 * disabled with this function.
2518 *
2519 * Note that this function will not disable events for notifiers registered
2520 * after calling this function. It should thus be made sure that no new
2521 * notifiers are going to be added after this call and before the corresponding
2522 * call to ssam_notifier_restore_registered().
2523 *
2524 * Return: Returns zero on success. In case of failure returns the error code
2525 * returned by the failed EC command to disable an event.
2526 */
ssam_notifier_disable_registered(struct ssam_controller * ctrl)2527 int ssam_notifier_disable_registered(struct ssam_controller *ctrl)
2528 {
2529 struct ssam_nf *nf = &ctrl->cplt.event.notif;
2530 struct rb_node *n;
2531 int status;
2532
2533 mutex_lock(&nf->lock);
2534 for (n = rb_first(&nf->refcount); n; n = rb_next(n)) {
2535 struct ssam_nf_refcount_entry *e;
2536
2537 e = rb_entry(n, struct ssam_nf_refcount_entry, node);
2538 status = ssam_ssh_event_disable(ctrl, e->key.reg,
2539 e->key.id, e->flags);
2540 if (status)
2541 goto err;
2542 }
2543 mutex_unlock(&nf->lock);
2544
2545 return 0;
2546
2547 err:
2548 for (n = rb_prev(n); n; n = rb_prev(n)) {
2549 struct ssam_nf_refcount_entry *e;
2550
2551 e = rb_entry(n, struct ssam_nf_refcount_entry, node);
2552 ssam_ssh_event_enable(ctrl, e->key.reg, e->key.id, e->flags);
2553 }
2554 mutex_unlock(&nf->lock);
2555
2556 return status;
2557 }
2558
2559 /**
2560 * ssam_notifier_restore_registered() - Restore/re-enable events for all
2561 * registered notifiers.
2562 * @ctrl: The controller for which to restore the notifiers/events.
2563 *
2564 * Restores/re-enables all events for which notifiers have been registered on
2565 * the given controller. In case of a failure, the error is logged and the
2566 * function continues to try and enable the remaining events.
2567 *
2568 * This function is intended to restore/re-enable all registered events after
2569 * hibernation. See ssam_notifier_disable_registered() for the counter part
2570 * disabling the events and more details.
2571 */
ssam_notifier_restore_registered(struct ssam_controller * ctrl)2572 void ssam_notifier_restore_registered(struct ssam_controller *ctrl)
2573 {
2574 struct ssam_nf *nf = &ctrl->cplt.event.notif;
2575 struct rb_node *n;
2576
2577 mutex_lock(&nf->lock);
2578 for (n = rb_first(&nf->refcount); n; n = rb_next(n)) {
2579 struct ssam_nf_refcount_entry *e;
2580
2581 e = rb_entry(n, struct ssam_nf_refcount_entry, node);
2582
2583 /* Ignore errors, will get logged in call. */
2584 ssam_ssh_event_enable(ctrl, e->key.reg, e->key.id, e->flags);
2585 }
2586 mutex_unlock(&nf->lock);
2587 }
2588
2589 /**
2590 * ssam_notifier_is_empty() - Check if there are any registered notifiers.
2591 * @ctrl: The controller to check on.
2592 *
2593 * Return: Returns %true if there are currently no notifiers registered on the
2594 * controller, %false otherwise.
2595 */
ssam_notifier_is_empty(struct ssam_controller * ctrl)2596 static bool ssam_notifier_is_empty(struct ssam_controller *ctrl)
2597 {
2598 struct ssam_nf *nf = &ctrl->cplt.event.notif;
2599 bool result;
2600
2601 mutex_lock(&nf->lock);
2602 result = ssam_nf_refcount_empty(nf);
2603 mutex_unlock(&nf->lock);
2604
2605 return result;
2606 }
2607
2608 /**
2609 * ssam_notifier_unregister_all() - Unregister all currently registered
2610 * notifiers.
2611 * @ctrl: The controller to unregister the notifiers on.
2612 *
2613 * Unregisters all currently registered notifiers. This function is used to
2614 * ensure that all notifiers will be unregistered and associated
2615 * entries/resources freed when the controller is being shut down.
