1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This is a module to test the HMM (Heterogeneous Memory Management)
4 * mirror and zone device private memory migration APIs of the kernel.
5 * Userspace programs can register with the driver to mirror their own address
6 * space and can use the device to read/write any valid virtual address.
7 */
8 #include <linux/init.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/cdev.h>
14 #include <linux/device.h>
15 #include <linux/memremap.h>
16 #include <linux/mutex.h>
17 #include <linux/rwsem.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/highmem.h>
21 #include <linux/delay.h>
22 #include <linux/pagemap.h>
23 #include <linux/hmm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/sched/mm.h>
28 #include <linux/platform_device.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/migrate.h>
32
33 #include "test_hmm_uapi.h"
34
35 #define DMIRROR_NDEVICES 4
36 #define DMIRROR_RANGE_FAULT_TIMEOUT 1000
37 #define DEVMEM_CHUNK_SIZE (256 * 1024 * 1024U)
38 #define DEVMEM_CHUNKS_RESERVE 16
39
40 /*
41 * For device_private pages, dpage is just a dummy struct page
42 * representing a piece of device memory. dmirror_devmem_alloc_page
43 * allocates a real system memory page as backing storage to fake a
44 * real device. zone_device_data points to that backing page. But
45 * for device_coherent memory, the struct page represents real
46 * physical CPU-accessible memory that we can use directly.
47 */
48 #define BACKING_PAGE(page) (is_device_private_page((page)) ? \
49 (page)->zone_device_data : (page))
50
51 static unsigned long spm_addr_dev0;
52 module_param(spm_addr_dev0, long, 0644);
53 MODULE_PARM_DESC(spm_addr_dev0,
54 "Specify start address for SPM (special purpose memory) used for device 0. By setting this Coherent device type will be used. Make sure spm_addr_dev1 is set too. Minimum SPM size should be DEVMEM_CHUNK_SIZE.");
55
56 static unsigned long spm_addr_dev1;
57 module_param(spm_addr_dev1, long, 0644);
58 MODULE_PARM_DESC(spm_addr_dev1,
59 "Specify start address for SPM (special purpose memory) used for device 1. By setting this Coherent device type will be used. Make sure spm_addr_dev0 is set too. Minimum SPM size should be DEVMEM_CHUNK_SIZE.");
60
61 static const struct dev_pagemap_ops dmirror_devmem_ops;
62 static const struct mmu_interval_notifier_ops dmirror_min_ops;
63 static dev_t dmirror_dev;
64
65 struct dmirror_device;
66
67 struct dmirror_bounce {
68 void *ptr;
69 unsigned long size;
70 unsigned long addr;
71 unsigned long cpages;
72 };
73
74 #define DPT_XA_TAG_ATOMIC 1UL
75 #define DPT_XA_TAG_WRITE 3UL
76
77 /*
78 * Data structure to track address ranges and register for mmu interval
79 * notifier updates.
80 */
81 struct dmirror_interval {
82 struct mmu_interval_notifier notifier;
83 struct dmirror *dmirror;
84 };
85
86 /*
87 * Data attached to the open device file.
88 * Note that it might be shared after a fork().
89 */
90 struct dmirror {
91 struct dmirror_device *mdevice;
92 struct xarray pt;
93 struct mmu_interval_notifier notifier;
94 struct mutex mutex;
95 };
96
97 /*
98 * ZONE_DEVICE pages for migration and simulating device memory.
99 */
100 struct dmirror_chunk {
101 struct dev_pagemap pagemap;
102 struct dmirror_device *mdevice;
103 bool remove;
104 };
105
106 /*
107 * Per device data.
108 */
109 struct dmirror_device {
110 struct cdev cdevice;
111 unsigned int zone_device_type;
112 struct device device;
113
114 unsigned int devmem_capacity;
115 unsigned int devmem_count;
116 struct dmirror_chunk **devmem_chunks;
117 struct mutex devmem_lock; /* protects the above */
118
119 unsigned long calloc;
120 unsigned long cfree;
121 struct page *free_pages;
122 spinlock_t lock; /* protects the above */
123 };
124
125 static struct dmirror_device dmirror_devices[DMIRROR_NDEVICES];
126
dmirror_bounce_init(struct dmirror_bounce * bounce,unsigned long addr,unsigned long size)127 static int dmirror_bounce_init(struct dmirror_bounce *bounce,
128 unsigned long addr,
129 unsigned long size)
130 {
131 bounce->addr = addr;
132 bounce->size = size;
133 bounce->cpages = 0;
134 bounce->ptr = vmalloc(size);
135 if (!bounce->ptr)
136 return -ENOMEM;
137 return 0;
138 }
139
dmirror_is_private_zone(struct dmirror_device * mdevice)140 static bool dmirror_is_private_zone(struct dmirror_device *mdevice)
141 {
142 return (mdevice->zone_device_type ==
143 HMM_DMIRROR_MEMORY_DEVICE_PRIVATE) ? true : false;
144 }
145
146 static enum migrate_vma_direction
dmirror_select_device(struct dmirror * dmirror)147 dmirror_select_device(struct dmirror *dmirror)
148 {
149 return (dmirror->mdevice->zone_device_type ==
150 HMM_DMIRROR_MEMORY_DEVICE_PRIVATE) ?
151 MIGRATE_VMA_SELECT_DEVICE_PRIVATE :
152 MIGRATE_VMA_SELECT_DEVICE_COHERENT;
153 }
154
dmirror_bounce_fini(struct dmirror_bounce * bounce)155 static void dmirror_bounce_fini(struct dmirror_bounce *bounce)
156 {
157 vfree(bounce->ptr);
158 }
159
dmirror_fops_open(struct inode * inode,struct file * filp)160 static int dmirror_fops_open(struct inode *inode, struct file *filp)
161 {
162 struct cdev *cdev = inode->i_cdev;
163 struct dmirror *dmirror;
164 int ret;
165
166 /* Mirror this process address space */
167 dmirror = kzalloc(sizeof(*dmirror), GFP_KERNEL);
168 if (dmirror == NULL)
169 return -ENOMEM;
170
171 dmirror->mdevice = container_of(cdev, struct dmirror_device, cdevice);
172 mutex_init(&dmirror->mutex);
173 xa_init(&dmirror->pt);
174
175 ret = mmu_interval_notifier_insert(&dmirror->notifier, current->mm,
176 0, ULONG_MAX & PAGE_MASK, &dmirror_min_ops);
177 if (ret) {
178 kfree(dmirror);
179 return ret;
180 }
181
182 filp->private_data = dmirror;
183 return 0;
184 }
185
dmirror_fops_release(struct inode * inode,struct file * filp)186 static int dmirror_fops_release(struct inode *inode, struct file *filp)
187 {
188 struct dmirror *dmirror = filp->private_data;
189
190 mmu_interval_notifier_remove(&dmirror->notifier);
191 xa_destroy(&dmirror->pt);
192 kfree(dmirror);
193 return 0;
194 }
195
dmirror_page_to_chunk(struct page * page)196 static struct dmirror_chunk *dmirror_page_to_chunk(struct page *page)
197 {
198 return container_of(page->pgmap, struct dmirror_chunk, pagemap);
199 }
200
dmirror_page_to_device(struct page * page)201 static struct dmirror_device *dmirror_page_to_device(struct page *page)
202
203 {
204 return dmirror_page_to_chunk(page)->mdevice;
205 }
206
dmirror_do_fault(struct dmirror * dmirror,struct hmm_range * range)207 static int dmirror_do_fault(struct dmirror *dmirror, struct hmm_range *range)
208 {
209 unsigned long *pfns = range->hmm_pfns;
210 unsigned long pfn;
211
212 for (pfn = (range->start >> PAGE_SHIFT);
213 pfn < (range->end >> PAGE_SHIFT);
214 pfn++, pfns++) {
215 struct page *page;
216 void *entry;
217
218 /*
219 * Since we asked for hmm_range_fault() to populate pages,
220 * it shouldn't return an error entry on success.
