1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * spu management operations for of based platforms
4 *
5 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6 * Copyright 2006 Sony Corp.
7 * (C) Copyright 2007 TOSHIBA CORPORATION
8 */
9
10 #include <linux/interrupt.h>
11 #include <linux/list.h>
12 #include <linux/export.h>
13 #include <linux/ptrace.h>
14 #include <linux/wait.h>
15 #include <linux/mm.h>
16 #include <linux/io.h>
17 #include <linux/mutex.h>
18 #include <linux/device.h>
19 #include <linux/of_address.h>
20 #include <linux/of_irq.h>
21
22 #include <asm/spu.h>
23 #include <asm/spu_priv1.h>
24 #include <asm/firmware.h>
25
26 #include "spufs/spufs.h"
27 #include "interrupt.h"
28
spu_devnode(struct spu * spu)29 struct device_node *spu_devnode(struct spu *spu)
30 {
31 return spu->devnode;
32 }
33
34 EXPORT_SYMBOL_GPL(spu_devnode);
35
find_spu_unit_number(struct device_node * spe)36 static u64 __init find_spu_unit_number(struct device_node *spe)
37 {
38 const unsigned int *prop;
39 int proplen;
40
41 /* new device trees should provide the physical-id attribute */
42 prop = of_get_property(spe, "physical-id", &proplen);
43 if (proplen == 4)
44 return (u64)*prop;
45
46 /* celleb device tree provides the unit-id */
47 prop = of_get_property(spe, "unit-id", &proplen);
48 if (proplen == 4)
49 return (u64)*prop;
50
51 /* legacy device trees provide the id in the reg attribute */
52 prop = of_get_property(spe, "reg", &proplen);
53 if (proplen == 4)
54 return (u64)*prop;
55
56 return 0;
57 }
58
spu_unmap(struct spu * spu)59 static void spu_unmap(struct spu *spu)
60 {
61 if (!firmware_has_feature(FW_FEATURE_LPAR))
62 iounmap(spu->priv1);
63 iounmap(spu->priv2);
64 iounmap(spu->problem);
65 iounmap((__force u8 __iomem *)spu->local_store);
66 }
67
spu_map_interrupts_old(struct spu * spu,struct device_node * np)68 static int __init spu_map_interrupts_old(struct spu *spu,
69 struct device_node *np)
70 {
71 unsigned int isrc;
72 const u32 *tmp;
73 int nid;
74
75 /* Get the interrupt source unit from the device-tree */
76 tmp = of_get_property(np, "isrc", NULL);
77 if (!tmp)
78 return -ENODEV;
79 isrc = tmp[0];
80
81 tmp = of_get_property(np->parent->parent, "node-id", NULL);
82 if (!tmp) {
83 printk(KERN_WARNING "%s: can't find node-id\n", __func__);
84 nid = spu->node;
85 } else
86 nid = tmp[0];
87
88 /* Add the node number */
89 isrc |= nid << IIC_IRQ_NODE_SHIFT;
90
91 /* Now map interrupts of all 3 classes */
92 spu->irqs[0] = irq_create_mapping(NULL, IIC_IRQ_CLASS_0 | isrc);
93 spu->irqs[1] = irq_create_mapping(NULL, IIC_IRQ_CLASS_1 | isrc);
94 spu->irqs[2] = irq_create_mapping(NULL, IIC_IRQ_CLASS_2 | isrc);
95
96 /* Right now, we only fail if class 2 failed */
97 if (!spu->irqs[2])
98 return -EINVAL;
99
100 return 0;
101 }
102
spu_map_prop_old(struct spu * spu,struct device_node * n,const char * name)103 static void __iomem * __init spu_map_prop_old(struct spu *spu,
104 struct device_node *n,
105 const char *name)
106 {
107 const struct address_prop {
108 unsigned long address;
109 unsigned int len;
110 } __attribute__((packed)) *prop;
111 int proplen;
112
113 prop = of_get_property(n, name, &proplen);
114 if (prop == NULL || proplen != sizeof (struct address_prop))
115 return NULL;
116
117 return ioremap(prop->address, prop->len);
118 }
119
spu_map_device_old(struct spu * spu)120 static int __init spu_map_device_old(struct spu *spu)
121 {
122 struct device_node *node = spu->devnode;
123 const char *prop;
124 int ret;
125
126 ret = -ENODEV;
127 spu->name = of_get_property(node, "name", NULL);