2616 */
ssam_notifier_unregister_all(struct ssam_controller * ctrl)2617 static void ssam_notifier_unregister_all(struct ssam_controller *ctrl)
2618 {
2619 struct ssam_nf *nf = &ctrl->cplt.event.notif;
2620 struct ssam_nf_refcount_entry *e, *n;
2621
2622 mutex_lock(&nf->lock);
2623 rbtree_postorder_for_each_entry_safe(e, n, &nf->refcount, node) {
2624 /* Ignore errors, will get logged in call. */
2625 ssam_ssh_event_disable(ctrl, e->key.reg, e->key.id, e->flags);
2626 kfree(e);
2627 }
2628 nf->refcount = RB_ROOT;
2629 mutex_unlock(&nf->lock);
2630 }
2631
2632
2633 /* -- Wakeup IRQ. ----------------------------------------------------------- */
2634
ssam_irq_handle(int irq,void * dev_id)2635 static irqreturn_t ssam_irq_handle(int irq, void *dev_id)
2636 {
2637 struct ssam_controller *ctrl = dev_id;
2638
2639 ssam_dbg(ctrl, "pm: wake irq triggered\n");
2640
2641 /*
2642 * Note: Proper wakeup detection is currently unimplemented.
2643 * When the EC is in display-off or any other non-D0 state, it
2644 * does not send events/notifications to the host. Instead it
2645 * signals that there are events available via the wakeup IRQ.
2646 * This driver is responsible for calling back to the EC to
2647 * release these events one-by-one.
2648 *
2649 * This IRQ should not cause a full system resume by its own.
2650 * Instead, events should be handled by their respective subsystem
2651 * drivers, which in turn should signal whether a full system
2652 * resume should be performed.
2653 *
2654 * TODO: Send GPIO callback command repeatedly to EC until callback
2655 * returns 0x00. Return flag of callback is "has more events".
2656 * Each time the command is sent, one event is "released". Once
2657 * all events have been released (return = 0x00), the GPIO is
2658 * re-armed. Detect wakeup events during this process, go back to
2659 * sleep if no wakeup event has been received.
2660 */
2661
2662 return IRQ_HANDLED;
2663 }
2664
2665 /**
2666 * ssam_irq_setup() - Set up SAM EC wakeup-GPIO interrupt.
2667 * @ctrl: The controller for which the IRQ should be set up.
2668 *
2669 * Set up an IRQ for the wakeup-GPIO pin of the SAM EC. This IRQ can be used
2670 * to wake the device from a low power state.
2671 *
2672 * Note that this IRQ can only be triggered while the EC is in the display-off
2673 * state. In this state, events are not sent to the host in the usual way.
2674 * Instead the wakeup-GPIO gets pulled to "high" as long as there are pending
2675 * events and these events need to be released one-by-one via the GPIO
2676 * callback request, either until there are no events left and the GPIO is
2677 * reset, or all at once by transitioning the EC out of the display-off state,
2678 * which will also clear the GPIO.
2679 *
2680 * Not all events, however, should trigger a full system wakeup. Instead the
2681 * driver should, if necessary, inspect and forward each event to the
2682 * corresponding subsystem, which in turn should decide if the system needs to
2683 * be woken up. This logic has not been implemented yet, thus wakeup by this
2684 * IRQ should be disabled by default to avoid spurious wake-ups, caused, for
2685 * example, by the remaining battery percentage changing. Refer to comments in
2686 * this function and comments in the corresponding IRQ handler for more
2687 * details on how this should be implemented.
2688 *
2689 * See also ssam_ctrl_notif_display_off() and ssam_ctrl_notif_display_off()
2690 * for functions to transition the EC into and out of the display-off state as
2691 * well as more details on it.
2692 *
2693 * The IRQ is disabled by default and has to be enabled before it can wake up
2694 * the device from suspend via ssam_irq_arm_for_wakeup(). On teardown, the IRQ
2695 * should be freed via ssam_irq_free().
2696 */
ssam_irq_setup(struct ssam_controller * ctrl)2697 int ssam_irq_setup(struct ssam_controller *ctrl)
2698 {
2699 struct device *dev = ssam_controller_device(ctrl);
2700 struct gpio_desc *gpiod;
2701 int irq;
2702 int status;
2703
2704 /*
2705 * The actual GPIO interrupt is declared in ACPI as TRIGGER_HIGH.