221 */
222 WARN_ON(*pfns & HMM_PFN_ERROR);
223 WARN_ON(!(*pfns & HMM_PFN_VALID));
224
225 page = hmm_pfn_to_page(*pfns);
226 WARN_ON(!page);
227
228 entry = page;
229 if (*pfns & HMM_PFN_WRITE)
230 entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
231 else if (WARN_ON(range->default_flags & HMM_PFN_WRITE))
232 return -EFAULT;
233 entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
234 if (xa_is_err(entry))
235 return xa_err(entry);
236 }
237
238 return 0;
239 }
240
dmirror_do_update(struct dmirror * dmirror,unsigned long start,unsigned long end)241 static void dmirror_do_update(struct dmirror *dmirror, unsigned long start,
242 unsigned long end)
243 {
244 unsigned long pfn;
245 void *entry;
246
247 /*
248 * The XArray doesn't hold references to pages since it relies on
249 * the mmu notifier to clear page pointers when they become stale.
250 * Therefore, it is OK to just clear the entry.
251 */
252 xa_for_each_range(&dmirror->pt, pfn, entry, start >> PAGE_SHIFT,
253 end >> PAGE_SHIFT)
254 xa_erase(&dmirror->pt, pfn);
255 }
256
dmirror_interval_invalidate(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)257 static bool dmirror_interval_invalidate(struct mmu_interval_notifier *mni,
258 const struct mmu_notifier_range *range,
259 unsigned long cur_seq)
260 {
261 struct dmirror *dmirror = container_of(mni, struct dmirror, notifier);
262
263 /*
264 * Ignore invalidation callbacks for device private pages since
265 * the invalidation is handled as part of the migration process.
266 */
267 if (range->event == MMU_NOTIFY_MIGRATE &&
268 range->owner == dmirror->mdevice)
269 return true;
270
271 if (mmu_notifier_range_blockable(range))
272 mutex_lock(&dmirror->mutex);
273 else if (!mutex_trylock(&dmirror->mutex))
274 return false;
275
276 mmu_interval_set_seq(mni, cur_seq);
277 dmirror_do_update(dmirror, range->start, range->end);
278
279 mutex_unlock(&dmirror->mutex);
280 return true;
281 }
282
283 static const struct mmu_interval_notifier_ops dmirror_min_ops = {
284 .invalidate = dmirror_interval_invalidate,
285 };
286
dmirror_range_fault(struct dmirror * dmirror,struct hmm_range * range)287 static int dmirror_range_fault(struct dmirror *dmirror,
288 struct hmm_range *range)
289 {
290 struct mm_struct *mm = dmirror->notifier.mm;
291 unsigned long timeout =
292 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
293 int ret;
294
295 while (true) {
296 if (time_after(jiffies, timeout)) {
297 ret = -EBUSY;
298 goto out;
299 }
300
301 range->notifier_seq = mmu_interval_read_begin(range->notifier);
302 mmap_read_lock(mm);
303 ret = hmm_range_fault(range);
304 mmap_read_unlock(mm);
305 if (ret) {
306 if (ret == -EBUSY)
307 continue;
308 goto out;
309 }
310
311 mutex_lock(&dmirror->mutex);
312 if (mmu_interval_read_retry(range->notifier,
313 range->notifier_seq)) {
314 mutex_unlock(&dmirror->mutex);
315 continue;
316 }
317 break;
318 }
319
320 ret = dmirror_do_fault(dmirror, range);
321
322 mutex_unlock(&dmirror->mutex);
323 out:
324 return ret;
325 }
326
dmirror_fault(struct dmirror * dmirror,unsigned long start,unsigned long end,bool write)327 static int dmirror_fault(struct dmirror *dmirror, unsigned long start,
328 unsigned long end, bool write)
329 {
330 struct mm_struct *mm = dmirror->notifier.mm;
331 unsigned long addr;
332 unsigned long pfns[64];
333 struct hmm_range range = {
334 .notifier = &dmirror->notifier,
335 .hmm_pfns = pfns,
336 .pfn_flags_mask = 0,
337 .default_flags =
338 HMM_PFN_REQ_FAULT | (write ? HMM_PFN_REQ_WRITE : 0),
339 .dev_private_owner = dmirror->mdevice,
340 };
341 int ret = 0;
342
343 /* Since the mm is for the mirrored process, get a reference first. */
344 if (!mmget_not_zero(mm))
345 return 0;
346
347 for (addr = start; addr < end; addr = range.end) {
348 range.start = addr;
349 range.end = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
350
351 ret = dmirror_range_fault(dmirror, &range);
352 if (ret)
353 break;
354 }
355
356 mmput(mm);
357 return ret;
358 }
359
dmirror_do_read(struct dmirror * dmirror,unsigned long start,unsigned long end,struct dmirror_bounce * bounce)360 static int dmirror_do_read(struct dmirror *dmirror, unsigned long start,
361 unsigned long end, struct dmirror_bounce *bounce)
362 {
363 unsigned long pfn;
364 void *ptr;
365
366 ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
367
368 for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
369 void *entry;
370 struct page *page;
371 void *tmp;
372
373 entry = xa_load(&dmirror->pt, pfn);
374 page = xa_untag_pointer(entry);
375 if (!page)
376 return -ENOENT;
377
378 tmp = kmap(page);
379 memcpy(ptr, tmp, PAGE_SIZE);
380 kunmap(page);
381
382 ptr += PAGE_SIZE;
383 bounce->cpages++;
384 }
385
386 return 0;
387 }
388
dmirror_read(struct dmirror * dmirror,struct hmm_dmirror_cmd * cmd)389 static int dmirror_read(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
390 {
391 struct dmirror_bounce bounce;
392 unsigned long start, end;
393 unsigned long size = cmd->npages << PAGE_SHIFT;
394 int ret;
395
396 start = cmd->addr;
397 end = start + size;
398 if (end < start)
399 return -EINVAL;
400
401 ret = dmirror_bounce_init(&bounce, start, size);
402 if (ret)
403 return ret;
404
405 while (1) {
406 mutex_lock(&dmirror->mutex);
407 ret = dmirror_do_read(dmirror, start, end, &bounce);
408 mutex_unlock(&dmirror->mutex);
409 if (ret != -ENOENT)
410 break;
411
412 start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
413 ret = dmirror_fault(dmirror, start, end, false);
414 if (ret)
415 break;
416 cmd->faults++;
417 }
418
419 if (ret == 0) {
