1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/kmsan.h>
31 #include <linux/module.h>
32 #include <linux/suspend.h>
33 #include <linux/pagevec.h>
34 #include <linux/blkdev.h>
35 #include <linux/slab.h>
36 #include <linux/ratelimit.h>
37 #include <linux/oom.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/memremap.h>
48 #include <linux/stop_machine.h>
49 #include <linux/random.h>
50 #include <linux/sort.h>
51 #include <linux/pfn.h>
52 #include <linux/backing-dev.h>
53 #include <linux/fault-inject.h>
54 #include <linux/page-isolation.h>
55 #include <linux/debugobjects.h>
56 #include <linux/kmemleak.h>
57 #include <linux/compaction.h>
58 #include <trace/events/kmem.h>
59 #include <trace/events/oom.h>
60 #include <linux/prefetch.h>
61 #include <linux/mm_inline.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/migrate.h>
64 #include <linux/hugetlb.h>
65 #include <linux/sched/rt.h>
66 #include <linux/sched/mm.h>
67 #include <linux/page_owner.h>
68 #include <linux/page_table_check.h>
69 #include <linux/kthread.h>
70 #include <linux/memcontrol.h>
71 #include <linux/ftrace.h>
72 #include <linux/lockdep.h>
73 #include <linux/nmi.h>
74 #include <linux/psi.h>
75 #include <linux/padata.h>
76 #include <linux/khugepaged.h>
77 #include <linux/buffer_head.h>
78 #include <linux/delayacct.h>
79 #include <asm/sections.h>
80 #include <asm/tlbflush.h>
81 #include <asm/div64.h>
82 #include "internal.h"
83 #include "shuffle.h"
84 #include "page_reporting.h"
85 #include "swap.h"
86
87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
88 typedef int __bitwise fpi_t;
89
90 /* No special request */
91 #define FPI_NONE ((__force fpi_t)0)
92
93 /*
94 * Skip free page reporting notification for the (possibly merged) page.
95 * This does not hinder free page reporting from grabbing the page,
96 * reporting it and marking it "reported" - it only skips notifying
97 * the free page reporting infrastructure about a newly freed page. For
98 * example, used when temporarily pulling a page from a freelist and
99 * putting it back unmodified.
100 */
101 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
102
103 /*
104 * Place the (possibly merged) page to the tail of the freelist. Will ignore
105 * page shuffling (relevant code - e.g., memory onlining - is expected to
106 * shuffle the whole zone).
107 *
108 * Note: No code should rely on this flag for correctness - it's purely
109 * to allow for optimizations when handing back either fresh pages
110 * (memory onlining) or untouched pages (page isolation, free page
111 * reporting).
112 */
113 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
114
115 /*
116 * Don't poison memory with KASAN (only for the tag-based modes).
117 * During boot, all non-reserved memblock memory is exposed to page_alloc.
118 * Poisoning all that memory lengthens boot time, especially on systems with
119 * large amount of RAM. This flag is used to skip that poisoning.
120 * This is only done for the tag-based KASAN modes, as those are able to
121 * detect memory corruptions with the memory tags assigned by default.
122 * All memory allocated normally after boot gets poisoned as usual.
123 */
124 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
125
126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
127 static DEFINE_MUTEX(pcp_batch_high_lock);
128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
129
130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
131 /*
132 * On SMP, spin_trylock is sufficient protection.
133 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
134 */
135 #define pcp_trylock_prepare(flags) do { } while (0)
136 #define pcp_trylock_finish(flag) do { } while (0)
137 #else
138
139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
140 #define pcp_trylock_prepare(flags) local_irq_save(flags)
141 #define pcp_trylock_finish(flags) local_irq_restore(flags)
142 #endif
143
144 /*
145 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
146 * a migration causing the wrong PCP to be locked and remote memory being
147 * potentially allocated, pin the task to the CPU for the lookup+lock.
148 * preempt_disable is used on !RT because it is faster than migrate_disable.
149 * migrate_disable is used on RT because otherwise RT spinlock usage is
150 * interfered with and a high priority task cannot preempt the allocator.
151 */
152 #ifndef CONFIG_PREEMPT_RT
153 #define pcpu_task_pin() preempt_disable()
154 #define pcpu_task_unpin() preempt_enable()
155 #else
156 #define pcpu_task_pin() migrate_disable()
157 #define pcpu_task_unpin() migrate_enable()
158 #endif
159
160 /*
161 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
162 * Return value should be used with equivalent unlock helper.
163 */
164 #define pcpu_spin_lock(type, member, ptr) \
165 ({ \
166 type *_ret; \
167 pcpu_task_pin(); \
168 _ret = this_cpu_ptr(ptr); \
169 spin_lock(&_ret->member); \
170 _ret; \
171 })
172
173 #define pcpu_spin_lock_irqsave(type, member, ptr, flags) \
174 ({ \
175 type *_ret; \
176 pcpu_task_pin(); \
177 _ret = this_cpu_ptr(ptr); \
178 spin_lock_irqsave(&_ret->member, flags); \
179 _ret; \
180 })
181
182 #define pcpu_spin_trylock_irqsave(type, member, ptr, flags) \
183 ({ \
184 type *_ret; \
185 pcpu_task_pin(); \
186 _ret = this_cpu_ptr(ptr); \
187 if (!spin_trylock_irqsave(&_ret->member, flags)) { \
188 pcpu_task_unpin(); \
189 _ret = NULL; \
190 } \
191 _ret; \
192 })
193
194 #define pcpu_spin_unlock(member, ptr) \
195 ({ \
196 spin_unlock(&ptr->member); \
197 pcpu_task_unpin(); \
198 })
199
200 #define pcpu_spin_unlock_irqrestore(member, ptr, flags) \
201 ({ \
202 spin_unlock_irqrestore(&ptr->member, flags); \
203 pcpu_task_unpin(); \
204 })
205
206 /* struct per_cpu_pages specific helpers. */
207 #define pcp_spin_lock(ptr) \
208 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
209
210 #define pcp_spin_lock_irqsave(ptr, flags) \
211 pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags)
212
213 #define pcp_spin_trylock_irqsave(ptr, flags) \
214 pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags)
215
216 #define pcp_spin_unlock(ptr) \
217 pcpu_spin_unlock(lock, ptr)
218
219 #define pcp_spin_unlock_irqrestore(ptr, flags) \
220 pcpu_spin_unlock_irqrestore(lock, ptr, flags)
221 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
222 DEFINE_PER_CPU(int, numa_node);
223 EXPORT_PER_CPU_SYMBOL(numa_node);
224 #endif
225
226 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
227
228 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
229 /*
230 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
231 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
232 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
233 * defined in <linux/topology.h>.
234 */
235 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
236 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
237 #endif
238
239 static DEFINE_MUTEX(pcpu_drain_mutex);
240
241 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
242 volatile unsigned long latent_entropy __latent_entropy;
243 EXPORT_SYMBOL(latent_entropy);
244 #endif
245
246 /*
247 * Array of node states.
248 */
249 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
250 [N_POSSIBLE] = NODE_MASK_ALL,
251 [N_ONLINE] = { { [0] = 1UL } },
252 #ifndef CONFIG_NUMA
253 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
254 #ifdef CONFIG_HIGHMEM
255 [N_HIGH_MEMORY] = { { [0] = 1UL } },
256 #endif
257 [N_MEMORY] = { { [0] = 1UL } },
258 [N_CPU] = { { [0] = 1UL } },
259 #endif /* NUMA */
260 };
261 EXPORT_SYMBOL(node_states);
262
263 atomic_long_t _totalram_pages __read_mostly;
264 EXPORT_SYMBOL(_totalram_pages);
265 unsigned long totalreserve_pages __read_mostly;
266 unsigned long totalcma_pages __read_mostly;
267
268 int percpu_pagelist_high_fraction;
269 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
270 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
271 EXPORT_SYMBOL(init_on_alloc);
272
273 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
274 EXPORT_SYMBOL(init_on_free);
275
276 static bool _init_on_alloc_enabled_early __read_mostly
277 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
early_init_on_alloc(char * buf)278 static int __init early_init_on_alloc(char *buf)
279 {
280
281 return kstrtobool(buf, &_init_on_alloc_enabled_early);
282 }
283 early_param("init_on_alloc", early_init_on_alloc);
284
285 static bool _init_on_free_enabled_early __read_mostly
286 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
early_init_on_free(char * buf)287 static int __init early_init_on_free(char *buf)
288 {
289 return kstrtobool(buf, &_init_on_free_enabled_early);
290 }
291 early_param("init_on_free", early_init_on_free);
292
293 /*
294 * A cached value of the page's pageblock's migratetype, used when the page is
295 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
296 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
297 * Also the migratetype set in the page does not necessarily match the pcplist
298 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
299 * other index - this ensures that it will be put on the correct CMA freelist.
300 */
get_pcppage_migratetype(struct page * page)301 static inline int get_pcppage_migratetype(struct page *page)
302 {
303 return page->index;
304 }
305
set_pcppage_migratetype(struct page * page,int migratetype)306 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
307 {
308 page->index = migratetype;
309 }
310
311 #ifdef CONFIG_PM_SLEEP
312 /*
313 * The following functions are used by the suspend/hibernate code to temporarily
314 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
315 * while devices are suspended. To avoid races with the suspend/hibernate code,
316 * they should always be called with system_transition_mutex held
317 * (gfp_allowed_mask also should only be modified with system_transition_mutex
318 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
319 * with that modification).
320 */
321
322 static gfp_t saved_gfp_mask;
323
pm_restore_gfp_mask(void)324 void pm_restore_gfp_mask(void)
325 {
326 WARN_ON(!mutex_is_locked(&system_transition_mutex));
327 if (saved_gfp_mask) {
328 gfp_allowed_mask = saved_gfp_mask;
329 saved_gfp_mask = 0;
330 }
331 }
332
pm_restrict_gfp_mask(void)333 void pm_restrict_gfp_mask(void)
334 {
335 WARN_ON(!mutex_is_locked(&system_transition_mutex));
336 WARN_ON(saved_gfp_mask);
337 saved_gfp_mask = gfp_allowed_mask;
338 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
339 }
340
pm_suspended_storage(void)341 bool pm_suspended_storage(void)
342 {
343 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
344 return false;
345 return true;
346 }
347 #endif /* CONFIG_PM_SLEEP */
348
349 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
350 unsigned int pageblock_order __read_mostly;
351 #endif
352
353 static void __free_pages_ok(struct page *page, unsigned int order,
354 fpi_t fpi_flags);
355
356 /*
357 * results with 256, 32 in the lowmem_reserve sysctl:
358 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
359 * 1G machine -> (16M dma, 784M normal, 224M high)
360 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
361 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
362 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
363 *
364 * TBD: should special case ZONE_DMA32 machines here - in those we normally
365 * don't need any ZONE_NORMAL reservation
366 */
367 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
368 #ifdef CONFIG_ZONE_DMA
369 [ZONE_DMA] = 256,
370 #endif
371 #ifdef CONFIG_ZONE_DMA32
372 [ZONE_DMA32] = 256,
373 #endif
374 [ZONE_NORMAL] = 32,
375 #ifdef CONFIG_HIGHMEM
376 [ZONE_HIGHMEM] = 0,
377 #endif
378 [ZONE_MOVABLE] = 0,
379 };
380
381 static char * const zone_names[MAX_NR_ZONES] = {
382 #ifdef CONFIG_ZONE_DMA
383 "DMA",
384 #endif
385 #ifdef CONFIG_ZONE_DMA32
386 "DMA32",
387 #endif
388 "Normal",
389 #ifdef CONFIG_HIGHMEM
390 "HighMem",
391 #endif
392 "Movable",
393 #ifdef CONFIG_ZONE_DEVICE
394 "Device",
395 #endif
396 };
397
398 const char * const migratetype_names[MIGRATE_TYPES] = {
399 "Unmovable",
400 "Movable",
401 "Reclaimable",
402 "HighAtomic",
403 #ifdef CONFIG_CMA
404 "CMA",
405 #endif
406 #ifdef CONFIG_MEMORY_ISOLATION
407 "Isolate",
408 #endif
409 };
410
411 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
412 [NULL_COMPOUND_DTOR] = NULL,
413 [COMPOUND_PAGE_DTOR] = free_compound_page,
414 #ifdef CONFIG_HUGETLB_PAGE
415 [HUGETLB_PAGE_DTOR] = free_huge_page,
416 #endif
417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
418 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
419 #endif
420 };
421
422 int min_free_kbytes = 1024;
423 int user_min_free_kbytes = -1;
424 int watermark_boost_factor __read_mostly = 15000;
425 int watermark_scale_factor = 10;
426
427 static unsigned long nr_kernel_pages __initdata;
428 static unsigned long nr_all_pages __initdata;
429 static unsigned long dma_reserve __initdata;
430
431 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
432 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
433 static unsigned long required_kernelcore __initdata;
434 static unsigned long required_kernelcore_percent __initdata;
435 static unsigned long required_movablecore __initdata;
436 static unsigned long required_movablecore_percent __initdata;
437 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
438 bool mirrored_kernelcore __initdata_memblock;
439
440 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
441 int movable_zone;
442 EXPORT_SYMBOL(movable_zone);
443
444 #if MAX_NUMNODES > 1
445 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
446 unsigned int nr_online_nodes __read_mostly = 1;
447 EXPORT_SYMBOL(nr_node_ids);
448 EXPORT_SYMBOL(nr_online_nodes);
449 #endif
450
451 int page_group_by_mobility_disabled __read_mostly;
452
453 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
454 /*
455 * During boot we initialize deferred pages on-demand, as needed, but once
456 * page_alloc_init_late() has finished, the deferred pages are all initialized,
457 * and we can permanently disable that path.
458 */
459 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
460
deferred_pages_enabled(void)461 static inline bool deferred_pages_enabled(void)
462 {
463 return static_branch_unlikely(&deferred_pages);
464 }
465
466 /* Returns true if the struct page for the pfn is uninitialised */
early_page_uninitialised(unsigned long pfn)467 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
468 {
469 int nid = early_pfn_to_nid(pfn);
470
471 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
472 return true;
473
474 return false;
475 }
476
477 /*
478 * Returns true when the remaining initialisation should be deferred until
479 * later in the boot cycle when it can be parallelised.
480 */
481 static bool __meminit
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)482 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
483 {
484 static unsigned long prev_end_pfn, nr_initialised;
485
486 if (early_page_ext_enabled())
487 return false;
488 /*
489 * prev_end_pfn static that contains the end of previous zone
490 * No need to protect because called very early in boot before smp_init.
491 */
492 if (prev_end_pfn != end_pfn) {
493 prev_end_pfn = end_pfn;
494 nr_initialised = 0;
495 }
496
497 /* Always populate low zones for address-constrained allocations */
498 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
499 return false;
500
501 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
502 return true;
503 /*
504 * We start only with one section of pages, more pages are added as
505 * needed until the rest of deferred pages are initialized.
506 */
507 nr_initialised++;
508 if ((nr_initialised > PAGES_PER_SECTION) &&
509 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
510 NODE_DATA(nid)->first_deferred_pfn = pfn;
511 return true;
512 }
513 return false;
514 }
515 #else
deferred_pages_enabled(void)516 static inline bool deferred_pages_enabled(void)
517 {
518 return false;
519 }
520
early_page_uninitialised(unsigned long pfn)521 static inline bool early_page_uninitialised(unsigned long pfn)
522 {
523 return false;
524 }
525
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)526 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
527 {
528 return false;
529 }
530 #endif
531
532 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)533 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
534 unsigned long pfn)
535 {
536 #ifdef CONFIG_SPARSEMEM
537 return section_to_usemap(__pfn_to_section(pfn));
538 #else
539 return page_zone(page)->pageblock_flags;
540 #endif /* CONFIG_SPARSEMEM */
541 }
542
pfn_to_bitidx(const struct page * page,unsigned long pfn)543 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
544 {
545 #ifdef CONFIG_SPARSEMEM
546 pfn &= (PAGES_PER_SECTION-1);
547 #else
548 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
549 #endif /* CONFIG_SPARSEMEM */
550 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
551 }
552
553 static __always_inline
__get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)554 unsigned long __get_pfnblock_flags_mask(const struct page *page,
555 unsigned long pfn,
556 unsigned long mask)
557 {
558 unsigned long *bitmap;
559 unsigned long bitidx, word_bitidx;
560 unsigned long word;
561
562 bitmap = get_pageblock_bitmap(page, pfn);
563 bitidx = pfn_to_bitidx(page, pfn);
564 word_bitidx = bitidx / BITS_PER_LONG;
565 bitidx &= (BITS_PER_LONG-1);
566 /*
567 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
568 * a consistent read of the memory array, so that results, even though
569 * racy, are not corrupted.
570 */
571 word = READ_ONCE(bitmap[word_bitidx]);
572 return (word >> bitidx) & mask;
573 }
574
575 /**
576 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
577 * @page: The page within the block of interest
578 * @pfn: The target page frame number
579 * @mask: mask of bits that the caller is interested in
580 *
581 * Return: pageblock_bits flags
582 */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)583 unsigned long get_pfnblock_flags_mask(const struct page *page,
584 unsigned long pfn, unsigned long mask)
585 {
586 return __get_pfnblock_flags_mask(page, pfn, mask);
587 }
588
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)589 static __always_inline int get_pfnblock_migratetype(const struct page *page,
590 unsigned long pfn)
591 {
592 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
593 }
594
595 /**
596 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
597 * @page: The page within the block of interest
598 * @flags: The flags to set
599 * @pfn: The target page frame number
600 * @mask: mask of bits that the caller is interested in
601 */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)602 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
603 unsigned long pfn,
604 unsigned long mask)
605 {
606 unsigned long *bitmap;
607 unsigned long bitidx, word_bitidx;
608 unsigned long word;
609
610 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
611 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
612
613 bitmap = get_pageblock_bitmap(page, pfn);
614 bitidx = pfn_to_bitidx(page, pfn);
615 word_bitidx = bitidx / BITS_PER_LONG;
616 bitidx &= (BITS_PER_LONG-1);
617
618 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
619
620 mask <<= bitidx;
621 flags <<= bitidx;
622
623 word = READ_ONCE(bitmap[word_bitidx]);
624 do {
625 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
626 }
627
set_pageblock_migratetype(struct page * page,int migratetype)628 void set_pageblock_migratetype(struct page *page, int migratetype)
629 {
630 if (unlikely(page_group_by_mobility_disabled &&
631 migratetype < MIGRATE_PCPTYPES))
632 migratetype = MIGRATE_UNMOVABLE;
633
634 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
635 page_to_pfn(page), MIGRATETYPE_MASK);
636 }
637
638 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)639 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
640 {
641 int ret = 0;
642 unsigned seq;
643 unsigned long pfn = page_to_pfn(page);
644 unsigned long sp, start_pfn;
645
646 do {
647 seq = zone_span_seqbegin(zone);
648 start_pfn = zone->zone_start_pfn;
649 sp = zone->spanned_pages;
650 if (!zone_spans_pfn(zone, pfn))
651 ret = 1;
652 } while (zone_span_seqretry(zone, seq));
653
654 if (ret)
655 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
656 pfn, zone_to_nid(zone), zone->name,
657 start_pfn, start_pfn + sp);
658
659 return ret;
660 }
661
page_is_consistent(struct zone * zone,struct page * page)662 static int page_is_consistent(struct zone *zone, struct page *page)
663 {
664 if (zone != page_zone(page))
665 return 0;
666
667 return 1;
668 }
669 /*
670 * Temporary debugging check for pages not lying within a given zone.
671 */
bad_range(struct zone * zone,struct page * page)672 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
673 {
674 if (page_outside_zone_boundaries(zone, page))
675 return 1;
676 if (!page_is_consistent(zone, page))
677 return 1;
678
679 return 0;
680 }
681 #else
bad_range(struct zone * zone,struct page * page)682 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
683 {
684 return 0;
685 }
686 #endif
687
bad_page(struct page * page,const char * reason)688 static void bad_page(struct page *page, const char *reason)
689 {
690 static unsigned long resume;
691 static unsigned long nr_shown;
692 static unsigned long nr_unshown;
693
694 /*
695 * Allow a burst of 60 reports, then keep quiet for that minute;
696 * or allow a steady drip of one report per second.
697 */
698 if (nr_shown == 60) {
699 if (time_before(jiffies, resume)) {
700 nr_unshown++;
701 goto out;
702 }
703 if (nr_unshown) {
704 pr_alert(
705 "BUG: Bad page state: %lu messages suppressed\n",
706 nr_unshown);
707 nr_unshown = 0;
708 }
709 nr_shown = 0;
710 }
711 if (nr_shown++ == 0)
712 resume = jiffies + 60 * HZ;
713
714 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
715 current->comm, page_to_pfn(page));
716 dump_page(page, reason);
717
718 print_modules();
719 dump_stack();
720 out:
721 /* Leave bad fields for debug, except PageBuddy could make trouble */
722 page_mapcount_reset(page); /* remove PageBuddy */
723 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
724 }
725
order_to_pindex(int migratetype,int order)726 static inline unsigned int order_to_pindex(int migratetype, int order)
727 {
728 int base = order;
729
730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
731 if (order > PAGE_ALLOC_COSTLY_ORDER) {
732 VM_BUG_ON(order != pageblock_order);
733 return NR_LOWORDER_PCP_LISTS;
734 }
735 #else
736 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
737 #endif
738
739 return (MIGRATE_PCPTYPES * base) + migratetype;
740 }
741
pindex_to_order(unsigned int pindex)742 static inline int pindex_to_order(unsigned int pindex)
743 {
744 int order = pindex / MIGRATE_PCPTYPES;
745
746 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
747 if (pindex == NR_LOWORDER_PCP_LISTS)
748 order = pageblock_order;
749 #else
750 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
751 #endif
752
753 return order;
754 }
755
pcp_allowed_order(unsigned int order)756 static inline bool pcp_allowed_order(unsigned int order)
757 {
758 if (order <= PAGE_ALLOC_COSTLY_ORDER)
759 return true;
760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
761 if (order == pageblock_order)
762 return true;
763 #endif
764 return false;
765 }
766
free_the_page(struct page * page,unsigned int order)767 static inline void free_the_page(struct page *page, unsigned int order)
768 {
769 if (pcp_allowed_order(order)) /* Via pcp? */
770 free_unref_page(page, order);
771 else
772 __free_pages_ok(page, order, FPI_NONE);
773 }
774
775 /*
776 * Higher-order pages are called "compound pages". They are structured thusly:
777 *
778 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
779 *
780 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
781 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
782 *
783 * The first tail page's ->compound_dtor holds the offset in array of compound
784 * page destructors. See compound_page_dtors.
785 *
786 * The first tail page's ->compound_order holds the order of allocation.
787 * This usage means that zero-order pages may not be compound.
788 */
789
free_compound_page(struct page * page)790 void free_compound_page(struct page *page)
791 {
792 mem_cgroup_uncharge(page_folio(page));
793 free_the_page(page, compound_order(page));
794 }
795
prep_compound_head(struct page * page,unsigned int order)796 static void prep_compound_head(struct page *page, unsigned int order)
797 {
798 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
799 set_compound_order(page, order);
800 atomic_set(compound_mapcount_ptr(page), -1);
801 atomic_set(compound_pincount_ptr(page), 0);
802 }
803
prep_compound_tail(struct page * head,int tail_idx)804 static void prep_compound_tail(struct page *head, int tail_idx)
805 {
806 struct page *p = head + tail_idx;
807
808 p->mapping = TAIL_MAPPING;
809 set_compound_head(p, head);
810 set_page_private(p, 0);
811 }
812
prep_compound_page(struct page * page,unsigned int order)813 void prep_compound_page(struct page *page, unsigned int order)
814 {
815 int i;
816 int nr_pages = 1 << order;
817
818 __SetPageHead(page);
819 for (i = 1; i < nr_pages; i++)
820 prep_compound_tail(page, i);
821
822 prep_compound_head(page, order);
823 }
824
destroy_large_folio(struct folio * folio)825 void destroy_large_folio(struct folio *folio)
826 {
827 enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor;
828
829 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
830 compound_page_dtors[dtor](&folio->page);
831 }
832
833 #ifdef CONFIG_DEBUG_PAGEALLOC
834 unsigned int _debug_guardpage_minorder;
835
836 bool _debug_pagealloc_enabled_early __read_mostly
837 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
838 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
839 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
840 EXPORT_SYMBOL(_debug_pagealloc_enabled);
841
842 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
843
early_debug_pagealloc(char * buf)844 static int __init early_debug_pagealloc(char *buf)
845 {
846 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
847 }
848 early_param("debug_pagealloc", early_debug_pagealloc);
849
debug_guardpage_minorder_setup(char * buf)850 static int __init debug_guardpage_minorder_setup(char *buf)
851 {
852 unsigned long res;
853
854 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
855 pr_err("Bad debug_guardpage_minorder value\n");
856 return 0;
857 }
858 _debug_guardpage_minorder = res;
859 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
860 return 0;
861 }
862 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
863
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)864 static inline bool set_page_guard(struct zone *zone, struct page *page,
865 unsigned int order, int migratetype)
866 {
867 if (!debug_guardpage_enabled())
868 return false;
869
870 if (order >= debug_guardpage_minorder())
871 return false;
872
873 __SetPageGuard(page);
874 INIT_LIST_HEAD(&page->buddy_list);
875 set_page_private(page, order);
876 /* Guard pages are not available for any usage */
877 if (!is_migrate_isolate(migratetype))
878 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
879
880 return true;
881 }
882
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)883 static inline void clear_page_guard(struct zone *zone, struct page *page,
884 unsigned int order, int migratetype)
885 {
886 if (!debug_guardpage_enabled())
887 return;
888
889 __ClearPageGuard(page);
890
891 set_page_private(page, 0);
892 if (!is_migrate_isolate(migratetype))
893 __mod_zone_freepage_state(zone, (1 << order), migratetype);
894 }
895 #else
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)896 static inline bool set_page_guard(struct zone *zone, struct page *page,
897 unsigned int order, int migratetype) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)898 static inline void clear_page_guard(struct zone *zone, struct page *page,
899 unsigned int order, int migratetype) {}
900 #endif
901
902 /*
903 * Enable static keys related to various memory debugging and hardening options.
904 * Some override others, and depend on early params that are evaluated in the
905 * order of appearance. So we need to first gather the full picture of what was
906 * enabled, and then make decisions.
907 */
init_mem_debugging_and_hardening(void)908 void __init init_mem_debugging_and_hardening(void)
909 {
910 bool page_poisoning_requested = false;
911
912 #ifdef CONFIG_PAGE_POISONING
913 /*
914 * Page poisoning is debug page alloc for some arches. If
915 * either of those options are enabled, enable poisoning.
916 */
917 if (page_poisoning_enabled() ||
918 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
919 debug_pagealloc_enabled())) {
920 static_branch_enable(&_page_poisoning_enabled);
921 page_poisoning_requested = true;
922 }
923 #endif
924
925 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
926 page_poisoning_requested) {
927 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
928 "will take precedence over init_on_alloc and init_on_free\n");
929 _init_on_alloc_enabled_early = false;
930 _init_on_free_enabled_early = false;
931 }
932
933 if (_init_on_alloc_enabled_early)
934 static_branch_enable(&init_on_alloc);
935 else
936 static_branch_disable(&init_on_alloc);
937
938 if (_init_on_free_enabled_early)
939 static_branch_enable(&init_on_free);
940 else
941 static_branch_disable(&init_on_free);
942
943 if (IS_ENABLED(CONFIG_KMSAN) &&
944 (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
945 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
946
947 #ifdef CONFIG_DEBUG_PAGEALLOC
948 if (!debug_pagealloc_enabled())
949 return;
950
951 static_branch_enable(&_debug_pagealloc_enabled);
952
953 if (!debug_guardpage_minorder())
954 return;
955
956 static_branch_enable(&_debug_guardpage_enabled);
957 #endif
958 }
959
set_buddy_order(struct page * page,unsigned int order)960 static inline void set_buddy_order(struct page *page, unsigned int order)
961 {
962 set_page_private(page, order);
963 __SetPageBuddy(page);
964 }
965
966 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)967 static inline struct capture_control *task_capc(struct zone *zone)
968 {
969 struct capture_control *capc = current->capture_control;
970
971 return unlikely(capc) &&
972 !(current->flags & PF_KTHREAD) &&
973 !capc->page &&
974 capc->cc->zone == zone ? capc : NULL;
975 }
976
977 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)978 compaction_capture(struct capture_control *capc, struct page *page,
979 int order, int migratetype)
980 {
981 if (!capc || order != capc->cc->order)
982 return false;
983
984 /* Do not accidentally pollute CMA or isolated regions*/
985 if (is_migrate_cma(migratetype) ||
986 is_migrate_isolate(migratetype))
987 return false;
988
989 /*
990 * Do not let lower order allocations pollute a movable pageblock.
991 * This might let an unmovable request use a reclaimable pageblock
992 * and vice-versa but no more than normal fallback logic which can
993 * have trouble finding a high-order free page.
994 */
995 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
996 return false;
997
998 capc->page = page;
999 return true;
1000 }
1001
1002 #else
task_capc(struct zone * zone)1003 static inline struct capture_control *task_capc(struct zone *zone)
1004 {
1005 return NULL;
1006 }
1007
1008 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)1009 compaction_capture(struct capture_control *capc, struct page *page,
1010 int order, int migratetype)
1011 {
1012 return false;
1013 }
1014 #endif /* CONFIG_COMPACTION */
1015
1016 /* Used for pages not on another list */
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)1017 static inline void add_to_free_list(struct page *page, struct zone *zone,
1018 unsigned int order, int migratetype)
1019 {
1020 struct free_area *area = &zone->free_area[order];
1021
1022 list_add(&page->buddy_list, &area->free_list[migratetype]);
1023 area->nr_free++;
1024 }
1025
1026 /* Used for pages not on another list */
add_to_free_list_tail(struct page * page,struct zone * zone,unsigned int order,int migratetype)1027 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1028 unsigned int order, int migratetype)
1029 {
1030 struct free_area *area = &zone->free_area[order];
1031
1032 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1033 area->nr_free++;
1034 }
1035
1036 /*
1037 * Used for pages which are on another list. Move the pages to the tail
1038 * of the list - so the moved pages won't immediately be considered for
1039 * allocation again (e.g., optimization for memory onlining).
1040 */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)1041 static inline void move_to_free_list(struct page *page, struct zone *zone,
1042 unsigned int order, int migratetype)
1043 {
1044 struct free_area *area = &zone->free_area[order];
1045
1046 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1047 }
1048
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order)1049 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1050 unsigned int order)
1051 {
1052 /* clear reported state and update reported page count */
1053 if (page_reported(page))
1054 __ClearPageReported(page);
1055
1056 list_del(&page->buddy_list);
1057 __ClearPageBuddy(page);
1058 set_page_private(page, 0);
1059 zone->free_area[order].nr_free--;
1060 }
1061
1062 /*
1063 * If this is not the largest possible page, check if the buddy
1064 * of the next-highest order is free. If it is, it's possible
1065 * that pages are being freed that will coalesce soon. In case,
1066 * that is happening, add the free page to the tail of the list
1067 * so it's less likely to be used soon and more likely to be merged
1068 * as a higher order page
1069 */
1070 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)1071 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1072 struct page *page, unsigned int order)
1073 {
1074 unsigned long higher_page_pfn;
1075 struct page *higher_page;
1076
1077 if (order >= MAX_ORDER - 2)
1078 return false;
1079
1080 higher_page_pfn = buddy_pfn & pfn;
1081 higher_page = page + (higher_page_pfn - pfn);
1082
1083 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1084 NULL) != NULL;
1085 }
1086
1087 /*
1088 * Freeing function for a buddy system allocator.
1089 *
1090 * The concept of a buddy system is to maintain direct-mapped table
1091 * (containing bit values) for memory blocks of various "orders".
1092 * The bottom level table contains the map for the smallest allocatable
1093 * units of memory (here, pages), and each level above it describes
1094 * pairs of units from the levels below, hence, "buddies".
1095 * At a high level, all that happens here is marking the table entry
1096 * at the bottom level available, and propagating the changes upward
1097 * as necessary, plus some accounting needed to play nicely with other
1098 * parts of the VM system.
1099 * At each level, we keep a list of pages, which are heads of continuous
1100 * free pages of length of (1 << order) and marked with PageBuddy.
1101 * Page's order is recorded in page_private(page) field.
1102 * So when we are allocating or freeing one, we can derive the state of the
1103 * other. That is, if we allocate a small block, and both were
1104 * free, the remainder of the region must be split into blocks.
1105 * If a block is freed, and its buddy is also free, then this
1106 * triggers coalescing into a block of larger size.
1107 *
1108 * -- nyc
1109 */
1110
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)1111 static inline void __free_one_page(struct page *page,
1112 unsigned long pfn,
1113 struct zone *zone, unsigned int order,
1114 int migratetype, fpi_t fpi_flags)
1115 {
1116 struct capture_control *capc = task_capc(zone);
1117 unsigned long buddy_pfn = 0;
1118 unsigned long combined_pfn;
1119 struct page *buddy;
1120 bool to_tail;
1121
1122 VM_BUG_ON(!zone_is_initialized(zone));
1123 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1124
1125 VM_BUG_ON(migratetype == -1);
1126 if (likely(!is_migrate_isolate(migratetype)))
1127 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1128
1129 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1130 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1131
1132 while (order < MAX_ORDER - 1) {
1133 if (compaction_capture(capc, page, order, migratetype)) {
1134 __mod_zone_freepage_state(zone, -(1 << order),
1135 migratetype);
1136 return;
1137 }
1138
1139 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1140 if (!buddy)
1141 goto done_merging;
1142
1143 if (unlikely(order >= pageblock_order)) {
1144 /*
1145 * We want to prevent merge between freepages on pageblock
1146 * without fallbacks and normal pageblock. Without this,
1147 * pageblock isolation could cause incorrect freepage or CMA
1148 * accounting or HIGHATOMIC accounting.
1149 */
1150 int buddy_mt = get_pageblock_migratetype(buddy);
1151
1152 if (migratetype != buddy_mt
1153 && (!migratetype_is_mergeable(migratetype) ||
1154 !migratetype_is_mergeable(buddy_mt)))
1155 goto done_merging;
1156 }
1157
1158 /*
1159 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1160 * merge with it and move up one order.
1161 */
1162 if (page_is_guard(buddy))
1163 clear_page_guard(zone, buddy, order, migratetype);
1164 else
1165 del_page_from_free_list(buddy, zone, order);
1166 combined_pfn = buddy_pfn & pfn;
1167 page = page + (combined_pfn - pfn);
1168 pfn = combined_pfn;
1169 order++;
1170 }
1171
1172 done_merging:
1173 set_buddy_order(page, order);
1174
1175 if (fpi_flags & FPI_TO_TAIL)
1176 to_tail = true;
1177 else if (is_shuffle_order(order))
1178 to_tail = shuffle_pick_tail();
1179 else
1180 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1181
1182 if (to_tail)
1183 add_to_free_list_tail(page, zone, order, migratetype);
1184 else
1185 add_to_free_list(page, zone, order, migratetype);
1186
1187 /* Notify page reporting subsystem of freed page */
1188 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1189 page_reporting_notify_free(order);
1190 }
1191
1192 /**
1193 * split_free_page() -- split a free page at split_pfn_offset
1194 * @free_page: the original free page
1195 * @order: the order of the page
1196 * @split_pfn_offset: split offset within the page
1197 *
1198 * Return -ENOENT if the free page is changed, otherwise 0
1199 *
1200 * It is used when the free page crosses two pageblocks with different migratetypes
1201 * at split_pfn_offset within the page. The split free page will be put into
1202 * separate migratetype lists afterwards. Otherwise, the function achieves
1203 * nothing.
1204 */
split_free_page(struct page * free_page,unsigned int order,unsigned long split_pfn_offset)1205 int split_free_page(struct page *free_page,
1206 unsigned int order, unsigned long split_pfn_offset)
1207 {
1208 struct zone *zone = page_zone(free_page);
1209 unsigned long free_page_pfn = page_to_pfn(free_page);
1210 unsigned long pfn;
1211 unsigned long flags;
1212 int free_page_order;
1213 int mt;
1214 int ret = 0;
1215
1216 if (split_pfn_offset == 0)
1217 return ret;
1218
1219 spin_lock_irqsave(&zone->lock, flags);
1220
1221 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1222 ret = -ENOENT;
1223 goto out;
1224 }
1225
1226 mt = get_pageblock_migratetype(free_page);
1227 if (likely(!is_migrate_isolate(mt)))
1228 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1229
1230 del_page_from_free_list(free_page, zone, order);
1231 for (pfn = free_page_pfn;
1232 pfn < free_page_pfn + (1UL << order);) {
1233 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1234
1235 free_page_order = min_t(unsigned int,
1236 pfn ? __ffs(pfn) : order,
1237 __fls(split_pfn_offset));
1238 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1239 mt, FPI_NONE);
1240 pfn += 1UL << free_page_order;
1241 split_pfn_offset -= (1UL << free_page_order);
1242 /* we have done the first part, now switch to second part */
1243 if (split_pfn_offset == 0)
1244 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1245 }
1246 out:
1247 spin_unlock_irqrestore(&zone->lock, flags);
1248 return ret;
1249 }
1250 /*
1251 * A bad page could be due to a number of fields. Instead of multiple branches,
1252 * try and check multiple fields with one check. The caller must do a detailed
1253 * check if necessary.