2706 * However, the GPIO line only gets reset by sending the GPIO callback
2707 * command to SAM (or alternatively the display-on notification). As
2708 * proper handling for this interrupt is not implemented yet, leaving
2709 * the IRQ at TRIGGER_HIGH would cause an IRQ storm (as the callback
2710 * never gets sent and thus the line never gets reset). To avoid this,
2711 * mark the IRQ as TRIGGER_RISING for now, only creating a single
2712 * interrupt, and let the SAM resume callback during the controller
2713 * resume process clear it.
2714 */
2715 const int irqf = IRQF_ONESHOT | IRQF_TRIGGER_RISING | IRQF_NO_AUTOEN;
2716
2717 gpiod = gpiod_get(dev, "ssam_wakeup-int", GPIOD_ASIS);
2718 if (IS_ERR(gpiod))
2719 return PTR_ERR(gpiod);
2720
2721 irq = gpiod_to_irq(gpiod);
2722 gpiod_put(gpiod);
2723
2724 if (irq < 0)
2725 return irq;
2726
2727 status = request_threaded_irq(irq, NULL, ssam_irq_handle, irqf,
2728 "ssam_wakeup", ctrl);
2729 if (status)
2730 return status;
2731
2732 ctrl->irq.num = irq;
2733 return 0;
2734 }
2735
2736 /**
2737 * ssam_irq_free() - Free SAM EC wakeup-GPIO interrupt.
2738 * @ctrl: The controller for which the IRQ should be freed.
2739 *
2740 * Free the wakeup-GPIO IRQ previously set-up via ssam_irq_setup().
2741 */
ssam_irq_free(struct ssam_controller * ctrl)2742 void ssam_irq_free(struct ssam_controller *ctrl)
2743 {
2744 free_irq(ctrl->irq.num, ctrl);
2745 ctrl->irq.num = -1;
2746 }
2747
2748 /**
2749 * ssam_irq_arm_for_wakeup() - Arm the EC IRQ for wakeup, if enabled.
2750 * @ctrl: The controller for which the IRQ should be armed.
2751 *
2752 * Sets up the IRQ so that it can be used to wake the device. Specifically,
2753 * this function enables the irq and then, if the device is allowed to wake up
2754 * the system, calls enable_irq_wake(). See ssam_irq_disarm_wakeup() for the
2755 * corresponding function to disable the IRQ.
2756 *
2757 * This function is intended to arm the IRQ before entering S2idle suspend.
2758 *
2759 * Note: calls to ssam_irq_arm_for_wakeup() and ssam_irq_disarm_wakeup() must
2760 * be balanced.
2761 */
ssam_irq_arm_for_wakeup(struct ssam_controller * ctrl)2762 int ssam_irq_arm_for_wakeup(struct ssam_controller *ctrl)
2763 {
2764 struct device *dev = ssam_controller_device(ctrl);
2765 int status;
2766
2767 enable_irq(ctrl->irq.num);
2768 if (device_may_wakeup(dev)) {
2769 status = enable_irq_wake(ctrl->irq.num);
2770 if (status) {
2771 ssam_err(ctrl, "failed to enable wake IRQ: %d\n", status);
2772 disable_irq(ctrl->irq.num);
2773 return status;
2774 }
2775
2776 ctrl->irq.wakeup_enabled = true;
2777 } else {
2778 ctrl->irq.wakeup_enabled = false;
2779 }
2780
2781 return 0;
2782 }
2783
2784 /**
2785 * ssam_irq_disarm_wakeup() - Disarm the wakeup IRQ.
2786 * @ctrl: The controller for which the IRQ should be disarmed.
2787 *
2788 * Disarm the IRQ previously set up for wake via ssam_irq_arm_for_wakeup().
2789 *
2790 * This function is intended to disarm the IRQ after exiting S2idle suspend.
2791 *
2792 * Note: calls to ssam_irq_arm_for_wakeup() and ssam_irq_disarm_wakeup() must
2793 * be balanced.
2794 */
ssam_irq_disarm_wakeup(struct ssam_controller * ctrl)2795 void ssam_irq_disarm_wakeup(struct ssam_controller *ctrl)
2796 {
2797 int status;
2798
2799 if (ctrl->irq.wakeup_enabled) {
2800 status = disable_irq_wake(ctrl->irq.num);
2801 if (status)
2802 ssam_err(ctrl, "failed to disable wake IRQ: %d\n", status);
2803
2804 ctrl->irq.wakeup_enabled = false;
2805 }
2806 disable_irq(ctrl->irq.num);
2807 }
2808