420 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
421 bounce.size))
422 ret = -EFAULT;
423 }
424 cmd->cpages = bounce.cpages;
425 dmirror_bounce_fini(&bounce);
426 return ret;
427 }
428
dmirror_do_write(struct dmirror * dmirror,unsigned long start,unsigned long end,struct dmirror_bounce * bounce)429 static int dmirror_do_write(struct dmirror *dmirror, unsigned long start,
430 unsigned long end, struct dmirror_bounce *bounce)
431 {
432 unsigned long pfn;
433 void *ptr;
434
435 ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
436
437 for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
438 void *entry;
439 struct page *page;
440 void *tmp;
441
442 entry = xa_load(&dmirror->pt, pfn);
443 page = xa_untag_pointer(entry);
444 if (!page || xa_pointer_tag(entry) != DPT_XA_TAG_WRITE)
445 return -ENOENT;
446
447 tmp = kmap(page);
448 memcpy(tmp, ptr, PAGE_SIZE);
449 kunmap(page);
450
451 ptr += PAGE_SIZE;
452 bounce->cpages++;
453 }
454
455 return 0;
456 }
457
dmirror_write(struct dmirror * dmirror,struct hmm_dmirror_cmd * cmd)458 static int dmirror_write(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
459 {
460 struct dmirror_bounce bounce;
461 unsigned long start, end;
462 unsigned long size = cmd->npages << PAGE_SHIFT;
463 int ret;
464
465 start = cmd->addr;
466 end = start + size;
467 if (end < start)
468 return -EINVAL;
469
470 ret = dmirror_bounce_init(&bounce, start, size);
471 if (ret)
472 return ret;
473 if (copy_from_user(bounce.ptr, u64_to_user_ptr(cmd->ptr),
474 bounce.size)) {
475 ret = -EFAULT;
476 goto fini;
477 }
478
479 while (1) {
480 mutex_lock(&dmirror->mutex);
481 ret = dmirror_do_write(dmirror, start, end, &bounce);
482 mutex_unlock(&dmirror->mutex);
483 if (ret != -ENOENT)
484 break;
485
486 start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
487 ret = dmirror_fault(dmirror, start, end, true);
488 if (ret)
489 break;
490 cmd->faults++;
491 }
492
493 fini:
494 cmd->cpages = bounce.cpages;
495 dmirror_bounce_fini(&bounce);
496 return ret;
497 }
498
dmirror_allocate_chunk(struct dmirror_device * mdevice,struct page ** ppage)499 static int dmirror_allocate_chunk(struct dmirror_device *mdevice,
500 struct page **ppage)
501 {
502 struct dmirror_chunk *devmem;
503 struct resource *res = NULL;
504 unsigned long pfn;
505 unsigned long pfn_first;
506 unsigned long pfn_last;
507 void *ptr;
508 int ret = -ENOMEM;
509
510 devmem = kzalloc(sizeof(*devmem), GFP_KERNEL);
511 if (!devmem)
512 return ret;
513
514 switch (mdevice->zone_device_type) {
515 case HMM_DMIRROR_MEMORY_DEVICE_PRIVATE:
516 res = request_free_mem_region(&iomem_resource, DEVMEM_CHUNK_SIZE,
517 "hmm_dmirror");
518 if (IS_ERR_OR_NULL(res))
519 goto err_devmem;
520 devmem->pagemap.range.start = res->start;
521 devmem->pagemap.range.end = res->end;
522 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
523 break;
524 case HMM_DMIRROR_MEMORY_DEVICE_COHERENT:
525 devmem->pagemap.range.start = (MINOR(mdevice->cdevice.dev) - 2) ?
526 spm_addr_dev0 :
527 spm_addr_dev1;
528 devmem->pagemap.range.end = devmem->pagemap.range.start +
529 DEVMEM_CHUNK_SIZE - 1;
530 devmem->pagemap.type = MEMORY_DEVICE_COHERENT;
531 break;
532 default:
533 ret = -EINVAL;
534 goto err_devmem;
535 }
536
537 devmem->pagemap.nr_range = 1;
538 devmem->pagemap.ops = &dmirror_devmem_ops;
539 devmem->pagemap.owner = mdevice;
540
541 mutex_lock(&mdevice->devmem_lock);
542
543 if (mdevice->devmem_count == mdevice->devmem_capacity) {
544 struct dmirror_chunk **new_chunks;
545 unsigned int new_capacity;
546
547 new_capacity = mdevice->devmem_capacity +
548 DEVMEM_CHUNKS_RESERVE;
549 new_chunks = krealloc(mdevice->devmem_chunks,
550 sizeof(new_chunks[0]) * new_capacity,
551 GFP_KERNEL);
552 if (!new_chunks)
553 goto err_release;
554 mdevice->devmem_capacity = new_capacity;
555 mdevice->devmem_chunks = new_chunks;
556 }
557 ptr = memremap_pages(&devmem->pagemap, numa_node_id());
558 if (IS_ERR_OR_NULL(ptr)) {
559 if (ptr)
560 ret = PTR_ERR(ptr);
561 else
562 ret = -EFAULT;
563 goto err_release;
564 }
565
566 devmem->mdevice = mdevice;
567 pfn_first = devmem->pagemap.range.start >> PAGE_SHIFT;
568 pfn_last = pfn_first + (range_len(&devmem->pagemap.range) >> PAGE_SHIFT);
569 mdevice->devmem_chunks[mdevice->devmem_count++] = devmem;
570
571 mutex_unlock(&mdevice->devmem_lock);
572
573 pr_info("added new %u MB chunk (total %u chunks, %u MB) PFNs [0x%lx 0x%lx)\n",
574 DEVMEM_CHUNK_SIZE / (1024 * 1024),
575 mdevice->devmem_count,
576 mdevice->devmem_count * (DEVMEM_CHUNK_SIZE / (1024 * 1024)),
577 pfn_first, pfn_last);
578
579 spin_lock(&mdevice->lock);
580 for (pfn = pfn_first; pfn < pfn_last; pfn++) {
581 struct page *page = pfn_to_page(pfn);
582
583 page->zone_device_data = mdevice->free_pages;
584 mdevice->free_pages = page;
585 }
586 if (ppage) {
587 *ppage = mdevice->free_pages;
588 mdevice->free_pages = (*ppage)->zone_device_data;
589 mdevice->calloc++;
590 }
591 spin_unlock(&mdevice->lock);
592
593 return 0;
594
595 err_release:
596 mutex_unlock(&mdevice->devmem_lock);
597 if (res && devmem->pagemap.type == MEMORY_DEVICE_PRIVATE)
598 release_mem_region(devmem->pagemap.range.start,
599 range_len(&devmem->pagemap.range));
600 err_devmem:
601 kfree(devmem);
602
603 return ret;
604 }
605
dmirror_devmem_alloc_page(struct dmirror_device * mdevice)606 static struct page *dmirror_devmem_alloc_page(struct dmirror_device *mdevice)
607 {
608 struct page *dpage = NULL;
609 struct page *rpage = NULL;
610
611 /*
612 * For ZONE_DEVICE private type, this is a fake device so we allocate
613 * real system memory to store our device memory.