1254 */
page_expected_state(struct page * page,unsigned long check_flags)1255 static inline bool page_expected_state(struct page *page,
1256 unsigned long check_flags)
1257 {
1258 if (unlikely(atomic_read(&page->_mapcount) != -1))
1259 return false;
1260
1261 if (unlikely((unsigned long)page->mapping |
1262 page_ref_count(page) |
1263 #ifdef CONFIG_MEMCG
1264 page->memcg_data |
1265 #endif
1266 (page->flags & check_flags)))
1267 return false;
1268
1269 return true;
1270 }
1271
page_bad_reason(struct page * page,unsigned long flags)1272 static const char *page_bad_reason(struct page *page, unsigned long flags)
1273 {
1274 const char *bad_reason = NULL;
1275
1276 if (unlikely(atomic_read(&page->_mapcount) != -1))
1277 bad_reason = "nonzero mapcount";
1278 if (unlikely(page->mapping != NULL))
1279 bad_reason = "non-NULL mapping";
1280 if (unlikely(page_ref_count(page) != 0))
1281 bad_reason = "nonzero _refcount";
1282 if (unlikely(page->flags & flags)) {
1283 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1284 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1285 else
1286 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1287 }
1288 #ifdef CONFIG_MEMCG
1289 if (unlikely(page->memcg_data))
1290 bad_reason = "page still charged to cgroup";
1291 #endif
1292 return bad_reason;
1293 }
1294
free_page_is_bad_report(struct page * page)1295 static void free_page_is_bad_report(struct page *page)
1296 {
1297 bad_page(page,
1298 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1299 }
1300
free_page_is_bad(struct page * page)1301 static inline bool free_page_is_bad(struct page *page)
1302 {
1303 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1304 return false;
1305
1306 /* Something has gone sideways, find it */
1307 free_page_is_bad_report(page);
1308 return true;
1309 }
1310
free_tail_pages_check(struct page * head_page,struct page * page)1311 static int free_tail_pages_check(struct page *head_page, struct page *page)
1312 {
1313 int ret = 1;
1314
1315 /*
1316 * We rely page->lru.next never has bit 0 set, unless the page
1317 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1318 */
1319 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1320
1321 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1322 ret = 0;
1323 goto out;
1324 }
1325 switch (page - head_page) {
1326 case 1:
1327 /* the first tail page: ->mapping may be compound_mapcount() */
1328 if (unlikely(compound_mapcount(page))) {
1329 bad_page(page, "nonzero compound_mapcount");
1330 goto out;
1331 }
1332 break;
1333 case 2:
1334 /*
1335 * the second tail page: ->mapping is
1336 * deferred_list.next -- ignore value.
1337 */
1338 break;
1339 default:
1340 if (page->mapping != TAIL_MAPPING) {
1341 bad_page(page, "corrupted mapping in tail page");
1342 goto out;
1343 }
1344 break;
1345 }
1346 if (unlikely(!PageTail(page))) {
1347 bad_page(page, "PageTail not set");
1348 goto out;
1349 }
1350 if (unlikely(compound_head(page) != head_page)) {
1351 bad_page(page, "compound_head not consistent");
1352 goto out;
1353 }
1354 ret = 0;
1355 out:
1356 page->mapping = NULL;
1357 clear_compound_head(page);
1358 return ret;
1359 }
1360
1361 /*
1362 * Skip KASAN memory poisoning when either:
1363 *
1364 * 1. Deferred memory initialization has not yet completed,
1365 * see the explanation below.
1366 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1367 * see the comment next to it.
1368 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1369 * see the comment next to it.
1370 *
1371 * Poisoning pages during deferred memory init will greatly lengthen the
1372 * process and cause problem in large memory systems as the deferred pages
1373 * initialization is done with interrupt disabled.
1374 *
1375 * Assuming that there will be no reference to those newly initialized
1376 * pages before they are ever allocated, this should have no effect on
1377 * KASAN memory tracking as the poison will be properly inserted at page
1378 * allocation time. The only corner case is when pages are allocated by
1379 * on-demand allocation and then freed again before the deferred pages
1380 * initialization is done, but this is not likely to happen.
1381 */
should_skip_kasan_poison(struct page * page,fpi_t fpi_flags)1382 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1383 {
1384 return deferred_pages_enabled() ||
1385 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1386 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1387 PageSkipKASanPoison(page);
1388 }
1389
kernel_init_pages(struct page * page,int numpages)1390 static void kernel_init_pages(struct page *page, int numpages)
1391 {
1392 int i;
1393
1394 /* s390's use of memset() could override KASAN redzones. */
1395 kasan_disable_current();
1396 for (i = 0; i < numpages; i++)
1397 clear_highpage_kasan_tagged(page + i);
1398 kasan_enable_current();
1399 }
1400
free_pages_prepare(struct page * page,unsigned int order,bool check_free,fpi_t fpi_flags)1401 static __always_inline bool free_pages_prepare(struct page *page,
1402 unsigned int order, bool check_free, fpi_t fpi_flags)
1403 {
1404 int bad = 0;
1405 bool init = want_init_on_free();
1406
1407 VM_BUG_ON_PAGE(PageTail(page), page);
1408
1409 trace_mm_page_free(page, order);
1410 kmsan_free_page(page, order);
1411
1412 if (unlikely(PageHWPoison(page)) && !order) {
1413 /*
1414 * Do not let hwpoison pages hit pcplists/buddy
1415 * Untie memcg state and reset page's owner
1416 */
1417 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1418 __memcg_kmem_uncharge_page(page, order);
1419 reset_page_owner(page, order);
1420 page_table_check_free(page, order);
1421 return false;
1422 }
1423
1424 /*
1425 * Check tail pages before head page information is cleared to
1426 * avoid checking PageCompound for order-0 pages.
1427 */
1428 if (unlikely(order)) {
1429 bool compound = PageCompound(page);
1430 int i;
1431
1432 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1433
1434 if (compound) {
1435 ClearPageDoubleMap(page);
1436 ClearPageHasHWPoisoned(page);
1437 }
1438 for (i = 1; i < (1 << order); i++) {
1439 if (compound)
1440 bad += free_tail_pages_check(page, page + i);
1441 if (unlikely(free_page_is_bad(page + i))) {
1442 bad++;
1443 continue;
1444 }
1445 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1446 }
1447 }
1448 if (PageMappingFlags(page))
1449 page->mapping = NULL;
1450 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1451 __memcg_kmem_uncharge_page(page, order);
1452 if (check_free && free_page_is_bad(page))
1453 bad++;
1454 if (bad)
1455 return false;
1456
1457 page_cpupid_reset_last(page);
1458 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1459 reset_page_owner(page, order);
1460 page_table_check_free(page, order);
1461
1462 if (!PageHighMem(page)) {
1463 debug_check_no_locks_freed(page_address(page),
1464 PAGE_SIZE << order);
1465 debug_check_no_obj_freed(page_address(page),
1466 PAGE_SIZE << order);
1467 }
1468
1469 kernel_poison_pages(page, 1 << order);
1470
1471 /*
1472 * As memory initialization might be integrated into KASAN,
1473 * KASAN poisoning and memory initialization code must be
1474 * kept together to avoid discrepancies in behavior.
1475 *
1476 * With hardware tag-based KASAN, memory tags must be set before the
1477 * page becomes unavailable via debug_pagealloc or arch_free_page.
1478 */
1479 if (!should_skip_kasan_poison(page, fpi_flags)) {
1480 kasan_poison_pages(page, order, init);
1481
1482 /* Memory is already initialized if KASAN did it internally. */
1483 if (kasan_has_integrated_init())
1484 init = false;
1485 }
1486 if (init)
1487 kernel_init_pages(page, 1 << order);
1488
1489 /*
1490 * arch_free_page() can make the page's contents inaccessible. s390
1491 * does this. So nothing which can access the page's contents should
1492 * happen after this.
1493 */
1494 arch_free_page(page, order);
1495
1496 debug_pagealloc_unmap_pages(page, 1 << order);
1497
1498 return true;
1499 }
1500
1501 #ifdef CONFIG_DEBUG_VM
1502 /*
1503 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1504 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1505 * moved from pcp lists to free lists.
1506 */
free_pcp_prepare(struct page * page,unsigned int order)1507 static bool free_pcp_prepare(struct page *page, unsigned int order)
1508 {
1509 return free_pages_prepare(page, order, true, FPI_NONE);
1510 }
1511
1512 /* return true if this page has an inappropriate state */
bulkfree_pcp_prepare(struct page * page)1513 static bool bulkfree_pcp_prepare(struct page *page)
1514 {
1515 if (debug_pagealloc_enabled_static())
1516 return free_page_is_bad(page);
1517 else
1518 return false;
1519 }
1520 #else
1521 /*
1522 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1523 * moving from pcp lists to free list in order to reduce overhead. With
1524 * debug_pagealloc enabled, they are checked also immediately when being freed
1525 * to the pcp lists.
1526 */
free_pcp_prepare(struct page * page,unsigned int order)1527 static bool free_pcp_prepare(struct page *page, unsigned int order)
1528 {
1529 if (debug_pagealloc_enabled_static())
1530 return free_pages_prepare(page, order, true, FPI_NONE);
1531 else
1532 return free_pages_prepare(page, order, false, FPI_NONE);
1533 }
1534
bulkfree_pcp_prepare(struct page * page)1535 static bool bulkfree_pcp_prepare(struct page *page)
1536 {
1537 return free_page_is_bad(page);
1538 }
1539 #endif /* CONFIG_DEBUG_VM */
1540
1541 /*
1542 * Frees a number of pages from the PCP lists
1543 * Assumes all pages on list are in same zone.
1544 * count is the number of pages to free.
1545 */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp,int pindex)1546 static void free_pcppages_bulk(struct zone *zone, int count,
1547 struct per_cpu_pages *pcp,
1548 int pindex)
1549 {
1550 int min_pindex = 0;
1551 int max_pindex = NR_PCP_LISTS - 1;
1552 unsigned int order;
1553 bool isolated_pageblocks;
1554 struct page *page;
1555
1556 /*
1557 * Ensure proper count is passed which otherwise would stuck in the
1558 * below while (list_empty(list)) loop.
1559 */
1560 count = min(pcp->count, count);
1561
1562 /* Ensure requested pindex is drained first. */
1563 pindex = pindex - 1;
1564
1565 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
1566 spin_lock(&zone->lock);
1567 isolated_pageblocks = has_isolate_pageblock(zone);
1568
1569 while (count > 0) {
1570 struct list_head *list;
1571 int nr_pages;
1572
1573 /* Remove pages from lists in a round-robin fashion. */
1574 do {
1575 if (++pindex > max_pindex)
1576 pindex = min_pindex;
1577 list = &pcp->lists[pindex];
1578 if (!list_empty(list))
1579 break;
1580
1581 if (pindex == max_pindex)
1582 max_pindex--;
1583 if (pindex == min_pindex)
1584 min_pindex++;
1585 } while (1);
1586
1587 order = pindex_to_order(pindex);
1588 nr_pages = 1 << order;
1589 do {
1590 int mt;
1591
1592 page = list_last_entry(list, struct page, pcp_list);
1593 mt = get_pcppage_migratetype(page);
1594
1595 /* must delete to avoid corrupting pcp list */
1596 list_del(&page->pcp_list);
1597 count -= nr_pages;
1598 pcp->count -= nr_pages;
1599
1600 if (bulkfree_pcp_prepare(page))
1601 continue;
1602
1603 /* MIGRATE_ISOLATE page should not go to pcplists */
1604 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1605 /* Pageblock could have been isolated meanwhile */
1606 if (unlikely(isolated_pageblocks))
1607 mt = get_pageblock_migratetype(page);
1608
1609 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1610 trace_mm_page_pcpu_drain(page, order, mt);
1611 } while (count > 0 && !list_empty(list));
1612 }
1613
1614 spin_unlock(&zone->lock);
1615 }
1616
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype,fpi_t fpi_flags)1617 static void free_one_page(struct zone *zone,
1618 struct page *page, unsigned long pfn,
1619 unsigned int order,
1620 int migratetype, fpi_t fpi_flags)
1621 {
1622 unsigned long flags;
1623
1624 spin_lock_irqsave(&zone->lock, flags);
1625 if (unlikely(has_isolate_pageblock(zone) ||
1626 is_migrate_isolate(migratetype))) {
1627 migratetype = get_pfnblock_migratetype(page, pfn);
1628 }
1629 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1630 spin_unlock_irqrestore(&zone->lock, flags);
1631 }
1632
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)1633 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1634 unsigned long zone, int nid)
1635 {
1636 mm_zero_struct_page(page);
1637 set_page_links(page, zone, nid, pfn);
1638 init_page_count(page);
1639 page_mapcount_reset(page);
1640 page_cpupid_reset_last(page);
1641 page_kasan_tag_reset(page);
1642
1643 INIT_LIST_HEAD(&page->lru);
1644 #ifdef WANT_PAGE_VIRTUAL
1645 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1646 if (!is_highmem_idx(zone))
1647 set_page_address(page, __va(pfn << PAGE_SHIFT));
1648 #endif
1649 }
1650
1651 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
init_reserved_page(unsigned long pfn)1652 static void __meminit init_reserved_page(unsigned long pfn)
1653 {
1654 pg_data_t *pgdat;
1655 int nid, zid;
1656
1657 if (!early_page_uninitialised(pfn))
1658 return;
1659
1660 nid = early_pfn_to_nid(pfn);
1661 pgdat = NODE_DATA(nid);
1662
1663 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1664 struct zone *zone = &pgdat->node_zones[zid];
1665
1666 if (zone_spans_pfn(zone, pfn))
1667 break;
1668 }
1669 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1670 }
1671 #else
init_reserved_page(unsigned long pfn)1672 static inline void init_reserved_page(unsigned long pfn)
1673 {
1674 }
1675 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1676
1677 /*
1678 * Initialised pages do not have PageReserved set. This function is
1679 * called for each range allocated by the bootmem allocator and
1680 * marks the pages PageReserved. The remaining valid pages are later
1681 * sent to the buddy page allocator.
1682 */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end)1683 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1684 {
1685 unsigned long start_pfn = PFN_DOWN(start);
1686 unsigned long end_pfn = PFN_UP(end);
1687
1688 for (; start_pfn < end_pfn; start_pfn++) {
1689 if (pfn_valid(start_pfn)) {
1690 struct page *page = pfn_to_page(start_pfn);
1691
1692 init_reserved_page(start_pfn);
1693
1694 /* Avoid false-positive PageTail() */
1695 INIT_LIST_HEAD(&page->lru);
1696
1697 /*
1698 * no need for atomic set_bit because the struct
1699 * page is not visible yet so nobody should
1700 * access it yet.
1701 */
1702 __SetPageReserved(page);
1703 }
1704 }
1705 }
1706
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1707 static void __free_pages_ok(struct page *page, unsigned int order,
1708 fpi_t fpi_flags)
1709 {
1710 unsigned long flags;
1711 int migratetype;
1712 unsigned long pfn = page_to_pfn(page);
1713 struct zone *zone = page_zone(page);
1714
1715 if (!free_pages_prepare(page, order, true, fpi_flags))
1716 return;
1717
1718 migratetype = get_pfnblock_migratetype(page, pfn);
1719
1720 spin_lock_irqsave(&zone->lock, flags);
1721 if (unlikely(has_isolate_pageblock(zone) ||
1722 is_migrate_isolate(migratetype))) {
1723 migratetype = get_pfnblock_migratetype(page, pfn);
1724 }
1725 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1726 spin_unlock_irqrestore(&zone->lock, flags);
1727
1728 __count_vm_events(PGFREE, 1 << order);
1729 }
1730
__free_pages_core(struct page * page,unsigned int order)1731 void __free_pages_core(struct page *page, unsigned int order)
1732 {
1733 unsigned int nr_pages = 1 << order;
1734 struct page *p = page;
1735 unsigned int loop;
1736
1737 /*
1738 * When initializing the memmap, __init_single_page() sets the refcount
1739 * of all pages to 1 ("allocated"/"not free"). We have to set the
1740 * refcount of all involved pages to 0.
1741 */
1742 prefetchw(p);
1743 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1744 prefetchw(p + 1);
1745 __ClearPageReserved(p);
1746 set_page_count(p, 0);
1747 }
1748 __ClearPageReserved(p);
1749 set_page_count(p, 0);
1750
1751 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1752
1753 /*
1754 * Bypass PCP and place fresh pages right to the tail, primarily
1755 * relevant for memory onlining.
1756 */
1757 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1758 }
1759
1760 #ifdef CONFIG_NUMA
1761
1762 /*
1763 * During memory init memblocks map pfns to nids. The search is expensive and
1764 * this caches recent lookups. The implementation of __early_pfn_to_nid
1765 * treats start/end as pfns.
1766 */
1767 struct mminit_pfnnid_cache {
1768 unsigned long last_start;
1769 unsigned long last_end;
1770 int last_nid;
1771 };
1772
1773 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1774
1775 /*
1776 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1777 */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)1778 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1779 struct mminit_pfnnid_cache *state)
1780 {
1781 unsigned long start_pfn, end_pfn;
1782 int nid;
1783
1784 if (state->last_start <= pfn && pfn < state->last_end)
1785 return state->last_nid;
1786
1787 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1788 if (nid != NUMA_NO_NODE) {
1789 state->last_start = start_pfn;
1790 state->last_end = end_pfn;
1791 state->last_nid = nid;
1792 }
1793
1794 return nid;
1795 }
1796
early_pfn_to_nid(unsigned long pfn)1797 int __meminit early_pfn_to_nid(unsigned long pfn)
1798 {
1799 static DEFINE_SPINLOCK(early_pfn_lock);
1800 int nid;
1801
1802 spin_lock(&early_pfn_lock);
1803 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1804 if (nid < 0)
1805 nid = first_online_node;
1806 spin_unlock(&early_pfn_lock);
1807
1808 return nid;
1809 }
1810 #endif /* CONFIG_NUMA */
1811
memblock_free_pages(struct page * page,unsigned long pfn,unsigned int order)1812 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1813 unsigned int order)
1814 {
1815 if (early_page_uninitialised(pfn))
1816 return;
1817 if (!kmsan_memblock_free_pages(page, order)) {
1818 /* KMSAN will take care of these pages. */
1819 return;
1820 }
1821 __free_pages_core(page, order);
1822 }
1823
1824 /*
1825 * Check that the whole (or subset of) a pageblock given by the interval of
1826 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1827 * with the migration of free compaction scanner.
1828 *
1829 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1830 *
1831 * It's possible on some configurations to have a setup like node0 node1 node0
1832 * i.e. it's possible that all pages within a zones range of pages do not
1833 * belong to a single zone. We assume that a border between node0 and node1
1834 * can occur within a single pageblock, but not a node0 node1 node0
1835 * interleaving within a single pageblock. It is therefore sufficient to check
1836 * the first and last page of a pageblock and avoid checking each individual
1837 * page in a pageblock.
1838 */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1839 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1840 unsigned long end_pfn, struct zone *zone)
1841 {
1842 struct page *start_page;
1843 struct page *end_page;
1844
1845 /* end_pfn is one past the range we are checking */
1846 end_pfn--;
1847
1848 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1849 return NULL;
1850
1851 start_page = pfn_to_online_page(start_pfn);
1852 if (!start_page)
1853 return NULL;
1854
1855 if (page_zone(start_page) != zone)
1856 return NULL;
1857
1858 end_page = pfn_to_page(end_pfn);
1859
1860 /* This gives a shorter code than deriving page_zone(end_page) */
1861 if (page_zone_id(start_page) != page_zone_id(end_page))
1862 return NULL;
1863
1864 return start_page;
1865 }
1866
set_zone_contiguous(struct zone * zone)1867 void set_zone_contiguous(struct zone *zone)
1868 {
1869 unsigned long block_start_pfn = zone->zone_start_pfn;
1870 unsigned long block_end_pfn;
1871
1872 block_end_pfn = pageblock_end_pfn(block_start_pfn);
1873 for (; block_start_pfn < zone_end_pfn(zone);
1874 block_start_pfn = block_end_pfn,
1875 block_end_pfn += pageblock_nr_pages) {
1876
1877 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1878
1879 if (!__pageblock_pfn_to_page(block_start_pfn,
1880 block_end_pfn, zone))
1881 return;
1882 cond_resched();
1883 }
1884
1885 /* We confirm that there is no hole */
1886 zone->contiguous = true;
1887 }
1888
clear_zone_contiguous(struct zone * zone)1889 void clear_zone_contiguous(struct zone *zone)
1890 {
1891 zone->contiguous = false;
1892 }
1893
1894 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_range(unsigned long pfn,unsigned long nr_pages)1895 static void __init deferred_free_range(unsigned long pfn,
1896 unsigned long nr_pages)
1897 {
1898 struct page *page;
1899 unsigned long i;
1900
1901 if (!nr_pages)
1902 return;
1903
1904 page = pfn_to_page(pfn);
1905
1906 /* Free a large naturally-aligned chunk if possible */
1907 if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
1908 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1909 __free_pages_core(page, pageblock_order);
1910 return;
1911 }
1912
1913 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1914 if (pageblock_aligned(pfn))
1915 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1916 __free_pages_core(page, 0);
1917 }
1918 }
1919
1920 /* Completion tracking for deferred_init_memmap() threads */
1921 static atomic_t pgdat_init_n_undone __initdata;
1922 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1923
pgdat_init_report_one_done(void)1924 static inline void __init pgdat_init_report_one_done(void)
1925 {
1926 if (atomic_dec_and_test(&pgdat_init_n_undone))
1927 complete(&pgdat_init_all_done_comp);
1928 }
1929
1930 /*
1931 * Returns true if page needs to be initialized or freed to buddy allocator.
1932 *
1933 * We check if a current large page is valid by only checking the validity
1934 * of the head pfn.
1935 */
deferred_pfn_valid(unsigned long pfn)1936 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1937 {
1938 if (pageblock_aligned(pfn) && !pfn_valid(pfn))
1939 return false;
1940 return true;
1941 }
1942
1943 /*
1944 * Free pages to buddy allocator. Try to free aligned pages in
1945 * pageblock_nr_pages sizes.
1946 */
deferred_free_pages(unsigned long pfn,unsigned long end_pfn)1947 static void __init deferred_free_pages(unsigned long pfn,
1948 unsigned long end_pfn)
1949 {
1950 unsigned long nr_free = 0;
1951
1952 for (; pfn < end_pfn; pfn++) {
1953 if (!deferred_pfn_valid(pfn)) {
1954 deferred_free_range(pfn - nr_free, nr_free);
1955 nr_free = 0;
1956 } else if (pageblock_aligned(pfn)) {
1957 deferred_free_range(pfn - nr_free, nr_free);
1958 nr_free = 1;
1959 } else {
1960 nr_free++;
1961 }
1962 }
1963 /* Free the last block of pages to allocator */
1964 deferred_free_range(pfn - nr_free, nr_free);
1965 }
1966
1967 /*
1968 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1969 * by performing it only once every pageblock_nr_pages.
1970 * Return number of pages initialized.
1971 */
deferred_init_pages(struct zone * zone,unsigned long pfn,unsigned long end_pfn)1972 static unsigned long __init deferred_init_pages(struct zone *zone,
1973 unsigned long pfn,
1974 unsigned long end_pfn)
1975 {
1976 int nid = zone_to_nid(zone);
1977 unsigned long nr_pages = 0;
1978 int zid = zone_idx(zone);
1979 struct page *page = NULL;
1980
1981 for (; pfn < end_pfn; pfn++) {
1982 if (!deferred_pfn_valid(pfn)) {
1983 page = NULL;
1984 continue;
1985 } else if (!page || pageblock_aligned(pfn)) {
1986 page = pfn_to_page(pfn);
1987 } else {
1988 page++;
1989 }
1990 __init_single_page(page, pfn, zid, nid);
1991 nr_pages++;
1992 }
1993 return (nr_pages);
1994 }
1995
1996 /*
1997 * This function is meant to pre-load the iterator for the zone init.
1998 * Specifically it walks through the ranges until we are caught up to the
1999 * first_init_pfn value and exits there. If we never encounter the value we
2000 * return false indicating there are no valid ranges left.
2001 */
2002 static bool __init
deferred_init_mem_pfn_range_in_zone(u64 * i,struct zone * zone,unsigned long * spfn,unsigned long * epfn,unsigned long first_init_pfn)2003 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2004 unsigned long *spfn, unsigned long *epfn,
2005 unsigned long first_init_pfn)
2006 {
2007 u64 j;
2008
2009 /*
2010 * Start out by walking through the ranges in this zone that have
2011 * already been initialized. We don't need to do anything with them
2012 * so we just need to flush them out of the system.
2013 */
2014 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2015 if (*epfn <= first_init_pfn)
2016 continue;
2017 if (*spfn < first_init_pfn)
2018 *spfn = first_init_pfn;
2019 *i = j;
2020 return true;
2021 }
2022
2023 return false;
2024 }
2025
2026 /*
2027 * Initialize and free pages. We do it in two loops: first we initialize
2028 * struct page, then free to buddy allocator, because while we are
2029 * freeing pages we can access pages that are ahead (computing buddy
2030 * page in __free_one_page()).
2031 *
2032 * In order to try and keep some memory in the cache we have the loop
2033 * broken along max page order boundaries. This way we will not cause
2034 * any issues with the buddy page computation.
2035 */
2036 static unsigned long __init
deferred_init_maxorder(u64 * i,struct zone * zone,unsigned long * start_pfn,unsigned long * end_pfn)2037 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2038 unsigned long *end_pfn)
2039 {
2040 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2041 unsigned long spfn = *start_pfn, epfn = *end_pfn;
2042 unsigned long nr_pages = 0;
2043 u64 j = *i;
2044
2045 /* First we loop through and initialize the page values */
2046 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2047 unsigned long t;
2048
2049 if (mo_pfn <= *start_pfn)
2050 break;
2051
2052 t = min(mo_pfn, *end_pfn);
2053 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2054
2055 if (mo_pfn < *end_pfn) {
2056 *start_pfn = mo_pfn;
2057 break;
2058 }
2059 }
2060
2061 /* Reset values and now loop through freeing pages as needed */
2062 swap(j, *i);
2063
2064 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2065 unsigned long t;
2066
2067 if (mo_pfn <= spfn)
2068 break;
2069
2070 t = min(mo_pfn, epfn);
2071 deferred_free_pages(spfn, t);
2072
2073 if (mo_pfn <= epfn)
2074 break;
2075 }
2076
2077 return nr_pages;
2078 }
2079
2080 static void __init
deferred_init_memmap_chunk(unsigned long start_pfn,unsigned long end_pfn,void * arg)2081 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2082 void *arg)
2083 {
2084 unsigned long spfn, epfn;
2085 struct zone *zone = arg;
2086 u64 i;
2087
2088 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2089
2090 /*
2091 * Initialize and free pages in MAX_ORDER sized increments so that we
2092 * can avoid introducing any issues with the buddy allocator.
2093 */
2094 while (spfn < end_pfn) {
2095 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2096 cond_resched();
2097 }
2098 }
2099
2100 /* An arch may override for more concurrency. */
2101 __weak int __init
deferred_page_init_max_threads(const struct cpumask * node_cpumask)2102 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2103 {
2104 return 1;
2105 }
2106
2107 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)2108 static int __init deferred_init_memmap(void *data)
2109 {
2110 pg_data_t *pgdat = data;
2111 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2112 unsigned long spfn = 0, epfn = 0;
2113 unsigned long first_init_pfn, flags;
2114 unsigned long start = jiffies;
2115 struct zone *zone;
2116 int zid, max_threads;
2117 u64 i;
2118
2119 /* Bind memory initialisation thread to a local node if possible */
2120 if (!cpumask_empty(cpumask))
2121 set_cpus_allowed_ptr(current, cpumask);
2122
2123 pgdat_resize_lock(pgdat, &flags);
2124 first_init_pfn = pgdat->first_deferred_pfn;
2125 if (first_init_pfn == ULONG_MAX) {
2126 pgdat_resize_unlock(pgdat, &flags);
2127 pgdat_init_report_one_done();
2128 return 0;
2129 }
2130
2131 /* Sanity check boundaries */
2132 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2133 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2134 pgdat->first_deferred_pfn = ULONG_MAX;
2135
2136 /*
2137 * Once we unlock here, the zone cannot be grown anymore, thus if an
2138 * interrupt thread must allocate this early in boot, zone must be
2139 * pre-grown prior to start of deferred page initialization.
2140 */
2141 pgdat_resize_unlock(pgdat, &flags);
2142
2143 /* Only the highest zone is deferred so find it */
2144 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2145 zone = pgdat->node_zones + zid;
2146 if (first_init_pfn < zone_end_pfn(zone))
2147 break;
2148 }
2149
2150 /* If the zone is empty somebody else may have cleared out the zone */
2151 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2152 first_init_pfn))
2153 goto zone_empty;
2154
2155 max_threads = deferred_page_init_max_threads(cpumask);
2156
2157 while (spfn < epfn) {
2158 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2159 struct padata_mt_job job = {
2160 .thread_fn = deferred_init_memmap_chunk,
2161 .fn_arg = zone,
2162 .start = spfn,
2163 .size = epfn_align - spfn,
2164 .align = PAGES_PER_SECTION,
2165 .min_chunk = PAGES_PER_SECTION,
2166 .max_threads = max_threads,
2167 };
2168
2169 padata_do_multithreaded(&job);
2170 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2171 epfn_align);
2172 }
2173 zone_empty:
2174 /* Sanity check that the next zone really is unpopulated */
2175 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2176
2177 pr_info("node %d deferred pages initialised in %ums\n",
2178 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2179
2180 pgdat_init_report_one_done();
2181 return 0;
2182 }
2183
2184 /*
2185 * If this zone has deferred pages, try to grow it by initializing enough
2186 * deferred pages to satisfy the allocation specified by order, rounded up to
2187 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2188 * of SECTION_SIZE bytes by initializing struct pages in increments of
2189 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2190 *
2191 * Return true when zone was grown, otherwise return false. We return true even
2192 * when we grow less than requested, to let the caller decide if there are
2193 * enough pages to satisfy the allocation.
2194 *
2195 * Note: We use noinline because this function is needed only during boot, and
2196 * it is called from a __ref function _deferred_grow_zone. This way we are
2197 * making sure that it is not inlined into permanent text section.
2198 */
2199 static noinline bool __init
deferred_grow_zone(struct zone * zone,unsigned int order)2200 deferred_grow_zone(struct zone *zone, unsigned int order)
2201 {
2202 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2203 pg_data_t *pgdat = zone->zone_pgdat;
2204 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2205 unsigned long spfn, epfn, flags;
2206 unsigned long nr_pages = 0;
2207 u64 i;
2208
2209 /* Only the last zone may have deferred pages */
2210 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2211 return false;
2212
2213 pgdat_resize_lock(pgdat, &flags);
2214
2215 /*
2216 * If someone grew this zone while we were waiting for spinlock, return
2217 * true, as there might be enough pages already.
2218 */
2219 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2220 pgdat_resize_unlock(pgdat, &flags);
2221 return true;
2222 }
2223
2224 /* If the zone is empty somebody else may have cleared out the zone */
2225 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2226 first_deferred_pfn)) {
2227 pgdat->first_deferred_pfn = ULONG_MAX;
2228 pgdat_resize_unlock(pgdat, &flags);
2229 /* Retry only once. */
2230 return first_deferred_pfn != ULONG_MAX;
2231 }
2232
2233 /*
2234 * Initialize and free pages in MAX_ORDER sized increments so
2235 * that we can avoid introducing any issues with the buddy
2236 * allocator.
2237 */
2238 while (spfn < epfn) {
2239 /* update our first deferred PFN for this section */
2240 first_deferred_pfn = spfn;
2241
2242 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2243 touch_nmi_watchdog();
2244
2245 /* We should only stop along section boundaries */
2246 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2247 continue;
2248
2249 /* If our quota has been met we can stop here */
2250 if (nr_pages >= nr_pages_needed)
2251 break;
2252 }
2253
2254 pgdat->first_deferred_pfn = spfn;
2255 pgdat_resize_unlock(pgdat, &flags);
2256
2257 return nr_pages > 0;
2258 }
2259
2260 /*
2261 * deferred_grow_zone() is __init, but it is called from
2262 * get_page_from_freelist() during early boot until deferred_pages permanently
2263 * disables this call. This is why we have refdata wrapper to avoid warning,
2264 * and to ensure that the function body gets unloaded.
2265 */
2266 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)2267 _deferred_grow_zone(struct zone *zone, unsigned int order)
2268 {
2269 return deferred_grow_zone(zone, order);
2270 }
2271
2272 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2273
page_alloc_init_late(void)2274 void __init page_alloc_init_late(void)
2275 {
2276 struct zone *zone;
2277 int nid;
2278
2279 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2280
2281 /* There will be num_node_state(N_MEMORY) threads */
2282 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2283 for_each_node_state(nid, N_MEMORY) {
2284 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2285 }
2286
2287 /* Block until all are initialised */
2288 wait_for_completion(&pgdat_init_all_done_comp);
2289
2290 /*
2291 * We initialized the rest of the deferred pages. Permanently disable
2292 * on-demand struct page initialization.
2293 */
2294 static_branch_disable(&deferred_pages);
2295
2296 /* Reinit limits that are based on free pages after the kernel is up */
2297 files_maxfiles_init();
2298 #endif
2299
2300 buffer_init();
2301
2302 /* Discard memblock private memory */
2303 memblock_discard();
2304
2305 for_each_node_state(nid, N_MEMORY)
2306 shuffle_free_memory(NODE_DATA(nid));
2307
2308 for_each_populated_zone(zone)
2309 set_zone_contiguous(zone);
2310 }
2311
2312 #ifdef CONFIG_CMA
2313 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
init_cma_reserved_pageblock(struct page * page)2314 void __init init_cma_reserved_pageblock(struct page *page)
2315 {
2316 unsigned i = pageblock_nr_pages;
2317 struct page *p = page;
2318
2319 do {
2320 __ClearPageReserved(p);
2321 set_page_count(p, 0);
2322 } while (++p, --i);
2323
2324 set_pageblock_migratetype(page, MIGRATE_CMA);
2325 set_page_refcounted(page);
2326 __free_pages(page, pageblock_order);
2327
2328 adjust_managed_page_count(page, pageblock_nr_pages);
2329 page_zone(page)->cma_pages += pageblock_nr_pages;
2330 }
2331 #endif
2332
2333 /*
2334 * The order of subdivision here is critical for the IO subsystem.
2335 * Please do not alter this order without good reasons and regression
2336 * testing. Specifically, as large blocks of memory are subdivided,
2337 * the order in which smaller blocks are delivered depends on the order
2338 * they're subdivided in this function. This is the primary factor
2339 * influencing the order in which pages are delivered to the IO
2340 * subsystem according to empirical testing, and this is also justified
2341 * by considering the behavior of a buddy system containing a single
2342 * large block of memory acted on by a series of small allocations.
2343 * This behavior is a critical factor in sglist merging's success.
2344 *
2345 * -- nyc
2346 */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)2347 static inline void expand(struct zone *zone, struct page *page,
2348 int low, int high, int migratetype)
2349 {
2350 unsigned long size = 1 << high;
2351
2352 while (high > low) {
2353 high--;
2354 size >>= 1;
2355 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2356
2357 /*
2358 * Mark as guard pages (or page), that will allow to
2359 * merge back to allocator when buddy will be freed.
2360 * Corresponding page table entries will not be touched,
2361 * pages will stay not present in virtual address space
2362 */
2363 if (set_page_guard(zone, &page[size], high, migratetype))
2364 continue;
2365
2366 add_to_free_list(&page[size], zone, high, migratetype);
2367 set_buddy_order(&page[size], high);
2368 }
2369 }
2370
check_new_page_bad(struct page * page)2371 static void check_new_page_bad(struct page *page)
2372 {
2373 if (unlikely(page->flags & __PG_HWPOISON)) {
2374 /* Don't complain about hwpoisoned pages */
2375 page_mapcount_reset(page); /* remove PageBuddy */
2376 return;
2377 }
2378
2379 bad_page(page,
2380 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2381 }
2382
2383 /*
2384 * This page is about to be returned from the page allocator
2385 */
check_new_page(struct page * page)2386 static inline int check_new_page(struct page *page)
2387 {
2388 if (likely(page_expected_state(page,
2389 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2390 return 0;
2391
2392 check_new_page_bad(page);
2393 return 1;
2394 }
2395
check_new_pages(struct page * page,unsigned int order)2396 static bool check_new_pages(struct page *page, unsigned int order)
2397 {
2398 int i;
2399 for (i = 0; i < (1 << order); i++) {
2400 struct page *p = page + i;
2401
2402 if (unlikely(check_new_page(p)))
2403 return true;
2404 }
2405
2406 return false;
2407 }
2408
2409 #ifdef CONFIG_DEBUG_VM
2410 /*
2411 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2412 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2413 * also checked when pcp lists are refilled from the free lists.
2414 */
check_pcp_refill(struct page * page,unsigned int order)2415 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2416 {
2417 if (debug_pagealloc_enabled_static())
2418 return check_new_pages(page, order);
2419 else
2420 return false;
2421 }
2422
check_new_pcp(struct page * page,unsigned int order)2423 static inline bool check_new_pcp(struct page *page, unsigned int order)
2424 {
2425 return check_new_pages(page, order);
2426 }
2427 #else
2428 /*
2429 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2430 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2431 * enabled, they are also checked when being allocated from the pcp lists.
2432 */
check_pcp_refill(struct page * page,unsigned int order)2433 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2434 {
2435 return check_new_pages(page, order);
2436 }
check_new_pcp(struct page * page,unsigned int order)2437 static inline bool check_new_pcp(struct page *page, unsigned int order)
2438 {
2439 if (debug_pagealloc_enabled_static())
2440 return check_new_pages(page, order);
2441 else
2442 return false;
2443 }
2444 #endif /* CONFIG_DEBUG_VM */
2445
should_skip_kasan_unpoison(gfp_t flags)2446 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2447 {
2448 /* Don't skip if a software KASAN mode is enabled. */
2449 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2450 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2451 return false;
2452
2453 /* Skip, if hardware tag-based KASAN is not enabled. */
2454 if (!kasan_hw_tags_enabled())
2455 return true;
2456
2457 /*
2458 * With hardware tag-based KASAN enabled, skip if this has been
2459 * requested via __GFP_SKIP_KASAN_UNPOISON.