128 if (!spu->name)
129 goto out;
130
131 prop = of_get_property(node, "local-store", NULL);
132 if (!prop)
133 goto out;
134 spu->local_store_phys = *(unsigned long *)prop;
135
136 /* we use local store as ram, not io memory */
137 spu->local_store = (void __force *)
138 spu_map_prop_old(spu, node, "local-store");
139 if (!spu->local_store)
140 goto out;
141
142 prop = of_get_property(node, "problem", NULL);
143 if (!prop)
144 goto out_unmap;
145 spu->problem_phys = *(unsigned long *)prop;
146
147 spu->problem = spu_map_prop_old(spu, node, "problem");
148 if (!spu->problem)
149 goto out_unmap;
150
151 spu->priv2 = spu_map_prop_old(spu, node, "priv2");
152 if (!spu->priv2)
153 goto out_unmap;
154
155 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
156 spu->priv1 = spu_map_prop_old(spu, node, "priv1");
157 if (!spu->priv1)
158 goto out_unmap;
159 }
160
161 ret = 0;
162 goto out;
163
164 out_unmap:
165 spu_unmap(spu);
166 out:
167 return ret;
168 }
169
spu_map_interrupts(struct spu * spu,struct device_node * np)170 static int __init spu_map_interrupts(struct spu *spu, struct device_node *np)
171 {
172 int i;
173
174 for (i=0; i < 3; i++) {
175 spu->irqs[i] = irq_of_parse_and_map(np, i);
176 if (!spu->irqs[i])
177 goto err;
178 }
179 return 0;
180
181 err:
182 pr_debug("failed to map irq %x for spu %s\n", i, spu->name);
183 for (; i >= 0; i--) {
184 if (spu->irqs[i])
185 irq_dispose_mapping(spu->irqs[i]);
186 }
187 return -EINVAL;
188 }
189
spu_map_resource(struct spu * spu,int nr,void __iomem ** virt,unsigned long * phys)190 static int __init spu_map_resource(struct spu *spu, int nr,
191 void __iomem** virt, unsigned long *phys)
192 {
193 struct device_node *np = spu->devnode;
194 struct resource resource = { };
195 unsigned long len;
196 int ret;
197
198 ret = of_address_to_resource(np, nr, &resource);
199 if (ret)
200 return ret;
201 if (phys)
202 *phys = resource.start;
203 len = resource_size(&resource);
204 *virt = ioremap(resource.start, len);
205 if (!*virt)
206 return -EINVAL;
207 return 0;
208 }
209
spu_map_device(struct spu * spu)210 static int __init spu_map_device(struct spu *spu)
211 {
212 struct device_node *np = spu->devnode;
213 int ret = -ENODEV;
214
215 spu->name = of_get_property(np, "name", NULL);
216 if (!spu->name)
217 goto out;
218
219 ret = spu_map_resource(spu, 0, (void __iomem**)&spu->local_store,
220 &spu->local_store_phys);
221 if (ret) {
222 pr_debug("spu_new: failed to map %pOF resource 0\n",
223 np);
224 goto out;
225 }
226 ret = spu_map_resource(spu, 1, (void __iomem**)&spu->problem,
227 &spu->problem_phys);
228 if (ret) {
229 pr_debug("spu_new: failed to map %pOF resource 1\n",
230 np);
231 goto out_unmap;
232 }
233 ret = spu_map_resource(spu, 2, (void __iomem**)&spu->priv2, NULL);
234 if (ret) {
235 pr_debug("spu_new: failed to map %pOF resource 2\n",
236 np);
237 goto out_unmap;
238 }
239 if (!firmware_has_feature(FW_FEATURE_LPAR))
240 ret = spu_map_resource(spu, 3,
241 (void __iomem**)&spu->priv1, NULL);
242 if (ret) {
243 pr_debug("spu_new: failed to map %pOF resource 3\n",
244 np);
245 goto out_unmap;
246 }
247 pr_debug("spu_new: %pOF maps:\n", np);
248 pr_debug(" local store : 0x%016lx -> 0x%p\n",
249 spu->local_store_phys, spu->local_store);
250 pr_debug(" problem state : 0x%016lx -> 0x%p\n",
251 spu->problem_phys, spu->problem);
252 pr_debug(" priv2 : 0x%p\n", spu->priv2);
253 pr_debug(" priv1 : 0x%p\n", spu->priv1);
254
255 return 0;
256
257 out_unmap:
258 spu_unmap(spu);
259 out:
260 pr_debug("failed to map spe %s: %d\n", spu->name, ret);
261 return ret;
262 }
263