614 * For ZONE_DEVICE coherent type we use the actual dpage to store the
615 * data and ignore rpage.
616 */
617 if (dmirror_is_private_zone(mdevice)) {
618 rpage = alloc_page(GFP_HIGHUSER);
619 if (!rpage)
620 return NULL;
621 }
622 spin_lock(&mdevice->lock);
623
624 if (mdevice->free_pages) {
625 dpage = mdevice->free_pages;
626 mdevice->free_pages = dpage->zone_device_data;
627 mdevice->calloc++;
628 spin_unlock(&mdevice->lock);
629 } else {
630 spin_unlock(&mdevice->lock);
631 if (dmirror_allocate_chunk(mdevice, &dpage))
632 goto error;
633 }
634
635 zone_device_page_init(dpage);
636 dpage->zone_device_data = rpage;
637 return dpage;
638
639 error:
640 if (rpage)
641 __free_page(rpage);
642 return NULL;
643 }
644
dmirror_migrate_alloc_and_copy(struct migrate_vma * args,struct dmirror * dmirror)645 static void dmirror_migrate_alloc_and_copy(struct migrate_vma *args,
646 struct dmirror *dmirror)
647 {
648 struct dmirror_device *mdevice = dmirror->mdevice;
649 const unsigned long *src = args->src;
650 unsigned long *dst = args->dst;
651 unsigned long addr;
652
653 for (addr = args->start; addr < args->end; addr += PAGE_SIZE,
654 src++, dst++) {
655 struct page *spage;
656 struct page *dpage;
657 struct page *rpage;
658
659 if (!(*src & MIGRATE_PFN_MIGRATE))
660 continue;
661
662 /*
663 * Note that spage might be NULL which is OK since it is an
664 * unallocated pte_none() or read-only zero page.
665 */
666 spage = migrate_pfn_to_page(*src);
667 if (WARN(spage && is_zone_device_page(spage),
668 "page already in device spage pfn: 0x%lx\n",
669 page_to_pfn(spage)))
670 continue;
671
672 dpage = dmirror_devmem_alloc_page(mdevice);
673 if (!dpage)
674 continue;
675
676 rpage = BACKING_PAGE(dpage);
677 if (spage)
678 copy_highpage(rpage, spage);
679 else
680 clear_highpage(rpage);
681
682 /*
683 * Normally, a device would use the page->zone_device_data to
684 * point to the mirror but here we use it to hold the page for
685 * the simulated device memory and that page holds the pointer
686 * to the mirror.
687 */
688 rpage->zone_device_data = dmirror;
689
690 pr_debug("migrating from sys to dev pfn src: 0x%lx pfn dst: 0x%lx\n",
691 page_to_pfn(spage), page_to_pfn(dpage));
692 *dst = migrate_pfn(page_to_pfn(dpage));
693 if ((*src & MIGRATE_PFN_WRITE) ||
694 (!spage && args->vma->vm_flags & VM_WRITE))
695 *dst |= MIGRATE_PFN_WRITE;
696 }
697 }
698
dmirror_check_atomic(struct dmirror * dmirror,unsigned long start,unsigned long end)699 static int dmirror_check_atomic(struct dmirror *dmirror, unsigned long start,
700 unsigned long end)
701 {
702 unsigned long pfn;
703
704 for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
705 void *entry;
706
707 entry = xa_load(&dmirror->pt, pfn);
708 if (xa_pointer_tag(entry) == DPT_XA_TAG_ATOMIC)
709 return -EPERM;
710 }
711
712 return 0;
713 }
714
dmirror_atomic_map(unsigned long start,unsigned long end,struct page ** pages,struct dmirror * dmirror)715 static int dmirror_atomic_map(unsigned long start, unsigned long end,
716 struct page **pages, struct dmirror *dmirror)
717 {
718 unsigned long pfn, mapped = 0;
719 int i;
720
721 /* Map the migrated pages into the device's page tables. */
722 mutex_lock(&dmirror->mutex);
723
724 for (i = 0, pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++, i++) {
725 void *entry;
726
727 if (!pages[i])
728 continue;
729
730 entry = pages[i];
731 entry = xa_tag_pointer(entry, DPT_XA_TAG_ATOMIC);
732 entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
733 if (xa_is_err(entry)) {
734 mutex_unlock(&dmirror->mutex);
735 return xa_err(entry);
736 }
737
738 mapped++;
739 }
740
741 mutex_unlock(&dmirror->mutex);
742 return mapped;
743 }
744
dmirror_migrate_finalize_and_map(struct migrate_vma * args,struct dmirror * dmirror)745 static int dmirror_migrate_finalize_and_map(struct migrate_vma *args,
746 struct dmirror *dmirror)
747 {
748 unsigned long start = args->start;
749 unsigned long end = args->end;
750 const unsigned long *src = args->src;
751 const unsigned long *dst = args->dst;
752 unsigned long pfn;
753
754 /* Map the migrated pages into the device's page tables. */
755 mutex_lock(&dmirror->mutex);
756
757 for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++,
758 src++, dst++) {
759 struct page *dpage;
760 void *entry;
761
762 if (!(*src & MIGRATE_PFN_MIGRATE))
763 continue;
764
765 dpage = migrate_pfn_to_page(*dst);
766 if (!dpage)
767 continue;
768
769 entry = BACKING_PAGE(dpage);
770 if (*dst & MIGRATE_PFN_WRITE)
771 entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
772 entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
773 if (xa_is_err(entry)) {
774 mutex_unlock(&dmirror->mutex);
775 return xa_err(entry);
776 }
777 }
778
779 mutex_unlock(&dmirror->mutex);
780 return 0;
781 }
782
dmirror_exclusive(struct dmirror * dmirror,struct hmm_dmirror_cmd * cmd)783 static int dmirror_exclusive(struct dmirror *dmirror,
784 struct hmm_dmirror_cmd *cmd)
785 {
786 unsigned long start, end, addr;
787 unsigned long size = cmd->npages << PAGE_SHIFT;
788 struct mm_struct *mm = dmirror->notifier.mm;
789 struct page *pages[64];
790 struct dmirror_bounce bounce;
791 unsigned long next;
792 int ret;
793
794 start = cmd->addr;
795 end = start + size;
796 if (end < start)
797 return -EINVAL;
798
799 /* Since the mm is for the mirrored process, get a reference first. */
800 if (!mmget_not_zero(mm))
801 return -EINVAL;
802
803 mmap_read_lock(mm);
804 for (addr = start; addr < end; addr = next) {
805 unsigned long mapped = 0;
806 int i;
807
808 if (end < addr + (ARRAY_SIZE(pages) << PAGE_SHIFT))
809 next = end;
810 else
811 next = addr + (ARRAY_SIZE(pages) << PAGE_SHIFT);
812
813 ret = make_device_exclusive_range(mm, addr, next, pages, NULL);
814 /*
815 * Do dmirror_atomic_map() iff all pages are marked for
816 * exclusive access to avoid accessing uninitialized
817 * fields of pages.