2460 */
2461 return flags & __GFP_SKIP_KASAN_UNPOISON;
2462 }
2463
should_skip_init(gfp_t flags)2464 static inline bool should_skip_init(gfp_t flags)
2465 {
2466 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2467 if (!kasan_hw_tags_enabled())
2468 return false;
2469
2470 /* For hardware tag-based KASAN, skip if requested. */
2471 return (flags & __GFP_SKIP_ZERO);
2472 }
2473
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)2474 inline void post_alloc_hook(struct page *page, unsigned int order,
2475 gfp_t gfp_flags)
2476 {
2477 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2478 !should_skip_init(gfp_flags);
2479 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2480 int i;
2481
2482 set_page_private(page, 0);
2483 set_page_refcounted(page);
2484
2485 arch_alloc_page(page, order);
2486 debug_pagealloc_map_pages(page, 1 << order);
2487
2488 /*
2489 * Page unpoisoning must happen before memory initialization.
2490 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2491 * allocations and the page unpoisoning code will complain.
2492 */
2493 kernel_unpoison_pages(page, 1 << order);
2494
2495 /*
2496 * As memory initialization might be integrated into KASAN,
2497 * KASAN unpoisoning and memory initializion code must be
2498 * kept together to avoid discrepancies in behavior.
2499 */
2500
2501 /*
2502 * If memory tags should be zeroed (which happens only when memory
2503 * should be initialized as well).
2504 */
2505 if (init_tags) {
2506 /* Initialize both memory and tags. */
2507 for (i = 0; i != 1 << order; ++i)
2508 tag_clear_highpage(page + i);
2509
2510 /* Note that memory is already initialized by the loop above. */
2511 init = false;
2512 }
2513 if (!should_skip_kasan_unpoison(gfp_flags)) {
2514 /* Unpoison shadow memory or set memory tags. */
2515 kasan_unpoison_pages(page, order, init);
2516
2517 /* Note that memory is already initialized by KASAN. */
2518 if (kasan_has_integrated_init())
2519 init = false;
2520 } else {
2521 /* Ensure page_address() dereferencing does not fault. */
2522 for (i = 0; i != 1 << order; ++i)
2523 page_kasan_tag_reset(page + i);
2524 }
2525 /* If memory is still not initialized, do it now. */
2526 if (init)
2527 kernel_init_pages(page, 1 << order);
2528 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2529 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2530 SetPageSkipKASanPoison(page);
2531
2532 set_page_owner(page, order, gfp_flags);
2533 page_table_check_alloc(page, order);
2534 }
2535
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)2536 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2537 unsigned int alloc_flags)
2538 {
2539 post_alloc_hook(page, order, gfp_flags);
2540
2541 if (order && (gfp_flags & __GFP_COMP))
2542 prep_compound_page(page, order);
2543
2544 /*
2545 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2546 * allocate the page. The expectation is that the caller is taking
2547 * steps that will free more memory. The caller should avoid the page
2548 * being used for !PFMEMALLOC purposes.
2549 */
2550 if (alloc_flags & ALLOC_NO_WATERMARKS)
2551 set_page_pfmemalloc(page);
2552 else
2553 clear_page_pfmemalloc(page);
2554 }
2555
2556 /*
2557 * Go through the free lists for the given migratetype and remove
2558 * the smallest available page from the freelists
2559 */
2560 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)2561 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2562 int migratetype)
2563 {
2564 unsigned int current_order;
2565 struct free_area *area;
2566 struct page *page;
2567
2568 /* Find a page of the appropriate size in the preferred list */
2569 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2570 area = &(zone->free_area[current_order]);
2571 page = get_page_from_free_area(area, migratetype);
2572 if (!page)
2573 continue;
2574 del_page_from_free_list(page, zone, current_order);
2575 expand(zone, page, order, current_order, migratetype);
2576 set_pcppage_migratetype(page, migratetype);
2577 trace_mm_page_alloc_zone_locked(page, order, migratetype,
2578 pcp_allowed_order(order) &&
2579 migratetype < MIGRATE_PCPTYPES);
2580 return page;
2581 }
2582
2583 return NULL;
2584 }
2585
2586
2587 /*
2588 * This array describes the order lists are fallen back to when
2589 * the free lists for the desirable migrate type are depleted
2590 *
2591 * The other migratetypes do not have fallbacks.
2592 */
2593 static int fallbacks[MIGRATE_TYPES][3] = {
2594 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2595 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2596 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2597 };
2598
2599 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2600 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2601 unsigned int order)
2602 {
2603 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2604 }
2605 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2606 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2607 unsigned int order) { return NULL; }
2608 #endif
2609
2610 /*
2611 * Move the free pages in a range to the freelist tail of the requested type.
2612 * Note that start_page and end_pages are not aligned on a pageblock
2613 * boundary. If alignment is required, use move_freepages_block()
2614 */
move_freepages(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,int migratetype,int * num_movable)2615 static int move_freepages(struct zone *zone,
2616 unsigned long start_pfn, unsigned long end_pfn,
2617 int migratetype, int *num_movable)
2618 {
2619 struct page *page;
2620 unsigned long pfn;
2621 unsigned int order;
2622 int pages_moved = 0;
2623
2624 for (pfn = start_pfn; pfn <= end_pfn;) {
2625 page = pfn_to_page(pfn);
2626 if (!PageBuddy(page)) {
2627 /*
2628 * We assume that pages that could be isolated for
2629 * migration are movable. But we don't actually try
2630 * isolating, as that would be expensive.
2631 */
2632 if (num_movable &&
2633 (PageLRU(page) || __PageMovable(page)))
2634 (*num_movable)++;
2635 pfn++;
2636 continue;
2637 }
2638
2639 /* Make sure we are not inadvertently changing nodes */
2640 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2641 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2642
2643 order = buddy_order(page);
2644 move_to_free_list(page, zone, order, migratetype);
2645 pfn += 1 << order;
2646 pages_moved += 1 << order;
2647 }
2648
2649 return pages_moved;
2650 }
2651
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)2652 int move_freepages_block(struct zone *zone, struct page *page,
2653 int migratetype, int *num_movable)
2654 {
2655 unsigned long start_pfn, end_pfn, pfn;
2656
2657 if (num_movable)
2658 *num_movable = 0;
2659
2660 pfn = page_to_pfn(page);
2661 start_pfn = pageblock_start_pfn(pfn);
2662 end_pfn = pageblock_end_pfn(pfn) - 1;
2663
2664 /* Do not cross zone boundaries */
2665 if (!zone_spans_pfn(zone, start_pfn))
2666 start_pfn = pfn;
2667 if (!zone_spans_pfn(zone, end_pfn))
2668 return 0;
2669
2670 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2671 num_movable);
2672 }
2673
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)2674 static void change_pageblock_range(struct page *pageblock_page,
2675 int start_order, int migratetype)
2676 {
2677 int nr_pageblocks = 1 << (start_order - pageblock_order);
2678
2679 while (nr_pageblocks--) {
2680 set_pageblock_migratetype(pageblock_page, migratetype);
2681 pageblock_page += pageblock_nr_pages;
2682 }
2683 }
2684
2685 /*
2686 * When we are falling back to another migratetype during allocation, try to
2687 * steal extra free pages from the same pageblocks to satisfy further
2688 * allocations, instead of polluting multiple pageblocks.
2689 *
2690 * If we are stealing a relatively large buddy page, it is likely there will
2691 * be more free pages in the pageblock, so try to steal them all. For
2692 * reclaimable and unmovable allocations, we steal regardless of page size,
2693 * as fragmentation caused by those allocations polluting movable pageblocks
2694 * is worse than movable allocations stealing from unmovable and reclaimable
2695 * pageblocks.
2696 */
can_steal_fallback(unsigned int order,int start_mt)2697 static bool can_steal_fallback(unsigned int order, int start_mt)
2698 {
2699 /*
2700 * Leaving this order check is intended, although there is
2701 * relaxed order check in next check. The reason is that
2702 * we can actually steal whole pageblock if this condition met,
2703 * but, below check doesn't guarantee it and that is just heuristic
2704 * so could be changed anytime.
2705 */
2706 if (order >= pageblock_order)
2707 return true;
2708
2709 if (order >= pageblock_order / 2 ||
2710 start_mt == MIGRATE_RECLAIMABLE ||
2711 start_mt == MIGRATE_UNMOVABLE ||
2712 page_group_by_mobility_disabled)
2713 return true;
2714
2715 return false;
2716 }
2717
boost_watermark(struct zone * zone)2718 static inline bool boost_watermark(struct zone *zone)
2719 {
2720 unsigned long max_boost;
2721
2722 if (!watermark_boost_factor)
2723 return false;
2724 /*
2725 * Don't bother in zones that are unlikely to produce results.
2726 * On small machines, including kdump capture kernels running
2727 * in a small area, boosting the watermark can cause an out of
2728 * memory situation immediately.
2729 */
2730 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2731 return false;
2732
2733 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2734 watermark_boost_factor, 10000);
2735
2736 /*
2737 * high watermark may be uninitialised if fragmentation occurs
2738 * very early in boot so do not boost. We do not fall
2739 * through and boost by pageblock_nr_pages as failing
2740 * allocations that early means that reclaim is not going
2741 * to help and it may even be impossible to reclaim the
2742 * boosted watermark resulting in a hang.
2743 */
2744 if (!max_boost)
2745 return false;
2746
2747 max_boost = max(pageblock_nr_pages, max_boost);
2748
2749 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2750 max_boost);
2751
2752 return true;
2753 }
2754
2755 /*
2756 * This function implements actual steal behaviour. If order is large enough,
2757 * we can steal whole pageblock. If not, we first move freepages in this
2758 * pageblock to our migratetype and determine how many already-allocated pages
2759 * are there in the pageblock with a compatible migratetype. If at least half
2760 * of pages are free or compatible, we can change migratetype of the pageblock
2761 * itself, so pages freed in the future will be put on the correct free list.
2762 */
steal_suitable_fallback(struct zone * zone,struct page * page,unsigned int alloc_flags,int start_type,bool whole_block)2763 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2764 unsigned int alloc_flags, int start_type, bool whole_block)
2765 {
2766 unsigned int current_order = buddy_order(page);
2767 int free_pages, movable_pages, alike_pages;
2768 int old_block_type;
2769
2770 old_block_type = get_pageblock_migratetype(page);
2771
2772 /*
2773 * This can happen due to races and we want to prevent broken
2774 * highatomic accounting.
2775 */
2776 if (is_migrate_highatomic(old_block_type))
2777 goto single_page;
2778
2779 /* Take ownership for orders >= pageblock_order */
2780 if (current_order >= pageblock_order) {
2781 change_pageblock_range(page, current_order, start_type);
2782 goto single_page;
2783 }
2784
2785 /*
2786 * Boost watermarks to increase reclaim pressure to reduce the
2787 * likelihood of future fallbacks. Wake kswapd now as the node
2788 * may be balanced overall and kswapd will not wake naturally.
2789 */
2790 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2791 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2792
2793 /* We are not allowed to try stealing from the whole block */
2794 if (!whole_block)
2795 goto single_page;
2796
2797 free_pages = move_freepages_block(zone, page, start_type,
2798 &movable_pages);
2799 /*
2800 * Determine how many pages are compatible with our allocation.
2801 * For movable allocation, it's the number of movable pages which
2802 * we just obtained. For other types it's a bit more tricky.
2803 */
2804 if (start_type == MIGRATE_MOVABLE) {
2805 alike_pages = movable_pages;
2806 } else {
2807 /*
2808 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2809 * to MOVABLE pageblock, consider all non-movable pages as
2810 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2811 * vice versa, be conservative since we can't distinguish the
2812 * exact migratetype of non-movable pages.
2813 */
2814 if (old_block_type == MIGRATE_MOVABLE)
2815 alike_pages = pageblock_nr_pages
2816 - (free_pages + movable_pages);
2817 else
2818 alike_pages = 0;
2819 }
2820
2821 /* moving whole block can fail due to zone boundary conditions */
2822 if (!free_pages)
2823 goto single_page;
2824
2825 /*
2826 * If a sufficient number of pages in the block are either free or of
2827 * comparable migratability as our allocation, claim the whole block.
2828 */
2829 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2830 page_group_by_mobility_disabled)
2831 set_pageblock_migratetype(page, start_type);
2832
2833 return;
2834
2835 single_page:
2836 move_to_free_list(page, zone, current_order, start_type);
2837 }
2838
2839 /*
2840 * Check whether there is a suitable fallback freepage with requested order.
2841 * If only_stealable is true, this function returns fallback_mt only if
2842 * we can steal other freepages all together. This would help to reduce
2843 * fragmentation due to mixed migratetype pages in one pageblock.
2844 */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)2845 int find_suitable_fallback(struct free_area *area, unsigned int order,
2846 int migratetype, bool only_stealable, bool *can_steal)
2847 {
2848 int i;
2849 int fallback_mt;
2850
2851 if (area->nr_free == 0)
2852 return -1;
2853
2854 *can_steal = false;
2855 for (i = 0;; i++) {
2856 fallback_mt = fallbacks[migratetype][i];
2857 if (fallback_mt == MIGRATE_TYPES)
2858 break;
2859
2860 if (free_area_empty(area, fallback_mt))
2861 continue;
2862
2863 if (can_steal_fallback(order, migratetype))
2864 *can_steal = true;
2865
2866 if (!only_stealable)
2867 return fallback_mt;
2868
2869 if (*can_steal)
2870 return fallback_mt;
2871 }
2872
2873 return -1;
2874 }
2875
2876 /*
2877 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2878 * there are no empty page blocks that contain a page with a suitable order
2879 */
reserve_highatomic_pageblock(struct page * page,struct zone * zone,unsigned int alloc_order)2880 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2881 unsigned int alloc_order)
2882 {
2883 int mt;
2884 unsigned long max_managed, flags;
2885
2886 /*
2887 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2888 * Check is race-prone but harmless.
2889 */
2890 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2891 if (zone->nr_reserved_highatomic >= max_managed)
2892 return;
2893
2894 spin_lock_irqsave(&zone->lock, flags);
2895
2896 /* Recheck the nr_reserved_highatomic limit under the lock */
2897 if (zone->nr_reserved_highatomic >= max_managed)
2898 goto out_unlock;
2899
2900 /* Yoink! */
2901 mt = get_pageblock_migratetype(page);
2902 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2903 if (migratetype_is_mergeable(mt)) {
2904 zone->nr_reserved_highatomic += pageblock_nr_pages;
2905 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2906 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2907 }
2908
2909 out_unlock:
2910 spin_unlock_irqrestore(&zone->lock, flags);
2911 }
2912
2913 /*
2914 * Used when an allocation is about to fail under memory pressure. This
2915 * potentially hurts the reliability of high-order allocations when under
2916 * intense memory pressure but failed atomic allocations should be easier
2917 * to recover from than an OOM.
2918 *
2919 * If @force is true, try to unreserve a pageblock even though highatomic
2920 * pageblock is exhausted.
2921 */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)2922 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2923 bool force)
2924 {
2925 struct zonelist *zonelist = ac->zonelist;
2926 unsigned long flags;
2927 struct zoneref *z;
2928 struct zone *zone;
2929 struct page *page;
2930 int order;
2931 bool ret;
2932
2933 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2934 ac->nodemask) {
2935 /*
2936 * Preserve at least one pageblock unless memory pressure
2937 * is really high.
2938 */
2939 if (!force && zone->nr_reserved_highatomic <=
2940 pageblock_nr_pages)
2941 continue;
2942
2943 spin_lock_irqsave(&zone->lock, flags);
2944 for (order = 0; order < MAX_ORDER; order++) {
2945 struct free_area *area = &(zone->free_area[order]);
2946
2947 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2948 if (!page)
2949 continue;
2950
2951 /*
2952 * In page freeing path, migratetype change is racy so
2953 * we can counter several free pages in a pageblock
2954 * in this loop although we changed the pageblock type
2955 * from highatomic to ac->migratetype. So we should
2956 * adjust the count once.
2957 */
2958 if (is_migrate_highatomic_page(page)) {
2959 /*
2960 * It should never happen but changes to
2961 * locking could inadvertently allow a per-cpu
2962 * drain to add pages to MIGRATE_HIGHATOMIC
2963 * while unreserving so be safe and watch for
2964 * underflows.
2965 */
2966 zone->nr_reserved_highatomic -= min(
2967 pageblock_nr_pages,
2968 zone->nr_reserved_highatomic);
2969 }
2970
2971 /*
2972 * Convert to ac->migratetype and avoid the normal
2973 * pageblock stealing heuristics. Minimally, the caller
2974 * is doing the work and needs the pages. More
2975 * importantly, if the block was always converted to
2976 * MIGRATE_UNMOVABLE or another type then the number
2977 * of pageblocks that cannot be completely freed
2978 * may increase.
2979 */
2980 set_pageblock_migratetype(page, ac->migratetype);
2981 ret = move_freepages_block(zone, page, ac->migratetype,
2982 NULL);
2983 if (ret) {
2984 spin_unlock_irqrestore(&zone->lock, flags);
2985 return ret;
2986 }
2987 }
2988 spin_unlock_irqrestore(&zone->lock, flags);
2989 }
2990
2991 return false;
2992 }
2993
2994 /*
2995 * Try finding a free buddy page on the fallback list and put it on the free
2996 * list of requested migratetype, possibly along with other pages from the same
2997 * block, depending on fragmentation avoidance heuristics. Returns true if
2998 * fallback was found so that __rmqueue_smallest() can grab it.
2999 *
3000 * The use of signed ints for order and current_order is a deliberate
3001 * deviation from the rest of this file, to make the for loop
3002 * condition simpler.
3003 */
3004 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)3005 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3006 unsigned int alloc_flags)
3007 {
3008 struct free_area *area;
3009 int current_order;
3010 int min_order = order;
3011 struct page *page;
3012 int fallback_mt;
3013 bool can_steal;
3014
3015 /*
3016 * Do not steal pages from freelists belonging to other pageblocks
3017 * i.e. orders < pageblock_order. If there are no local zones free,
3018 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3019 */
3020 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
3021 min_order = pageblock_order;
3022
3023 /*
3024 * Find the largest available free page in the other list. This roughly
3025 * approximates finding the pageblock with the most free pages, which
3026 * would be too costly to do exactly.
3027 */
3028 for (current_order = MAX_ORDER - 1; current_order >= min_order;
3029 --current_order) {
3030 area = &(zone->free_area[current_order]);
3031 fallback_mt = find_suitable_fallback(area, current_order,
3032 start_migratetype, false, &can_steal);
3033 if (fallback_mt == -1)
3034 continue;
3035
3036 /*
3037 * We cannot steal all free pages from the pageblock and the
3038 * requested migratetype is movable. In that case it's better to
3039 * steal and split the smallest available page instead of the
3040 * largest available page, because even if the next movable
3041 * allocation falls back into a different pageblock than this
3042 * one, it won't cause permanent fragmentation.
3043 */
3044 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3045 && current_order > order)
3046 goto find_smallest;
3047
3048 goto do_steal;
3049 }
3050
3051 return false;
3052
3053 find_smallest:
3054 for (current_order = order; current_order < MAX_ORDER;
3055 current_order++) {
3056 area = &(zone->free_area[current_order]);
3057 fallback_mt = find_suitable_fallback(area, current_order,
3058 start_migratetype, false, &can_steal);
3059 if (fallback_mt != -1)
3060 break;
3061 }
3062
3063 /*
3064 * This should not happen - we already found a suitable fallback
3065 * when looking for the largest page.
3066 */
3067 VM_BUG_ON(current_order == MAX_ORDER);
3068
3069 do_steal:
3070 page = get_page_from_free_area(area, fallback_mt);
3071
3072 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3073 can_steal);
3074
3075 trace_mm_page_alloc_extfrag(page, order, current_order,
3076 start_migratetype, fallback_mt);
3077
3078 return true;
3079
3080 }
3081
3082 /*
3083 * Do the hard work of removing an element from the buddy allocator.
3084 * Call me with the zone->lock already held.
3085 */
3086 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)3087 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3088 unsigned int alloc_flags)
3089 {
3090 struct page *page;
3091
3092 if (IS_ENABLED(CONFIG_CMA)) {
3093 /*
3094 * Balance movable allocations between regular and CMA areas by
3095 * allocating from CMA when over half of the zone's free memory
3096 * is in the CMA area.
3097 */
3098 if (alloc_flags & ALLOC_CMA &&
3099 zone_page_state(zone, NR_FREE_CMA_PAGES) >
3100 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3101 page = __rmqueue_cma_fallback(zone, order);
3102 if (page)
3103 return page;
3104 }
3105 }
3106 retry:
3107 page = __rmqueue_smallest(zone, order, migratetype);
3108 if (unlikely(!page)) {
3109 if (alloc_flags & ALLOC_CMA)
3110 page = __rmqueue_cma_fallback(zone, order);
3111
3112 if (!page && __rmqueue_fallback(zone, order, migratetype,
3113 alloc_flags))
3114 goto retry;
3115 }
3116 return page;
3117 }
3118
3119 /*
3120 * Obtain a specified number of elements from the buddy allocator, all under
3121 * a single hold of the lock, for efficiency. Add them to the supplied list.
3122 * Returns the number of new pages which were placed at *list.
3123 */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)3124 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3125 unsigned long count, struct list_head *list,
3126 int migratetype, unsigned int alloc_flags)
3127 {
3128 int i, allocated = 0;
3129
3130 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
3131 spin_lock(&zone->lock);
3132 for (i = 0; i < count; ++i) {
3133 struct page *page = __rmqueue(zone, order, migratetype,
3134 alloc_flags);
3135 if (unlikely(page == NULL))
3136 break;
3137
3138 if (unlikely(check_pcp_refill(page, order)))
3139 continue;
3140
3141 /*
3142 * Split buddy pages returned by expand() are received here in
3143 * physical page order. The page is added to the tail of
3144 * caller's list. From the callers perspective, the linked list
3145 * is ordered by page number under some conditions. This is
3146 * useful for IO devices that can forward direction from the
3147 * head, thus also in the physical page order. This is useful
3148 * for IO devices that can merge IO requests if the physical
3149 * pages are ordered properly.
3150 */
3151 list_add_tail(&page->pcp_list, list);
3152 allocated++;
3153 if (is_migrate_cma(get_pcppage_migratetype(page)))
3154 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3155 -(1 << order));
3156 }
3157
3158 /*
3159 * i pages were removed from the buddy list even if some leak due
3160 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3161 * on i. Do not confuse with 'allocated' which is the number of
3162 * pages added to the pcp list.
3163 */
3164 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3165 spin_unlock(&zone->lock);
3166 return allocated;
3167 }
3168
3169 #ifdef CONFIG_NUMA
3170 /*
3171 * Called from the vmstat counter updater to drain pagesets of this
3172 * currently executing processor on remote nodes after they have
3173 * expired.
3174 */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)3175 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3176 {
3177 int to_drain, batch;
3178
3179 batch = READ_ONCE(pcp->batch);
3180 to_drain = min(pcp->count, batch);
3181 if (to_drain > 0) {
3182 unsigned long flags;
3183
3184 /*
3185 * free_pcppages_bulk expects IRQs disabled for zone->lock
3186 * so even though pcp->lock is not intended to be IRQ-safe,
3187 * it's needed in this context.
3188 */
3189 spin_lock_irqsave(&pcp->lock, flags);
3190 free_pcppages_bulk(zone, to_drain, pcp, 0);
3191 spin_unlock_irqrestore(&pcp->lock, flags);
3192 }
3193 }
3194 #endif
3195
3196 /*
3197 * Drain pcplists of the indicated processor and zone.
3198 */
drain_pages_zone(unsigned int cpu,struct zone * zone)3199 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3200 {
3201 struct per_cpu_pages *pcp;
3202
3203 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3204 if (pcp->count) {
3205 unsigned long flags;
3206
3207 /* See drain_zone_pages on why this is disabling IRQs */
3208 spin_lock_irqsave(&pcp->lock, flags);
3209 free_pcppages_bulk(zone, pcp->count, pcp, 0);
3210 spin_unlock_irqrestore(&pcp->lock, flags);
3211 }
3212 }
3213
3214 /*
3215 * Drain pcplists of all zones on the indicated processor.
3216 */
drain_pages(unsigned int cpu)3217 static void drain_pages(unsigned int cpu)
3218 {
3219 struct zone *zone;
3220
3221 for_each_populated_zone(zone) {
3222 drain_pages_zone(cpu, zone);
3223 }
3224 }
3225
3226 /*
3227 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3228 */
drain_local_pages(struct zone * zone)3229 void drain_local_pages(struct zone *zone)
3230 {
3231 int cpu = smp_processor_id();
3232
3233 if (zone)
3234 drain_pages_zone(cpu, zone);
3235 else
3236 drain_pages(cpu);
3237 }
3238
3239 /*
3240 * The implementation of drain_all_pages(), exposing an extra parameter to
3241 * drain on all cpus.
3242 *
3243 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3244 * not empty. The check for non-emptiness can however race with a free to
3245 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3246 * that need the guarantee that every CPU has drained can disable the
3247 * optimizing racy check.
3248 */
__drain_all_pages(struct zone * zone,bool force_all_cpus)3249 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3250 {
3251 int cpu;
3252
3253 /*
3254 * Allocate in the BSS so we won't require allocation in
3255 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3256 */
3257 static cpumask_t cpus_with_pcps;
3258
3259 /*
3260 * Do not drain if one is already in progress unless it's specific to
3261 * a zone. Such callers are primarily CMA and memory hotplug and need
3262 * the drain to be complete when the call returns.
3263 */
3264 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3265 if (!zone)
3266 return;
3267 mutex_lock(&pcpu_drain_mutex);
3268 }
3269
3270 /*
3271 * We don't care about racing with CPU hotplug event
3272 * as offline notification will cause the notified
3273 * cpu to drain that CPU pcps and on_each_cpu_mask
3274 * disables preemption as part of its processing
3275 */
3276 for_each_online_cpu(cpu) {
3277 struct per_cpu_pages *pcp;
3278 struct zone *z;
3279 bool has_pcps = false;
3280
3281 if (force_all_cpus) {
3282 /*
3283 * The pcp.count check is racy, some callers need a
3284 * guarantee that no cpu is missed.
3285 */
3286 has_pcps = true;
3287 } else if (zone) {
3288 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3289 if (pcp->count)
3290 has_pcps = true;
3291 } else {
3292 for_each_populated_zone(z) {
3293 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3294 if (pcp->count) {
3295 has_pcps = true;
3296 break;
3297 }
3298 }
3299 }
3300
3301 if (has_pcps)
3302 cpumask_set_cpu(cpu, &cpus_with_pcps);
3303 else
3304 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3305 }
3306
3307 for_each_cpu(cpu, &cpus_with_pcps) {
3308 if (zone)
3309 drain_pages_zone(cpu, zone);
3310 else
3311 drain_pages(cpu);
3312 }
3313
3314 mutex_unlock(&pcpu_drain_mutex);
3315 }
3316
3317 /*
3318 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3319 *
3320 * When zone parameter is non-NULL, spill just the single zone's pages.
3321 */
drain_all_pages(struct zone * zone)3322 void drain_all_pages(struct zone *zone)
3323 {
3324 __drain_all_pages(zone, false);
3325 }
3326
3327 #ifdef CONFIG_HIBERNATION
3328
3329 /*
3330 * Touch the watchdog for every WD_PAGE_COUNT pages.
3331 */
3332 #define WD_PAGE_COUNT (128*1024)
3333
mark_free_pages(struct zone * zone)3334 void mark_free_pages(struct zone *zone)
3335 {
3336 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3337 unsigned long flags;
3338 unsigned int order, t;
3339 struct page *page;
3340
3341 if (zone_is_empty(zone))
3342 return;
3343
3344 spin_lock_irqsave(&zone->lock, flags);
3345
3346 max_zone_pfn = zone_end_pfn(zone);
3347 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3348 if (pfn_valid(pfn)) {
3349 page = pfn_to_page(pfn);
3350
3351 if (!--page_count) {
3352 touch_nmi_watchdog();
3353 page_count = WD_PAGE_COUNT;
3354 }
3355
3356 if (page_zone(page) != zone)
3357 continue;
3358
3359 if (!swsusp_page_is_forbidden(page))
3360 swsusp_unset_page_free(page);
3361 }
3362
3363 for_each_migratetype_order(order, t) {
3364 list_for_each_entry(page,
3365 &zone->free_area[order].free_list[t], buddy_list) {
3366 unsigned long i;
3367
3368 pfn = page_to_pfn(page);
3369 for (i = 0; i < (1UL << order); i++) {
3370 if (!--page_count) {
3371 touch_nmi_watchdog();
3372 page_count = WD_PAGE_COUNT;
3373 }
3374 swsusp_set_page_free(pfn_to_page(pfn + i));
3375 }
3376 }
3377 }
3378 spin_unlock_irqrestore(&zone->lock, flags);
3379 }
3380 #endif /* CONFIG_PM */
3381
free_unref_page_prepare(struct page * page,unsigned long pfn,unsigned int order)3382 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3383 unsigned int order)
3384 {
3385 int migratetype;
3386
3387 if (!free_pcp_prepare(page, order))
3388 return false;
3389
3390 migratetype = get_pfnblock_migratetype(page, pfn);
3391 set_pcppage_migratetype(page, migratetype);
3392 return true;
3393 }
3394
nr_pcp_free(struct per_cpu_pages * pcp,int high,int batch,bool free_high)3395 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3396 bool free_high)
3397 {
3398 int min_nr_free, max_nr_free;
3399
3400 /* Free everything if batch freeing high-order pages. */
3401 if (unlikely(free_high))
3402 return pcp->count;
3403
3404 /* Check for PCP disabled or boot pageset */
3405 if (unlikely(high < batch))
3406 return 1;
3407
3408 /* Leave at least pcp->batch pages on the list */
3409 min_nr_free = batch;
3410 max_nr_free = high - batch;
3411
3412 /*
3413 * Double the number of pages freed each time there is subsequent
3414 * freeing of pages without any allocation.
3415 */
3416 batch <<= pcp->free_factor;
3417 if (batch < max_nr_free)
3418 pcp->free_factor++;
3419 batch = clamp(batch, min_nr_free, max_nr_free);
3420
3421 return batch;
3422 }
3423
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone,bool free_high)3424 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3425 bool free_high)
3426 {
3427 int high = READ_ONCE(pcp->high);
3428
3429 if (unlikely(!high || free_high))
3430 return 0;
3431
3432 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3433 return high;
3434
3435 /*
3436 * If reclaim is active, limit the number of pages that can be
3437 * stored on pcp lists
3438 */
3439 return min(READ_ONCE(pcp->batch) << 2, high);
3440 }
3441
free_unref_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,int migratetype,unsigned int order)3442 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3443 struct page *page, int migratetype,
3444 unsigned int order)
3445 {
3446 int high;
3447 int pindex;
3448 bool free_high;
3449
3450 __count_vm_events(PGFREE, 1 << order);
3451 pindex = order_to_pindex(migratetype, order);
3452 list_add(&page->pcp_list, &pcp->lists[pindex]);
3453 pcp->count += 1 << order;
3454
3455 /*
3456 * As high-order pages other than THP's stored on PCP can contribute
3457 * to fragmentation, limit the number stored when PCP is heavily
3458 * freeing without allocation. The remainder after bulk freeing
3459 * stops will be drained from vmstat refresh context.
3460 */
3461 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3462
3463 high = nr_pcp_high(pcp, zone, free_high);
3464 if (pcp->count >= high) {
3465 int batch = READ_ONCE(pcp->batch);
3466
3467 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3468 }
3469 }
3470
3471 /*
3472 * Free a pcp page
3473 */
free_unref_page(struct page * page,unsigned int order)3474 void free_unref_page(struct page *page, unsigned int order)
3475 {
3476 unsigned long flags;
3477 unsigned long __maybe_unused UP_flags;
3478 struct per_cpu_pages *pcp;
3479 struct zone *zone;
3480 unsigned long pfn = page_to_pfn(page);
3481 int migratetype;
3482
3483 if (!free_unref_page_prepare(page, pfn, order))
3484 return;
3485
3486 /*
3487 * We only track unmovable, reclaimable and movable on pcp lists.
3488 * Place ISOLATE pages on the isolated list because they are being
3489 * offlined but treat HIGHATOMIC as movable pages so we can get those
3490 * areas back if necessary. Otherwise, we may have to free
3491 * excessively into the page allocator
3492 */
3493 migratetype = get_pcppage_migratetype(page);
3494 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3495 if (unlikely(is_migrate_isolate(migratetype))) {
3496 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3497 return;
3498 }
3499 migratetype = MIGRATE_MOVABLE;
3500 }
3501
3502 zone = page_zone(page);
3503 pcp_trylock_prepare(UP_flags);
3504 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3505 if (pcp) {
3506 free_unref_page_commit(zone, pcp, page, migratetype, order);
3507 pcp_spin_unlock_irqrestore(pcp, flags);
3508 } else {
3509 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3510 }
3511 pcp_trylock_finish(UP_flags);
3512 }
3513
3514 /*
3515 * Free a list of 0-order pages
3516 */
free_unref_page_list(struct list_head * list)3517 void free_unref_page_list(struct list_head *list)
3518 {
3519 struct page *page, *next;
3520 struct per_cpu_pages *pcp = NULL;
3521 struct zone *locked_zone = NULL;
3522 unsigned long flags;
3523 int batch_count = 0;
3524 int migratetype;
3525
3526 /* Prepare pages for freeing */
3527 list_for_each_entry_safe(page, next, list, lru) {
3528 unsigned long pfn = page_to_pfn(page);
3529 if (!free_unref_page_prepare(page, pfn, 0)) {
3530 list_del(&page->lru);
3531 continue;
3532 }
3533
3534 /*
3535 * Free isolated pages directly to the allocator, see
3536 * comment in free_unref_page.
3537 */
3538 migratetype = get_pcppage_migratetype(page);
3539 if (unlikely(is_migrate_isolate(migratetype))) {
3540 list_del(&page->lru);
3541 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3542 continue;
3543 }
3544 }
3545
3546 list_for_each_entry_safe(page, next, list, lru) {
3547 struct zone *zone = page_zone(page);
3548
3549 /* Different zone, different pcp lock. */
3550 if (zone != locked_zone) {
3551 if (pcp)
3552 pcp_spin_unlock_irqrestore(pcp, flags);
3553
3554 locked_zone = zone;
3555 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3556 }
3557
3558 /*
3559 * Non-isolated types over MIGRATE_PCPTYPES get added
3560 * to the MIGRATE_MOVABLE pcp list.
3561 */
3562 migratetype = get_pcppage_migratetype(page);
3563 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3564 migratetype = MIGRATE_MOVABLE;
3565
3566 trace_mm_page_free_batched(page);
3567 free_unref_page_commit(zone, pcp, page, migratetype, 0);
3568
3569 /*
3570 * Guard against excessive IRQ disabled times when we get
3571 * a large list of pages to free.
3572 */
3573 if (++batch_count == SWAP_CLUSTER_MAX) {
3574 pcp_spin_unlock_irqrestore(pcp, flags);
3575 batch_count = 0;
3576 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3577 }
3578 }
3579
3580 if (pcp)
3581 pcp_spin_unlock_irqrestore(pcp, flags);
3582 }
3583
3584 /*
3585 * split_page takes a non-compound higher-order page, and splits it into
3586 * n (1<<order) sub-pages: page[0..n]
3587 * Each sub-page must be freed individually.
3588 *
3589 * Note: this is probably too low level an operation for use in drivers.
3590 * Please consult with lkml before using this in your driver.
3591 */
split_page(struct page * page,unsigned int order)3592 void split_page(struct page *page, unsigned int order)
3593 {
3594 int i;
3595
3596 VM_BUG_ON_PAGE(PageCompound(page), page);
3597 VM_BUG_ON_PAGE(!page_count(page), page);
3598
3599 for (i = 1; i < (1 << order); i++)
3600 set_page_refcounted(page + i);
3601 split_page_owner(page, 1 << order);
3602 split_page_memcg(page, 1 << order);
3603 }
3604 EXPORT_SYMBOL_GPL(split_page);
3605
__isolate_free_page(struct page * page,unsigned int order)3606 int __isolate_free_page(struct page *page, unsigned int order)
3607 {
3608 struct zone *zone = page_zone(page);
3609 int mt = get_pageblock_migratetype(page);
3610
3611 if (!is_migrate_isolate(mt)) {
3612 unsigned long watermark;
3613 /*
3614 * Obey watermarks as if the page was being allocated. We can
3615 * emulate a high-order watermark check with a raised order-0
3616 * watermark, because we already know our high-order page
3617 * exists.
3618 */
3619 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3620 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3621 return 0;
3622
3623 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3624 }
3625
3626 del_page_from_free_list(page, zone, order);
3627
3628 /*
3629 * Set the pageblock if the isolated page is at least half of a
3630 * pageblock
3631 */
3632 if (order >= pageblock_order - 1) {
3633 struct page *endpage = page + (1 << order) - 1;
3634 for (; page < endpage; page += pageblock_nr_pages) {
3635 int mt = get_pageblock_migratetype(page);
3636 /*
3637 * Only change normal pageblocks (i.e., they can merge
3638 * with others)
3639 */
3640 if (migratetype_is_mergeable(mt))
3641 set_pageblock_migratetype(page,
3642 MIGRATE_MOVABLE);
3643 }
3644 }
3645
3646 return 1UL << order;
3647 }
3648
3649 /**
3650 * __putback_isolated_page - Return a now-isolated page back where we got it
3651 * @page: Page that was isolated
3652 * @order: Order of the isolated page
3653 * @mt: The page's pageblock's migratetype
3654 *
3655 * This function is meant to return a page pulled from the free lists via
3656 * __isolate_free_page back to the free lists they were pulled from.