of_enumerate_spus(int (* fn)(void * data))264 static int __init of_enumerate_spus(int (*fn)(void *data))
265 {
266 int ret;
267 struct device_node *node;
268 unsigned int n = 0;
269
270 ret = -ENODEV;
271 for_each_node_by_type(node, "spe") {
272 ret = fn(node);
273 if (ret) {
274 printk(KERN_WARNING "%s: Error initializing %pOFn\n",
275 __func__, node);
276 of_node_put(node);
277 break;
278 }
279 n++;
280 }
281 return ret ? ret : n;
282 }
283
of_create_spu(struct spu * spu,void * data)284 static int __init of_create_spu(struct spu *spu, void *data)
285 {
286 int ret;
287 struct device_node *spe = (struct device_node *)data;
288 static int legacy_map = 0, legacy_irq = 0;
289
290 spu->devnode = of_node_get(spe);
291 spu->spe_id = find_spu_unit_number(spe);
292
293 spu->node = of_node_to_nid(spe);
294 if (spu->node >= MAX_NUMNODES) {
295 printk(KERN_WARNING "SPE %pOF on node %d ignored,"
296 " node number too big\n", spe, spu->node);
297 printk(KERN_WARNING "Check if CONFIG_NUMA is enabled.\n");
298 ret = -ENODEV;
299 goto out;
300 }
301
302 ret = spu_map_device(spu);
303 if (ret) {
304 if (!legacy_map) {
305 legacy_map = 1;
306 printk(KERN_WARNING "%s: Legacy device tree found, "
307 "trying to map old style\n", __func__);
308 }
309 ret = spu_map_device_old(spu);
310 if (ret) {
311 printk(KERN_ERR "Unable to map %s\n",
312 spu->name);
313 goto out;
314 }
315 }
316
317 ret = spu_map_interrupts(spu, spe);
318 if (ret) {
319 if (!legacy_irq) {
320 legacy_irq = 1;
321 printk(KERN_WARNING "%s: Legacy device tree found, "
322 "trying old style irq\n", __func__);
323 }
324 ret = spu_map_interrupts_old(spu, spe);
325 if (ret) {
326 printk(KERN_ERR "%s: could not map interrupts\n",
327 spu->name);
328 goto out_unmap;
329 }
330 }
331
332 pr_debug("Using SPE %s %p %p %p %p %d\n", spu->name,
333 spu->local_store, spu->problem, spu->priv1,
334 spu->priv2, spu->number);
335 goto out;
336
337 out_unmap:
338 spu_unmap(spu);
339 out:
340 return ret;
341 }
342
of_destroy_spu(struct spu * spu)343 static int of_destroy_spu(struct spu *spu)
344 {
345 spu_unmap(spu);
346 of_node_put(spu->devnode);
347 return 0;
348 }
349
enable_spu_by_master_run(struct spu_context * ctx)350 static void enable_spu_by_master_run(struct spu_context *ctx)
351 {
352 ctx->ops->master_start(ctx);
353 }
354
disable_spu_by_master_run(struct spu_context * ctx)355 static void disable_spu_by_master_run(struct spu_context *ctx)
356 {
357 ctx->ops->master_stop(ctx);
358 }
359
360 /* Hardcoded affinity idxs for qs20 */
361 #define QS20_SPES_PER_BE 8
362 static int qs20_reg_idxs[QS20_SPES_PER_BE] = { 0, 2, 4, 6, 7, 5, 3, 1 };
363 static int qs20_reg_memory[QS20_SPES_PER_BE] = { 1, 1, 0, 0, 0, 0, 0, 0 };
364
spu_lookup_reg(int node,u32 reg)365 static struct spu *__init spu_lookup_reg(int node, u32 reg)
366 {
367 struct spu *spu;
368 const u32 *spu_reg;
369
370 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
371 spu_reg = of_get_property(spu_devnode(spu), "reg", NULL);
372 if (*spu_reg == reg)
373 return spu;
374 }
375 return NULL;
376 }
377
init_affinity_qs20_harcoded(void)378 static void __init init_affinity_qs20_harcoded(void)
379 {
380 int node, i;
381 struct spu *last_spu, *spu;
382 u32 reg;
383
384 for (node = 0; node < MAX_NUMNODES; node++) {
385 last_spu = NULL;
386 for (i = 0; i < QS20_SPES_PER_BE; i++) {
387 reg = qs20_reg_idxs[i];
388 spu = spu_lookup_reg(node, reg);
389 if (!spu)
390 continue;
391 spu->has_mem_affinity = qs20_reg_memory[reg];
392 if (last_spu)
393 list_add_tail(&spu->aff_list,
394 &last_spu->aff_list);
395 last_spu = spu;
396 }