818 */
819 if (ret == (next - addr) >> PAGE_SHIFT)
820 mapped = dmirror_atomic_map(addr, next, pages, dmirror);
821 for (i = 0; i < ret; i++) {
822 if (pages[i]) {
823 unlock_page(pages[i]);
824 put_page(pages[i]);
825 }
826 }
827
828 if (addr + (mapped << PAGE_SHIFT) < next) {
829 mmap_read_unlock(mm);
830 mmput(mm);
831 return -EBUSY;
832 }
833 }
834 mmap_read_unlock(mm);
835 mmput(mm);
836
837 /* Return the migrated data for verification. */
838 ret = dmirror_bounce_init(&bounce, start, size);
839 if (ret)
840 return ret;
841 mutex_lock(&dmirror->mutex);
842 ret = dmirror_do_read(dmirror, start, end, &bounce);
843 mutex_unlock(&dmirror->mutex);
844 if (ret == 0) {
845 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
846 bounce.size))
847 ret = -EFAULT;
848 }
849
850 cmd->cpages = bounce.cpages;
851 dmirror_bounce_fini(&bounce);
852 return ret;
853 }
854
dmirror_devmem_fault_alloc_and_copy(struct migrate_vma * args,struct dmirror * dmirror)855 static vm_fault_t dmirror_devmem_fault_alloc_and_copy(struct migrate_vma *args,
856 struct dmirror *dmirror)
857 {
858 const unsigned long *src = args->src;
859 unsigned long *dst = args->dst;
860 unsigned long start = args->start;
861 unsigned long end = args->end;
862 unsigned long addr;
863
864 for (addr = start; addr < end; addr += PAGE_SIZE,
865 src++, dst++) {
866 struct page *dpage, *spage;
867
868 spage = migrate_pfn_to_page(*src);
869 if (!spage || !(*src & MIGRATE_PFN_MIGRATE))
870 continue;
871
872 if (WARN_ON(!is_device_private_page(spage) &&
873 !is_device_coherent_page(spage)))
874 continue;
875 spage = BACKING_PAGE(spage);
876 dpage = alloc_page_vma(GFP_HIGHUSER_MOVABLE, args->vma, addr);
877 if (!dpage)
878 continue;
879 pr_debug("migrating from dev to sys pfn src: 0x%lx pfn dst: 0x%lx\n",
880 page_to_pfn(spage), page_to_pfn(dpage));
881
882 lock_page(dpage);
883 xa_erase(&dmirror->pt, addr >> PAGE_SHIFT);
884 copy_highpage(dpage, spage);
885 *dst = migrate_pfn(page_to_pfn(dpage));
886 if (*src & MIGRATE_PFN_WRITE)
887 *dst |= MIGRATE_PFN_WRITE;
888 }
889 return 0;
890 }
891
892 static unsigned long
dmirror_successful_migrated_pages(struct migrate_vma * migrate)893 dmirror_successful_migrated_pages(struct migrate_vma *migrate)
894 {
895 unsigned long cpages = 0;
896 unsigned long i;
897
898 for (i = 0; i < migrate->npages; i++) {
899 if (migrate->src[i] & MIGRATE_PFN_VALID &&
900 migrate->src[i] & MIGRATE_PFN_MIGRATE)
901 cpages++;
902 }
903 return cpages;
904 }
905
dmirror_migrate_to_system(struct dmirror * dmirror,struct hmm_dmirror_cmd * cmd)906 static int dmirror_migrate_to_system(struct dmirror *dmirror,
907 struct hmm_dmirror_cmd *cmd)
908 {
909 unsigned long start, end, addr;
910 unsigned long size = cmd->npages << PAGE_SHIFT;
911 struct mm_struct *mm = dmirror->notifier.mm;
912 struct vm_area_struct *vma;
913 unsigned long src_pfns[64] = { 0 };
914 unsigned long dst_pfns[64] = { 0 };
915 struct migrate_vma args = { 0 };
916 unsigned long next;
917 int ret;
918
919 start = cmd->addr;
920 end = start + size;
921 if (end < start)
922 return -EINVAL;
923
924 /* Since the mm is for the mirrored process, get a reference first. */
925 if (!mmget_not_zero(mm))
926 return -EINVAL;
927
928 cmd->cpages = 0;
929 mmap_read_lock(mm);
930 for (addr = start; addr < end; addr = next) {
931 vma = vma_lookup(mm, addr);
932 if (!vma || !(vma->vm_flags & VM_READ)) {
933 ret = -EINVAL;
934 goto out;
935 }
936 next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
937 if (next > vma->vm_end)
938 next = vma->vm_end;
939
940 args.vma = vma;
941 args.src = src_pfns;
942 args.dst = dst_pfns;
943 args.start = addr;
944 args.end = next;
945 args.pgmap_owner = dmirror->mdevice;
946 args.flags = dmirror_select_device(dmirror);
947
948 ret = migrate_vma_setup(&args);
949 if (ret)
950 goto out;
951
952 pr_debug("Migrating from device mem to sys mem\n");
953 dmirror_devmem_fault_alloc_and_copy(&args, dmirror);
954
955 migrate_vma_pages(&args);
956 cmd->cpages += dmirror_successful_migrated_pages(&args);
957 migrate_vma_finalize(&args);
958 }
959 out:
960 mmap_read_unlock(mm);
961 mmput(mm);
962
963 return ret;
964 }
965
dmirror_migrate_to_device(struct dmirror * dmirror,struct hmm_dmirror_cmd * cmd)966 static int dmirror_migrate_to_device(struct dmirror *dmirror,
967 struct hmm_dmirror_cmd *cmd)
968 {
969 unsigned long start, end, addr;
970 unsigned long size = cmd->npages << PAGE_SHIFT;
971 struct mm_struct *mm = dmirror->notifier.mm;
972 struct vm_area_struct *vma;
973 unsigned long src_pfns[64] = { 0 };
974 unsigned long dst_pfns[64] = { 0 };
975 struct dmirror_bounce bounce;
976 struct migrate_vma args = { 0 };
977 unsigned long next;
978 int ret;
979
980 start = cmd->addr;
981 end = start + size;
982 if (end < start)
983 return -EINVAL;
984
985 /* Since the mm is for the mirrored process, get a reference first. */
986 if (!mmget_not_zero(mm))
987 return -EINVAL;
988
989 mmap_read_lock(mm);
990 for (addr = start; addr < end; addr = next) {
991 vma = vma_lookup(mm, addr);
992 if (!vma || !(vma->vm_flags & VM_READ)) {
993 ret = -EINVAL;
994 goto out;
995 }
996 next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
997 if (next > vma->vm_end)
998 next = vma->vm_end;
999
1000 args.vma = vma;
1001 args.src = src_pfns;
1002 args.dst = dst_pfns;
1003 args.start = addr;
1004 args.end = next;
1005 args.pgmap_owner = dmirror->mdevice;
1006 args.flags = MIGRATE_VMA_SELECT_SYSTEM;
1007 ret = migrate_vma_setup(&args);
1008 if (ret)
1009 goto out;
1010
1011 pr_debug("Migrating from sys mem to device mem\n");
1012 dmirror_migrate_alloc_and_copy(&args, dmirror);
1013 migrate_vma_pages(&args);
1014 dmirror_migrate_finalize_and_map(&args, dmirror);
1015 migrate_vma_finalize(&args);
1016 }
1017 mmap_read_unlock(mm);
1018 mmput(mm);
1019
1020 /*
1021 * Return the migrated data for verification.