3657 */
__putback_isolated_page(struct page * page,unsigned int order,int mt)3658 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3659 {
3660 struct zone *zone = page_zone(page);
3661
3662 /* zone lock should be held when this function is called */
3663 lockdep_assert_held(&zone->lock);
3664
3665 /* Return isolated page to tail of freelist. */
3666 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3667 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3668 }
3669
3670 /*
3671 * Update NUMA hit/miss statistics
3672 */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)3673 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3674 long nr_account)
3675 {
3676 #ifdef CONFIG_NUMA
3677 enum numa_stat_item local_stat = NUMA_LOCAL;
3678
3679 /* skip numa counters update if numa stats is disabled */
3680 if (!static_branch_likely(&vm_numa_stat_key))
3681 return;
3682
3683 if (zone_to_nid(z) != numa_node_id())
3684 local_stat = NUMA_OTHER;
3685
3686 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3687 __count_numa_events(z, NUMA_HIT, nr_account);
3688 else {
3689 __count_numa_events(z, NUMA_MISS, nr_account);
3690 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3691 }
3692 __count_numa_events(z, local_stat, nr_account);
3693 #endif
3694 }
3695
3696 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)3697 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3698 unsigned int order, unsigned int alloc_flags,
3699 int migratetype)
3700 {
3701 struct page *page;
3702 unsigned long flags;
3703
3704 do {
3705 page = NULL;
3706 spin_lock_irqsave(&zone->lock, flags);
3707 /*
3708 * order-0 request can reach here when the pcplist is skipped
3709 * due to non-CMA allocation context. HIGHATOMIC area is
3710 * reserved for high-order atomic allocation, so order-0
3711 * request should skip it.
3712 */
3713 if (order > 0 && alloc_flags & ALLOC_HARDER)
3714 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3715 if (!page) {
3716 page = __rmqueue(zone, order, migratetype, alloc_flags);
3717 if (!page) {
3718 spin_unlock_irqrestore(&zone->lock, flags);
3719 return NULL;
3720 }
3721 }
3722 __mod_zone_freepage_state(zone, -(1 << order),
3723 get_pcppage_migratetype(page));
3724 spin_unlock_irqrestore(&zone->lock, flags);
3725 } while (check_new_pages(page, order));
3726
3727 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3728 zone_statistics(preferred_zone, zone, 1);
3729
3730 return page;
3731 }
3732
3733 /* Remove page from the per-cpu list, caller must protect the list */
3734 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)3735 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3736 int migratetype,
3737 unsigned int alloc_flags,
3738 struct per_cpu_pages *pcp,
3739 struct list_head *list)
3740 {
3741 struct page *page;
3742
3743 do {
3744 if (list_empty(list)) {
3745 int batch = READ_ONCE(pcp->batch);
3746 int alloced;
3747
3748 /*
3749 * Scale batch relative to order if batch implies
3750 * free pages can be stored on the PCP. Batch can
3751 * be 1 for small zones or for boot pagesets which
3752 * should never store free pages as the pages may
3753 * belong to arbitrary zones.
3754 */
3755 if (batch > 1)
3756 batch = max(batch >> order, 2);
3757 alloced = rmqueue_bulk(zone, order,
3758 batch, list,
3759 migratetype, alloc_flags);
3760
3761 pcp->count += alloced << order;
3762 if (unlikely(list_empty(list)))
3763 return NULL;
3764 }
3765
3766 page = list_first_entry(list, struct page, pcp_list);
3767 list_del(&page->pcp_list);
3768 pcp->count -= 1 << order;
3769 } while (check_new_pcp(page, order));
3770
3771 return page;
3772 }
3773
3774 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)3775 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3776 struct zone *zone, unsigned int order,
3777 int migratetype, unsigned int alloc_flags)
3778 {
3779 struct per_cpu_pages *pcp;
3780 struct list_head *list;
3781 struct page *page;
3782 unsigned long flags;
3783 unsigned long __maybe_unused UP_flags;
3784
3785 /*
3786 * spin_trylock may fail due to a parallel drain. In the future, the
3787 * trylock will also protect against IRQ reentrancy.
3788 */
3789 pcp_trylock_prepare(UP_flags);
3790 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3791 if (!pcp) {
3792 pcp_trylock_finish(UP_flags);
3793 return NULL;
3794 }
3795
3796 /*
3797 * On allocation, reduce the number of pages that are batch freed.
3798 * See nr_pcp_free() where free_factor is increased for subsequent
3799 * frees.
3800 */
3801 pcp->free_factor >>= 1;
3802 list = &pcp->lists[order_to_pindex(migratetype, order)];
3803 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3804 pcp_spin_unlock_irqrestore(pcp, flags);
3805 pcp_trylock_finish(UP_flags);
3806 if (page) {
3807 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3808 zone_statistics(preferred_zone, zone, 1);
3809 }
3810 return page;
3811 }
3812
3813 /*
3814 * Allocate a page from the given zone.
3815 * Use pcplists for THP or "cheap" high-order allocations.
3816 */
3817
3818 /*
3819 * Do not instrument rmqueue() with KMSAN. This function may call
3820 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3821 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3822 * may call rmqueue() again, which will result in a deadlock.
3823 */
3824 __no_sanitize_memory
3825 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3826 struct page *rmqueue(struct zone *preferred_zone,
3827 struct zone *zone, unsigned int order,
3828 gfp_t gfp_flags, unsigned int alloc_flags,
3829 int migratetype)
3830 {
3831 struct page *page;
3832
3833 /*
3834 * We most definitely don't want callers attempting to
3835 * allocate greater than order-1 page units with __GFP_NOFAIL.
3836 */
3837 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3838
3839 if (likely(pcp_allowed_order(order))) {
3840 /*
3841 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3842 * we need to skip it when CMA area isn't allowed.
3843 */
3844 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3845 migratetype != MIGRATE_MOVABLE) {
3846 page = rmqueue_pcplist(preferred_zone, zone, order,
3847 migratetype, alloc_flags);
3848 if (likely(page))
3849 goto out;
3850 }
3851 }
3852
3853 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3854 migratetype);
3855
3856 out:
3857 /* Separate test+clear to avoid unnecessary atomics */
3858 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3859 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3860 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3861 }
3862
3863 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3864 return page;
3865 }
3866
3867 #ifdef CONFIG_FAIL_PAGE_ALLOC
3868
3869 static struct {
3870 struct fault_attr attr;
3871
3872 bool ignore_gfp_highmem;
3873 bool ignore_gfp_reclaim;
3874 u32 min_order;
3875 } fail_page_alloc = {
3876 .attr = FAULT_ATTR_INITIALIZER,
3877 .ignore_gfp_reclaim = true,
3878 .ignore_gfp_highmem = true,
3879 .min_order = 1,
3880 };
3881
setup_fail_page_alloc(char * str)3882 static int __init setup_fail_page_alloc(char *str)
3883 {
3884 return setup_fault_attr(&fail_page_alloc.attr, str);
3885 }
3886 __setup("fail_page_alloc=", setup_fail_page_alloc);
3887
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3888 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3889 {
3890 int flags = 0;
3891
3892 if (order < fail_page_alloc.min_order)
3893 return false;
3894 if (gfp_mask & __GFP_NOFAIL)
3895 return false;
3896 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3897 return false;
3898 if (fail_page_alloc.ignore_gfp_reclaim &&
3899 (gfp_mask & __GFP_DIRECT_RECLAIM))
3900 return false;
3901
3902 /* See comment in __should_failslab() */
3903 if (gfp_mask & __GFP_NOWARN)
3904 flags |= FAULT_NOWARN;
3905
3906 return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags);
3907 }
3908
3909 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3910
fail_page_alloc_debugfs(void)3911 static int __init fail_page_alloc_debugfs(void)
3912 {
3913 umode_t mode = S_IFREG | 0600;
3914 struct dentry *dir;
3915
3916 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3917 &fail_page_alloc.attr);
3918
3919 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3920 &fail_page_alloc.ignore_gfp_reclaim);
3921 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3922 &fail_page_alloc.ignore_gfp_highmem);
3923 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3924
3925 return 0;
3926 }
3927
3928 late_initcall(fail_page_alloc_debugfs);
3929
3930 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3931
3932 #else /* CONFIG_FAIL_PAGE_ALLOC */
3933
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3934 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3935 {
3936 return false;
3937 }
3938
3939 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3940
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3941 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3942 {
3943 return __should_fail_alloc_page(gfp_mask, order);
3944 }
3945 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3946
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)3947 static inline long __zone_watermark_unusable_free(struct zone *z,
3948 unsigned int order, unsigned int alloc_flags)
3949 {
3950 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3951 long unusable_free = (1 << order) - 1;
3952
3953 /*
3954 * If the caller does not have rights to ALLOC_HARDER then subtract
3955 * the high-atomic reserves. This will over-estimate the size of the
3956 * atomic reserve but it avoids a search.
3957 */
3958 if (likely(!alloc_harder))
3959 unusable_free += z->nr_reserved_highatomic;
3960
3961 #ifdef CONFIG_CMA
3962 /* If allocation can't use CMA areas don't use free CMA pages */
3963 if (!(alloc_flags & ALLOC_CMA))
3964 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3965 #endif
3966
3967 return unusable_free;
3968 }
3969
3970 /*
3971 * Return true if free base pages are above 'mark'. For high-order checks it
3972 * will return true of the order-0 watermark is reached and there is at least
3973 * one free page of a suitable size. Checking now avoids taking the zone lock
3974 * to check in the allocation paths if no pages are free.
3975 */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)3976 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3977 int highest_zoneidx, unsigned int alloc_flags,
3978 long free_pages)
3979 {
3980 long min = mark;
3981 int o;
3982 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3983
3984 /* free_pages may go negative - that's OK */
3985 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3986
3987 if (alloc_flags & ALLOC_HIGH)
3988 min -= min / 2;
3989
3990 if (unlikely(alloc_harder)) {
3991 /*
3992 * OOM victims can try even harder than normal ALLOC_HARDER
3993 * users on the grounds that it's definitely going to be in
3994 * the exit path shortly and free memory. Any allocation it
3995 * makes during the free path will be small and short-lived.
3996 */
3997 if (alloc_flags & ALLOC_OOM)
3998 min -= min / 2;
3999 else
4000 min -= min / 4;
4001 }
4002
4003 /*
4004 * Check watermarks for an order-0 allocation request. If these
4005 * are not met, then a high-order request also cannot go ahead
4006 * even if a suitable page happened to be free.
4007 */
4008 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4009 return false;
4010
4011 /* If this is an order-0 request then the watermark is fine */
4012 if (!order)
4013 return true;
4014
4015 /* For a high-order request, check at least one suitable page is free */
4016 for (o = order; o < MAX_ORDER; o++) {
4017 struct free_area *area = &z->free_area[o];
4018 int mt;
4019
4020 if (!area->nr_free)
4021 continue;
4022
4023 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4024 if (!free_area_empty(area, mt))
4025 return true;
4026 }
4027
4028 #ifdef CONFIG_CMA
4029 if ((alloc_flags & ALLOC_CMA) &&
4030 !free_area_empty(area, MIGRATE_CMA)) {
4031 return true;
4032 }
4033 #endif
4034 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
4035 return true;
4036 }
4037 return false;
4038 }
4039
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)4040 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4041 int highest_zoneidx, unsigned int alloc_flags)
4042 {
4043 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4044 zone_page_state(z, NR_FREE_PAGES));
4045 }
4046
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)4047 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4048 unsigned long mark, int highest_zoneidx,
4049 unsigned int alloc_flags, gfp_t gfp_mask)
4050 {
4051 long free_pages;
4052
4053 free_pages = zone_page_state(z, NR_FREE_PAGES);
4054
4055 /*
4056 * Fast check for order-0 only. If this fails then the reserves
4057 * need to be calculated.
4058 */
4059 if (!order) {
4060 long usable_free;
4061 long reserved;
4062
4063 usable_free = free_pages;
4064 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4065
4066 /* reserved may over estimate high-atomic reserves. */
4067 usable_free -= min(usable_free, reserved);
4068 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4069 return true;
4070 }
4071
4072 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4073 free_pages))
4074 return true;
4075 /*
4076 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4077 * when checking the min watermark. The min watermark is the
4078 * point where boosting is ignored so that kswapd is woken up
4079 * when below the low watermark.
4080 */
4081 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4082 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4083 mark = z->_watermark[WMARK_MIN];
4084 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4085 alloc_flags, free_pages);
4086 }
4087
4088 return false;
4089 }
4090
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)4091 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4092 unsigned long mark, int highest_zoneidx)
4093 {
4094 long free_pages = zone_page_state(z, NR_FREE_PAGES);
4095
4096 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4097 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4098
4099 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4100 free_pages);
4101 }
4102
4103 #ifdef CONFIG_NUMA
4104 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4105
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)4106 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4107 {
4108 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4109 node_reclaim_distance;
4110 }
4111 #else /* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)4112 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4113 {
4114 return true;
4115 }
4116 #endif /* CONFIG_NUMA */
4117
4118 /*
4119 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4120 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4121 * premature use of a lower zone may cause lowmem pressure problems that
4122 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4123 * probably too small. It only makes sense to spread allocations to avoid
4124 * fragmentation between the Normal and DMA32 zones.
4125 */
4126 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)4127 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4128 {
4129 unsigned int alloc_flags;
4130
4131 /*
4132 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4133 * to save a branch.
4134 */
4135 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4136
4137 #ifdef CONFIG_ZONE_DMA32
4138 if (!zone)
4139 return alloc_flags;
4140
4141 if (zone_idx(zone) != ZONE_NORMAL)
4142 return alloc_flags;
4143
4144 /*
4145 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4146 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4147 * on UMA that if Normal is populated then so is DMA32.
4148 */
4149 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4150 if (nr_online_nodes > 1 && !populated_zone(--zone))
4151 return alloc_flags;
4152
4153 alloc_flags |= ALLOC_NOFRAGMENT;
4154 #endif /* CONFIG_ZONE_DMA32 */
4155 return alloc_flags;
4156 }
4157
4158 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)4159 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4160 unsigned int alloc_flags)
4161 {
4162 #ifdef CONFIG_CMA
4163 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4164 alloc_flags |= ALLOC_CMA;
4165 #endif
4166 return alloc_flags;
4167 }
4168
4169 /*
4170 * get_page_from_freelist goes through the zonelist trying to allocate
4171 * a page.
4172 */
4173 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)4174 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4175 const struct alloc_context *ac)
4176 {
4177 struct zoneref *z;
4178 struct zone *zone;
4179 struct pglist_data *last_pgdat = NULL;
4180 bool last_pgdat_dirty_ok = false;
4181 bool no_fallback;
4182
4183 retry:
4184 /*
4185 * Scan zonelist, looking for a zone with enough free.
4186 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4187 */
4188 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4189 z = ac->preferred_zoneref;
4190 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4191 ac->nodemask) {
4192 struct page *page;
4193 unsigned long mark;
4194
4195 if (cpusets_enabled() &&
4196 (alloc_flags & ALLOC_CPUSET) &&
4197 !__cpuset_zone_allowed(zone, gfp_mask))
4198 continue;
4199 /*
4200 * When allocating a page cache page for writing, we
4201 * want to get it from a node that is within its dirty
4202 * limit, such that no single node holds more than its
4203 * proportional share of globally allowed dirty pages.
4204 * The dirty limits take into account the node's
4205 * lowmem reserves and high watermark so that kswapd
4206 * should be able to balance it without having to
4207 * write pages from its LRU list.
4208 *
4209 * XXX: For now, allow allocations to potentially
4210 * exceed the per-node dirty limit in the slowpath
4211 * (spread_dirty_pages unset) before going into reclaim,
4212 * which is important when on a NUMA setup the allowed
4213 * nodes are together not big enough to reach the
4214 * global limit. The proper fix for these situations
4215 * will require awareness of nodes in the
4216 * dirty-throttling and the flusher threads.
4217 */
4218 if (ac->spread_dirty_pages) {
4219 if (last_pgdat != zone->zone_pgdat) {
4220 last_pgdat = zone->zone_pgdat;
4221 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4222 }
4223
4224 if (!last_pgdat_dirty_ok)
4225 continue;
4226 }
4227
4228 if (no_fallback && nr_online_nodes > 1 &&
4229 zone != ac->preferred_zoneref->zone) {
4230 int local_nid;
4231
4232 /*
4233 * If moving to a remote node, retry but allow
4234 * fragmenting fallbacks. Locality is more important
4235 * than fragmentation avoidance.
4236 */
4237 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4238 if (zone_to_nid(zone) != local_nid) {
4239 alloc_flags &= ~ALLOC_NOFRAGMENT;
4240 goto retry;
4241 }
4242 }
4243
4244 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4245 if (!zone_watermark_fast(zone, order, mark,
4246 ac->highest_zoneidx, alloc_flags,
4247 gfp_mask)) {
4248 int ret;
4249
4250 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4251 /*
4252 * Watermark failed for this zone, but see if we can
4253 * grow this zone if it contains deferred pages.
4254 */
4255 if (static_branch_unlikely(&deferred_pages)) {
4256 if (_deferred_grow_zone(zone, order))
4257 goto try_this_zone;
4258 }
4259 #endif
4260 /* Checked here to keep the fast path fast */
4261 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4262 if (alloc_flags & ALLOC_NO_WATERMARKS)
4263 goto try_this_zone;
4264
4265 if (!node_reclaim_enabled() ||
4266 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4267 continue;
4268
4269 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4270 switch (ret) {
4271 case NODE_RECLAIM_NOSCAN:
4272 /* did not scan */
4273 continue;
4274 case NODE_RECLAIM_FULL:
4275 /* scanned but unreclaimable */
4276 continue;
4277 default:
4278 /* did we reclaim enough */
4279 if (zone_watermark_ok(zone, order, mark,
4280 ac->highest_zoneidx, alloc_flags))
4281 goto try_this_zone;
4282
4283 continue;
4284 }
4285 }
4286
4287 try_this_zone:
4288 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4289 gfp_mask, alloc_flags, ac->migratetype);
4290 if (page) {
4291 prep_new_page(page, order, gfp_mask, alloc_flags);
4292
4293 /*
4294 * If this is a high-order atomic allocation then check
4295 * if the pageblock should be reserved for the future
4296 */
4297 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4298 reserve_highatomic_pageblock(page, zone, order);
4299
4300 return page;
4301 } else {
4302 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4303 /* Try again if zone has deferred pages */
4304 if (static_branch_unlikely(&deferred_pages)) {
4305 if (_deferred_grow_zone(zone, order))
4306 goto try_this_zone;
4307 }
4308 #endif
4309 }
4310 }
4311
4312 /*
4313 * It's possible on a UMA machine to get through all zones that are
4314 * fragmented. If avoiding fragmentation, reset and try again.
4315 */
4316 if (no_fallback) {
4317 alloc_flags &= ~ALLOC_NOFRAGMENT;
4318 goto retry;
4319 }
4320
4321 return NULL;
4322 }
4323
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)4324 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4325 {
4326 unsigned int filter = SHOW_MEM_FILTER_NODES;
4327
4328 /*
4329 * This documents exceptions given to allocations in certain
4330 * contexts that are allowed to allocate outside current's set
4331 * of allowed nodes.
4332 */
4333 if (!(gfp_mask & __GFP_NOMEMALLOC))
4334 if (tsk_is_oom_victim(current) ||
4335 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4336 filter &= ~SHOW_MEM_FILTER_NODES;
4337 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4338 filter &= ~SHOW_MEM_FILTER_NODES;
4339
4340 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
4341 }
4342
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)4343 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4344 {
4345 struct va_format vaf;
4346 va_list args;
4347 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4348
4349 if ((gfp_mask & __GFP_NOWARN) ||
4350 !__ratelimit(&nopage_rs) ||
4351 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4352 return;
4353
4354 va_start(args, fmt);
4355 vaf.fmt = fmt;
4356 vaf.va = &args;
4357 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4358 current->comm, &vaf, gfp_mask, &gfp_mask,
4359 nodemask_pr_args(nodemask));
4360 va_end(args);
4361
4362 cpuset_print_current_mems_allowed();
4363 pr_cont("\n");
4364 dump_stack();
4365 warn_alloc_show_mem(gfp_mask, nodemask);
4366 }
4367
4368 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)4369 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4370 unsigned int alloc_flags,
4371 const struct alloc_context *ac)
4372 {
4373 struct page *page;
4374
4375 page = get_page_from_freelist(gfp_mask, order,
4376 alloc_flags|ALLOC_CPUSET, ac);
4377 /*
4378 * fallback to ignore cpuset restriction if our nodes
4379 * are depleted
4380 */
4381 if (!page)
4382 page = get_page_from_freelist(gfp_mask, order,
4383 alloc_flags, ac);
4384
4385 return page;
4386 }
4387
4388 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)4389 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4390 const struct alloc_context *ac, unsigned long *did_some_progress)
4391 {
4392 struct oom_control oc = {
4393 .zonelist = ac->zonelist,
4394 .nodemask = ac->nodemask,
4395 .memcg = NULL,
4396 .gfp_mask = gfp_mask,
4397 .order = order,
4398 };
4399 struct page *page;
4400
4401 *did_some_progress = 0;
4402
4403 /*
4404 * Acquire the oom lock. If that fails, somebody else is
4405 * making progress for us.
4406 */
4407 if (!mutex_trylock(&oom_lock)) {
4408 *did_some_progress = 1;
4409 schedule_timeout_uninterruptible(1);
4410 return NULL;
4411 }
4412
4413 /*
4414 * Go through the zonelist yet one more time, keep very high watermark
4415 * here, this is only to catch a parallel oom killing, we must fail if
4416 * we're still under heavy pressure. But make sure that this reclaim
4417 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4418 * allocation which will never fail due to oom_lock already held.
4419 */
4420 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4421 ~__GFP_DIRECT_RECLAIM, order,
4422 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4423 if (page)
4424 goto out;
4425
4426 /* Coredumps can quickly deplete all memory reserves */
4427 if (current->flags & PF_DUMPCORE)
4428 goto out;
4429 /* The OOM killer will not help higher order allocs */
4430 if (order > PAGE_ALLOC_COSTLY_ORDER)
4431 goto out;
4432 /*
4433 * We have already exhausted all our reclaim opportunities without any
4434 * success so it is time to admit defeat. We will skip the OOM killer
4435 * because it is very likely that the caller has a more reasonable
4436 * fallback than shooting a random task.
4437 *
4438 * The OOM killer may not free memory on a specific node.
4439 */
4440 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4441 goto out;
4442 /* The OOM killer does not needlessly kill tasks for lowmem */
4443 if (ac->highest_zoneidx < ZONE_NORMAL)
4444 goto out;
4445 if (pm_suspended_storage())
4446 goto out;
4447 /*
4448 * XXX: GFP_NOFS allocations should rather fail than rely on
4449 * other request to make a forward progress.
4450 * We are in an unfortunate situation where out_of_memory cannot
4451 * do much for this context but let's try it to at least get
4452 * access to memory reserved if the current task is killed (see
4453 * out_of_memory). Once filesystems are ready to handle allocation
4454 * failures more gracefully we should just bail out here.
4455 */
4456
4457 /* Exhausted what can be done so it's blame time */
4458 if (out_of_memory(&oc) ||
4459 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4460 *did_some_progress = 1;
4461
4462 /*
4463 * Help non-failing allocations by giving them access to memory
4464 * reserves
4465 */
4466 if (gfp_mask & __GFP_NOFAIL)
4467 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4468 ALLOC_NO_WATERMARKS, ac);
4469 }
4470 out:
4471 mutex_unlock(&oom_lock);
4472 return page;
4473 }
4474
4475 /*
4476 * Maximum number of compaction retries with a progress before OOM
4477 * killer is consider as the only way to move forward.
4478 */
4479 #define MAX_COMPACT_RETRIES 16
4480
4481 #ifdef CONFIG_COMPACTION
4482 /* Try memory compaction for high-order allocations before reclaim */
4483 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4484 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4485 unsigned int alloc_flags, const struct alloc_context *ac,
4486 enum compact_priority prio, enum compact_result *compact_result)
4487 {
4488 struct page *page = NULL;
4489 unsigned long pflags;
4490 unsigned int noreclaim_flag;
4491
4492 if (!order)
4493 return NULL;
4494
4495 psi_memstall_enter(&pflags);
4496 delayacct_compact_start();
4497 noreclaim_flag = memalloc_noreclaim_save();
4498
4499 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4500 prio, &page);
4501
4502 memalloc_noreclaim_restore(noreclaim_flag);
4503 psi_memstall_leave(&pflags);
4504 delayacct_compact_end();
4505
4506 if (*compact_result == COMPACT_SKIPPED)
4507 return NULL;
4508 /*
4509 * At least in one zone compaction wasn't deferred or skipped, so let's
4510 * count a compaction stall
4511 */
4512 count_vm_event(COMPACTSTALL);
4513
4514 /* Prep a captured page if available */
4515 if (page)
4516 prep_new_page(page, order, gfp_mask, alloc_flags);
4517
4518 /* Try get a page from the freelist if available */
4519 if (!page)
4520 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4521
4522 if (page) {
4523 struct zone *zone = page_zone(page);
4524
4525 zone->compact_blockskip_flush = false;
4526 compaction_defer_reset(zone, order, true);
4527 count_vm_event(COMPACTSUCCESS);
4528 return page;
4529 }
4530
4531 /*
4532 * It's bad if compaction run occurs and fails. The most likely reason
4533 * is that pages exist, but not enough to satisfy watermarks.
4534 */
4535 count_vm_event(COMPACTFAIL);
4536
4537 cond_resched();
4538
4539 return NULL;
4540 }
4541
4542 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4543 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4544 enum compact_result compact_result,
4545 enum compact_priority *compact_priority,
4546 int *compaction_retries)
4547 {
4548 int max_retries = MAX_COMPACT_RETRIES;
4549 int min_priority;
4550 bool ret = false;
4551 int retries = *compaction_retries;
4552 enum compact_priority priority = *compact_priority;
4553
4554 if (!order)
4555 return false;
4556
4557 if (fatal_signal_pending(current))
4558 return false;
4559
4560 if (compaction_made_progress(compact_result))
4561 (*compaction_retries)++;
4562
4563 /*
4564 * compaction considers all the zone as desperately out of memory
4565 * so it doesn't really make much sense to retry except when the
4566 * failure could be caused by insufficient priority
4567 */
4568 if (compaction_failed(compact_result))
4569 goto check_priority;
4570
4571 /*
4572 * compaction was skipped because there are not enough order-0 pages
4573 * to work with, so we retry only if it looks like reclaim can help.
4574 */
4575 if (compaction_needs_reclaim(compact_result)) {
4576 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4577 goto out;
4578 }
4579
4580 /*
4581 * make sure the compaction wasn't deferred or didn't bail out early
4582 * due to locks contention before we declare that we should give up.
4583 * But the next retry should use a higher priority if allowed, so
4584 * we don't just keep bailing out endlessly.
4585 */
4586 if (compaction_withdrawn(compact_result)) {
4587 goto check_priority;
4588 }
4589
4590 /*
4591 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4592 * costly ones because they are de facto nofail and invoke OOM
4593 * killer to move on while costly can fail and users are ready
4594 * to cope with that. 1/4 retries is rather arbitrary but we
4595 * would need much more detailed feedback from compaction to
4596 * make a better decision.
4597 */
4598 if (order > PAGE_ALLOC_COSTLY_ORDER)
4599 max_retries /= 4;
4600 if (*compaction_retries <= max_retries) {
4601 ret = true;
4602 goto out;
4603 }
4604
4605 /*
4606 * Make sure there are attempts at the highest priority if we exhausted
4607 * all retries or failed at the lower priorities.
4608 */
4609 check_priority:
4610 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4611 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4612
4613 if (*compact_priority > min_priority) {
4614 (*compact_priority)--;
4615 *compaction_retries = 0;
4616 ret = true;
4617 }
4618 out:
4619 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4620 return ret;
4621 }
4622 #else
4623 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4624 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4625 unsigned int alloc_flags, const struct alloc_context *ac,
4626 enum compact_priority prio, enum compact_result *compact_result)
4627 {
4628 *compact_result = COMPACT_SKIPPED;
4629 return NULL;
4630 }
4631
4632 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4633 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4634 enum compact_result compact_result,
4635 enum compact_priority *compact_priority,
4636 int *compaction_retries)
4637 {
4638 struct zone *zone;
4639 struct zoneref *z;
4640
4641 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4642 return false;
4643
4644 /*
4645 * There are setups with compaction disabled which would prefer to loop
4646 * inside the allocator rather than hit the oom killer prematurely.
4647 * Let's give them a good hope and keep retrying while the order-0
4648 * watermarks are OK.
4649 */
4650 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4651 ac->highest_zoneidx, ac->nodemask) {
4652 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4653 ac->highest_zoneidx, alloc_flags))
4654 return true;
4655 }
4656 return false;
4657 }
4658 #endif /* CONFIG_COMPACTION */
4659
4660 #ifdef CONFIG_LOCKDEP
4661 static struct lockdep_map __fs_reclaim_map =
4662 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4663
__need_reclaim(gfp_t gfp_mask)4664 static bool __need_reclaim(gfp_t gfp_mask)
4665 {
4666 /* no reclaim without waiting on it */
4667 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4668 return false;
4669
4670 /* this guy won't enter reclaim */
4671 if (current->flags & PF_MEMALLOC)
4672 return false;
4673
4674 if (gfp_mask & __GFP_NOLOCKDEP)
4675 return false;
4676
4677 return true;
4678 }
4679
__fs_reclaim_acquire(unsigned long ip)4680 void __fs_reclaim_acquire(unsigned long ip)
4681 {
4682 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4683 }
4684
__fs_reclaim_release(unsigned long ip)4685 void __fs_reclaim_release(unsigned long ip)
4686 {
4687 lock_release(&__fs_reclaim_map, ip);
4688 }
4689
fs_reclaim_acquire(gfp_t gfp_mask)4690 void fs_reclaim_acquire(gfp_t gfp_mask)
4691 {
4692 gfp_mask = current_gfp_context(gfp_mask);
4693
4694 if (__need_reclaim(gfp_mask)) {
4695 if (gfp_mask & __GFP_FS)
4696 __fs_reclaim_acquire(_RET_IP_);
4697
4698 #ifdef CONFIG_MMU_NOTIFIER
4699 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4700 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4701 #endif
4702
4703 }
4704 }
4705 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4706
fs_reclaim_release(gfp_t gfp_mask)4707 void fs_reclaim_release(gfp_t gfp_mask)
4708 {
4709 gfp_mask = current_gfp_context(gfp_mask);
4710
4711 if (__need_reclaim(gfp_mask)) {
4712 if (gfp_mask & __GFP_FS)
4713 __fs_reclaim_release(_RET_IP_);
4714 }
4715 }
4716 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4717 #endif
4718
4719 /*
4720 * Zonelists may change due to hotplug during allocation. Detect when zonelists
4721 * have been rebuilt so allocation retries. Reader side does not lock and
4722 * retries the allocation if zonelist changes. Writer side is protected by the
4723 * embedded spin_lock.
4724 */
4725 static DEFINE_SEQLOCK(zonelist_update_seq);
4726
zonelist_iter_begin(void)4727 static unsigned int zonelist_iter_begin(void)
4728 {
4729 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4730 return read_seqbegin(&zonelist_update_seq);
4731
4732 return 0;
4733 }
4734
check_retry_zonelist(unsigned int seq)4735 static unsigned int check_retry_zonelist(unsigned int seq)
4736 {
4737 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4738 return read_seqretry(&zonelist_update_seq, seq);
4739
4740 return seq;
4741 }
4742
4743 /* Perform direct synchronous page reclaim */
4744 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)4745 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4746 const struct alloc_context *ac)
4747 {
4748 unsigned int noreclaim_flag;
4749 unsigned long progress;
4750
4751 cond_resched();
4752
4753 /* We now go into synchronous reclaim */
4754 cpuset_memory_pressure_bump();
4755 fs_reclaim_acquire(gfp_mask);
4756 noreclaim_flag = memalloc_noreclaim_save();
4757
4758 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4759 ac->nodemask);
4760
4761 memalloc_noreclaim_restore(noreclaim_flag);
4762 fs_reclaim_release(gfp_mask);
4763
4764 cond_resched();
4765
4766 return progress;
4767 }
4768
4769 /* The really slow allocator path where we enter direct reclaim */
4770 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)4771 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4772 unsigned int alloc_flags, const struct alloc_context *ac,
4773 unsigned long *did_some_progress)
4774 {
4775 struct page *page = NULL;
4776 unsigned long pflags;
4777 bool drained = false;
4778
4779 psi_memstall_enter(&pflags);
4780 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4781 if (unlikely(!(*did_some_progress)))
4782 goto out;
4783
4784 retry:
4785 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4786
4787 /*
4788 * If an allocation failed after direct reclaim, it could be because
4789 * pages are pinned on the per-cpu lists or in high alloc reserves.
4790 * Shrink them and try again
4791 */
4792 if (!page && !drained) {
4793 unreserve_highatomic_pageblock(ac, false);
4794 drain_all_pages(NULL);
4795 drained = true;
4796 goto retry;
4797 }
4798 out:
4799 psi_memstall_leave(&pflags);
4800
4801 return page;
4802 }
4803
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)4804 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4805 const struct alloc_context *ac)
4806 {
4807 struct zoneref *z;
4808 struct zone *zone;
4809 pg_data_t *last_pgdat = NULL;
4810 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4811
4812 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4813 ac->nodemask) {
4814 if (!managed_zone(zone))
4815 continue;
4816 if (last_pgdat != zone->zone_pgdat) {
4817 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4818 last_pgdat = zone->zone_pgdat;
4819 }
4820 }
4821 }
4822
4823 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask)4824 gfp_to_alloc_flags(gfp_t gfp_mask)
4825 {
4826 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4827
4828 /*
4829 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4830 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4831 * to save two branches.
4832 */
4833 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4834 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4835
4836 /*
4837 * The caller may dip into page reserves a bit more if the caller
4838 * cannot run direct reclaim, or if the caller has realtime scheduling
4839 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4840 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4841 */
4842 alloc_flags |= (__force int)
4843 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4844
4845 if (gfp_mask & __GFP_ATOMIC) {
4846 /*
4847 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4848 * if it can't schedule.
4849 */
4850 if (!(gfp_mask & __GFP_NOMEMALLOC))
4851 alloc_flags |= ALLOC_HARDER;
4852 /*
4853 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4854 * comment for __cpuset_node_allowed().
4855 */
4856 alloc_flags &= ~ALLOC_CPUSET;
4857 } else if (unlikely(rt_task(current)) && in_task())
4858 alloc_flags |= ALLOC_HARDER;
4859
4860 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4861
4862 return alloc_flags;
4863 }
4864
oom_reserves_allowed(struct task_struct * tsk)4865 static bool oom_reserves_allowed(struct task_struct *tsk)
4866 {
4867 if (!tsk_is_oom_victim(tsk))
4868 return false;
4869
4870 /*
4871 * !MMU doesn't have oom reaper so give access to memory reserves
4872 * only to the thread with TIF_MEMDIE set
4873 */
4874 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4875 return false;
4876
4877 return true;
4878 }
4879
4880 /*
4881 * Distinguish requests which really need access to full memory
4882 * reserves from oom victims which can live with a portion of it
4883 */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)4884 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4885 {
4886 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4887 return 0;
4888 if (gfp_mask & __GFP_MEMALLOC)
4889 return ALLOC_NO_WATERMARKS;
4890 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4891 return ALLOC_NO_WATERMARKS;
4892 if (!in_interrupt()) {
4893 if (current->flags & PF_MEMALLOC)
4894 return ALLOC_NO_WATERMARKS;
4895 else if (oom_reserves_allowed(current))
4896 return ALLOC_OOM;
4897 }
4898
4899 return 0;
4900 }
4901
gfp_pfmemalloc_allowed(gfp_t gfp_mask)4902 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4903 {
4904 return !!__gfp_pfmemalloc_flags(gfp_mask);
4905 }
4906
4907 /*
4908 * Checks whether it makes sense to retry the reclaim to make a forward progress
4909 * for the given allocation request.
4910 *
4911 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4912 * without success, or when we couldn't even meet the watermark if we
4913 * reclaimed all remaining pages on the LRU lists.
4914 *
4915 * Returns true if a retry is viable or false to enter the oom path.
4916 */
4917 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)4918 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4919 struct alloc_context *ac, int alloc_flags,
4920 bool did_some_progress, int *no_progress_loops)
4921 {
4922 struct zone *zone;
4923 struct zoneref *z;
4924 bool ret = false;
4925
4926 /*
4927 * Costly allocations might have made a progress but this doesn't mean
4928 * their order will become available due to high fragmentation so
4929 * always increment the no progress counter for them
4930 */
4931 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4932 *no_progress_loops = 0;
4933 else
4934 (*no_progress_loops)++;
4935
4936 /*
4937 * Make sure we converge to OOM if we cannot make any progress
4938 * several times in the row.
4939 */
4940 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4941 /* Before OOM, exhaust highatomic_reserve */
4942 return unreserve_highatomic_pageblock(ac, true);
4943 }
4944
4945 /*
4946 * Keep reclaiming pages while there is a chance this will lead
4947 * somewhere. If none of the target zones can satisfy our allocation
4948 * request even if all reclaimable pages are considered then we are
4949 * screwed and have to go OOM.
4950 */
4951 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4952 ac->highest_zoneidx, ac->nodemask) {
4953 unsigned long available;
4954 unsigned long reclaimable;
4955 unsigned long min_wmark = min_wmark_pages(zone);
4956 bool wmark;
4957
4958 available = reclaimable = zone_reclaimable_pages(zone);
4959 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4960
4961 /*
4962 * Would the allocation succeed if we reclaimed all
4963 * reclaimable pages?
4964 */
4965 wmark = __zone_watermark_ok(zone, order, min_wmark,
4966 ac->highest_zoneidx, alloc_flags, available);
4967 trace_reclaim_retry_zone(z, order, reclaimable,
4968 available, min_wmark, *no_progress_loops, wmark);
4969 if (wmark) {
4970 ret = true;
4971 break;
4972 }
4973 }
4974
4975 /*
4976 * Memory allocation/reclaim might be called from a WQ context and the
4977 * current implementation of the WQ concurrency control doesn't
4978 * recognize that a particular WQ is congested if the worker thread is
4979 * looping without ever sleeping. Therefore we have to do a short sleep
4980 * here rather than calling cond_resched().