397 }
398 }
399
of_has_vicinity(void)400 static int __init of_has_vicinity(void)
401 {
402 struct device_node *dn;
403
404 for_each_node_by_type(dn, "spe") {
405 if (of_find_property(dn, "vicinity", NULL)) {
406 of_node_put(dn);
407 return 1;
408 }
409 }
410 return 0;
411 }
412
devnode_spu(int cbe,struct device_node * dn)413 static struct spu *__init devnode_spu(int cbe, struct device_node *dn)
414 {
415 struct spu *spu;
416
417 list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list)
418 if (spu_devnode(spu) == dn)
419 return spu;
420 return NULL;
421 }
422
423 static struct spu * __init
neighbour_spu(int cbe,struct device_node * target,struct device_node * avoid)424 neighbour_spu(int cbe, struct device_node *target, struct device_node *avoid)
425 {
426 struct spu *spu;
427 struct device_node *spu_dn;
428 const phandle *vic_handles;
429 int lenp, i;
430
431 list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list) {
432 spu_dn = spu_devnode(spu);
433 if (spu_dn == avoid)
434 continue;
435 vic_handles = of_get_property(spu_dn, "vicinity", &lenp);
436 for (i=0; i < (lenp / sizeof(phandle)); i++) {
437 if (vic_handles[i] == target->phandle)
438 return spu;
439 }
440 }
441 return NULL;
442 }
443
init_affinity_node(int cbe)444 static void __init init_affinity_node(int cbe)
445 {
446 struct spu *spu, *last_spu;
447 struct device_node *vic_dn, *last_spu_dn;
448 phandle avoid_ph;
449 const phandle *vic_handles;
450 int lenp, i, added;
451
452 last_spu = list_first_entry(&cbe_spu_info[cbe].spus, struct spu,
453 cbe_list);
454 avoid_ph = 0;
455 for (added = 1; added < cbe_spu_info[cbe].n_spus; added++) {
456 last_spu_dn = spu_devnode(last_spu);
457 vic_handles = of_get_property(last_spu_dn, "vicinity", &lenp);
458
459 /*
460 * Walk through each phandle in vicinity property of the spu
461 * (typically two vicinity phandles per spe node)
462 */
463 for (i = 0; i < (lenp / sizeof(phandle)); i++) {
464 if (vic_handles[i] == avoid_ph)
465 continue;
466
467 vic_dn = of_find_node_by_phandle(vic_handles[i]);
468 if (!vic_dn)
469 continue;
470
471 if (of_node_name_eq(vic_dn, "spe") ) {
472 spu = devnode_spu(cbe, vic_dn);
473 avoid_ph = last_spu_dn->phandle;
474 } else {
475 /*
476 * "mic-tm" and "bif0" nodes do not have
477 * vicinity property. So we need to find the
478 * spe which has vic_dn as neighbour, but
479 * skipping the one we came from (last_spu_dn)
480 */
481 spu = neighbour_spu(cbe, vic_dn, last_spu_dn);
482 if (!spu)
483 continue;
484 if (of_node_name_eq(vic_dn, "mic-tm")) {
485 last_spu->has_mem_affinity = 1;
486 spu->has_mem_affinity = 1;
487 }
488 avoid_ph = vic_dn->phandle;
489 }
490
491 of_node_put(vic_dn);
492
493 list_add_tail(&spu->aff_list, &last_spu->aff_list);
494 last_spu = spu;
495 break;
496 }
497 }
498 }
499
init_affinity_fw(void)500 static void __init init_affinity_fw(void)
501 {
502 int cbe;
503
504 for (cbe = 0; cbe < MAX_NUMNODES; cbe++)
505 init_affinity_node(cbe);
506 }
507
init_affinity(void)508 static int __init init_affinity(void)
509 {
510 if (of_has_vicinity()) {
511 init_affinity_fw();
512 } else {
513 if (of_machine_is_compatible("IBM,CPBW-1.0"))
514 init_affinity_qs20_harcoded();
515 else
516 printk("No affinity configuration found\n");
517 }
518
519 return 0;
520 }
521
522 const struct spu_management_ops spu_management_of_ops = {
523 .enumerate_spus = of_enumerate_spus,
524 .create_spu = of_create_spu,
525 .destroy_spu = of_destroy_spu,
526 .enable_spu = enable_spu_by_master_run,
527 .disable_spu = disable_spu_by_master_run,
528 .init_affinity = init_affinity,
529 };
530