1022 * Only for pages in device zone
1023 */
1024 ret = dmirror_bounce_init(&bounce, start, size);
1025 if (ret)
1026 return ret;
1027 mutex_lock(&dmirror->mutex);
1028 ret = dmirror_do_read(dmirror, start, end, &bounce);
1029 mutex_unlock(&dmirror->mutex);
1030 if (ret == 0) {
1031 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
1032 bounce.size))
1033 ret = -EFAULT;
1034 }
1035 cmd->cpages = bounce.cpages;
1036 dmirror_bounce_fini(&bounce);
1037 return ret;
1038
1039 out:
1040 mmap_read_unlock(mm);
1041 mmput(mm);
1042 return ret;
1043 }
1044
dmirror_mkentry(struct dmirror * dmirror,struct hmm_range * range,unsigned char * perm,unsigned long entry)1045 static void dmirror_mkentry(struct dmirror *dmirror, struct hmm_range *range,
1046 unsigned char *perm, unsigned long entry)
1047 {
1048 struct page *page;
1049
1050 if (entry & HMM_PFN_ERROR) {
1051 *perm = HMM_DMIRROR_PROT_ERROR;
1052 return;
1053 }
1054 if (!(entry & HMM_PFN_VALID)) {
1055 *perm = HMM_DMIRROR_PROT_NONE;
1056 return;
1057 }
1058
1059 page = hmm_pfn_to_page(entry);
1060 if (is_device_private_page(page)) {
1061 /* Is the page migrated to this device or some other? */
1062 if (dmirror->mdevice == dmirror_page_to_device(page))
1063 *perm = HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL;
1064 else
1065 *perm = HMM_DMIRROR_PROT_DEV_PRIVATE_REMOTE;
1066 } else if (is_device_coherent_page(page)) {
1067 /* Is the page migrated to this device or some other? */
1068 if (dmirror->mdevice == dmirror_page_to_device(page))
1069 *perm = HMM_DMIRROR_PROT_DEV_COHERENT_LOCAL;
1070 else
1071 *perm = HMM_DMIRROR_PROT_DEV_COHERENT_REMOTE;
1072 } else if (is_zero_pfn(page_to_pfn(page)))
1073 *perm = HMM_DMIRROR_PROT_ZERO;
1074 else
1075 *perm = HMM_DMIRROR_PROT_NONE;
1076 if (entry & HMM_PFN_WRITE)
1077 *perm |= HMM_DMIRROR_PROT_WRITE;
1078 else
1079 *perm |= HMM_DMIRROR_PROT_READ;
1080 if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PMD_SHIFT)
1081 *perm |= HMM_DMIRROR_PROT_PMD;
1082 else if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PUD_SHIFT)
1083 *perm |= HMM_DMIRROR_PROT_PUD;
1084 }
1085
dmirror_snapshot_invalidate(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)1086 static bool dmirror_snapshot_invalidate(struct mmu_interval_notifier *mni,
1087 const struct mmu_notifier_range *range,
1088 unsigned long cur_seq)
1089 {
1090 struct dmirror_interval *dmi =
1091 container_of(mni, struct dmirror_interval, notifier);
1092 struct dmirror *dmirror = dmi->dmirror;
1093
1094 if (mmu_notifier_range_blockable(range))
1095 mutex_lock(&dmirror->mutex);
1096 else if (!mutex_trylock(&dmirror->mutex))
1097 return false;
1098
1099 /*
1100 * Snapshots only need to set the sequence number since any
1101 * invalidation in the interval invalidates the whole snapshot.
1102 */
1103 mmu_interval_set_seq(mni, cur_seq);
1104
1105 mutex_unlock(&dmirror->mutex);
1106 return true;
1107 }
1108
1109 static const struct mmu_interval_notifier_ops dmirror_mrn_ops = {
1110 .invalidate = dmirror_snapshot_invalidate,
1111 };
1112
dmirror_range_snapshot(struct dmirror * dmirror,struct hmm_range * range,unsigned char * perm)1113 static int dmirror_range_snapshot(struct dmirror *dmirror,
1114 struct hmm_range *range,
1115 unsigned char *perm)
1116 {
1117 struct mm_struct *mm = dmirror->notifier.mm;
1118 struct dmirror_interval notifier;
1119 unsigned long timeout =
1120 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
1121 unsigned long i;
1122 unsigned long n;
1123 int ret = 0;
1124
1125 notifier.dmirror = dmirror;
1126 range->notifier = ¬ifier.notifier;
1127
1128 ret = mmu_interval_notifier_insert(range->notifier, mm,
1129 range->start, range->end - range->start,
1130 &dmirror_mrn_ops);
1131 if (ret)
1132 return ret;
1133
1134 while (true) {
1135 if (time_after(jiffies, timeout)) {
1136 ret = -EBUSY;
1137 goto out;
1138 }
1139
1140 range->notifier_seq = mmu_interval_read_begin(range->notifier);
1141
1142 mmap_read_lock(mm);
1143 ret = hmm_range_fault(range);
1144 mmap_read_unlock(mm);
1145 if (ret) {
1146 if (ret == -EBUSY)
1147 continue;
1148 goto out;
1149 }
1150
1151 mutex_lock(&dmirror->mutex);
1152 if (mmu_interval_read_retry(range->notifier,
1153 range->notifier_seq)) {
1154 mutex_unlock(&dmirror->mutex);
1155 continue;
1156 }
1157 break;
1158 }
1159
1160 n = (range->end - range->start) >> PAGE_SHIFT;
1161 for (i = 0; i < n; i++)
1162 dmirror_mkentry(dmirror, range, perm + i, range->hmm_pfns[i]);
1163
1164 mutex_unlock(&dmirror->mutex);
1165 out:
1166 mmu_interval_notifier_remove(range->notifier);
1167 return ret;
1168 }
1169
dmirror_snapshot(struct dmirror * dmirror,struct hmm_dmirror_cmd * cmd)1170 static int dmirror_snapshot(struct dmirror *dmirror,
1171 struct hmm_dmirror_cmd *cmd)
1172 {
1173 struct mm_struct *mm = dmirror->notifier.mm;
1174 unsigned long start, end;
1175 unsigned long size = cmd->npages << PAGE_SHIFT;
1176 unsigned long addr;
1177 unsigned long next;
1178 unsigned long pfns[64];
1179 unsigned char perm[64];
1180 char __user *uptr;
1181 struct hmm_range range = {
1182 .hmm_pfns = pfns,
1183 .dev_private_owner = dmirror->mdevice,
1184 };
1185 int ret = 0;
1186
1187 start = cmd->addr;
1188 end = start + size;
1189 if (end < start)
1190 return -EINVAL;
1191
1192 /* Since the mm is for the mirrored process, get a reference first. */
1193 if (!mmget_not_zero(mm))
1194 return -EINVAL;
1195
1196 /*
1197 * Register a temporary notifier to detect invalidations even if it
1198 * overlaps with other mmu_interval_notifiers.