4981 */
4982 if (current->flags & PF_WQ_WORKER)
4983 schedule_timeout_uninterruptible(1);
4984 else
4985 cond_resched();
4986 return ret;
4987 }
4988
4989 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4990 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4991 {
4992 /*
4993 * It's possible that cpuset's mems_allowed and the nodemask from
4994 * mempolicy don't intersect. This should be normally dealt with by
4995 * policy_nodemask(), but it's possible to race with cpuset update in
4996 * such a way the check therein was true, and then it became false
4997 * before we got our cpuset_mems_cookie here.
4998 * This assumes that for all allocations, ac->nodemask can come only
4999 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
5000 * when it does not intersect with the cpuset restrictions) or the
5001 * caller can deal with a violated nodemask.
5002 */
5003 if (cpusets_enabled() && ac->nodemask &&
5004 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
5005 ac->nodemask = NULL;
5006 return true;
5007 }
5008
5009 /*
5010 * When updating a task's mems_allowed or mempolicy nodemask, it is
5011 * possible to race with parallel threads in such a way that our
5012 * allocation can fail while the mask is being updated. If we are about
5013 * to fail, check if the cpuset changed during allocation and if so,
5014 * retry.
5015 */
5016 if (read_mems_allowed_retry(cpuset_mems_cookie))
5017 return true;
5018
5019 return false;
5020 }
5021
5022 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)5023 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5024 struct alloc_context *ac)
5025 {
5026 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5027 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5028 struct page *page = NULL;
5029 unsigned int alloc_flags;
5030 unsigned long did_some_progress;
5031 enum compact_priority compact_priority;
5032 enum compact_result compact_result;
5033 int compaction_retries;
5034 int no_progress_loops;
5035 unsigned int cpuset_mems_cookie;
5036 unsigned int zonelist_iter_cookie;
5037 int reserve_flags;
5038
5039 /*
5040 * We also sanity check to catch abuse of atomic reserves being used by
5041 * callers that are not in atomic context.
5042 */
5043 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5044 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5045 gfp_mask &= ~__GFP_ATOMIC;
5046
5047 restart:
5048 compaction_retries = 0;
5049 no_progress_loops = 0;
5050 compact_priority = DEF_COMPACT_PRIORITY;
5051 cpuset_mems_cookie = read_mems_allowed_begin();
5052 zonelist_iter_cookie = zonelist_iter_begin();
5053
5054 /*
5055 * The fast path uses conservative alloc_flags to succeed only until
5056 * kswapd needs to be woken up, and to avoid the cost of setting up
5057 * alloc_flags precisely. So we do that now.
5058 */
5059 alloc_flags = gfp_to_alloc_flags(gfp_mask);
5060
5061 /*
5062 * We need to recalculate the starting point for the zonelist iterator
5063 * because we might have used different nodemask in the fast path, or
5064 * there was a cpuset modification and we are retrying - otherwise we
5065 * could end up iterating over non-eligible zones endlessly.
5066 */
5067 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5068 ac->highest_zoneidx, ac->nodemask);
5069 if (!ac->preferred_zoneref->zone)
5070 goto nopage;
5071
5072 /*
5073 * Check for insane configurations where the cpuset doesn't contain
5074 * any suitable zone to satisfy the request - e.g. non-movable
5075 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5076 */
5077 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5078 struct zoneref *z = first_zones_zonelist(ac->zonelist,
5079 ac->highest_zoneidx,
5080 &cpuset_current_mems_allowed);
5081 if (!z->zone)
5082 goto nopage;
5083 }
5084
5085 if (alloc_flags & ALLOC_KSWAPD)
5086 wake_all_kswapds(order, gfp_mask, ac);
5087
5088 /*
5089 * The adjusted alloc_flags might result in immediate success, so try
5090 * that first
5091 */
5092 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5093 if (page)
5094 goto got_pg;
5095
5096 /*
5097 * For costly allocations, try direct compaction first, as it's likely
5098 * that we have enough base pages and don't need to reclaim. For non-
5099 * movable high-order allocations, do that as well, as compaction will
5100 * try prevent permanent fragmentation by migrating from blocks of the
5101 * same migratetype.
5102 * Don't try this for allocations that are allowed to ignore
5103 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5104 */
5105 if (can_direct_reclaim &&
5106 (costly_order ||
5107 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5108 && !gfp_pfmemalloc_allowed(gfp_mask)) {
5109 page = __alloc_pages_direct_compact(gfp_mask, order,
5110 alloc_flags, ac,
5111 INIT_COMPACT_PRIORITY,
5112 &compact_result);
5113 if (page)
5114 goto got_pg;
5115
5116 /*
5117 * Checks for costly allocations with __GFP_NORETRY, which
5118 * includes some THP page fault allocations
5119 */
5120 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5121 /*
5122 * If allocating entire pageblock(s) and compaction
5123 * failed because all zones are below low watermarks
5124 * or is prohibited because it recently failed at this
5125 * order, fail immediately unless the allocator has
5126 * requested compaction and reclaim retry.
5127 *
5128 * Reclaim is
5129 * - potentially very expensive because zones are far
5130 * below their low watermarks or this is part of very
5131 * bursty high order allocations,
5132 * - not guaranteed to help because isolate_freepages()
5133 * may not iterate over freed pages as part of its
5134 * linear scan, and
5135 * - unlikely to make entire pageblocks free on its
5136 * own.
5137 */
5138 if (compact_result == COMPACT_SKIPPED ||
5139 compact_result == COMPACT_DEFERRED)
5140 goto nopage;
5141
5142 /*
5143 * Looks like reclaim/compaction is worth trying, but
5144 * sync compaction could be very expensive, so keep
5145 * using async compaction.
5146 */
5147 compact_priority = INIT_COMPACT_PRIORITY;
5148 }
5149 }
5150
5151 retry:
5152 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5153 if (alloc_flags & ALLOC_KSWAPD)
5154 wake_all_kswapds(order, gfp_mask, ac);
5155
5156 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5157 if (reserve_flags)
5158 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
5159 (alloc_flags & ALLOC_KSWAPD);
5160
5161 /*
5162 * Reset the nodemask and zonelist iterators if memory policies can be
5163 * ignored. These allocations are high priority and system rather than
5164 * user oriented.
5165 */
5166 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5167 ac->nodemask = NULL;
5168 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5169 ac->highest_zoneidx, ac->nodemask);
5170 }
5171
5172 /* Attempt with potentially adjusted zonelist and alloc_flags */
5173 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5174 if (page)
5175 goto got_pg;
5176
5177 /* Caller is not willing to reclaim, we can't balance anything */
5178 if (!can_direct_reclaim)
5179 goto nopage;
5180
5181 /* Avoid recursion of direct reclaim */
5182 if (current->flags & PF_MEMALLOC)
5183 goto nopage;
5184
5185 /* Try direct reclaim and then allocating */
5186 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5187 &did_some_progress);
5188 if (page)
5189 goto got_pg;
5190
5191 /* Try direct compaction and then allocating */
5192 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5193 compact_priority, &compact_result);
5194 if (page)
5195 goto got_pg;
5196
5197 /* Do not loop if specifically requested */
5198 if (gfp_mask & __GFP_NORETRY)
5199 goto nopage;
5200
5201 /*
5202 * Do not retry costly high order allocations unless they are
5203 * __GFP_RETRY_MAYFAIL
5204 */
5205 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5206 goto nopage;
5207
5208 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5209 did_some_progress > 0, &no_progress_loops))
5210 goto retry;
5211
5212 /*
5213 * It doesn't make any sense to retry for the compaction if the order-0
5214 * reclaim is not able to make any progress because the current
5215 * implementation of the compaction depends on the sufficient amount
5216 * of free memory (see __compaction_suitable)
5217 */
5218 if (did_some_progress > 0 &&
5219 should_compact_retry(ac, order, alloc_flags,
5220 compact_result, &compact_priority,
5221 &compaction_retries))
5222 goto retry;
5223
5224
5225 /*
5226 * Deal with possible cpuset update races or zonelist updates to avoid
5227 * a unnecessary OOM kill.
5228 */
5229 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5230 check_retry_zonelist(zonelist_iter_cookie))
5231 goto restart;
5232
5233 /* Reclaim has failed us, start killing things */
5234 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5235 if (page)
5236 goto got_pg;
5237
5238 /* Avoid allocations with no watermarks from looping endlessly */
5239 if (tsk_is_oom_victim(current) &&
5240 (alloc_flags & ALLOC_OOM ||
5241 (gfp_mask & __GFP_NOMEMALLOC)))
5242 goto nopage;
5243
5244 /* Retry as long as the OOM killer is making progress */
5245 if (did_some_progress) {
5246 no_progress_loops = 0;
5247 goto retry;
5248 }
5249
5250 nopage:
5251 /*
5252 * Deal with possible cpuset update races or zonelist updates to avoid
5253 * a unnecessary OOM kill.
5254 */
5255 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5256 check_retry_zonelist(zonelist_iter_cookie))
5257 goto restart;
5258
5259 /*
5260 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5261 * we always retry
5262 */
5263 if (gfp_mask & __GFP_NOFAIL) {
5264 /*
5265 * All existing users of the __GFP_NOFAIL are blockable, so warn
5266 * of any new users that actually require GFP_NOWAIT
5267 */
5268 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5269 goto fail;
5270
5271 /*
5272 * PF_MEMALLOC request from this context is rather bizarre
5273 * because we cannot reclaim anything and only can loop waiting
5274 * for somebody to do a work for us
5275 */
5276 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5277
5278 /*
5279 * non failing costly orders are a hard requirement which we
5280 * are not prepared for much so let's warn about these users
5281 * so that we can identify them and convert them to something
5282 * else.
5283 */
5284 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
5285
5286 /*
5287 * Help non-failing allocations by giving them access to memory
5288 * reserves but do not use ALLOC_NO_WATERMARKS because this
5289 * could deplete whole memory reserves which would just make
5290 * the situation worse
5291 */
5292 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5293 if (page)
5294 goto got_pg;
5295
5296 cond_resched();
5297 goto retry;
5298 }
5299 fail:
5300 warn_alloc(gfp_mask, ac->nodemask,
5301 "page allocation failure: order:%u", order);
5302 got_pg:
5303 return page;
5304 }
5305
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)5306 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5307 int preferred_nid, nodemask_t *nodemask,
5308 struct alloc_context *ac, gfp_t *alloc_gfp,
5309 unsigned int *alloc_flags)
5310 {
5311 ac->highest_zoneidx = gfp_zone(gfp_mask);
5312 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5313 ac->nodemask = nodemask;
5314 ac->migratetype = gfp_migratetype(gfp_mask);
5315
5316 if (cpusets_enabled()) {
5317 *alloc_gfp |= __GFP_HARDWALL;
5318 /*
5319 * When we are in the interrupt context, it is irrelevant
5320 * to the current task context. It means that any node ok.
5321 */
5322 if (in_task() && !ac->nodemask)
5323 ac->nodemask = &cpuset_current_mems_allowed;
5324 else
5325 *alloc_flags |= ALLOC_CPUSET;
5326 }
5327
5328 might_alloc(gfp_mask);
5329
5330 if (should_fail_alloc_page(gfp_mask, order))
5331 return false;
5332
5333 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5334
5335 /* Dirty zone balancing only done in the fast path */
5336 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5337
5338 /*
5339 * The preferred zone is used for statistics but crucially it is
5340 * also used as the starting point for the zonelist iterator. It
5341 * may get reset for allocations that ignore memory policies.
5342 */
5343 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5344 ac->highest_zoneidx, ac->nodemask);
5345
5346 return true;
5347 }
5348
5349 /*
5350 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5351 * @gfp: GFP flags for the allocation
5352 * @preferred_nid: The preferred NUMA node ID to allocate from
5353 * @nodemask: Set of nodes to allocate from, may be NULL
5354 * @nr_pages: The number of pages desired on the list or array
5355 * @page_list: Optional list to store the allocated pages
5356 * @page_array: Optional array to store the pages
5357 *
5358 * This is a batched version of the page allocator that attempts to
5359 * allocate nr_pages quickly. Pages are added to page_list if page_list
5360 * is not NULL, otherwise it is assumed that the page_array is valid.
5361 *
5362 * For lists, nr_pages is the number of pages that should be allocated.
5363 *
5364 * For arrays, only NULL elements are populated with pages and nr_pages
5365 * is the maximum number of pages that will be stored in the array.
5366 *
5367 * Returns the number of pages on the list or array.
5368 */
__alloc_pages_bulk(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct list_head * page_list,struct page ** page_array)5369 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5370 nodemask_t *nodemask, int nr_pages,
5371 struct list_head *page_list,
5372 struct page **page_array)
5373 {
5374 struct page *page;
5375 unsigned long flags;
5376 unsigned long __maybe_unused UP_flags;
5377 struct zone *zone;
5378 struct zoneref *z;
5379 struct per_cpu_pages *pcp;
5380 struct list_head *pcp_list;
5381 struct alloc_context ac;
5382 gfp_t alloc_gfp;
5383 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5384 int nr_populated = 0, nr_account = 0;
5385
5386 /*
5387 * Skip populated array elements to determine if any pages need
5388 * to be allocated before disabling IRQs.
5389 */
5390 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5391 nr_populated++;
5392
5393 /* No pages requested? */
5394 if (unlikely(nr_pages <= 0))
5395 goto out;
5396
5397 /* Already populated array? */
5398 if (unlikely(page_array && nr_pages - nr_populated == 0))
5399 goto out;
5400
5401 /* Bulk allocator does not support memcg accounting. */
5402 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5403 goto failed;
5404
5405 /* Use the single page allocator for one page. */
5406 if (nr_pages - nr_populated == 1)
5407 goto failed;
5408
5409 #ifdef CONFIG_PAGE_OWNER
5410 /*
5411 * PAGE_OWNER may recurse into the allocator to allocate space to
5412 * save the stack with pagesets.lock held. Releasing/reacquiring
5413 * removes much of the performance benefit of bulk allocation so
5414 * force the caller to allocate one page at a time as it'll have
5415 * similar performance to added complexity to the bulk allocator.
5416 */
5417 if (static_branch_unlikely(&page_owner_inited))
5418 goto failed;
5419 #endif
5420
5421 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5422 gfp &= gfp_allowed_mask;
5423 alloc_gfp = gfp;
5424 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5425 goto out;
5426 gfp = alloc_gfp;
5427
5428 /* Find an allowed local zone that meets the low watermark. */
5429 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5430 unsigned long mark;
5431
5432 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5433 !__cpuset_zone_allowed(zone, gfp)) {
5434 continue;
5435 }
5436
5437 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5438 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5439 goto failed;
5440 }
5441
5442 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5443 if (zone_watermark_fast(zone, 0, mark,
5444 zonelist_zone_idx(ac.preferred_zoneref),
5445 alloc_flags, gfp)) {
5446 break;
5447 }
5448 }
5449
5450 /*
5451 * If there are no allowed local zones that meets the watermarks then
5452 * try to allocate a single page and reclaim if necessary.
5453 */
5454 if (unlikely(!zone))
5455 goto failed;
5456
5457 /* Is a parallel drain in progress? */
5458 pcp_trylock_prepare(UP_flags);
5459 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
5460 if (!pcp)
5461 goto failed_irq;
5462
5463 /* Attempt the batch allocation */
5464 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5465 while (nr_populated < nr_pages) {
5466
5467 /* Skip existing pages */
5468 if (page_array && page_array[nr_populated]) {
5469 nr_populated++;
5470 continue;
5471 }
5472
5473 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5474 pcp, pcp_list);
5475 if (unlikely(!page)) {
5476 /* Try and allocate at least one page */
5477 if (!nr_account) {
5478 pcp_spin_unlock_irqrestore(pcp, flags);
5479 goto failed_irq;
5480 }
5481 break;
5482 }
5483 nr_account++;
5484
5485 prep_new_page(page, 0, gfp, 0);
5486 if (page_list)
5487 list_add(&page->lru, page_list);
5488 else
5489 page_array[nr_populated] = page;
5490 nr_populated++;
5491 }
5492
5493 pcp_spin_unlock_irqrestore(pcp, flags);
5494 pcp_trylock_finish(UP_flags);
5495
5496 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5497 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5498
5499 out:
5500 return nr_populated;
5501
5502 failed_irq:
5503 pcp_trylock_finish(UP_flags);
5504
5505 failed:
5506 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5507 if (page) {
5508 if (page_list)
5509 list_add(&page->lru, page_list);
5510 else
5511 page_array[nr_populated] = page;
5512 nr_populated++;
5513 }
5514
5515 goto out;
5516 }
5517 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5518
5519 /*
5520 * This is the 'heart' of the zoned buddy allocator.
5521 */
__alloc_pages(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)5522 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5523 nodemask_t *nodemask)
5524 {
5525 struct page *page;
5526 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5527 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5528 struct alloc_context ac = { };
5529
5530 /*
5531 * There are several places where we assume that the order value is sane
5532 * so bail out early if the request is out of bound.
5533 */
5534 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5535 return NULL;
5536
5537 gfp &= gfp_allowed_mask;
5538 /*
5539 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5540 * resp. GFP_NOIO which has to be inherited for all allocation requests
5541 * from a particular context which has been marked by
5542 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5543 * movable zones are not used during allocation.
5544 */
5545 gfp = current_gfp_context(gfp);
5546 alloc_gfp = gfp;
5547 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5548 &alloc_gfp, &alloc_flags))
5549 return NULL;
5550
5551 /*
5552 * Forbid the first pass from falling back to types that fragment
5553 * memory until all local zones are considered.
5554 */
5555 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5556
5557 /* First allocation attempt */
5558 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5559 if (likely(page))
5560 goto out;
5561
5562 alloc_gfp = gfp;
5563 ac.spread_dirty_pages = false;
5564
5565 /*
5566 * Restore the original nodemask if it was potentially replaced with
5567 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5568 */
5569 ac.nodemask = nodemask;
5570
5571 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5572
5573 out:
5574 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5575 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5576 __free_pages(page, order);
5577 page = NULL;
5578 }
5579
5580 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5581 kmsan_alloc_page(page, order, alloc_gfp);
5582
5583 return page;
5584 }
5585 EXPORT_SYMBOL(__alloc_pages);
5586
__folio_alloc(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)5587 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5588 nodemask_t *nodemask)
5589 {
5590 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5591 preferred_nid, nodemask);
5592
5593 if (page && order > 1)
5594 prep_transhuge_page(page);
5595 return (struct folio *)page;
5596 }
5597 EXPORT_SYMBOL(__folio_alloc);
5598
5599 /*
5600 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5601 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5602 * you need to access high mem.
5603 */
__get_free_pages(gfp_t gfp_mask,unsigned int order)5604 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5605 {
5606 struct page *page;
5607
5608 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5609 if (!page)
5610 return 0;
5611 return (unsigned long) page_address(page);
5612 }
5613 EXPORT_SYMBOL(__get_free_pages);
5614
get_zeroed_page(gfp_t gfp_mask)5615 unsigned long get_zeroed_page(gfp_t gfp_mask)
5616 {
5617 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5618 }
5619 EXPORT_SYMBOL(get_zeroed_page);
5620
5621 /**
5622 * __free_pages - Free pages allocated with alloc_pages().
5623 * @page: The page pointer returned from alloc_pages().
5624 * @order: The order of the allocation.
5625 *
5626 * This function can free multi-page allocations that are not compound
5627 * pages. It does not check that the @order passed in matches that of
5628 * the allocation, so it is easy to leak memory. Freeing more memory
5629 * than was allocated will probably emit a warning.
5630 *
5631 * If the last reference to this page is speculative, it will be released
5632 * by put_page() which only frees the first page of a non-compound
5633 * allocation. To prevent the remaining pages from being leaked, we free
5634 * the subsequent pages here. If you want to use the page's reference
5635 * count to decide when to free the allocation, you should allocate a
5636 * compound page, and use put_page() instead of __free_pages().
5637 *
5638 * Context: May be called in interrupt context or while holding a normal
5639 * spinlock, but not in NMI context or while holding a raw spinlock.
5640 */
__free_pages(struct page * page,unsigned int order)5641 void __free_pages(struct page *page, unsigned int order)
5642 {
5643 if (put_page_testzero(page))
5644 free_the_page(page, order);
5645 else if (!PageHead(page))
5646 while (order-- > 0)
5647 free_the_page(page + (1 << order), order);
5648 }
5649 EXPORT_SYMBOL(__free_pages);
5650
free_pages(unsigned long addr,unsigned int order)5651 void free_pages(unsigned long addr, unsigned int order)
5652 {
5653 if (addr != 0) {
5654 VM_BUG_ON(!virt_addr_valid((void *)addr));
5655 __free_pages(virt_to_page((void *)addr), order);
5656 }
5657 }
5658
5659 EXPORT_SYMBOL(free_pages);
5660
5661 /*
5662 * Page Fragment:
5663 * An arbitrary-length arbitrary-offset area of memory which resides
5664 * within a 0 or higher order page. Multiple fragments within that page
5665 * are individually refcounted, in the page's reference counter.
5666 *
5667 * The page_frag functions below provide a simple allocation framework for
5668 * page fragments. This is used by the network stack and network device
5669 * drivers to provide a backing region of memory for use as either an
5670 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5671 */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)5672 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5673 gfp_t gfp_mask)
5674 {
5675 struct page *page = NULL;
5676 gfp_t gfp = gfp_mask;
5677
5678 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5679 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5680 __GFP_NOMEMALLOC;
5681 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5682 PAGE_FRAG_CACHE_MAX_ORDER);
5683 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5684 #endif
5685 if (unlikely(!page))
5686 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5687
5688 nc->va = page ? page_address(page) : NULL;
5689
5690 return page;
5691 }
5692
__page_frag_cache_drain(struct page * page,unsigned int count)5693 void __page_frag_cache_drain(struct page *page, unsigned int count)
5694 {
5695 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5696
5697 if (page_ref_sub_and_test(page, count))
5698 free_the_page(page, compound_order(page));
5699 }
5700 EXPORT_SYMBOL(__page_frag_cache_drain);
5701
page_frag_alloc_align(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)5702 void *page_frag_alloc_align(struct page_frag_cache *nc,
5703 unsigned int fragsz, gfp_t gfp_mask,
5704 unsigned int align_mask)
5705 {
5706 unsigned int size = PAGE_SIZE;
5707 struct page *page;
5708 int offset;
5709
5710 if (unlikely(!nc->va)) {
5711 refill:
5712 page = __page_frag_cache_refill(nc, gfp_mask);
5713 if (!page)
5714 return NULL;
5715
5716 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5717 /* if size can vary use size else just use PAGE_SIZE */
5718 size = nc->size;
5719 #endif
5720 /* Even if we own the page, we do not use atomic_set().
5721 * This would break get_page_unless_zero() users.
5722 */
5723 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5724
5725 /* reset page count bias and offset to start of new frag */
5726 nc->pfmemalloc = page_is_pfmemalloc(page);
5727 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5728 nc->offset = size;
5729 }
5730
5731 offset = nc->offset - fragsz;
5732 if (unlikely(offset < 0)) {
5733 page = virt_to_page(nc->va);
5734
5735 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5736 goto refill;
5737
5738 if (unlikely(nc->pfmemalloc)) {
5739 free_the_page(page, compound_order(page));
5740 goto refill;
5741 }
5742
5743 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5744 /* if size can vary use size else just use PAGE_SIZE */
5745 size = nc->size;
5746 #endif
5747 /* OK, page count is 0, we can safely set it */
5748 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5749
5750 /* reset page count bias and offset to start of new frag */
5751 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5752 offset = size - fragsz;
5753 if (unlikely(offset < 0)) {
5754 /*
5755 * The caller is trying to allocate a fragment
5756 * with fragsz > PAGE_SIZE but the cache isn't big
5757 * enough to satisfy the request, this may
5758 * happen in low memory conditions.
5759 * We don't release the cache page because
5760 * it could make memory pressure worse
5761 * so we simply return NULL here.
5762 */
5763 return NULL;
5764 }
5765 }
5766
5767 nc->pagecnt_bias--;
5768 offset &= align_mask;
5769 nc->offset = offset;
5770
5771 return nc->va + offset;
5772 }
5773 EXPORT_SYMBOL(page_frag_alloc_align);
5774
5775 /*
5776 * Frees a page fragment allocated out of either a compound or order 0 page.
5777 */
page_frag_free(void * addr)5778 void page_frag_free(void *addr)
5779 {
5780 struct page *page = virt_to_head_page(addr);
5781
5782 if (unlikely(put_page_testzero(page)))
5783 free_the_page(page, compound_order(page));
5784 }
5785 EXPORT_SYMBOL(page_frag_free);
5786
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)5787 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5788 size_t size)
5789 {
5790 if (addr) {
5791 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5792 struct page *page = virt_to_page((void *)addr);
5793 struct page *last = page + nr;
5794
5795 split_page_owner(page, 1 << order);
5796 split_page_memcg(page, 1 << order);
5797 while (page < --last)
5798 set_page_refcounted(last);
5799
5800 last = page + (1UL << order);
5801 for (page += nr; page < last; page++)
5802 __free_pages_ok(page, 0, FPI_TO_TAIL);
5803 }
5804 return (void *)addr;
5805 }
5806
5807 /**
5808 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5809 * @size: the number of bytes to allocate
5810 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5811 *
5812 * This function is similar to alloc_pages(), except that it allocates the
5813 * minimum number of pages to satisfy the request. alloc_pages() can only
5814 * allocate memory in power-of-two pages.
5815 *
5816 * This function is also limited by MAX_ORDER.
5817 *
5818 * Memory allocated by this function must be released by free_pages_exact().
5819 *
5820 * Return: pointer to the allocated area or %NULL in case of error.
5821 */
alloc_pages_exact(size_t size,gfp_t gfp_mask)5822 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5823 {
5824 unsigned int order = get_order(size);
5825 unsigned long addr;
5826
5827 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5828 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5829
5830 addr = __get_free_pages(gfp_mask, order);
5831 return make_alloc_exact(addr, order, size);
5832 }
5833 EXPORT_SYMBOL(alloc_pages_exact);
5834
5835 /**
5836 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5837 * pages on a node.
5838 * @nid: the preferred node ID where memory should be allocated
5839 * @size: the number of bytes to allocate
5840 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5841 *
5842 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5843 * back.
5844 *
5845 * Return: pointer to the allocated area or %NULL in case of error.
5846 */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)5847 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5848 {
5849 unsigned int order = get_order(size);
5850 struct page *p;
5851
5852 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5853 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5854
5855 p = alloc_pages_node(nid, gfp_mask, order);
5856 if (!p)
5857 return NULL;
5858 return make_alloc_exact((unsigned long)page_address(p), order, size);
5859 }
5860
5861 /**
5862 * free_pages_exact - release memory allocated via alloc_pages_exact()
5863 * @virt: the value returned by alloc_pages_exact.
5864 * @size: size of allocation, same value as passed to alloc_pages_exact().
5865 *
5866 * Release the memory allocated by a previous call to alloc_pages_exact.
5867 */
free_pages_exact(void * virt,size_t size)5868 void free_pages_exact(void *virt, size_t size)
5869 {
5870 unsigned long addr = (unsigned long)virt;
5871 unsigned long end = addr + PAGE_ALIGN(size);
5872
5873 while (addr < end) {
5874 free_page(addr);
5875 addr += PAGE_SIZE;
5876 }
5877 }
5878 EXPORT_SYMBOL(free_pages_exact);
5879
5880 /**
5881 * nr_free_zone_pages - count number of pages beyond high watermark
5882 * @offset: The zone index of the highest zone
5883 *
5884 * nr_free_zone_pages() counts the number of pages which are beyond the
5885 * high watermark within all zones at or below a given zone index. For each
5886 * zone, the number of pages is calculated as:
5887 *
5888 * nr_free_zone_pages = managed_pages - high_pages
5889 *
5890 * Return: number of pages beyond high watermark.
5891 */
nr_free_zone_pages(int offset)5892 static unsigned long nr_free_zone_pages(int offset)
5893 {
5894 struct zoneref *z;
5895 struct zone *zone;
5896
5897 /* Just pick one node, since fallback list is circular */
5898 unsigned long sum = 0;
5899
5900 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5901
5902 for_each_zone_zonelist(zone, z, zonelist, offset) {
5903 unsigned long size = zone_managed_pages(zone);
5904 unsigned long high = high_wmark_pages(zone);
5905 if (size > high)
5906 sum += size - high;
5907 }
5908
5909 return sum;
5910 }
5911
5912 /**
5913 * nr_free_buffer_pages - count number of pages beyond high watermark
5914 *
5915 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5916 * watermark within ZONE_DMA and ZONE_NORMAL.
5917 *
5918 * Return: number of pages beyond high watermark within ZONE_DMA and
5919 * ZONE_NORMAL.
5920 */
nr_free_buffer_pages(void)5921 unsigned long nr_free_buffer_pages(void)
5922 {
5923 return nr_free_zone_pages(gfp_zone(GFP_USER));
5924 }
5925 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5926
show_node(struct zone * zone)5927 static inline void show_node(struct zone *zone)
5928 {
5929 if (IS_ENABLED(CONFIG_NUMA))
5930 printk("Node %d ", zone_to_nid(zone));
5931 }
5932
si_mem_available(void)5933 long si_mem_available(void)
5934 {
5935 long available;
5936 unsigned long pagecache;
5937 unsigned long wmark_low = 0;
5938 unsigned long pages[NR_LRU_LISTS];
5939 unsigned long reclaimable;
5940 struct zone *zone;
5941 int lru;
5942
5943 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5944 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5945
5946 for_each_zone(zone)
5947 wmark_low += low_wmark_pages(zone);
5948
5949 /*
5950 * Estimate the amount of memory available for userspace allocations,
5951 * without causing swapping or OOM.
5952 */
5953 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5954
5955 /*
5956 * Not all the page cache can be freed, otherwise the system will
5957 * start swapping or thrashing. Assume at least half of the page
5958 * cache, or the low watermark worth of cache, needs to stay.
5959 */
5960 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5961 pagecache -= min(pagecache / 2, wmark_low);
5962 available += pagecache;
5963
5964 /*
5965 * Part of the reclaimable slab and other kernel memory consists of
5966 * items that are in use, and cannot be freed. Cap this estimate at the
5967 * low watermark.
5968 */
5969 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5970 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5971 available += reclaimable - min(reclaimable / 2, wmark_low);
5972
5973 if (available < 0)
5974 available = 0;
5975 return available;
5976 }
5977 EXPORT_SYMBOL_GPL(si_mem_available);
5978
si_meminfo(struct sysinfo * val)5979 void si_meminfo(struct sysinfo *val)
5980 {
5981 val->totalram = totalram_pages();
5982 val->sharedram = global_node_page_state(NR_SHMEM);
5983 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5984 val->bufferram = nr_blockdev_pages();
5985 val->totalhigh = totalhigh_pages();
5986 val->freehigh = nr_free_highpages();
5987 val->mem_unit = PAGE_SIZE;
5988 }
5989
5990 EXPORT_SYMBOL(si_meminfo);
5991
5992 #ifdef CONFIG_NUMA
si_meminfo_node(struct sysinfo * val,int nid)5993 void si_meminfo_node(struct sysinfo *val, int nid)
5994 {
5995 int zone_type; /* needs to be signed */
5996 unsigned long managed_pages = 0;
5997 unsigned long managed_highpages = 0;
5998 unsigned long free_highpages = 0;
5999 pg_data_t *pgdat = NODE_DATA(nid);
6000
6001 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
6002 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
6003 val->totalram = managed_pages;
6004 val->sharedram = node_page_state(pgdat, NR_SHMEM);
6005 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
6006 #ifdef CONFIG_HIGHMEM
6007 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
6008 struct zone *zone = &pgdat->node_zones[zone_type];
6009
6010 if (is_highmem(zone)) {
6011 managed_highpages += zone_managed_pages(zone);
6012 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6013 }
6014 }
6015 val->totalhigh = managed_highpages;
6016 val->freehigh = free_highpages;
6017 #else
6018 val->totalhigh = managed_highpages;
6019 val->freehigh = free_highpages;
6020 #endif
6021 val->mem_unit = PAGE_SIZE;
6022 }
6023 #endif
6024
6025 /*
6026 * Determine whether the node should be displayed or not, depending on whether
6027 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6028 */
show_mem_node_skip(unsigned int flags,int nid,nodemask_t * nodemask)6029 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6030 {
6031 if (!(flags & SHOW_MEM_FILTER_NODES))
6032 return false;
6033
6034 /*
6035 * no node mask - aka implicit memory numa policy. Do not bother with
6036 * the synchronization - read_mems_allowed_begin - because we do not
6037 * have to be precise here.
6038 */
6039 if (!nodemask)
6040 nodemask = &cpuset_current_mems_allowed;
6041
6042 return !node_isset(nid, *nodemask);
6043 }
6044
6045 #define K(x) ((x) << (PAGE_SHIFT-10))
6046
show_migration_types(unsigned char type)6047 static void show_migration_types(unsigned char type)
6048 {
6049 static const char types[MIGRATE_TYPES] = {
6050 [MIGRATE_UNMOVABLE] = 'U',
6051 [MIGRATE_MOVABLE] = 'M',
6052 [MIGRATE_RECLAIMABLE] = 'E',
6053 [MIGRATE_HIGHATOMIC] = 'H',
6054 #ifdef CONFIG_CMA
6055 [MIGRATE_CMA] = 'C',
6056 #endif
6057 #ifdef CONFIG_MEMORY_ISOLATION
6058 [MIGRATE_ISOLATE] = 'I',
6059 #endif
6060 };
6061 char tmp[MIGRATE_TYPES + 1];
6062 char *p = tmp;
6063 int i;
6064
6065 for (i = 0; i < MIGRATE_TYPES; i++) {
6066 if (type & (1 << i))
6067 *p++ = types[i];
6068 }
6069
6070 *p = '\0';
6071 printk(KERN_CONT "(%s) ", tmp);
6072 }
6073
node_has_managed_zones(pg_data_t * pgdat,int max_zone_idx)6074 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6075 {
6076 int zone_idx;
6077 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6078 if (zone_managed_pages(pgdat->node_zones + zone_idx))
6079 return true;
6080 return false;
6081 }
6082
6083 /*
6084 * Show free area list (used inside shift_scroll-lock stuff)
6085 * We also calculate the percentage fragmentation. We do this by counting the
6086 * memory on each free list with the exception of the first item on the list.
6087 *
6088 * Bits in @filter:
6089 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6090 * cpuset.
6091 */
__show_free_areas(unsigned int filter,nodemask_t * nodemask,int max_zone_idx)6092 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
6093 {
6094 unsigned long free_pcp = 0;
6095 int cpu, nid;
6096 struct zone *zone;
6097 pg_data_t *pgdat;
6098
6099 for_each_populated_zone(zone) {
6100 if (zone_idx(zone) > max_zone_idx)
6101 continue;
6102 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6103 continue;
6104
6105 for_each_online_cpu(cpu)
6106 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6107 }
6108
6109 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6110 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6111 " unevictable:%lu dirty:%lu writeback:%lu\n"
6112 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6113 " mapped:%lu shmem:%lu pagetables:%lu\n"
6114 " sec_pagetables:%lu bounce:%lu\n"
6115 " kernel_misc_reclaimable:%lu\n"
6116 " free:%lu free_pcp:%lu free_cma:%lu\n",
6117 global_node_page_state(NR_ACTIVE_ANON),
6118 global_node_page_state(NR_INACTIVE_ANON),
6119 global_node_page_state(NR_ISOLATED_ANON),
6120 global_node_page_state(NR_ACTIVE_FILE),
6121 global_node_page_state(NR_INACTIVE_FILE),
6122 global_node_page_state(NR_ISOLATED_FILE),
6123 global_node_page_state(NR_UNEVICTABLE),
6124 global_node_page_state(NR_FILE_DIRTY),
6125 global_node_page_state(NR_WRITEBACK),
6126 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6127 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6128 global_node_page_state(NR_FILE_MAPPED),
6129 global_node_page_state(NR_SHMEM),
6130 global_node_page_state(NR_PAGETABLE),
6131 global_node_page_state(NR_SECONDARY_PAGETABLE),
6132 global_zone_page_state(NR_BOUNCE),
6133 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6134 global_zone_page_state(NR_FREE_PAGES),
6135 free_pcp,
6136 global_zone_page_state(NR_FREE_CMA_PAGES));
6137
6138 for_each_online_pgdat(pgdat) {
6139 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6140 continue;
6141 if (!node_has_managed_zones(pgdat, max_zone_idx))
6142 continue;
6143
6144 printk("Node %d"
6145 " active_anon:%lukB"
6146 " inactive_anon:%lukB"
6147 " active_file:%lukB"
6148 " inactive_file:%lukB"
6149 " unevictable:%lukB"
6150 " isolated(anon):%lukB"
6151 " isolated(file):%lukB"
6152 " mapped:%lukB"
6153 " dirty:%lukB"
6154 " writeback:%lukB"
6155 " shmem:%lukB"
6156 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6157 " shmem_thp: %lukB"
6158 " shmem_pmdmapped: %lukB"
6159 " anon_thp: %lukB"
6160 #endif
6161 " writeback_tmp:%lukB"
6162 " kernel_stack:%lukB"
6163 #ifdef CONFIG_SHADOW_CALL_STACK
6164 " shadow_call_stack:%lukB"
6165 #endif
6166 " pagetables:%lukB"
6167 " sec_pagetables:%lukB"
6168 " all_unreclaimable? %s"
6169 "\n",
6170 pgdat->node_id,
6171 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6172 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6173 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6174 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6175 K(node_page_state(pgdat, NR_UNEVICTABLE)),
6176 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6177 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6178 K(node_page_state(pgdat, NR_FILE_MAPPED)),
6179 K(node_page_state(pgdat, NR_FILE_DIRTY)),
6180 K(node_page_state(pgdat, NR_WRITEBACK)),
6181 K(node_page_state(pgdat, NR_SHMEM)),
6182 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6183 K(node_page_state(pgdat, NR_SHMEM_THPS)),
6184 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6185 K(node_page_state(pgdat, NR_ANON_THPS)),
6186 #endif
6187 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6188 node_page_state(pgdat, NR_KERNEL_STACK_KB),
6189 #ifdef CONFIG_SHADOW_CALL_STACK
6190 node_page_state(pgdat, NR_KERNEL_SCS_KB),
6191 #endif
6192 K(node_page_state(pgdat, NR_PAGETABLE)),
6193 K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
6194 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6195 "yes" : "no");
6196 }
6197
6198 for_each_populated_zone(zone) {
6199 int i;
6200
6201 if (zone_idx(zone) > max_zone_idx)
6202 continue;
6203 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6204 continue;
6205
6206 free_pcp = 0;
6207 for_each_online_cpu(cpu)
6208 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6209
6210 show_node(zone);
6211 printk(KERN_CONT
6212 "%s"
6213 " free:%lukB"
6214 " boost:%lukB"
6215 " min:%lukB"
6216 " low:%lukB"
6217 " high:%lukB"
6218 " reserved_highatomic:%luKB"
6219 " active_anon:%lukB"
6220 " inactive_anon:%lukB"
6221 " active_file:%lukB"
6222 " inactive_file:%lukB"
6223 " unevictable:%lukB"
6224 " writepending:%lukB"
6225 " present:%lukB"
6226 " managed:%lukB"
6227 " mlocked:%lukB"
6228 " bounce:%lukB"
6229 " free_pcp:%lukB"
6230 " local_pcp:%ukB"
6231 " free_cma:%lukB"
6232 "\n",
6233 zone->name,
6234 K(zone_page_state(zone, NR_FREE_PAGES)),
6235 K(zone->watermark_boost),
6236 K(min_wmark_pages(zone)),
6237 K(low_wmark_pages(zone)),
6238 K(high_wmark_pages(zone)),
6239 K(zone->nr_reserved_highatomic),
6240 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6241 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6242 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6243 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6244 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6245 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6246 K(zone->present_pages),
6247 K(zone_managed_pages(zone)),
6248 K(zone_page_state(zone, NR_MLOCK)),
6249 K(zone_page_state(zone, NR_BOUNCE)),
6250 K(free_pcp),
6251 K(this_cpu_read(zone->per_cpu_pageset->count)),
6252 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6253 printk("lowmem_reserve[]:");
6254 for (i = 0; i < MAX_NR_ZONES; i++)
6255 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6256 printk(KERN_CONT "\n");
6257 }
6258
6259 for_each_populated_zone(zone) {
6260 unsigned int order;
6261 unsigned long nr[MAX_ORDER], flags, total = 0;
6262 unsigned char types[MAX_ORDER];
6263
6264 if (zone_idx(zone) > max_zone_idx)
6265 continue;
6266 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6267 continue;
6268 show_node(zone);
6269 printk(KERN_CONT "%s: ", zone->name);
6270
6271 spin_lock_irqsave(&zone->lock, flags);
6272 for (order = 0; order < MAX_ORDER; order++) {
6273 struct free_area *area = &zone->free_area[order];
6274 int type;
6275
6276 nr[order] = area->nr_free;
6277 total += nr[order] << order;
6278
6279 types[order] = 0;
6280 for (type = 0; type < MIGRATE_TYPES; type++) {
6281 if (!free_area_empty(area, type))
6282 types[order] |= 1 << type;
6283 }
6284 }
6285 spin_unlock_irqrestore(&zone->lock, flags);
6286 for (order = 0; order < MAX_ORDER; order++) {
6287 printk(KERN_CONT "%lu*%lukB ",
6288 nr[order], K(1UL) << order);
6289 if (nr[order])
6290 show_migration_types(types[order]);
6291 }
6292 printk(KERN_CONT "= %lukB\n", K(total));
6293 }
6294
6295 for_each_online_node(nid) {
6296 if (show_mem_node_skip(filter, nid, nodemask))
6297 continue;
6298 hugetlb_show_meminfo_node(nid);
6299 }
6300
6301 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6302
6303 show_swap_cache_info();
6304 }
6305
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)6306 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6307 {
6308 zoneref->zone = zone;
6309 zoneref->zone_idx = zone_idx(zone);
6310 }
6311
6312 /*
6313 * Builds allocation fallback zone lists.
6314 *
6315 * Add all populated zones of a node to the zonelist.
6316 */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)6317 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6318 {
6319 struct zone *zone;
6320 enum zone_type zone_type = MAX_NR_ZONES;
6321 int nr_zones = 0;
6322
6323 do {
6324 zone_type--;
6325 zone = pgdat->node_zones + zone_type;
6326 if (populated_zone(zone)) {
6327 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6328 check_highest_zone(zone_type);
6329 }
6330 } while (zone_type);
6331
6332 return nr_zones;
6333 }
6334
6335 #ifdef CONFIG_NUMA
6336
__parse_numa_zonelist_order(char * s)6337 static int __parse_numa_zonelist_order(char *s)
6338 {
6339 /*
6340 * We used to support different zonelists modes but they turned
6341 * out to be just not useful. Let's keep the warning in place
6342 * if somebody still use the cmd line parameter so that we do
6343 * not fail it silently
6344 */
6345 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6346 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6347 return -EINVAL;
6348 }
6349 return 0;
6350 }
6351
6352 char numa_zonelist_order[] = "Node";
6353
6354 /*
6355 * sysctl handler for numa_zonelist_order
6356 */
numa_zonelist_order_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6357 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6358 void *buffer, size_t *length, loff_t *ppos)
6359 {
6360 if (write)
6361 return __parse_numa_zonelist_order(buffer);
6362 return proc_dostring(table, write, buffer, length, ppos);
6363 }
6364
6365
6366 static int node_load[MAX_NUMNODES];
6367
6368 /**
6369 * find_next_best_node - find the next node that should appear in a given node's fallback list
6370 * @node: node whose fallback list we're appending
6371 * @used_node_mask: nodemask_t of already used nodes
6372 *
6373 * We use a number of factors to determine which is the next node that should
6374 * appear on a given node's fallback list. The node should not have appeared
6375 * already in @node's fallback list, and it should be the next closest node
6376 * according to the distance array (which contains arbitrary distance values
6377 * from each node to each node in the system), and should also prefer nodes
6378 * with no CPUs, since presumably they'll have very little allocation pressure
6379 * on them otherwise.
6380 *
6381 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6382 */
find_next_best_node(int node,nodemask_t * used_node_mask)6383 int find_next_best_node(int node, nodemask_t *used_node_mask)
6384 {
6385 int n, val;
6386 int min_val = INT_MAX;
6387 int best_node = NUMA_NO_NODE;
6388
6389 /* Use the local node if we haven't already */
6390 if (!node_isset(node, *used_node_mask)) {
6391 node_set(node, *used_node_mask);
6392 return node;
6393 }
6394
6395 for_each_node_state(n, N_MEMORY) {
6396
6397 /* Don't want a node to appear more than once */
6398 if (node_isset(n, *used_node_mask))
6399 continue;
6400
6401 /* Use the distance array to find the distance */
6402 val = node_distance(node, n);
6403
6404 /* Penalize nodes under us ("prefer the next node") */
6405 val += (n < node);
6406
6407 /* Give preference to headless and unused nodes */
6408 if (!cpumask_empty(cpumask_of_node(n)))
6409 val += PENALTY_FOR_NODE_WITH_CPUS;
6410
6411 /* Slight preference for less loaded node */
6412 val *= MAX_NUMNODES;
6413 val += node_load[n];
6414
6415 if (val < min_val) {
6416 min_val = val;
6417 best_node = n;
6418 }
6419 }
6420
6421 if (best_node >= 0)
6422 node_set(best_node, *used_node_mask);
6423
6424 return best_node;
6425 }
6426
6427
6428 /*
6429 * Build zonelists ordered by node and zones within node.
6430 * This results in maximum locality--normal zone overflows into local
6431 * DMA zone, if any--but risks exhausting DMA zone.
6432 */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)6433 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6434 unsigned nr_nodes)
6435 {
6436 struct zoneref *zonerefs;
6437 int i;
6438
6439 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6440
6441 for (i = 0; i < nr_nodes; i++) {
6442 int nr_zones;
6443
6444 pg_data_t *node = NODE_DATA(node_order[i]);
6445
6446 nr_zones = build_zonerefs_node(node, zonerefs);
6447 zonerefs += nr_zones;
6448 }
6449 zonerefs->zone = NULL;
6450 zonerefs->zone_idx = 0;
6451 }
6452
6453 /*
6454 * Build gfp_thisnode zonelists
6455 */
build_thisnode_zonelists(pg_data_t * pgdat)6456 static void build_thisnode_zonelists(pg_data_t *pgdat)
6457 {
6458 struct zoneref *zonerefs;
6459 int nr_zones;
6460
6461 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6462 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6463 zonerefs += nr_zones;
6464 zonerefs->zone = NULL;
6465 zonerefs->zone_idx = 0;
6466 }
6467
6468 /*
6469 * Build zonelists ordered by zone and nodes within zones.
6470 * This results in conserving DMA zone[s] until all Normal memory is
6471 * exhausted, but results in overflowing to remote node while memory
6472 * may still exist in local DMA zone.
6473 */
6474
build_zonelists(pg_data_t * pgdat)6475 static void build_zonelists(pg_data_t *pgdat)
6476 {
6477 static int node_order[MAX_NUMNODES];
6478 int node, nr_nodes = 0;
6479 nodemask_t used_mask = NODE_MASK_NONE;
6480 int local_node, prev_node;
6481
6482 /* NUMA-aware ordering of nodes */
6483 local_node = pgdat->node_id;
6484 prev_node = local_node;
6485
6486 memset(node_order, 0, sizeof(node_order));
6487 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6488 /*
6489 * We don't want to pressure a particular node.
6490 * So adding penalty to the first node in same
6491 * distance group to make it round-robin.
6492 */
6493 if (node_distance(local_node, node) !=
6494 node_distance(local_node, prev_node))
6495 node_load[node] += 1;
6496
6497 node_order[nr_nodes++] = node;
6498 prev_node = node;
6499 }
6500
6501 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6502 build_thisnode_zonelists(pgdat);
6503 pr_info("Fallback order for Node %d: ", local_node);
6504 for (node = 0; node < nr_nodes; node++)
6505 pr_cont("%d ", node_order[node]);
6506 pr_cont("\n");
6507 }
6508
6509 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6510 /*
6511 * Return node id of node used for "local" allocations.
6512 * I.e., first node id of first zone in arg node's generic zonelist.
6513 * Used for initializing percpu 'numa_mem', which is used primarily
6514 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6515 */
local_memory_node(int node)6516 int local_memory_node(int node)
6517 {
6518 struct zoneref *z;
6519
6520 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6521 gfp_zone(GFP_KERNEL),
6522 NULL);
6523 return zone_to_nid(z->zone);
6524 }
6525 #endif
6526
6527 static void setup_min_unmapped_ratio(void);
6528 static void setup_min_slab_ratio(void);
6529 #else /* CONFIG_NUMA */
6530
build_zonelists(pg_data_t * pgdat)6531 static void build_zonelists(pg_data_t *pgdat)
6532 {
6533 int node, local_node;
6534 struct zoneref *zonerefs;
6535 int nr_zones;
6536
6537 local_node = pgdat->node_id;
6538
6539 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6540 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6541 zonerefs += nr_zones;
6542
6543 /*
6544 * Now we build the zonelist so that it contains the zones
6545 * of all the other nodes.
6546 * We don't want to pressure a particular node, so when
6547 * building the zones for node N, we make sure that the
6548 * zones coming right after the local ones are those from
6549 * node N+1 (modulo N)
6550 */
6551 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6552 if (!node_online(node))
6553 continue;
6554 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6555 zonerefs += nr_zones;
6556 }
6557 for (node = 0; node < local_node; node++) {
6558 if (!node_online(node))
6559 continue;
6560 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6561 zonerefs += nr_zones;
6562 }
6563
6564 zonerefs->zone = NULL;
6565 zonerefs->zone_idx = 0;
6566 }
6567
6568 #endif /* CONFIG_NUMA */
6569
6570 /*
6571 * Boot pageset table. One per cpu which is going to be used for all
6572 * zones and all nodes. The parameters will be set in such a way
6573 * that an item put on a list will immediately be handed over to
6574 * the buddy list. This is safe since pageset manipulation is done
6575 * with interrupts disabled.
6576 *
6577 * The boot_pagesets must be kept even after bootup is complete for
6578 * unused processors and/or zones. They do play a role for bootstrapping
6579 * hotplugged processors.
6580 *
6581 * zoneinfo_show() and maybe other functions do
6582 * not check if the processor is online before following the pageset pointer.
6583 * Other parts of the kernel may not check if the zone is available.
6584 */
6585 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6586 /* These effectively disable the pcplists in the boot pageset completely */
6587 #define BOOT_PAGESET_HIGH 0
6588 #define BOOT_PAGESET_BATCH 1
6589 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6590 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6591 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6592
__build_all_zonelists(void * data)6593 static void __build_all_zonelists(void *data)
6594 {
6595 int nid;
6596 int __maybe_unused cpu;
6597 pg_data_t *self = data;
6598
6599 write_seqlock(&zonelist_update_seq);
6600
6601 #ifdef CONFIG_NUMA
6602 memset(node_load, 0, sizeof(node_load));
6603 #endif
6604
6605 /*
6606 * This node is hotadded and no memory is yet present. So just
6607 * building zonelists is fine - no need to touch other nodes.
6608 */
6609 if (self && !node_online(self->node_id)) {
6610 build_zonelists(self);
6611 } else {
6612 /*
6613 * All possible nodes have pgdat preallocated
6614 * in free_area_init
6615 */
6616 for_each_node(nid) {
6617 pg_data_t *pgdat = NODE_DATA(nid);
6618
6619 build_zonelists(pgdat);
6620 }
6621
6622 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6623 /*
6624 * We now know the "local memory node" for each node--
6625 * i.e., the node of the first zone in the generic zonelist.
6626 * Set up numa_mem percpu variable for on-line cpus. During
6627 * boot, only the boot cpu should be on-line; we'll init the
6628 * secondary cpus' numa_mem as they come on-line. During
6629 * node/memory hotplug, we'll fixup all on-line cpus.
6630 */
6631 for_each_online_cpu(cpu)
6632 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6633 #endif
6634 }
6635
6636 write_sequnlock(&zonelist_update_seq);
6637 }
6638
6639 static noinline void __init
build_all_zonelists_init(void)6640 build_all_zonelists_init(void)
6641 {
6642 int cpu;
6643
6644 __build_all_zonelists(NULL);
6645
6646 /*
6647 * Initialize the boot_pagesets that are going to be used
6648 * for bootstrapping processors. The real pagesets for
6649 * each zone will be allocated later when the per cpu
6650 * allocator is available.
6651 *
6652 * boot_pagesets are used also for bootstrapping offline
6653 * cpus if the system is already booted because the pagesets
6654 * are needed to initialize allocators on a specific cpu too.
6655 * F.e. the percpu allocator needs the page allocator which
6656 * needs the percpu allocator in order to allocate its pagesets
6657 * (a chicken-egg dilemma).
6658 */
6659 for_each_possible_cpu(cpu)
6660 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6661
6662 mminit_verify_zonelist();
6663 cpuset_init_current_mems_allowed();
6664 }
6665
6666 /*
6667 * unless system_state == SYSTEM_BOOTING.
6668 *
6669 * __ref due to call of __init annotated helper build_all_zonelists_init
6670 * [protected by SYSTEM_BOOTING].
6671 */
build_all_zonelists(pg_data_t * pgdat)6672 void __ref build_all_zonelists(pg_data_t *pgdat)
6673 {
6674 unsigned long vm_total_pages;
6675
6676 if (system_state == SYSTEM_BOOTING) {
6677 build_all_zonelists_init();
6678 } else {
6679 __build_all_zonelists(pgdat);
6680 /* cpuset refresh routine should be here */
6681 }
6682 /* Get the number of free pages beyond high watermark in all zones. */
6683 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6684 /*
6685 * Disable grouping by mobility if the number of pages in the
6686 * system is too low to allow the mechanism to work. It would be
6687 * more accurate, but expensive to check per-zone. This check is
6688 * made on memory-hotadd so a system can start with mobility
6689 * disabled and enable it later
6690 */
6691 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6692 page_group_by_mobility_disabled = 1;
6693 else
6694 page_group_by_mobility_disabled = 0;
6695
6696 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6697 nr_online_nodes,
6698 page_group_by_mobility_disabled ? "off" : "on",
6699 vm_total_pages);
6700 #ifdef CONFIG_NUMA
6701 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6702 #endif
6703 }
6704
6705 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6706 static bool __meminit
overlap_memmap_init(unsigned long zone,unsigned long * pfn)6707 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6708 {
6709 static struct memblock_region *r;
6710
6711 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6712 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6713 for_each_mem_region(r) {
6714 if (*pfn < memblock_region_memory_end_pfn(r))
6715 break;
6716 }
6717 }
6718 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6719 memblock_is_mirror(r)) {
6720 *pfn = memblock_region_memory_end_pfn(r);
6721 return true;
6722 }
6723 }
6724 return false;
6725 }
6726
6727 /*
6728 * Initially all pages are reserved - free ones are freed
6729 * up by memblock_free_all() once the early boot process is
6730 * done. Non-atomic initialization, single-pass.
6731 *
6732 * All aligned pageblocks are initialized to the specified migratetype
6733 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6734 * zone stats (e.g., nr_isolate_pageblock) are touched.
6735 */
memmap_init_range(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,unsigned long zone_end_pfn,enum meminit_context context,struct vmem_altmap * altmap,int migratetype)6736 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6737 unsigned long start_pfn, unsigned long zone_end_pfn,
6738 enum meminit_context context,
6739 struct vmem_altmap *altmap, int migratetype)
6740 {
6741 unsigned long pfn, end_pfn = start_pfn + size;
6742 struct page *page;
6743
6744 if (highest_memmap_pfn < end_pfn - 1)
6745 highest_memmap_pfn = end_pfn - 1;
6746
6747 #ifdef CONFIG_ZONE_DEVICE
6748 /*
6749 * Honor reservation requested by the driver for this ZONE_DEVICE
6750 * memory. We limit the total number of pages to initialize to just
6751 * those that might contain the memory mapping. We will defer the
6752 * ZONE_DEVICE page initialization until after we have released
6753 * the hotplug lock.
6754 */
6755 if (zone == ZONE_DEVICE) {
6756 if (!altmap)
6757 return;
6758
6759 if (start_pfn == altmap->base_pfn)
6760 start_pfn += altmap->reserve;
6761 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6762 }
6763 #endif
6764
6765 for (pfn = start_pfn; pfn < end_pfn; ) {
6766 /*
6767 * There can be holes in boot-time mem_map[]s handed to this
6768 * function. They do not exist on hotplugged memory.
6769 */
6770 if (context == MEMINIT_EARLY) {
6771 if (overlap_memmap_init(zone, &pfn))
6772 continue;
6773 if (defer_init(nid, pfn, zone_end_pfn))
6774 break;
6775 }
6776
6777 page = pfn_to_page(pfn);
6778 __init_single_page(page, pfn, zone, nid);
6779 if (context == MEMINIT_HOTPLUG)
6780 __SetPageReserved(page);
6781
6782 /*
6783 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6784 * such that unmovable allocations won't be scattered all
6785 * over the place during system boot.
6786 */
6787 if (pageblock_aligned(pfn)) {
6788 set_pageblock_migratetype(page, migratetype);
6789 cond_resched();
6790 }
6791 pfn++;
6792 }
6793 }
6794
6795 #ifdef CONFIG_ZONE_DEVICE
__init_zone_device_page(struct page * page,unsigned long pfn,unsigned long zone_idx,int nid,struct dev_pagemap * pgmap)6796 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6797 unsigned long zone_idx, int nid,
6798 struct dev_pagemap *pgmap)
6799 {
6800
6801 __init_single_page(page, pfn, zone_idx, nid);
6802
6803 /*
6804 * Mark page reserved as it will need to wait for onlining
6805 * phase for it to be fully associated with a zone.
6806 *
6807 * We can use the non-atomic __set_bit operation for setting
6808 * the flag as we are still initializing the pages.
6809 */
6810 __SetPageReserved(page);
6811
6812 /*
6813 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6814 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6815 * ever freed or placed on a driver-private list.
6816 */
6817 page->pgmap = pgmap;
6818 page->zone_device_data = NULL;
6819
6820 /*
6821 * Mark the block movable so that blocks are reserved for
6822 * movable at startup. This will force kernel allocations
6823 * to reserve their blocks rather than leaking throughout
6824 * the address space during boot when many long-lived
6825 * kernel allocations are made.
6826 *
6827 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6828 * because this is done early in section_activate()
6829 */
6830 if (pageblock_aligned(pfn)) {
6831 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6832 cond_resched();
6833 }
6834
6835 /*
6836 * ZONE_DEVICE pages are released directly to the driver page allocator
6837 * which will set the page count to 1 when allocating the page.
6838 */
6839 if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
6840 pgmap->type == MEMORY_DEVICE_COHERENT)
6841 set_page_count(page, 0);
6842 }
6843
6844 /*
6845 * With compound page geometry and when struct pages are stored in ram most
6846 * tail pages are reused. Consequently, the amount of unique struct pages to
6847 * initialize is a lot smaller that the total amount of struct pages being
6848 * mapped. This is a paired / mild layering violation with explicit knowledge
6849 * of how the sparse_vmemmap internals handle compound pages in the lack
6850 * of an altmap. See vmemmap_populate_compound_pages().
6851 */
compound_nr_pages(struct vmem_altmap * altmap,unsigned long nr_pages)6852 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6853 unsigned long nr_pages)
6854 {
6855 return is_power_of_2(sizeof(struct page)) &&
6856 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6857 }
6858
memmap_init_compound(struct page * head,unsigned long head_pfn,unsigned long zone_idx,int nid,struct dev_pagemap * pgmap,unsigned long nr_pages)6859 static void __ref memmap_init_compound(struct page *head,
6860 unsigned long head_pfn,
6861 unsigned long zone_idx, int nid,
6862 struct dev_pagemap *pgmap,
6863 unsigned long nr_pages)
6864 {
6865 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6866 unsigned int order = pgmap->vmemmap_shift;
6867
6868 __SetPageHead(head);
6869 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6870 struct page *page = pfn_to_page(pfn);
6871
6872 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6873 prep_compound_tail(head, pfn - head_pfn);
6874 set_page_count(page, 0);
6875
6876 /*
6877 * The first tail page stores compound_mapcount_ptr() and
6878 * compound_order() and the second tail page stores
6879 * compound_pincount_ptr(). Call prep_compound_head() after
6880 * the first and second tail pages have been initialized to
6881 * not have the data overwritten.
6882 */
6883 if (pfn == head_pfn + 2)
6884 prep_compound_head(head, order);
6885 }
6886 }
6887
memmap_init_zone_device(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct dev_pagemap * pgmap)6888 void __ref memmap_init_zone_device(struct zone *zone,
6889 unsigned long start_pfn,
6890 unsigned long nr_pages,
6891 struct dev_pagemap *pgmap)
6892 {
6893 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6894 struct pglist_data *pgdat = zone->zone_pgdat;
6895 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6896 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6897 unsigned long zone_idx = zone_idx(zone);
6898 unsigned long start = jiffies;
6899 int nid = pgdat->node_id;
6900
6901 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
6902 return;
6903
6904 /*
6905 * The call to memmap_init should have already taken care
6906 * of the pages reserved for the memmap, so we can just jump to
6907 * the end of that region and start processing the device pages.
6908 */
6909 if (altmap) {
6910 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6911 nr_pages = end_pfn - start_pfn;
6912 }
6913
6914 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6915 struct page *page = pfn_to_page(pfn);
6916
6917 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6918
6919 if (pfns_per_compound == 1)
6920 continue;
6921
6922 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6923 compound_nr_pages(altmap, pfns_per_compound));
6924 }
6925
6926 pr_info("%s initialised %lu pages in %ums\n", __func__,
6927 nr_pages, jiffies_to_msecs(jiffies - start));
6928 }
6929
6930 #endif
zone_init_free_lists(struct zone * zone)6931 static void __meminit zone_init_free_lists(struct zone *zone)
6932 {
6933 unsigned int order, t;
6934 for_each_migratetype_order(order, t) {
6935 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6936 zone->free_area[order].nr_free = 0;
6937 }
6938 }
6939
6940 /*
6941 * Only struct pages that correspond to ranges defined by memblock.memory
6942 * are zeroed and initialized by going through __init_single_page() during
6943 * memmap_init_zone_range().
6944 *
6945 * But, there could be struct pages that correspond to holes in
6946 * memblock.memory. This can happen because of the following reasons:
6947 * - physical memory bank size is not necessarily the exact multiple of the
6948 * arbitrary section size
6949 * - early reserved memory may not be listed in memblock.memory
6950 * - memory layouts defined with memmap= kernel parameter may not align
6951 * nicely with memmap sections
6952 *
6953 * Explicitly initialize those struct pages so that:
6954 * - PG_Reserved is set
6955 * - zone and node links point to zone and node that span the page if the
6956 * hole is in the middle of a zone
6957 * - zone and node links point to adjacent zone/node if the hole falls on
6958 * the zone boundary; the pages in such holes will be prepended to the
6959 * zone/node above the hole except for the trailing pages in the last
6960 * section that will be appended to the zone/node below.
6961 */
init_unavailable_range(unsigned long spfn,unsigned long epfn,int zone,int node)6962 static void __init init_unavailable_range(unsigned long spfn,
6963 unsigned long epfn,
6964 int zone, int node)
6965 {
6966 unsigned long pfn;
6967 u64 pgcnt = 0;
6968
6969 for (pfn = spfn; pfn < epfn; pfn++) {
6970 if (!pfn_valid(pageblock_start_pfn(pfn))) {
6971 pfn = pageblock_end_pfn(pfn) - 1;
6972 continue;
6973 }
6974 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6975 __SetPageReserved(pfn_to_page(pfn));
6976 pgcnt++;
6977 }
6978
6979 if (pgcnt)
6980 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6981 node, zone_names[zone], pgcnt);
6982 }
6983
memmap_init_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,unsigned long * hole_pfn)6984 static void __init memmap_init_zone_range(struct zone *zone,
6985 unsigned long start_pfn,
6986 unsigned long end_pfn,
6987 unsigned long *hole_pfn)
6988 {
6989 unsigned long zone_start_pfn = zone->zone_start_pfn;
6990 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6991 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6992
6993 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6994 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6995
6996 if (start_pfn >= end_pfn)
6997 return;
6998
6999 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
7000 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
7001
7002 if (*hole_pfn < start_pfn)
7003 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
7004
7005 *hole_pfn = end_pfn;
7006 }
7007
memmap_init(void)7008 static void __init memmap_init(void)
7009 {
7010 unsigned long start_pfn, end_pfn;
7011 unsigned long hole_pfn = 0;
7012 int i, j, zone_id = 0, nid;
7013
7014 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7015 struct pglist_data *node = NODE_DATA(nid);
7016
7017 for (j = 0; j < MAX_NR_ZONES; j++) {
7018 struct zone *zone = node->node_zones + j;
7019
7020 if (!populated_zone(zone))
7021 continue;
7022
7023 memmap_init_zone_range(zone, start_pfn, end_pfn,
7024 &hole_pfn);
7025 zone_id = j;
7026 }
7027 }
7028
7029 #ifdef CONFIG_SPARSEMEM
7030 /*
7031 * Initialize the memory map for hole in the range [memory_end,
7032 * section_end].
7033 * Append the pages in this hole to the highest zone in the last
7034 * node.
7035 * The call to init_unavailable_range() is outside the ifdef to
7036 * silence the compiler warining about zone_id set but not used;
7037 * for FLATMEM it is a nop anyway
7038 */
7039 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
7040 if (hole_pfn < end_pfn)
7041 #endif
7042 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7043 }
7044
memmap_alloc(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,int nid,bool exact_nid)7045 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7046 phys_addr_t min_addr, int nid, bool exact_nid)
7047 {
7048 void *ptr;
7049
7050 if (exact_nid)
7051 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7052 MEMBLOCK_ALLOC_ACCESSIBLE,
7053 nid);
7054 else
7055 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7056 MEMBLOCK_ALLOC_ACCESSIBLE,
7057 nid);
7058
7059 if (ptr && size > 0)
7060 page_init_poison(ptr, size);
7061
7062 return ptr;
7063 }
7064
zone_batchsize(struct zone * zone)7065 static int zone_batchsize(struct zone *zone)
7066 {
7067 #ifdef CONFIG_MMU
7068 int batch;
7069
7070 /*
7071 * The number of pages to batch allocate is either ~0.1%
7072 * of the zone or 1MB, whichever is smaller. The batch
7073 * size is striking a balance between allocation latency
7074 * and zone lock contention.
7075 */
7076 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
7077 batch /= 4; /* We effectively *= 4 below */
7078 if (batch < 1)
7079 batch = 1;
7080
7081 /*
7082 * Clamp the batch to a 2^n - 1 value. Having a power
7083 * of 2 value was found to be more likely to have
7084 * suboptimal cache aliasing properties in some cases.
7085 *
7086 * For example if 2 tasks are alternately allocating
7087 * batches of pages, one task can end up with a lot
7088 * of pages of one half of the possible page colors
7089 * and the other with pages of the other colors.
7090 */
7091 batch = rounddown_pow_of_two(batch + batch/2) - 1;
7092
7093 return batch;
7094
7095 #else
7096 /* The deferral and batching of frees should be suppressed under NOMMU
7097 * conditions.
7098 *
7099 * The problem is that NOMMU needs to be able to allocate large chunks
7100 * of contiguous memory as there's no hardware page translation to
7101 * assemble apparent contiguous memory from discontiguous pages.
7102 *
7103 * Queueing large contiguous runs of pages for batching, however,
7104 * causes the pages to actually be freed in smaller chunks. As there
7105 * can be a significant delay between the individual batches being
7106 * recycled, this leads to the once large chunks of space being
7107 * fragmented and becoming unavailable for high-order allocations.
7108 */
7109 return 0;
7110 #endif
7111 }
7112
zone_highsize(struct zone * zone,int batch,int cpu_online)7113 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7114 {
7115 #ifdef CONFIG_MMU
7116 int high;
7117 int nr_split_cpus;
7118 unsigned long total_pages;
7119
7120 if (!percpu_pagelist_high_fraction) {
7121 /*
7122 * By default, the high value of the pcp is based on the zone
7123 * low watermark so that if they are full then background
7124 * reclaim will not be started prematurely.
7125 */
7126 total_pages = low_wmark_pages(zone);
7127 } else {
7128 /*
7129 * If percpu_pagelist_high_fraction is configured, the high
7130 * value is based on a fraction of the managed pages in the
7131 * zone.
7132 */
7133 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7134 }
7135
7136 /*
7137 * Split the high value across all online CPUs local to the zone. Note
7138 * that early in boot that CPUs may not be online yet and that during
7139 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7140 * onlined. For memory nodes that have no CPUs, split pcp->high across
7141 * all online CPUs to mitigate the risk that reclaim is triggered
7142 * prematurely due to pages stored on pcp lists.
7143 */
7144 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7145 if (!nr_split_cpus)
7146 nr_split_cpus = num_online_cpus();
7147 high = total_pages / nr_split_cpus;
7148
7149 /*
7150 * Ensure high is at least batch*4. The multiple is based on the
7151 * historical relationship between high and batch.
7152 */
7153 high = max(high, batch << 2);
7154
7155 return high;
7156 #else
7157 return 0;
7158 #endif
7159 }
7160
7161 /*
7162 * pcp->high and pcp->batch values are related and generally batch is lower
7163 * than high. They are also related to pcp->count such that count is lower
7164 * than high, and as soon as it reaches high, the pcplist is flushed.
7165 *
7166 * However, guaranteeing these relations at all times would require e.g. write
7167 * barriers here but also careful usage of read barriers at the read side, and
7168 * thus be prone to error and bad for performance. Thus the update only prevents
7169 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7170 * can cope with those fields changing asynchronously, and fully trust only the
7171 * pcp->count field on the local CPU with interrupts disabled.
7172 *
7173 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7174 * outside of boot time (or some other assurance that no concurrent updaters
7175 * exist).
7176 */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)7177 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7178 unsigned long batch)
7179 {
7180 WRITE_ONCE(pcp->batch, batch);
7181 WRITE_ONCE(pcp->high, high);
7182 }
7183
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)7184 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7185 {
7186 int pindex;
7187
7188 memset(pcp, 0, sizeof(*pcp));
7189 memset(pzstats, 0, sizeof(*pzstats));
7190
7191 spin_lock_init(&pcp->lock);
7192 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7193 INIT_LIST_HEAD(&pcp->lists[pindex]);
7194
7195 /*
7196 * Set batch and high values safe for a boot pageset. A true percpu
7197 * pageset's initialization will update them subsequently. Here we don't
7198 * need to be as careful as pageset_update() as nobody can access the
7199 * pageset yet.
7200 */
7201 pcp->high = BOOT_PAGESET_HIGH;
7202 pcp->batch = BOOT_PAGESET_BATCH;
7203 pcp->free_factor = 0;
7204 }
7205
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high,unsigned long batch)7206 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7207 unsigned long batch)
7208 {
7209 struct per_cpu_pages *pcp;
7210 int cpu;
7211
7212 for_each_possible_cpu(cpu) {
7213 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7214 pageset_update(pcp, high, batch);
7215 }
7216 }
7217
7218 /*
7219 * Calculate and set new high and batch values for all per-cpu pagesets of a
7220 * zone based on the zone's size.
7221 */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)7222 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7223 {
7224 int new_high, new_batch;
7225
7226 new_batch = max(1, zone_batchsize(zone));
7227 new_high = zone_highsize(zone, new_batch, cpu_online);
7228
7229 if (zone->pageset_high == new_high &&
7230 zone->pageset_batch == new_batch)
7231 return;
7232
7233 zone->pageset_high = new_high;
7234 zone->pageset_batch = new_batch;
7235
7236 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7237 }
7238
setup_zone_pageset(struct zone * zone)7239 void __meminit setup_zone_pageset(struct zone *zone)
7240 {
7241 int cpu;
7242
7243 /* Size may be 0 on !SMP && !NUMA */
7244 if (sizeof(struct per_cpu_zonestat) > 0)
7245 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7246
7247 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7248 for_each_possible_cpu(cpu) {
7249 struct per_cpu_pages *pcp;
7250 struct per_cpu_zonestat *pzstats;
7251
7252 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7253 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7254 per_cpu_pages_init(pcp, pzstats);
7255 }
7256
7257 zone_set_pageset_high_and_batch(zone, 0);
7258 }
7259
7260 /*
7261 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7262 * page high values need to be recalculated.
7263 */
zone_pcp_update(struct zone * zone,int cpu_online)7264 static void zone_pcp_update(struct zone *zone, int cpu_online)
7265 {
7266 mutex_lock(&pcp_batch_high_lock);
7267 zone_set_pageset_high_and_batch(zone, cpu_online);
7268 mutex_unlock(&pcp_batch_high_lock);
7269 }
7270
7271 /*
7272 * Allocate per cpu pagesets and initialize them.
7273 * Before this call only boot pagesets were available.
7274 */
setup_per_cpu_pageset(void)7275 void __init setup_per_cpu_pageset(void)
7276 {
7277 struct pglist_data *pgdat;
7278 struct zone *zone;
7279 int __maybe_unused cpu;
7280
7281 for_each_populated_zone(zone)
7282 setup_zone_pageset(zone);
7283
7284 #ifdef CONFIG_NUMA
7285 /*
7286 * Unpopulated zones continue using the boot pagesets.
7287 * The numa stats for these pagesets need to be reset.
7288 * Otherwise, they will end up skewing the stats of
7289 * the nodes these zones are associated with.
7290 */
7291 for_each_possible_cpu(cpu) {
7292 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7293 memset(pzstats->vm_numa_event, 0,
7294 sizeof(pzstats->vm_numa_event));
7295 }
7296 #endif
7297
7298 for_each_online_pgdat(pgdat)
7299 pgdat->per_cpu_nodestats =
7300 alloc_percpu(struct per_cpu_nodestat);
7301 }
7302
zone_pcp_init(struct zone * zone)7303 static __meminit void zone_pcp_init(struct zone *zone)
7304 {
7305 /*
7306 * per cpu subsystem is not up at this point. The following code
7307 * relies on the ability of the linker to provide the
7308 * offset of a (static) per cpu variable into the per cpu area.
7309 */
7310 zone->per_cpu_pageset = &boot_pageset;
7311 zone->per_cpu_zonestats = &boot_zonestats;
7312 zone->pageset_high = BOOT_PAGESET_HIGH;
7313 zone->pageset_batch = BOOT_PAGESET_BATCH;
7314
7315 if (populated_zone(zone))
7316 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7317 zone->present_pages, zone_batchsize(zone));
7318 }
7319
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)7320 void __meminit init_currently_empty_zone(struct zone *zone,
7321 unsigned long zone_start_pfn,
7322 unsigned long size)
7323 {
7324 struct pglist_data *pgdat = zone->zone_pgdat;
7325 int zone_idx = zone_idx(zone) + 1;
7326
7327 if (zone_idx > pgdat->nr_zones)
7328 pgdat->nr_zones = zone_idx;
7329
7330 zone->zone_start_pfn = zone_start_pfn;
7331
7332 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7333 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7334 pgdat->node_id,
7335 (unsigned long)zone_idx(zone),
7336 zone_start_pfn, (zone_start_pfn + size));
7337
7338 zone_init_free_lists(zone);
7339 zone->initialized = 1;
7340 }
7341
7342 /**
7343 * get_pfn_range_for_nid - Return the start and end page frames for a node
7344 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7345 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7346 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7347 *
7348 * It returns the start and end page frame of a node based on information
7349 * provided by memblock_set_node(). If called for a node
7350 * with no available memory, a warning is printed and the start and end
7351 * PFNs will be 0.