1199 */
1200 uptr = u64_to_user_ptr(cmd->ptr);
1201 for (addr = start; addr < end; addr = next) {
1202 unsigned long n;
1203
1204 next = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
1205 range.start = addr;
1206 range.end = next;
1207
1208 ret = dmirror_range_snapshot(dmirror, &range, perm);
1209 if (ret)
1210 break;
1211
1212 n = (range.end - range.start) >> PAGE_SHIFT;
1213 if (copy_to_user(uptr, perm, n)) {
1214 ret = -EFAULT;
1215 break;
1216 }
1217
1218 cmd->cpages += n;
1219 uptr += n;
1220 }
1221 mmput(mm);
1222
1223 return ret;
1224 }
1225
dmirror_device_evict_chunk(struct dmirror_chunk * chunk)1226 static void dmirror_device_evict_chunk(struct dmirror_chunk *chunk)
1227 {
1228 unsigned long start_pfn = chunk->pagemap.range.start >> PAGE_SHIFT;
1229 unsigned long end_pfn = chunk->pagemap.range.end >> PAGE_SHIFT;
1230 unsigned long npages = end_pfn - start_pfn + 1;
1231 unsigned long i;
1232 unsigned long *src_pfns;
1233 unsigned long *dst_pfns;
1234
1235 src_pfns = kcalloc(npages, sizeof(*src_pfns), GFP_KERNEL);
1236 dst_pfns = kcalloc(npages, sizeof(*dst_pfns), GFP_KERNEL);
1237
1238 migrate_device_range(src_pfns, start_pfn, npages);
1239 for (i = 0; i < npages; i++) {
1240 struct page *dpage, *spage;
1241
1242 spage = migrate_pfn_to_page(src_pfns[i]);
1243 if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE))
1244 continue;
1245
1246 if (WARN_ON(!is_device_private_page(spage) &&
1247 !is_device_coherent_page(spage)))
1248 continue;
1249 spage = BACKING_PAGE(spage);
1250 dpage = alloc_page(GFP_HIGHUSER_MOVABLE | __GFP_NOFAIL);
1251 lock_page(dpage);
1252 copy_highpage(dpage, spage);
1253 dst_pfns[i] = migrate_pfn(page_to_pfn(dpage));
1254 if (src_pfns[i] & MIGRATE_PFN_WRITE)
1255 dst_pfns[i] |= MIGRATE_PFN_WRITE;
1256 }
1257 migrate_device_pages(src_pfns, dst_pfns, npages);
1258 migrate_device_finalize(src_pfns, dst_pfns, npages);
1259 kfree(src_pfns);
1260 kfree(dst_pfns);
1261 }
1262
1263 /* Removes free pages from the free list so they can't be re-allocated */
dmirror_remove_free_pages(struct dmirror_chunk * devmem)1264 static void dmirror_remove_free_pages(struct dmirror_chunk *devmem)
1265 {
1266 struct dmirror_device *mdevice = devmem->mdevice;
1267 struct page *page;
1268
1269 for (page = mdevice->free_pages; page; page = page->zone_device_data)
1270 if (dmirror_page_to_chunk(page) == devmem)
1271 mdevice->free_pages = page->zone_device_data;
1272 }
1273
dmirror_device_remove_chunks(struct dmirror_device * mdevice)1274 static void dmirror_device_remove_chunks(struct dmirror_device *mdevice)
1275 {
1276 unsigned int i;
1277
1278 mutex_lock(&mdevice->devmem_lock);
1279 if (mdevice->devmem_chunks) {
1280 for (i = 0; i < mdevice->devmem_count; i++) {
1281 struct dmirror_chunk *devmem =
1282 mdevice->devmem_chunks[i];
1283
1284 spin_lock(&mdevice->lock);
1285 devmem->remove = true;
1286 dmirror_remove_free_pages(devmem);
1287 spin_unlock(&mdevice->lock);
1288
1289 dmirror_device_evict_chunk(devmem);
1290 memunmap_pages(&devmem->pagemap);
1291 if (devmem->pagemap.type == MEMORY_DEVICE_PRIVATE)
1292 release_mem_region(devmem->pagemap.range.start,
1293 range_len(&devmem->pagemap.range));
1294 kfree(devmem);
1295 }
1296 mdevice->devmem_count = 0;
1297 mdevice->devmem_capacity = 0;
1298 mdevice->free_pages = NULL;
1299 kfree(mdevice->devmem_chunks);
1300 mdevice->devmem_chunks = NULL;
1301 }
1302 mutex_unlock(&mdevice->devmem_lock);
1303 }
1304
dmirror_fops_unlocked_ioctl(struct file * filp,unsigned int command,unsigned long arg)1305 static long dmirror_fops_unlocked_ioctl(struct file *filp,
1306 unsigned int command,
1307 unsigned long arg)
1308 {
1309 void __user *uarg = (void __user *)arg;
1310 struct hmm_dmirror_cmd cmd;
1311 struct dmirror *dmirror;
1312 int ret;
1313
1314 dmirror = filp->private_data;
1315 if (!dmirror)
1316 return -EINVAL;
1317
1318 if (copy_from_user(&cmd, uarg, sizeof(cmd)))
1319 return -EFAULT;
1320
1321 if (cmd.addr & ~PAGE_MASK)
1322 return -EINVAL;
1323 if (cmd.addr >= (cmd.addr + (cmd.npages << PAGE_SHIFT)))
1324 return -EINVAL;
1325
1326 cmd.cpages = 0;
1327 cmd.faults = 0;
1328
1329 switch (command) {
1330 case HMM_DMIRROR_READ:
1331 ret = dmirror_read(dmirror, &cmd);
1332 break;
1333
1334 case HMM_DMIRROR_WRITE:
1335 ret = dmirror_write(dmirror, &cmd);
1336 break;
1337
1338 case HMM_DMIRROR_MIGRATE_TO_DEV:
1339 ret = dmirror_migrate_to_device(dmirror, &cmd);
1340 break;
1341
1342 case HMM_DMIRROR_MIGRATE_TO_SYS:
1343 ret = dmirror_migrate_to_system(dmirror, &cmd);
1344 break;
1345
1346 case HMM_DMIRROR_EXCLUSIVE:
1347 ret = dmirror_exclusive(dmirror, &cmd);
1348 break;
1349
1350 case HMM_DMIRROR_CHECK_EXCLUSIVE:
1351 ret = dmirror_check_atomic(dmirror, cmd.addr,
1352 cmd.addr + (cmd.npages << PAGE_SHIFT));
1353 break;
1354
1355 case HMM_DMIRROR_SNAPSHOT:
1356 ret = dmirror_snapshot(dmirror, &cmd);
1357 break;
1358
1359 case HMM_DMIRROR_RELEASE:
1360 dmirror_device_remove_chunks(dmirror->mdevice);
1361 ret = 0;
1362 break;
1363
1364 default:
1365 return -EINVAL;
1366 }
1367 if (ret)
1368 return ret;
1369
1370 if (copy_to_user(uarg, &cmd, sizeof(cmd)))
1371 return -EFAULT;
1372
1373 return 0;
1374 }
1375
dmirror_fops_mmap(struct file * file,struct vm_area_struct * vma)1376 static int dmirror_fops_mmap(struct file *file, struct vm_area_struct *vma)
1377 {
1378 unsigned long addr;
1379
1380 for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE) {