7352 */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)7353 void __init get_pfn_range_for_nid(unsigned int nid,
7354 unsigned long *start_pfn, unsigned long *end_pfn)
7355 {
7356 unsigned long this_start_pfn, this_end_pfn;
7357 int i;
7358
7359 *start_pfn = -1UL;
7360 *end_pfn = 0;
7361
7362 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7363 *start_pfn = min(*start_pfn, this_start_pfn);
7364 *end_pfn = max(*end_pfn, this_end_pfn);
7365 }
7366
7367 if (*start_pfn == -1UL)
7368 *start_pfn = 0;
7369 }
7370
7371 /*
7372 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7373 * assumption is made that zones within a node are ordered in monotonic
7374 * increasing memory addresses so that the "highest" populated zone is used
7375 */
find_usable_zone_for_movable(void)7376 static void __init find_usable_zone_for_movable(void)
7377 {
7378 int zone_index;
7379 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7380 if (zone_index == ZONE_MOVABLE)
7381 continue;
7382
7383 if (arch_zone_highest_possible_pfn[zone_index] >
7384 arch_zone_lowest_possible_pfn[zone_index])
7385 break;
7386 }
7387
7388 VM_BUG_ON(zone_index == -1);
7389 movable_zone = zone_index;
7390 }
7391
7392 /*
7393 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7394 * because it is sized independent of architecture. Unlike the other zones,
7395 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7396 * in each node depending on the size of each node and how evenly kernelcore
7397 * is distributed. This helper function adjusts the zone ranges
7398 * provided by the architecture for a given node by using the end of the
7399 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7400 * zones within a node are in order of monotonic increases memory addresses
7401 */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)7402 static void __init adjust_zone_range_for_zone_movable(int nid,
7403 unsigned long zone_type,
7404 unsigned long node_start_pfn,
7405 unsigned long node_end_pfn,
7406 unsigned long *zone_start_pfn,
7407 unsigned long *zone_end_pfn)
7408 {
7409 /* Only adjust if ZONE_MOVABLE is on this node */
7410 if (zone_movable_pfn[nid]) {
7411 /* Size ZONE_MOVABLE */
7412 if (zone_type == ZONE_MOVABLE) {
7413 *zone_start_pfn = zone_movable_pfn[nid];
7414 *zone_end_pfn = min(node_end_pfn,
7415 arch_zone_highest_possible_pfn[movable_zone]);
7416
7417 /* Adjust for ZONE_MOVABLE starting within this range */
7418 } else if (!mirrored_kernelcore &&
7419 *zone_start_pfn < zone_movable_pfn[nid] &&
7420 *zone_end_pfn > zone_movable_pfn[nid]) {
7421 *zone_end_pfn = zone_movable_pfn[nid];
7422
7423 /* Check if this whole range is within ZONE_MOVABLE */
7424 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7425 *zone_start_pfn = *zone_end_pfn;
7426 }
7427 }
7428
7429 /*
7430 * Return the number of pages a zone spans in a node, including holes
7431 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7432 */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)7433 static unsigned long __init zone_spanned_pages_in_node(int nid,
7434 unsigned long zone_type,
7435 unsigned long node_start_pfn,
7436 unsigned long node_end_pfn,
7437 unsigned long *zone_start_pfn,
7438 unsigned long *zone_end_pfn)
7439 {
7440 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7441 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7442 /* When hotadd a new node from cpu_up(), the node should be empty */
7443 if (!node_start_pfn && !node_end_pfn)
7444 return 0;
7445
7446 /* Get the start and end of the zone */
7447 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7448 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7449 adjust_zone_range_for_zone_movable(nid, zone_type,
7450 node_start_pfn, node_end_pfn,
7451 zone_start_pfn, zone_end_pfn);
7452
7453 /* Check that this node has pages within the zone's required range */
7454 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7455 return 0;
7456
7457 /* Move the zone boundaries inside the node if necessary */
7458 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7459 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7460
7461 /* Return the spanned pages */
7462 return *zone_end_pfn - *zone_start_pfn;
7463 }
7464
7465 /*
7466 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7467 * then all holes in the requested range will be accounted for.
7468 */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)7469 unsigned long __init __absent_pages_in_range(int nid,
7470 unsigned long range_start_pfn,
7471 unsigned long range_end_pfn)
7472 {
7473 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7474 unsigned long start_pfn, end_pfn;
7475 int i;
7476
7477 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7478 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7479 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7480 nr_absent -= end_pfn - start_pfn;
7481 }
7482 return nr_absent;
7483 }
7484
7485 /**
7486 * absent_pages_in_range - Return number of page frames in holes within a range
7487 * @start_pfn: The start PFN to start searching for holes
7488 * @end_pfn: The end PFN to stop searching for holes
7489 *
7490 * Return: the number of pages frames in memory holes within a range.
7491 */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)7492 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7493 unsigned long end_pfn)
7494 {
7495 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7496 }
7497
7498 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn)7499 static unsigned long __init zone_absent_pages_in_node(int nid,
7500 unsigned long zone_type,
7501 unsigned long node_start_pfn,
7502 unsigned long node_end_pfn)
7503 {
7504 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7505 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7506 unsigned long zone_start_pfn, zone_end_pfn;
7507 unsigned long nr_absent;
7508
7509 /* When hotadd a new node from cpu_up(), the node should be empty */
7510 if (!node_start_pfn && !node_end_pfn)
7511 return 0;
7512
7513 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7514 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7515
7516 adjust_zone_range_for_zone_movable(nid, zone_type,
7517 node_start_pfn, node_end_pfn,
7518 &zone_start_pfn, &zone_end_pfn);
7519 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7520
7521 /*
7522 * ZONE_MOVABLE handling.
7523 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7524 * and vice versa.
7525 */
7526 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7527 unsigned long start_pfn, end_pfn;
7528 struct memblock_region *r;
7529
7530 for_each_mem_region(r) {
7531 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7532 zone_start_pfn, zone_end_pfn);
7533 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7534 zone_start_pfn, zone_end_pfn);
7535
7536 if (zone_type == ZONE_MOVABLE &&
7537 memblock_is_mirror(r))
7538 nr_absent += end_pfn - start_pfn;
7539
7540 if (zone_type == ZONE_NORMAL &&
7541 !memblock_is_mirror(r))
7542 nr_absent += end_pfn - start_pfn;
7543 }
7544 }
7545
7546 return nr_absent;
7547 }
7548
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn)7549 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7550 unsigned long node_start_pfn,
7551 unsigned long node_end_pfn)
7552 {
7553 unsigned long realtotalpages = 0, totalpages = 0;
7554 enum zone_type i;
7555
7556 for (i = 0; i < MAX_NR_ZONES; i++) {
7557 struct zone *zone = pgdat->node_zones + i;
7558 unsigned long zone_start_pfn, zone_end_pfn;
7559 unsigned long spanned, absent;
7560 unsigned long size, real_size;
7561
7562 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7563 node_start_pfn,
7564 node_end_pfn,
7565 &zone_start_pfn,
7566 &zone_end_pfn);
7567 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7568 node_start_pfn,
7569 node_end_pfn);
7570
7571 size = spanned;
7572 real_size = size - absent;
7573
7574 if (size)
7575 zone->zone_start_pfn = zone_start_pfn;
7576 else
7577 zone->zone_start_pfn = 0;
7578 zone->spanned_pages = size;
7579 zone->present_pages = real_size;
7580 #if defined(CONFIG_MEMORY_HOTPLUG)
7581 zone->present_early_pages = real_size;
7582 #endif
7583
7584 totalpages += size;
7585 realtotalpages += real_size;
7586 }
7587
7588 pgdat->node_spanned_pages = totalpages;
7589 pgdat->node_present_pages = realtotalpages;
7590 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7591 }
7592
7593 #ifndef CONFIG_SPARSEMEM
7594 /*
7595 * Calculate the size of the zone->blockflags rounded to an unsigned long
7596 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7597 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7598 * round what is now in bits to nearest long in bits, then return it in
7599 * bytes.
7600 */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)7601 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7602 {
7603 unsigned long usemapsize;
7604
7605 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7606 usemapsize = roundup(zonesize, pageblock_nr_pages);
7607 usemapsize = usemapsize >> pageblock_order;
7608 usemapsize *= NR_PAGEBLOCK_BITS;
7609 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7610
7611 return usemapsize / 8;
7612 }
7613
setup_usemap(struct zone * zone)7614 static void __ref setup_usemap(struct zone *zone)
7615 {
7616 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7617 zone->spanned_pages);
7618 zone->pageblock_flags = NULL;
7619 if (usemapsize) {
7620 zone->pageblock_flags =
7621 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7622 zone_to_nid(zone));
7623 if (!zone->pageblock_flags)
7624 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7625 usemapsize, zone->name, zone_to_nid(zone));
7626 }
7627 }
7628 #else
setup_usemap(struct zone * zone)7629 static inline void setup_usemap(struct zone *zone) {}
7630 #endif /* CONFIG_SPARSEMEM */
7631
7632 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7633
7634 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)7635 void __init set_pageblock_order(void)
7636 {
7637 unsigned int order = MAX_ORDER - 1;
7638
7639 /* Check that pageblock_nr_pages has not already been setup */
7640 if (pageblock_order)
7641 return;
7642
7643 /* Don't let pageblocks exceed the maximum allocation granularity. */
7644 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7645 order = HUGETLB_PAGE_ORDER;
7646
7647 /*
7648 * Assume the largest contiguous order of interest is a huge page.
7649 * This value may be variable depending on boot parameters on IA64 and
7650 * powerpc.
7651 */
7652 pageblock_order = order;
7653 }
7654 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7655
7656 /*
7657 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7658 * is unused as pageblock_order is set at compile-time. See
7659 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7660 * the kernel config
7661 */
set_pageblock_order(void)7662 void __init set_pageblock_order(void)
7663 {
7664 }
7665
7666 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7667
calc_memmap_size(unsigned long spanned_pages,unsigned long present_pages)7668 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7669 unsigned long present_pages)
7670 {
7671 unsigned long pages = spanned_pages;
7672
7673 /*
7674 * Provide a more accurate estimation if there are holes within
7675 * the zone and SPARSEMEM is in use. If there are holes within the
7676 * zone, each populated memory region may cost us one or two extra
7677 * memmap pages due to alignment because memmap pages for each
7678 * populated regions may not be naturally aligned on page boundary.
7679 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7680 */
7681 if (spanned_pages > present_pages + (present_pages >> 4) &&
7682 IS_ENABLED(CONFIG_SPARSEMEM))
7683 pages = present_pages;
7684
7685 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7686 }
7687
7688 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pgdat_init_split_queue(struct pglist_data * pgdat)7689 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7690 {
7691 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7692
7693 spin_lock_init(&ds_queue->split_queue_lock);
7694 INIT_LIST_HEAD(&ds_queue->split_queue);
7695 ds_queue->split_queue_len = 0;
7696 }
7697 #else
pgdat_init_split_queue(struct pglist_data * pgdat)7698 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7699 #endif
7700
7701 #ifdef CONFIG_COMPACTION
pgdat_init_kcompactd(struct pglist_data * pgdat)7702 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7703 {
7704 init_waitqueue_head(&pgdat->kcompactd_wait);
7705 }
7706 #else
pgdat_init_kcompactd(struct pglist_data * pgdat)7707 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7708 #endif
7709
pgdat_init_internals(struct pglist_data * pgdat)7710 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7711 {
7712 int i;
7713
7714 pgdat_resize_init(pgdat);
7715 pgdat_kswapd_lock_init(pgdat);
7716
7717 pgdat_init_split_queue(pgdat);
7718 pgdat_init_kcompactd(pgdat);
7719
7720 init_waitqueue_head(&pgdat->kswapd_wait);
7721 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7722
7723 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7724 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7725
7726 pgdat_page_ext_init(pgdat);
7727 lruvec_init(&pgdat->__lruvec);
7728 }
7729
zone_init_internals(struct zone * zone,enum zone_type idx,int nid,unsigned long remaining_pages)7730 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7731 unsigned long remaining_pages)
7732 {
7733 atomic_long_set(&zone->managed_pages, remaining_pages);
7734 zone_set_nid(zone, nid);
7735 zone->name = zone_names[idx];
7736 zone->zone_pgdat = NODE_DATA(nid);
7737 spin_lock_init(&zone->lock);
7738 zone_seqlock_init(zone);
7739 zone_pcp_init(zone);
7740 }
7741
7742 /*
7743 * Set up the zone data structures
7744 * - init pgdat internals
7745 * - init all zones belonging to this node
7746 *
7747 * NOTE: this function is only called during memory hotplug
7748 */
7749 #ifdef CONFIG_MEMORY_HOTPLUG
free_area_init_core_hotplug(struct pglist_data * pgdat)7750 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7751 {
7752 int nid = pgdat->node_id;
7753 enum zone_type z;
7754 int cpu;
7755
7756 pgdat_init_internals(pgdat);
7757
7758 if (pgdat->per_cpu_nodestats == &boot_nodestats)
7759 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7760
7761 /*
7762 * Reset the nr_zones, order and highest_zoneidx before reuse.
7763 * Note that kswapd will init kswapd_highest_zoneidx properly
7764 * when it starts in the near future.
7765 */
7766 pgdat->nr_zones = 0;
7767 pgdat->kswapd_order = 0;
7768 pgdat->kswapd_highest_zoneidx = 0;
7769 pgdat->node_start_pfn = 0;
7770 for_each_online_cpu(cpu) {
7771 struct per_cpu_nodestat *p;
7772
7773 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7774 memset(p, 0, sizeof(*p));
7775 }
7776
7777 for (z = 0; z < MAX_NR_ZONES; z++)
7778 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7779 }
7780 #endif
7781
7782 /*
7783 * Set up the zone data structures:
7784 * - mark all pages reserved
7785 * - mark all memory queues empty
7786 * - clear the memory bitmaps
7787 *
7788 * NOTE: pgdat should get zeroed by caller.
7789 * NOTE: this function is only called during early init.
7790 */
free_area_init_core(struct pglist_data * pgdat)7791 static void __init free_area_init_core(struct pglist_data *pgdat)
7792 {
7793 enum zone_type j;
7794 int nid = pgdat->node_id;
7795
7796 pgdat_init_internals(pgdat);
7797 pgdat->per_cpu_nodestats = &boot_nodestats;
7798
7799 for (j = 0; j < MAX_NR_ZONES; j++) {
7800 struct zone *zone = pgdat->node_zones + j;
7801 unsigned long size, freesize, memmap_pages;
7802
7803 size = zone->spanned_pages;
7804 freesize = zone->present_pages;
7805
7806 /*
7807 * Adjust freesize so that it accounts for how much memory
7808 * is used by this zone for memmap. This affects the watermark
7809 * and per-cpu initialisations
7810 */
7811 memmap_pages = calc_memmap_size(size, freesize);
7812 if (!is_highmem_idx(j)) {
7813 if (freesize >= memmap_pages) {
7814 freesize -= memmap_pages;
7815 if (memmap_pages)
7816 pr_debug(" %s zone: %lu pages used for memmap\n",
7817 zone_names[j], memmap_pages);
7818 } else
7819 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7820 zone_names[j], memmap_pages, freesize);
7821 }
7822
7823 /* Account for reserved pages */
7824 if (j == 0 && freesize > dma_reserve) {
7825 freesize -= dma_reserve;
7826 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7827 }
7828
7829 if (!is_highmem_idx(j))
7830 nr_kernel_pages += freesize;
7831 /* Charge for highmem memmap if there are enough kernel pages */
7832 else if (nr_kernel_pages > memmap_pages * 2)
7833 nr_kernel_pages -= memmap_pages;
7834 nr_all_pages += freesize;
7835
7836 /*
7837 * Set an approximate value for lowmem here, it will be adjusted
7838 * when the bootmem allocator frees pages into the buddy system.
7839 * And all highmem pages will be managed by the buddy system.
7840 */
7841 zone_init_internals(zone, j, nid, freesize);
7842
7843 if (!size)
7844 continue;
7845
7846 set_pageblock_order();
7847 setup_usemap(zone);
7848 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7849 }
7850 }
7851
7852 #ifdef CONFIG_FLATMEM
alloc_node_mem_map(struct pglist_data * pgdat)7853 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7854 {
7855 unsigned long __maybe_unused start = 0;
7856 unsigned long __maybe_unused offset = 0;
7857
7858 /* Skip empty nodes */
7859 if (!pgdat->node_spanned_pages)
7860 return;
7861
7862 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7863 offset = pgdat->node_start_pfn - start;
7864 /* ia64 gets its own node_mem_map, before this, without bootmem */
7865 if (!pgdat->node_mem_map) {
7866 unsigned long size, end;
7867 struct page *map;
7868
7869 /*
7870 * The zone's endpoints aren't required to be MAX_ORDER
7871 * aligned but the node_mem_map endpoints must be in order
7872 * for the buddy allocator to function correctly.
7873 */
7874 end = pgdat_end_pfn(pgdat);
7875 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7876 size = (end - start) * sizeof(struct page);
7877 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7878 pgdat->node_id, false);
7879 if (!map)
7880 panic("Failed to allocate %ld bytes for node %d memory map\n",
7881 size, pgdat->node_id);
7882 pgdat->node_mem_map = map + offset;
7883 }
7884 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7885 __func__, pgdat->node_id, (unsigned long)pgdat,
7886 (unsigned long)pgdat->node_mem_map);
7887 #ifndef CONFIG_NUMA
7888 /*
7889 * With no DISCONTIG, the global mem_map is just set as node 0's
7890 */
7891 if (pgdat == NODE_DATA(0)) {
7892 mem_map = NODE_DATA(0)->node_mem_map;
7893 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7894 mem_map -= offset;
7895 }
7896 #endif
7897 }
7898 #else
alloc_node_mem_map(struct pglist_data * pgdat)7899 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7900 #endif /* CONFIG_FLATMEM */
7901
7902 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
pgdat_set_deferred_range(pg_data_t * pgdat)7903 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7904 {
7905 pgdat->first_deferred_pfn = ULONG_MAX;
7906 }
7907 #else
pgdat_set_deferred_range(pg_data_t * pgdat)7908 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7909 #endif
7910
free_area_init_node(int nid)7911 static void __init free_area_init_node(int nid)
7912 {
7913 pg_data_t *pgdat = NODE_DATA(nid);
7914 unsigned long start_pfn = 0;
7915 unsigned long end_pfn = 0;
7916
7917 /* pg_data_t should be reset to zero when it's allocated */
7918 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7919
7920 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7921
7922 pgdat->node_id = nid;
7923 pgdat->node_start_pfn = start_pfn;
7924 pgdat->per_cpu_nodestats = NULL;
7925
7926 if (start_pfn != end_pfn) {
7927 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7928 (u64)start_pfn << PAGE_SHIFT,
7929 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7930 } else {
7931 pr_info("Initmem setup node %d as memoryless\n", nid);
7932 }
7933
7934 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7935
7936 alloc_node_mem_map(pgdat);
7937 pgdat_set_deferred_range(pgdat);
7938
7939 free_area_init_core(pgdat);
7940 }
7941
free_area_init_memoryless_node(int nid)7942 static void __init free_area_init_memoryless_node(int nid)
7943 {
7944 free_area_init_node(nid);
7945 }
7946
7947 #if MAX_NUMNODES > 1
7948 /*
7949 * Figure out the number of possible node ids.
7950 */
setup_nr_node_ids(void)7951 void __init setup_nr_node_ids(void)
7952 {
7953 unsigned int highest;
7954
7955 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7956 nr_node_ids = highest + 1;
7957 }
7958 #endif
7959
7960 /**
7961 * node_map_pfn_alignment - determine the maximum internode alignment
7962 *
7963 * This function should be called after node map is populated and sorted.
7964 * It calculates the maximum power of two alignment which can distinguish
7965 * all the nodes.
7966 *
7967 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7968 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7969 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7970 * shifted, 1GiB is enough and this function will indicate so.
7971 *
7972 * This is used to test whether pfn -> nid mapping of the chosen memory
7973 * model has fine enough granularity to avoid incorrect mapping for the
7974 * populated node map.
7975 *
7976 * Return: the determined alignment in pfn's. 0 if there is no alignment
7977 * requirement (single node).
7978 */
node_map_pfn_alignment(void)7979 unsigned long __init node_map_pfn_alignment(void)
7980 {
7981 unsigned long accl_mask = 0, last_end = 0;
7982 unsigned long start, end, mask;
7983 int last_nid = NUMA_NO_NODE;
7984 int i, nid;
7985
7986 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7987 if (!start || last_nid < 0 || last_nid == nid) {
7988 last_nid = nid;
7989 last_end = end;
7990 continue;
7991 }
7992
7993 /*
7994 * Start with a mask granular enough to pin-point to the
7995 * start pfn and tick off bits one-by-one until it becomes
7996 * too coarse to separate the current node from the last.
7997 */
7998 mask = ~((1 << __ffs(start)) - 1);
7999 while (mask && last_end <= (start & (mask << 1)))
8000 mask <<= 1;
8001
8002 /* accumulate all internode masks */
8003 accl_mask |= mask;
8004 }
8005
8006 /* convert mask to number of pages */
8007 return ~accl_mask + 1;
8008 }
8009
8010 /*
8011 * early_calculate_totalpages()
8012 * Sum pages in active regions for movable zone.
8013 * Populate N_MEMORY for calculating usable_nodes.
8014 */
early_calculate_totalpages(void)8015 static unsigned long __init early_calculate_totalpages(void)
8016 {
8017 unsigned long totalpages = 0;
8018 unsigned long start_pfn, end_pfn;
8019 int i, nid;
8020
8021 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8022 unsigned long pages = end_pfn - start_pfn;
8023
8024 totalpages += pages;
8025 if (pages)
8026 node_set_state(nid, N_MEMORY);
8027 }
8028 return totalpages;
8029 }
8030
8031 /*
8032 * Find the PFN the Movable zone begins in each node. Kernel memory
8033 * is spread evenly between nodes as long as the nodes have enough
8034 * memory. When they don't, some nodes will have more kernelcore than
8035 * others
8036 */
find_zone_movable_pfns_for_nodes(void)8037 static void __init find_zone_movable_pfns_for_nodes(void)
8038 {
8039 int i, nid;
8040 unsigned long usable_startpfn;
8041 unsigned long kernelcore_node, kernelcore_remaining;
8042 /* save the state before borrow the nodemask */
8043 nodemask_t saved_node_state = node_states[N_MEMORY];
8044 unsigned long totalpages = early_calculate_totalpages();
8045 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
8046 struct memblock_region *r;
8047
8048 /* Need to find movable_zone earlier when movable_node is specified. */
8049 find_usable_zone_for_movable();
8050
8051 /*
8052 * If movable_node is specified, ignore kernelcore and movablecore
8053 * options.
8054 */
8055 if (movable_node_is_enabled()) {
8056 for_each_mem_region(r) {
8057 if (!memblock_is_hotpluggable(r))
8058 continue;
8059
8060 nid = memblock_get_region_node(r);
8061
8062 usable_startpfn = PFN_DOWN(r->base);
8063 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8064 min(usable_startpfn, zone_movable_pfn[nid]) :
8065 usable_startpfn;
8066 }
8067
8068 goto out2;
8069 }
8070
8071 /*
8072 * If kernelcore=mirror is specified, ignore movablecore option
8073 */
8074 if (mirrored_kernelcore) {
8075 bool mem_below_4gb_not_mirrored = false;
8076
8077 for_each_mem_region(r) {
8078 if (memblock_is_mirror(r))
8079 continue;
8080
8081 nid = memblock_get_region_node(r);
8082
8083 usable_startpfn = memblock_region_memory_base_pfn(r);
8084
8085 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8086 mem_below_4gb_not_mirrored = true;
8087 continue;
8088 }
8089
8090 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8091 min(usable_startpfn, zone_movable_pfn[nid]) :
8092 usable_startpfn;
8093 }
8094
8095 if (mem_below_4gb_not_mirrored)
8096 pr_warn("This configuration results in unmirrored kernel memory.\n");
8097
8098 goto out2;
8099 }
8100
8101 /*
8102 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8103 * amount of necessary memory.
8104 */
8105 if (required_kernelcore_percent)
8106 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8107 10000UL;
8108 if (required_movablecore_percent)
8109 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8110 10000UL;
8111
8112 /*
8113 * If movablecore= was specified, calculate what size of
8114 * kernelcore that corresponds so that memory usable for
8115 * any allocation type is evenly spread. If both kernelcore
8116 * and movablecore are specified, then the value of kernelcore
8117 * will be used for required_kernelcore if it's greater than
8118 * what movablecore would have allowed.
8119 */
8120 if (required_movablecore) {
8121 unsigned long corepages;
8122
8123 /*
8124 * Round-up so that ZONE_MOVABLE is at least as large as what
8125 * was requested by the user
8126 */
8127 required_movablecore =
8128 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8129 required_movablecore = min(totalpages, required_movablecore);
8130 corepages = totalpages - required_movablecore;
8131
8132 required_kernelcore = max(required_kernelcore, corepages);
8133 }
8134
8135 /*
8136 * If kernelcore was not specified or kernelcore size is larger
8137 * than totalpages, there is no ZONE_MOVABLE.
8138 */
8139 if (!required_kernelcore || required_kernelcore >= totalpages)
8140 goto out;
8141
8142 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8143 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8144
8145 restart:
8146 /* Spread kernelcore memory as evenly as possible throughout nodes */
8147 kernelcore_node = required_kernelcore / usable_nodes;
8148 for_each_node_state(nid, N_MEMORY) {
8149 unsigned long start_pfn, end_pfn;
8150
8151 /*
8152 * Recalculate kernelcore_node if the division per node
8153 * now exceeds what is necessary to satisfy the requested
8154 * amount of memory for the kernel
8155 */
8156 if (required_kernelcore < kernelcore_node)
8157 kernelcore_node = required_kernelcore / usable_nodes;
8158
8159 /*
8160 * As the map is walked, we track how much memory is usable
8161 * by the kernel using kernelcore_remaining. When it is
8162 * 0, the rest of the node is usable by ZONE_MOVABLE
8163 */
8164 kernelcore_remaining = kernelcore_node;
8165
8166 /* Go through each range of PFNs within this node */
8167 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8168 unsigned long size_pages;
8169
8170 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8171 if (start_pfn >= end_pfn)
8172 continue;
8173
8174 /* Account for what is only usable for kernelcore */
8175 if (start_pfn < usable_startpfn) {
8176 unsigned long kernel_pages;
8177 kernel_pages = min(end_pfn, usable_startpfn)
8178 - start_pfn;
8179
8180 kernelcore_remaining -= min(kernel_pages,
8181 kernelcore_remaining);
8182 required_kernelcore -= min(kernel_pages,
8183 required_kernelcore);
8184
8185 /* Continue if range is now fully accounted */
8186 if (end_pfn <= usable_startpfn) {
8187
8188 /*
8189 * Push zone_movable_pfn to the end so
8190 * that if we have to rebalance
8191 * kernelcore across nodes, we will
8192 * not double account here
8193 */
8194 zone_movable_pfn[nid] = end_pfn;
8195 continue;
8196 }
8197 start_pfn = usable_startpfn;
8198 }
8199
8200 /*
8201 * The usable PFN range for ZONE_MOVABLE is from
8202 * start_pfn->end_pfn. Calculate size_pages as the
8203 * number of pages used as kernelcore
8204 */
8205 size_pages = end_pfn - start_pfn;
8206 if (size_pages > kernelcore_remaining)
8207 size_pages = kernelcore_remaining;
8208 zone_movable_pfn[nid] = start_pfn + size_pages;
8209
8210 /*
8211 * Some kernelcore has been met, update counts and
8212 * break if the kernelcore for this node has been
8213 * satisfied
8214 */
8215 required_kernelcore -= min(required_kernelcore,
8216 size_pages);
8217 kernelcore_remaining -= size_pages;
8218 if (!kernelcore_remaining)
8219 break;
8220 }
8221 }
8222
8223 /*
8224 * If there is still required_kernelcore, we do another pass with one
8225 * less node in the count. This will push zone_movable_pfn[nid] further
8226 * along on the nodes that still have memory until kernelcore is
8227 * satisfied
8228 */
8229 usable_nodes--;
8230 if (usable_nodes && required_kernelcore > usable_nodes)
8231 goto restart;
8232
8233 out2:
8234 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8235 for (nid = 0; nid < MAX_NUMNODES; nid++) {
8236 unsigned long start_pfn, end_pfn;
8237
8238 zone_movable_pfn[nid] =
8239 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8240
8241 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8242 if (zone_movable_pfn[nid] >= end_pfn)
8243 zone_movable_pfn[nid] = 0;
8244 }
8245
8246 out:
8247 /* restore the node_state */
8248 node_states[N_MEMORY] = saved_node_state;
8249 }
8250
8251 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat,int nid)8252 static void check_for_memory(pg_data_t *pgdat, int nid)
8253 {
8254 enum zone_type zone_type;
8255
8256 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8257 struct zone *zone = &pgdat->node_zones[zone_type];
8258 if (populated_zone(zone)) {
8259 if (IS_ENABLED(CONFIG_HIGHMEM))
8260 node_set_state(nid, N_HIGH_MEMORY);
8261 if (zone_type <= ZONE_NORMAL)
8262 node_set_state(nid, N_NORMAL_MEMORY);
8263 break;
8264 }
8265 }
8266 }
8267
8268 /*
8269 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8270 * such cases we allow max_zone_pfn sorted in the descending order
8271 */
arch_has_descending_max_zone_pfns(void)8272 bool __weak arch_has_descending_max_zone_pfns(void)
8273 {
8274 return false;
8275 }
8276
8277 /**
8278 * free_area_init - Initialise all pg_data_t and zone data
8279 * @max_zone_pfn: an array of max PFNs for each zone
8280 *
8281 * This will call free_area_init_node() for each active node in the system.
8282 * Using the page ranges provided by memblock_set_node(), the size of each
8283 * zone in each node and their holes is calculated. If the maximum PFN
8284 * between two adjacent zones match, it is assumed that the zone is empty.
8285 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8286 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8287 * starts where the previous one ended. For example, ZONE_DMA32 starts
8288 * at arch_max_dma_pfn.
8289 */
free_area_init(unsigned long * max_zone_pfn)8290 void __init free_area_init(unsigned long *max_zone_pfn)
8291 {
8292 unsigned long start_pfn, end_pfn;
8293 int i, nid, zone;
8294 bool descending;
8295
8296 /* Record where the zone boundaries are */
8297 memset(arch_zone_lowest_possible_pfn, 0,
8298 sizeof(arch_zone_lowest_possible_pfn));
8299 memset(arch_zone_highest_possible_pfn, 0,
8300 sizeof(arch_zone_highest_possible_pfn));
8301
8302 start_pfn = PHYS_PFN(memblock_start_of_DRAM());
8303 descending = arch_has_descending_max_zone_pfns();
8304
8305 for (i = 0; i < MAX_NR_ZONES; i++) {
8306 if (descending)
8307 zone = MAX_NR_ZONES - i - 1;
8308 else
8309 zone = i;
8310
8311 if (zone == ZONE_MOVABLE)
8312 continue;
8313
8314 end_pfn = max(max_zone_pfn[zone], start_pfn);
8315 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8316 arch_zone_highest_possible_pfn[zone] = end_pfn;
8317
8318 start_pfn = end_pfn;
8319 }
8320
8321 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8322 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8323 find_zone_movable_pfns_for_nodes();
8324
8325 /* Print out the zone ranges */
8326 pr_info("Zone ranges:\n");
8327 for (i = 0; i < MAX_NR_ZONES; i++) {
8328 if (i == ZONE_MOVABLE)
8329 continue;
8330 pr_info(" %-8s ", zone_names[i]);
8331 if (arch_zone_lowest_possible_pfn[i] ==
8332 arch_zone_highest_possible_pfn[i])
8333 pr_cont("empty\n");
8334 else
8335 pr_cont("[mem %#018Lx-%#018Lx]\n",
8336 (u64)arch_zone_lowest_possible_pfn[i]
8337 << PAGE_SHIFT,
8338 ((u64)arch_zone_highest_possible_pfn[i]
8339 << PAGE_SHIFT) - 1);
8340 }
8341
8342 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8343 pr_info("Movable zone start for each node\n");
8344 for (i = 0; i < MAX_NUMNODES; i++) {
8345 if (zone_movable_pfn[i])
8346 pr_info(" Node %d: %#018Lx\n", i,
8347 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8348 }
8349
8350 /*
8351 * Print out the early node map, and initialize the
8352 * subsection-map relative to active online memory ranges to
8353 * enable future "sub-section" extensions of the memory map.
8354 */
8355 pr_info("Early memory node ranges\n");
8356 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8357 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8358 (u64)start_pfn << PAGE_SHIFT,
8359 ((u64)end_pfn << PAGE_SHIFT) - 1);
8360 subsection_map_init(start_pfn, end_pfn - start_pfn);
8361 }
8362
8363 /* Initialise every node */
8364 mminit_verify_pageflags_layout();
8365 setup_nr_node_ids();
8366 for_each_node(nid) {
8367 pg_data_t *pgdat;
8368
8369 if (!node_online(nid)) {
8370 pr_info("Initializing node %d as memoryless\n", nid);
8371
8372 /* Allocator not initialized yet */
8373 pgdat = arch_alloc_nodedata(nid);
8374 if (!pgdat) {
8375 pr_err("Cannot allocate %zuB for node %d.\n",
8376 sizeof(*pgdat), nid);
8377 continue;
8378 }
8379 arch_refresh_nodedata(nid, pgdat);
8380 free_area_init_memoryless_node(nid);
8381
8382 /*
8383 * We do not want to confuse userspace by sysfs
8384 * files/directories for node without any memory
8385 * attached to it, so this node is not marked as
8386 * N_MEMORY and not marked online so that no sysfs
8387 * hierarchy will be created via register_one_node for
8388 * it. The pgdat will get fully initialized by
8389 * hotadd_init_pgdat() when memory is hotplugged into
8390 * this node.
8391 */
8392 continue;
8393 }
8394
8395 pgdat = NODE_DATA(nid);
8396 free_area_init_node(nid);
8397
8398 /* Any memory on that node */
8399 if (pgdat->node_present_pages)
8400 node_set_state(nid, N_MEMORY);
8401 check_for_memory(pgdat, nid);
8402 }
8403
8404 memmap_init();
8405 }
8406
cmdline_parse_core(char * p,unsigned long * core,unsigned long * percent)8407 static int __init cmdline_parse_core(char *p, unsigned long *core,
8408 unsigned long *percent)
8409 {
8410 unsigned long long coremem;
8411 char *endptr;
8412
8413 if (!p)
8414 return -EINVAL;
8415
8416 /* Value may be a percentage of total memory, otherwise bytes */
8417 coremem = simple_strtoull(p, &endptr, 0);
8418 if (*endptr == '%') {
8419 /* Paranoid check for percent values greater than 100 */
8420 WARN_ON(coremem > 100);
8421
8422 *percent = coremem;
8423 } else {
8424 coremem = memparse(p, &p);
8425 /* Paranoid check that UL is enough for the coremem value */
8426 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8427
8428 *core = coremem >> PAGE_SHIFT;
8429 *percent = 0UL;
8430 }
8431 return 0;
8432 }
8433
8434 /*
8435 * kernelcore=size sets the amount of memory for use for allocations that
8436 * cannot be reclaimed or migrated.
8437 */
cmdline_parse_kernelcore(char * p)8438 static int __init cmdline_parse_kernelcore(char *p)
8439 {
8440 /* parse kernelcore=mirror */
8441 if (parse_option_str(p, "mirror")) {
8442 mirrored_kernelcore = true;
8443 return 0;
8444 }
8445
8446 return cmdline_parse_core(p, &required_kernelcore,
8447 &required_kernelcore_percent);
8448 }
8449
8450 /*
8451 * movablecore=size sets the amount of memory for use for allocations that
8452 * can be reclaimed or migrated.
8453 */
cmdline_parse_movablecore(char * p)8454 static int __init cmdline_parse_movablecore(char *p)
8455 {
8456 return cmdline_parse_core(p, &required_movablecore,
8457 &required_movablecore_percent);
8458 }
8459
8460 early_param("kernelcore", cmdline_parse_kernelcore);
8461 early_param("movablecore", cmdline_parse_movablecore);
8462
adjust_managed_page_count(struct page * page,long count)8463 void adjust_managed_page_count(struct page *page, long count)
8464 {
8465 atomic_long_add(count, &page_zone(page)->managed_pages);
8466 totalram_pages_add(count);
8467 #ifdef CONFIG_HIGHMEM
8468 if (PageHighMem(page))
8469 totalhigh_pages_add(count);
8470 #endif
8471 }
8472 EXPORT_SYMBOL(adjust_managed_page_count);
8473
free_reserved_area(void * start,void * end,int poison,const char * s)8474 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8475 {
8476 void *pos;
8477 unsigned long pages = 0;
8478
8479 start = (void *)PAGE_ALIGN((unsigned long)start);
8480 end = (void *)((unsigned long)end & PAGE_MASK);
8481 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8482 struct page *page = virt_to_page(pos);
8483 void *direct_map_addr;
8484
8485 /*
8486 * 'direct_map_addr' might be different from 'pos'
8487 * because some architectures' virt_to_page()
8488 * work with aliases. Getting the direct map
8489 * address ensures that we get a _writeable_
8490 * alias for the memset().
8491 */
8492 direct_map_addr = page_address(page);
8493 /*
8494 * Perform a kasan-unchecked memset() since this memory
8495 * has not been initialized.