1381 struct page *page;
1382 int ret;
1383
1384 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1385 if (!page)
1386 return -ENOMEM;
1387
1388 ret = vm_insert_page(vma, addr, page);
1389 if (ret) {
1390 __free_page(page);
1391 return ret;
1392 }
1393 put_page(page);
1394 }
1395
1396 return 0;
1397 }
1398
1399 static const struct file_operations dmirror_fops = {
1400 .open = dmirror_fops_open,
1401 .release = dmirror_fops_release,
1402 .mmap = dmirror_fops_mmap,
1403 .unlocked_ioctl = dmirror_fops_unlocked_ioctl,
1404 .llseek = default_llseek,
1405 .owner = THIS_MODULE,
1406 };
1407
dmirror_devmem_free(struct page * page)1408 static void dmirror_devmem_free(struct page *page)
1409 {
1410 struct page *rpage = BACKING_PAGE(page);
1411 struct dmirror_device *mdevice;
1412
1413 if (rpage != page)
1414 __free_page(rpage);
1415
1416 mdevice = dmirror_page_to_device(page);
1417 spin_lock(&mdevice->lock);
1418
1419 /* Return page to our allocator if not freeing the chunk */
1420 if (!dmirror_page_to_chunk(page)->remove) {
1421 mdevice->cfree++;
1422 page->zone_device_data = mdevice->free_pages;
1423 mdevice->free_pages = page;
1424 }
1425 spin_unlock(&mdevice->lock);
1426 }
1427
dmirror_devmem_fault(struct vm_fault * vmf)1428 static vm_fault_t dmirror_devmem_fault(struct vm_fault *vmf)
1429 {
1430 struct migrate_vma args = { 0 };
1431 unsigned long src_pfns = 0;
1432 unsigned long dst_pfns = 0;
1433 struct page *rpage;
1434 struct dmirror *dmirror;
1435 vm_fault_t ret;
1436
1437 /*
1438 * Normally, a device would use the page->zone_device_data to point to
1439 * the mirror but here we use it to hold the page for the simulated
1440 * device memory and that page holds the pointer to the mirror.
1441 */
1442 rpage = vmf->page->zone_device_data;
1443 dmirror = rpage->zone_device_data;
1444
1445 /* FIXME demonstrate how we can adjust migrate range */
1446 args.vma = vmf->vma;
1447 args.start = vmf->address;
1448 args.end = args.start + PAGE_SIZE;
1449 args.src = &src_pfns;
1450 args.dst = &dst_pfns;
1451 args.pgmap_owner = dmirror->mdevice;
1452 args.flags = dmirror_select_device(dmirror);
1453 args.fault_page = vmf->page;
1454
1455 if (migrate_vma_setup(&args))
1456 return VM_FAULT_SIGBUS;
1457
1458 ret = dmirror_devmem_fault_alloc_and_copy(&args, dmirror);
1459 if (ret)
1460 return ret;
1461 migrate_vma_pages(&args);
1462 /*
1463 * No device finalize step is needed since
1464 * dmirror_devmem_fault_alloc_and_copy() will have already
1465 * invalidated the device page table.
1466 */
1467 migrate_vma_finalize(&args);
1468 return 0;
1469 }
1470
1471 static const struct dev_pagemap_ops dmirror_devmem_ops = {
1472 .page_free = dmirror_devmem_free,
1473 .migrate_to_ram = dmirror_devmem_fault,
1474 };
1475
dmirror_device_init(struct dmirror_device * mdevice,int id)1476 static int dmirror_device_init(struct dmirror_device *mdevice, int id)
1477 {
1478 dev_t dev;
1479 int ret;
1480
1481 dev = MKDEV(MAJOR(dmirror_dev), id);
1482 mutex_init(&mdevice->devmem_lock);
1483 spin_lock_init(&mdevice->lock);
1484
1485 cdev_init(&mdevice->cdevice, &dmirror_fops);
1486 mdevice->cdevice.owner = THIS_MODULE;
1487 device_initialize(&mdevice->device);
1488 mdevice->device.devt = dev;
1489
1490 ret = dev_set_name(&mdevice->device, "hmm_dmirror%u", id);
1491 if (ret)
1492 return ret;
1493
1494 ret = cdev_device_add(&mdevice->cdevice, &mdevice->device);
1495 if (ret)
1496 return ret;
1497
1498 /* Build a list of free ZONE_DEVICE struct pages */
1499 return dmirror_allocate_chunk(mdevice, NULL);
1500 }
1501
dmirror_device_remove(struct dmirror_device * mdevice)1502 static void dmirror_device_remove(struct dmirror_device *mdevice)
1503 {
1504 dmirror_device_remove_chunks(mdevice);
1505 cdev_device_del(&mdevice->cdevice, &mdevice->device);
1506 }
1507
hmm_dmirror_init(void)1508 static int __init hmm_dmirror_init(void)
1509 {
1510 int ret;
1511 int id = 0;
1512 int ndevices = 0;
1513
1514 ret = alloc_chrdev_region(&dmirror_dev, 0, DMIRROR_NDEVICES,
1515 "HMM_DMIRROR");
1516 if (ret)
1517 goto err_unreg;
1518
1519 memset(dmirror_devices, 0, DMIRROR_NDEVICES * sizeof(dmirror_devices[0]));
1520 dmirror_devices[ndevices++].zone_device_type =
1521 HMM_DMIRROR_MEMORY_DEVICE_PRIVATE;
1522 dmirror_devices[ndevices++].zone_device_type =
1523 HMM_DMIRROR_MEMORY_DEVICE_PRIVATE;
1524 if (spm_addr_dev0 && spm_addr_dev1) {
1525 dmirror_devices[ndevices++].zone_device_type =
1526 HMM_DMIRROR_MEMORY_DEVICE_COHERENT;
1527 dmirror_devices[ndevices++].zone_device_type =
1528 HMM_DMIRROR_MEMORY_DEVICE_COHERENT;
1529 }
1530 for (id = 0; id < ndevices; id++) {
1531 ret = dmirror_device_init(dmirror_devices + id, id);
1532 if (ret)
1533 goto err_chrdev;
1534 }
1535
1536 pr_info("HMM test module loaded. This is only for testing HMM.\n");
1537 return 0;
1538
1539 err_chrdev:
1540 while (--id >= 0)
1541 dmirror_device_remove(dmirror_devices + id);
1542 unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1543 err_unreg:
1544 return ret;
1545 }
1546
hmm_dmirror_exit(void)1547 static void __exit hmm_dmirror_exit(void)
1548 {
1549 int id;
1550
1551 for (id = 0; id < DMIRROR_NDEVICES; id++)
1552 if (dmirror_devices[id].zone_device_type)
1553 dmirror_device_remove(dmirror_devices + id);
1554 unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1555 }
1556
1557 module_init(hmm_dmirror_init);
1558 module_exit(hmm_dmirror_exit);
1559 MODULE_LICENSE("GPL");
1560