8496 */
8497 direct_map_addr = kasan_reset_tag(direct_map_addr);
8498 if ((unsigned int)poison <= 0xFF)
8499 memset(direct_map_addr, poison, PAGE_SIZE);
8500
8501 free_reserved_page(page);
8502 }
8503
8504 if (pages && s)
8505 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8506
8507 return pages;
8508 }
8509
mem_init_print_info(void)8510 void __init mem_init_print_info(void)
8511 {
8512 unsigned long physpages, codesize, datasize, rosize, bss_size;
8513 unsigned long init_code_size, init_data_size;
8514
8515 physpages = get_num_physpages();
8516 codesize = _etext - _stext;
8517 datasize = _edata - _sdata;
8518 rosize = __end_rodata - __start_rodata;
8519 bss_size = __bss_stop - __bss_start;
8520 init_data_size = __init_end - __init_begin;
8521 init_code_size = _einittext - _sinittext;
8522
8523 /*
8524 * Detect special cases and adjust section sizes accordingly:
8525 * 1) .init.* may be embedded into .data sections
8526 * 2) .init.text.* may be out of [__init_begin, __init_end],
8527 * please refer to arch/tile/kernel/vmlinux.lds.S.
8528 * 3) .rodata.* may be embedded into .text or .data sections.
8529 */
8530 #define adj_init_size(start, end, size, pos, adj) \
8531 do { \
8532 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8533 size -= adj; \
8534 } while (0)
8535
8536 adj_init_size(__init_begin, __init_end, init_data_size,
8537 _sinittext, init_code_size);
8538 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8539 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8540 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8541 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8542
8543 #undef adj_init_size
8544
8545 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8546 #ifdef CONFIG_HIGHMEM
8547 ", %luK highmem"
8548 #endif
8549 ")\n",
8550 K(nr_free_pages()), K(physpages),
8551 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
8552 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
8553 K(physpages - totalram_pages() - totalcma_pages),
8554 K(totalcma_pages)
8555 #ifdef CONFIG_HIGHMEM
8556 , K(totalhigh_pages())
8557 #endif
8558 );
8559 }
8560
8561 /**
8562 * set_dma_reserve - set the specified number of pages reserved in the first zone
8563 * @new_dma_reserve: The number of pages to mark reserved
8564 *
8565 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8566 * In the DMA zone, a significant percentage may be consumed by kernel image
8567 * and other unfreeable allocations which can skew the watermarks badly. This
8568 * function may optionally be used to account for unfreeable pages in the
8569 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8570 * smaller per-cpu batchsize.
8571 */
set_dma_reserve(unsigned long new_dma_reserve)8572 void __init set_dma_reserve(unsigned long new_dma_reserve)
8573 {
8574 dma_reserve = new_dma_reserve;
8575 }
8576
page_alloc_cpu_dead(unsigned int cpu)8577 static int page_alloc_cpu_dead(unsigned int cpu)
8578 {
8579 struct zone *zone;
8580
8581 lru_add_drain_cpu(cpu);
8582 mlock_page_drain_remote(cpu);
8583 drain_pages(cpu);
8584
8585 /*
8586 * Spill the event counters of the dead processor
8587 * into the current processors event counters.
8588 * This artificially elevates the count of the current
8589 * processor.
8590 */
8591 vm_events_fold_cpu(cpu);
8592
8593 /*
8594 * Zero the differential counters of the dead processor
8595 * so that the vm statistics are consistent.
8596 *
8597 * This is only okay since the processor is dead and cannot
8598 * race with what we are doing.
8599 */
8600 cpu_vm_stats_fold(cpu);
8601
8602 for_each_populated_zone(zone)
8603 zone_pcp_update(zone, 0);
8604
8605 return 0;
8606 }
8607
page_alloc_cpu_online(unsigned int cpu)8608 static int page_alloc_cpu_online(unsigned int cpu)
8609 {
8610 struct zone *zone;
8611
8612 for_each_populated_zone(zone)
8613 zone_pcp_update(zone, 1);
8614 return 0;
8615 }
8616
8617 #ifdef CONFIG_NUMA
8618 int hashdist = HASHDIST_DEFAULT;
8619
set_hashdist(char * str)8620 static int __init set_hashdist(char *str)
8621 {
8622 if (!str)
8623 return 0;
8624 hashdist = simple_strtoul(str, &str, 0);
8625 return 1;
8626 }
8627 __setup("hashdist=", set_hashdist);
8628 #endif
8629
page_alloc_init(void)8630 void __init page_alloc_init(void)
8631 {
8632 int ret;
8633
8634 #ifdef CONFIG_NUMA
8635 if (num_node_state(N_MEMORY) == 1)
8636 hashdist = 0;
8637 #endif
8638
8639 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8640 "mm/page_alloc:pcp",
8641 page_alloc_cpu_online,
8642 page_alloc_cpu_dead);
8643 WARN_ON(ret < 0);
8644 }
8645
8646 /*
8647 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8648 * or min_free_kbytes changes.
8649 */
calculate_totalreserve_pages(void)8650 static void calculate_totalreserve_pages(void)
8651 {
8652 struct pglist_data *pgdat;
8653 unsigned long reserve_pages = 0;
8654 enum zone_type i, j;
8655
8656 for_each_online_pgdat(pgdat) {
8657
8658 pgdat->totalreserve_pages = 0;
8659
8660 for (i = 0; i < MAX_NR_ZONES; i++) {
8661 struct zone *zone = pgdat->node_zones + i;
8662 long max = 0;
8663 unsigned long managed_pages = zone_managed_pages(zone);
8664
8665 /* Find valid and maximum lowmem_reserve in the zone */
8666 for (j = i; j < MAX_NR_ZONES; j++) {
8667 if (zone->lowmem_reserve[j] > max)
8668 max = zone->lowmem_reserve[j];
8669 }
8670
8671 /* we treat the high watermark as reserved pages. */
8672 max += high_wmark_pages(zone);
8673
8674 if (max > managed_pages)
8675 max = managed_pages;
8676
8677 pgdat->totalreserve_pages += max;
8678
8679 reserve_pages += max;
8680 }
8681 }
8682 totalreserve_pages = reserve_pages;
8683 }
8684
8685 /*
8686 * setup_per_zone_lowmem_reserve - called whenever
8687 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8688 * has a correct pages reserved value, so an adequate number of
8689 * pages are left in the zone after a successful __alloc_pages().
8690 */
setup_per_zone_lowmem_reserve(void)8691 static void setup_per_zone_lowmem_reserve(void)
8692 {
8693 struct pglist_data *pgdat;
8694 enum zone_type i, j;
8695
8696 for_each_online_pgdat(pgdat) {
8697 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8698 struct zone *zone = &pgdat->node_zones[i];
8699 int ratio = sysctl_lowmem_reserve_ratio[i];
8700 bool clear = !ratio || !zone_managed_pages(zone);
8701 unsigned long managed_pages = 0;
8702
8703 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8704 struct zone *upper_zone = &pgdat->node_zones[j];
8705
8706 managed_pages += zone_managed_pages(upper_zone);
8707
8708 if (clear)
8709 zone->lowmem_reserve[j] = 0;
8710 else
8711 zone->lowmem_reserve[j] = managed_pages / ratio;
8712 }
8713 }
8714 }
8715
8716 /* update totalreserve_pages */
8717 calculate_totalreserve_pages();
8718 }
8719
__setup_per_zone_wmarks(void)8720 static void __setup_per_zone_wmarks(void)
8721 {
8722 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8723 unsigned long lowmem_pages = 0;
8724 struct zone *zone;
8725 unsigned long flags;
8726
8727 /* Calculate total number of !ZONE_HIGHMEM pages */
8728 for_each_zone(zone) {
8729 if (!is_highmem(zone))
8730 lowmem_pages += zone_managed_pages(zone);
8731 }
8732
8733 for_each_zone(zone) {
8734 u64 tmp;
8735
8736 spin_lock_irqsave(&zone->lock, flags);
8737 tmp = (u64)pages_min * zone_managed_pages(zone);
8738 do_div(tmp, lowmem_pages);
8739 if (is_highmem(zone)) {
8740 /*
8741 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8742 * need highmem pages, so cap pages_min to a small
8743 * value here.
8744 *
8745 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8746 * deltas control async page reclaim, and so should
8747 * not be capped for highmem.
8748 */
8749 unsigned long min_pages;
8750
8751 min_pages = zone_managed_pages(zone) / 1024;
8752 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8753 zone->_watermark[WMARK_MIN] = min_pages;
8754 } else {
8755 /*
8756 * If it's a lowmem zone, reserve a number of pages
8757 * proportionate to the zone's size.
8758 */
8759 zone->_watermark[WMARK_MIN] = tmp;
8760 }
8761
8762 /*
8763 * Set the kswapd watermarks distance according to the
8764 * scale factor in proportion to available memory, but
8765 * ensure a minimum size on small systems.
8766 */
8767 tmp = max_t(u64, tmp >> 2,
8768 mult_frac(zone_managed_pages(zone),
8769 watermark_scale_factor, 10000));
8770
8771 zone->watermark_boost = 0;
8772 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8773 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8774 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8775
8776 spin_unlock_irqrestore(&zone->lock, flags);
8777 }
8778
8779 /* update totalreserve_pages */
8780 calculate_totalreserve_pages();
8781 }
8782
8783 /**
8784 * setup_per_zone_wmarks - called when min_free_kbytes changes
8785 * or when memory is hot-{added|removed}
8786 *
8787 * Ensures that the watermark[min,low,high] values for each zone are set
8788 * correctly with respect to min_free_kbytes.
8789 */
setup_per_zone_wmarks(void)8790 void setup_per_zone_wmarks(void)
8791 {
8792 struct zone *zone;
8793 static DEFINE_SPINLOCK(lock);
8794
8795 spin_lock(&lock);
8796 __setup_per_zone_wmarks();
8797 spin_unlock(&lock);
8798
8799 /*
8800 * The watermark size have changed so update the pcpu batch
8801 * and high limits or the limits may be inappropriate.
8802 */
8803 for_each_zone(zone)
8804 zone_pcp_update(zone, 0);
8805 }
8806
8807 /*
8808 * Initialise min_free_kbytes.
8809 *
8810 * For small machines we want it small (128k min). For large machines
8811 * we want it large (256MB max). But it is not linear, because network
8812 * bandwidth does not increase linearly with machine size. We use
8813 *
8814 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8815 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8816 *
8817 * which yields
8818 *
8819 * 16MB: 512k
8820 * 32MB: 724k
8821 * 64MB: 1024k
8822 * 128MB: 1448k
8823 * 256MB: 2048k
8824 * 512MB: 2896k
8825 * 1024MB: 4096k
8826 * 2048MB: 5792k
8827 * 4096MB: 8192k
8828 * 8192MB: 11584k
8829 * 16384MB: 16384k
8830 */
calculate_min_free_kbytes(void)8831 void calculate_min_free_kbytes(void)
8832 {
8833 unsigned long lowmem_kbytes;
8834 int new_min_free_kbytes;
8835
8836 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8837 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8838
8839 if (new_min_free_kbytes > user_min_free_kbytes)
8840 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8841 else
8842 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8843 new_min_free_kbytes, user_min_free_kbytes);
8844
8845 }
8846
init_per_zone_wmark_min(void)8847 int __meminit init_per_zone_wmark_min(void)
8848 {
8849 calculate_min_free_kbytes();
8850 setup_per_zone_wmarks();
8851 refresh_zone_stat_thresholds();
8852 setup_per_zone_lowmem_reserve();
8853
8854 #ifdef CONFIG_NUMA
8855 setup_min_unmapped_ratio();
8856 setup_min_slab_ratio();
8857 #endif
8858
8859 khugepaged_min_free_kbytes_update();
8860
8861 return 0;
8862 }
postcore_initcall(init_per_zone_wmark_min)8863 postcore_initcall(init_per_zone_wmark_min)
8864
8865 /*
8866 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8867 * that we can call two helper functions whenever min_free_kbytes
8868 * changes.
8869 */
8870 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8871 void *buffer, size_t *length, loff_t *ppos)
8872 {
8873 int rc;
8874
8875 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8876 if (rc)
8877 return rc;
8878
8879 if (write) {
8880 user_min_free_kbytes = min_free_kbytes;
8881 setup_per_zone_wmarks();
8882 }
8883 return 0;
8884 }
8885
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8886 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8887 void *buffer, size_t *length, loff_t *ppos)
8888 {
8889 int rc;
8890
8891 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8892 if (rc)
8893 return rc;
8894
8895 if (write)
8896 setup_per_zone_wmarks();
8897
8898 return 0;
8899 }
8900
8901 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)8902 static void setup_min_unmapped_ratio(void)
8903 {
8904 pg_data_t *pgdat;
8905 struct zone *zone;
8906
8907 for_each_online_pgdat(pgdat)
8908 pgdat->min_unmapped_pages = 0;
8909
8910 for_each_zone(zone)
8911 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8912 sysctl_min_unmapped_ratio) / 100;
8913 }
8914
8915
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8916 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8917 void *buffer, size_t *length, loff_t *ppos)
8918 {
8919 int rc;
8920
8921 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8922 if (rc)
8923 return rc;
8924
8925 setup_min_unmapped_ratio();
8926
8927 return 0;
8928 }
8929
setup_min_slab_ratio(void)8930 static void setup_min_slab_ratio(void)
8931 {
8932 pg_data_t *pgdat;
8933 struct zone *zone;
8934
8935 for_each_online_pgdat(pgdat)
8936 pgdat->min_slab_pages = 0;
8937
8938 for_each_zone(zone)
8939 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8940 sysctl_min_slab_ratio) / 100;
8941 }
8942
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8943 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8944 void *buffer, size_t *length, loff_t *ppos)
8945 {
8946 int rc;
8947
8948 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8949 if (rc)
8950 return rc;
8951
8952 setup_min_slab_ratio();
8953
8954 return 0;
8955 }
8956 #endif
8957
8958 /*
8959 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8960 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8961 * whenever sysctl_lowmem_reserve_ratio changes.
8962 *
8963 * The reserve ratio obviously has absolutely no relation with the
8964 * minimum watermarks. The lowmem reserve ratio can only make sense
8965 * if in function of the boot time zone sizes.
8966 */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8967 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8968 void *buffer, size_t *length, loff_t *ppos)
8969 {
8970 int i;
8971
8972 proc_dointvec_minmax(table, write, buffer, length, ppos);
8973
8974 for (i = 0; i < MAX_NR_ZONES; i++) {
8975 if (sysctl_lowmem_reserve_ratio[i] < 1)
8976 sysctl_lowmem_reserve_ratio[i] = 0;
8977 }
8978
8979 setup_per_zone_lowmem_reserve();
8980 return 0;
8981 }
8982
8983 /*
8984 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8985 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8986 * pagelist can have before it gets flushed back to buddy allocator.
8987 */
percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8988 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8989 int write, void *buffer, size_t *length, loff_t *ppos)
8990 {
8991 struct zone *zone;
8992 int old_percpu_pagelist_high_fraction;
8993 int ret;
8994
8995 mutex_lock(&pcp_batch_high_lock);
8996 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8997
8998 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8999 if (!write || ret < 0)
9000 goto out;
9001
9002 /* Sanity checking to avoid pcp imbalance */
9003 if (percpu_pagelist_high_fraction &&
9004 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
9005 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
9006 ret = -EINVAL;
9007 goto out;
9008 }
9009
9010 /* No change? */
9011 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
9012 goto out;
9013
9014 for_each_populated_zone(zone)
9015 zone_set_pageset_high_and_batch(zone, 0);
9016 out:
9017 mutex_unlock(&pcp_batch_high_lock);
9018 return ret;
9019 }
9020
9021 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
9022 /*
9023 * Returns the number of pages that arch has reserved but
9024 * is not known to alloc_large_system_hash().
9025 */
arch_reserved_kernel_pages(void)9026 static unsigned long __init arch_reserved_kernel_pages(void)
9027 {
9028 return 0;
9029 }
9030 #endif
9031
9032 /*
9033 * Adaptive scale is meant to reduce sizes of hash tables on large memory
9034 * machines. As memory size is increased the scale is also increased but at
9035 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
9036 * quadruples the scale is increased by one, which means the size of hash table
9037 * only doubles, instead of quadrupling as well.
9038 * Because 32-bit systems cannot have large physical memory, where this scaling
9039 * makes sense, it is disabled on such platforms.
9040 */
9041 #if __BITS_PER_LONG > 32
9042 #define ADAPT_SCALE_BASE (64ul << 30)
9043 #define ADAPT_SCALE_SHIFT 2
9044 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
9045 #endif
9046
9047 /*
9048 * allocate a large system hash table from bootmem
9049 * - it is assumed that the hash table must contain an exact power-of-2
9050 * quantity of entries
9051 * - limit is the number of hash buckets, not the total allocation size
9052 */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)9053 void *__init alloc_large_system_hash(const char *tablename,
9054 unsigned long bucketsize,
9055 unsigned long numentries,
9056 int scale,
9057 int flags,
9058 unsigned int *_hash_shift,
9059 unsigned int *_hash_mask,
9060 unsigned long low_limit,
9061 unsigned long high_limit)
9062 {
9063 unsigned long long max = high_limit;
9064 unsigned long log2qty, size;
9065 void *table;
9066 gfp_t gfp_flags;
9067 bool virt;
9068 bool huge;
9069
9070 /* allow the kernel cmdline to have a say */
9071 if (!numentries) {
9072 /* round applicable memory size up to nearest megabyte */
9073 numentries = nr_kernel_pages;
9074 numentries -= arch_reserved_kernel_pages();
9075
9076 /* It isn't necessary when PAGE_SIZE >= 1MB */
9077 if (PAGE_SIZE < SZ_1M)
9078 numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
9079
9080 #if __BITS_PER_LONG > 32
9081 if (!high_limit) {
9082 unsigned long adapt;
9083
9084 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9085 adapt <<= ADAPT_SCALE_SHIFT)
9086 scale++;
9087 }
9088 #endif
9089
9090 /* limit to 1 bucket per 2^scale bytes of low memory */
9091 if (scale > PAGE_SHIFT)
9092 numentries >>= (scale - PAGE_SHIFT);
9093 else
9094 numentries <<= (PAGE_SHIFT - scale);
9095
9096 /* Make sure we've got at least a 0-order allocation.. */
9097 if (unlikely(flags & HASH_SMALL)) {
9098 /* Makes no sense without HASH_EARLY */
9099 WARN_ON(!(flags & HASH_EARLY));
9100 if (!(numentries >> *_hash_shift)) {
9101 numentries = 1UL << *_hash_shift;
9102 BUG_ON(!numentries);
9103 }
9104 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9105 numentries = PAGE_SIZE / bucketsize;
9106 }
9107 numentries = roundup_pow_of_two(numentries);
9108
9109 /* limit allocation size to 1/16 total memory by default */
9110 if (max == 0) {
9111 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9112 do_div(max, bucketsize);
9113 }
9114 max = min(max, 0x80000000ULL);
9115
9116 if (numentries < low_limit)
9117 numentries = low_limit;
9118 if (numentries > max)
9119 numentries = max;
9120
9121 log2qty = ilog2(numentries);
9122
9123 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9124 do {
9125 virt = false;
9126 size = bucketsize << log2qty;
9127 if (flags & HASH_EARLY) {
9128 if (flags & HASH_ZERO)
9129 table = memblock_alloc(size, SMP_CACHE_BYTES);
9130 else
9131 table = memblock_alloc_raw(size,
9132 SMP_CACHE_BYTES);
9133 } else if (get_order(size) >= MAX_ORDER || hashdist) {
9134 table = vmalloc_huge(size, gfp_flags);
9135 virt = true;
9136 if (table)
9137 huge = is_vm_area_hugepages(table);
9138 } else {
9139 /*
9140 * If bucketsize is not a power-of-two, we may free
9141 * some pages at the end of hash table which
9142 * alloc_pages_exact() automatically does
9143 */
9144 table = alloc_pages_exact(size, gfp_flags);
9145 kmemleak_alloc(table, size, 1, gfp_flags);
9146 }
9147 } while (!table && size > PAGE_SIZE && --log2qty);
9148
9149 if (!table)
9150 panic("Failed to allocate %s hash table\n", tablename);
9151
9152 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9153 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9154 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9155
9156 if (_hash_shift)
9157 *_hash_shift = log2qty;
9158 if (_hash_mask)
9159 *_hash_mask = (1 << log2qty) - 1;
9160
9161 return table;
9162 }
9163
9164 #ifdef CONFIG_CONTIG_ALLOC
9165 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9166 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9167 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)9168 static void alloc_contig_dump_pages(struct list_head *page_list)
9169 {
9170 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9171
9172 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9173 struct page *page;
9174
9175 dump_stack();
9176 list_for_each_entry(page, page_list, lru)
9177 dump_page(page, "migration failure");
9178 }
9179 }
9180 #else
alloc_contig_dump_pages(struct list_head * page_list)9181 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9182 {
9183 }
9184 #endif
9185
9186 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)9187 int __alloc_contig_migrate_range(struct compact_control *cc,
9188 unsigned long start, unsigned long end)
9189 {
9190 /* This function is based on compact_zone() from compaction.c. */
9191 unsigned int nr_reclaimed;
9192 unsigned long pfn = start;
9193 unsigned int tries = 0;
9194 int ret = 0;
9195 struct migration_target_control mtc = {
9196 .nid = zone_to_nid(cc->zone),
9197 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9198 };
9199
9200 lru_cache_disable();
9201
9202 while (pfn < end || !list_empty(&cc->migratepages)) {
9203 if (fatal_signal_pending(current)) {
9204 ret = -EINTR;
9205 break;
9206 }
9207
9208 if (list_empty(&cc->migratepages)) {
9209 cc->nr_migratepages = 0;
9210 ret = isolate_migratepages_range(cc, pfn, end);
9211 if (ret && ret != -EAGAIN)
9212 break;
9213 pfn = cc->migrate_pfn;
9214 tries = 0;
9215 } else if (++tries == 5) {
9216 ret = -EBUSY;
9217 break;
9218 }
9219
9220 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9221 &cc->migratepages);
9222 cc->nr_migratepages -= nr_reclaimed;
9223
9224 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9225 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9226
9227 /*
9228 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9229 * to retry again over this error, so do the same here.
9230 */
9231 if (ret == -ENOMEM)
9232 break;
9233 }
9234
9235 lru_cache_enable();
9236 if (ret < 0) {
9237 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9238 alloc_contig_dump_pages(&cc->migratepages);
9239 putback_movable_pages(&cc->migratepages);
9240 return ret;
9241 }
9242 return 0;
9243 }
9244
9245 /**
9246 * alloc_contig_range() -- tries to allocate given range of pages
9247 * @start: start PFN to allocate
9248 * @end: one-past-the-last PFN to allocate
9249 * @migratetype: migratetype of the underlying pageblocks (either
9250 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9251 * in range must have the same migratetype and it must
9252 * be either of the two.
9253 * @gfp_mask: GFP mask to use during compaction
9254 *
9255 * The PFN range does not have to be pageblock aligned. The PFN range must
9256 * belong to a single zone.
9257 *
9258 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9259 * pageblocks in the range. Once isolated, the pageblocks should not
9260 * be modified by others.
9261 *
9262 * Return: zero on success or negative error code. On success all
9263 * pages which PFN is in [start, end) are allocated for the caller and
9264 * need to be freed with free_contig_range().
9265 */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)9266 int alloc_contig_range(unsigned long start, unsigned long end,
9267 unsigned migratetype, gfp_t gfp_mask)
9268 {
9269 unsigned long outer_start, outer_end;
9270 int order;
9271 int ret = 0;
9272
9273 struct compact_control cc = {
9274 .nr_migratepages = 0,
9275 .order = -1,
9276 .zone = page_zone(pfn_to_page(start)),
9277 .mode = MIGRATE_SYNC,
9278 .ignore_skip_hint = true,
9279 .no_set_skip_hint = true,
9280 .gfp_mask = current_gfp_context(gfp_mask),
9281 .alloc_contig = true,
9282 };
9283 INIT_LIST_HEAD(&cc.migratepages);
9284
9285 /*
9286 * What we do here is we mark all pageblocks in range as
9287 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9288 * have different sizes, and due to the way page allocator
9289 * work, start_isolate_page_range() has special handlings for this.
9290 *
9291 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9292 * migrate the pages from an unaligned range (ie. pages that
9293 * we are interested in). This will put all the pages in
9294 * range back to page allocator as MIGRATE_ISOLATE.
9295 *
9296 * When this is done, we take the pages in range from page
9297 * allocator removing them from the buddy system. This way
9298 * page allocator will never consider using them.
9299 *
9300 * This lets us mark the pageblocks back as
9301 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9302 * aligned range but not in the unaligned, original range are
9303 * put back to page allocator so that buddy can use them.
9304 */
9305
9306 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9307 if (ret)
9308 goto done;
9309
9310 drain_all_pages(cc.zone);
9311
9312 /*
9313 * In case of -EBUSY, we'd like to know which page causes problem.
9314 * So, just fall through. test_pages_isolated() has a tracepoint
9315 * which will report the busy page.
9316 *
9317 * It is possible that busy pages could become available before
9318 * the call to test_pages_isolated, and the range will actually be
9319 * allocated. So, if we fall through be sure to clear ret so that
9320 * -EBUSY is not accidentally used or returned to caller.
9321 */
9322 ret = __alloc_contig_migrate_range(&cc, start, end);
9323 if (ret && ret != -EBUSY)
9324 goto done;
9325 ret = 0;
9326
9327 /*
9328 * Pages from [start, end) are within a pageblock_nr_pages
9329 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9330 * more, all pages in [start, end) are free in page allocator.
9331 * What we are going to do is to allocate all pages from
9332 * [start, end) (that is remove them from page allocator).
9333 *
9334 * The only problem is that pages at the beginning and at the
9335 * end of interesting range may be not aligned with pages that
9336 * page allocator holds, ie. they can be part of higher order
9337 * pages. Because of this, we reserve the bigger range and
9338 * once this is done free the pages we are not interested in.
9339 *
9340 * We don't have to hold zone->lock here because the pages are
9341 * isolated thus they won't get removed from buddy.
9342 */
9343
9344 order = 0;
9345 outer_start = start;
9346 while (!PageBuddy(pfn_to_page(outer_start))) {
9347 if (++order >= MAX_ORDER) {
9348 outer_start = start;
9349 break;
9350 }
9351 outer_start &= ~0UL << order;
9352 }
9353
9354 if (outer_start != start) {
9355 order = buddy_order(pfn_to_page(outer_start));
9356
9357 /*
9358 * outer_start page could be small order buddy page and
9359 * it doesn't include start page. Adjust outer_start
9360 * in this case to report failed page properly
9361 * on tracepoint in test_pages_isolated()
9362 */
9363 if (outer_start + (1UL << order) <= start)
9364 outer_start = start;
9365 }
9366
9367 /* Make sure the range is really isolated. */
9368 if (test_pages_isolated(outer_start, end, 0)) {
9369 ret = -EBUSY;
9370 goto done;
9371 }
9372
9373 /* Grab isolated pages from freelists. */
9374 outer_end = isolate_freepages_range(&cc, outer_start, end);
9375 if (!outer_end) {
9376 ret = -EBUSY;
9377 goto done;
9378 }
9379
9380 /* Free head and tail (if any) */
9381 if (start != outer_start)
9382 free_contig_range(outer_start, start - outer_start);
9383 if (end != outer_end)
9384 free_contig_range(end, outer_end - end);
9385
9386 done:
9387 undo_isolate_page_range(start, end, migratetype);
9388 return ret;
9389 }
9390 EXPORT_SYMBOL(alloc_contig_range);
9391
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)9392 static int __alloc_contig_pages(unsigned long start_pfn,
9393 unsigned long nr_pages, gfp_t gfp_mask)
9394 {
9395 unsigned long end_pfn = start_pfn + nr_pages;
9396
9397 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9398 gfp_mask);
9399 }
9400
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)9401 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9402 unsigned long nr_pages)
9403 {
9404 unsigned long i, end_pfn = start_pfn + nr_pages;
9405 struct page *page;
9406
9407 for (i = start_pfn; i < end_pfn; i++) {
9408 page = pfn_to_online_page(i);
9409 if (!page)
9410 return false;
9411
9412 if (page_zone(page) != z)
9413 return false;
9414
9415 if (PageReserved(page))
9416 return false;
9417 }
9418 return true;
9419 }
9420
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)9421 static bool zone_spans_last_pfn(const struct zone *zone,
9422 unsigned long start_pfn, unsigned long nr_pages)
9423 {
9424 unsigned long last_pfn = start_pfn + nr_pages - 1;
9425
9426 return zone_spans_pfn(zone, last_pfn);
9427 }
9428
9429 /**
9430 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9431 * @nr_pages: Number of contiguous pages to allocate
9432 * @gfp_mask: GFP mask to limit search and used during compaction
9433 * @nid: Target node
9434 * @nodemask: Mask for other possible nodes
9435 *
9436 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9437 * on an applicable zonelist to find a contiguous pfn range which can then be
9438 * tried for allocation with alloc_contig_range(). This routine is intended
9439 * for allocation requests which can not be fulfilled with the buddy allocator.
9440 *
9441 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9442 * power of two, then allocated range is also guaranteed to be aligned to same
9443 * nr_pages (e.g. 1GB request would be aligned to 1GB).
9444 *
9445 * Allocated pages can be freed with free_contig_range() or by manually calling
9446 * __free_page() on each allocated page.
9447 *
9448 * Return: pointer to contiguous pages on success, or NULL if not successful.
9449 */
alloc_contig_pages(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)9450 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9451 int nid, nodemask_t *nodemask)
9452 {
9453 unsigned long ret, pfn, flags;
9454 struct zonelist *zonelist;
9455 struct zone *zone;
9456 struct zoneref *z;
9457
9458 zonelist = node_zonelist(nid, gfp_mask);
9459 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9460 gfp_zone(gfp_mask), nodemask) {
9461 spin_lock_irqsave(&zone->lock, flags);
9462
9463 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9464 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9465 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9466 /*
9467 * We release the zone lock here because
9468 * alloc_contig_range() will also lock the zone
9469 * at some point. If there's an allocation
9470 * spinning on this lock, it may win the race
9471 * and cause alloc_contig_range() to fail...
9472 */
9473 spin_unlock_irqrestore(&zone->lock, flags);
9474 ret = __alloc_contig_pages(pfn, nr_pages,
9475 gfp_mask);
9476 if (!ret)
9477 return pfn_to_page(pfn);
9478 spin_lock_irqsave(&zone->lock, flags);
9479 }
9480 pfn += nr_pages;
9481 }
9482 spin_unlock_irqrestore(&zone->lock, flags);
9483 }
9484 return NULL;
9485 }
9486 #endif /* CONFIG_CONTIG_ALLOC */
9487
free_contig_range(unsigned long pfn,unsigned long nr_pages)9488 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9489 {
9490 unsigned long count = 0;
9491
9492 for (; nr_pages--; pfn++) {
9493 struct page *page = pfn_to_page(pfn);
9494
9495 count += page_count(page) != 1;
9496 __free_page(page);
9497 }
9498 WARN(count != 0, "%lu pages are still in use!\n", count);
9499 }
9500 EXPORT_SYMBOL(free_contig_range);
9501
9502 /*
9503 * Effectively disable pcplists for the zone by setting the high limit to 0
9504 * and draining all cpus. A concurrent page freeing on another CPU that's about
9505 * to put the page on pcplist will either finish before the drain and the page
9506 * will be drained, or observe the new high limit and skip the pcplist.
9507 *
9508 * Must be paired with a call to zone_pcp_enable().
9509 */
zone_pcp_disable(struct zone * zone)9510 void zone_pcp_disable(struct zone *zone)
9511 {
9512 mutex_lock(&pcp_batch_high_lock);
9513 __zone_set_pageset_high_and_batch(zone, 0, 1);
9514 __drain_all_pages(zone, true);
9515 }
9516
zone_pcp_enable(struct zone * zone)9517 void zone_pcp_enable(struct zone *zone)
9518 {
9519 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9520 mutex_unlock(&pcp_batch_high_lock);
9521 }
9522
zone_pcp_reset(struct zone * zone)9523 void zone_pcp_reset(struct zone *zone)
9524 {
9525 int cpu;
9526 struct per_cpu_zonestat *pzstats;
9527
9528 if (zone->per_cpu_pageset != &boot_pageset) {
9529 for_each_online_cpu(cpu) {
9530 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9531 drain_zonestat(zone, pzstats);
9532 }
9533 free_percpu(zone->per_cpu_pageset);
9534 zone->per_cpu_pageset = &boot_pageset;
9535 if (zone->per_cpu_zonestats != &boot_zonestats) {
9536 free_percpu(zone->per_cpu_zonestats);
9537 zone->per_cpu_zonestats = &boot_zonestats;
9538 }
9539 }
9540 }
9541
9542 #ifdef CONFIG_MEMORY_HOTREMOVE
9543 /*
9544 * All pages in the range must be in a single zone, must not contain holes,
9545 * must span full sections, and must be isolated before calling this function.
9546 */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)9547 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9548 {
9549 unsigned long pfn = start_pfn;
9550 struct page *page;
9551 struct zone *zone;
9552 unsigned int order;
9553 unsigned long flags;
9554
9555 offline_mem_sections(pfn, end_pfn);
9556 zone = page_zone(pfn_to_page(pfn));
9557 spin_lock_irqsave(&zone->lock, flags);
9558 while (pfn < end_pfn) {
9559 page = pfn_to_page(pfn);
9560 /*
9561 * The HWPoisoned page may be not in buddy system, and
9562 * page_count() is not 0.
9563 */
9564 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9565 pfn++;
9566 continue;
9567 }
9568 /*
9569 * At this point all remaining PageOffline() pages have a
9570 * reference count of 0 and can simply be skipped.
9571 */
9572 if (PageOffline(page)) {
9573 BUG_ON(page_count(page));
9574 BUG_ON(PageBuddy(page));
9575 pfn++;
9576 continue;
9577 }
9578
9579 BUG_ON(page_count(page));
9580 BUG_ON(!PageBuddy(page));
9581 order = buddy_order(page);
9582 del_page_from_free_list(page, zone, order);
9583 pfn += (1 << order);
9584 }
9585 spin_unlock_irqrestore(&zone->lock, flags);
9586 }
9587 #endif
9588
9589 /*
9590 * This function returns a stable result only if called under zone lock.
9591 */
is_free_buddy_page(struct page * page)9592 bool is_free_buddy_page(struct page *page)
9593 {
9594 unsigned long pfn = page_to_pfn(page);
9595 unsigned int order;
9596
9597 for (order = 0; order < MAX_ORDER; order++) {
9598 struct page *page_head = page - (pfn & ((1 << order) - 1));
9599
9600 if (PageBuddy(page_head) &&
9601 buddy_order_unsafe(page_head) >= order)
9602 break;
9603 }
9604
9605 return order < MAX_ORDER;
9606 }
9607 EXPORT_SYMBOL(is_free_buddy_page);
9608
9609 #ifdef CONFIG_MEMORY_FAILURE
9610 /*
9611 * Break down a higher-order page in sub-pages, and keep our target out of
9612 * buddy allocator.
9613 */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)9614 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9615 struct page *target, int low, int high,
9616 int migratetype)
9617 {
9618 unsigned long size = 1 << high;
9619 struct page *current_buddy, *next_page;
9620
9621 while (high > low) {
9622 high--;
9623 size >>= 1;
9624
9625 if (target >= &page[size]) {
9626 next_page = page + size;
9627 current_buddy = page;
9628 } else {
9629 next_page = page;
9630 current_buddy = page + size;
9631 }
9632
9633 if (set_page_guard(zone, current_buddy, high, migratetype))
9634 continue;
9635
9636 if (current_buddy != target) {
9637 add_to_free_list(current_buddy, zone, high, migratetype);
9638 set_buddy_order(current_buddy, high);
9639 page = next_page;
9640 }
9641 }
9642 }
9643
9644 /*
9645 * Take a page that will be marked as poisoned off the buddy allocator.
9646 */
take_page_off_buddy(struct page * page)9647 bool take_page_off_buddy(struct page *page)
9648 {
9649 struct zone *zone = page_zone(page);
9650 unsigned long pfn = page_to_pfn(page);
9651 unsigned long flags;
9652 unsigned int order;
9653 bool ret = false;
9654
9655 spin_lock_irqsave(&zone->lock, flags);
9656 for (order = 0; order < MAX_ORDER; order++) {
9657 struct page *page_head = page - (pfn & ((1 << order) - 1));
9658 int page_order = buddy_order(page_head);
9659
9660 if (PageBuddy(page_head) && page_order >= order) {
9661 unsigned long pfn_head = page_to_pfn(page_head);
9662 int migratetype = get_pfnblock_migratetype(page_head,
9663 pfn_head);
9664
9665 del_page_from_free_list(page_head, zone, page_order);
9666 break_down_buddy_pages(zone, page_head, page, 0,
9667 page_order, migratetype);
9668 SetPageHWPoisonTakenOff(page);
9669 if (!is_migrate_isolate(migratetype))
9670 __mod_zone_freepage_state(zone, -1, migratetype);
9671 ret = true;
9672 break;
9673 }
9674 if (page_count(page_head) > 0)
9675 break;
9676 }
9677 spin_unlock_irqrestore(&zone->lock, flags);
9678 return ret;
9679 }
9680
9681 /*
9682 * Cancel takeoff done by take_page_off_buddy().
9683 */
put_page_back_buddy(struct page * page)9684 bool put_page_back_buddy(struct page *page)
9685 {
9686 struct zone *zone = page_zone(page);
9687 unsigned long pfn = page_to_pfn(page);
9688 unsigned long flags;
9689 int migratetype = get_pfnblock_migratetype(page, pfn);
9690 bool ret = false;
9691
9692 spin_lock_irqsave(&zone->lock, flags);
9693 if (put_page_testzero(page)) {
9694 ClearPageHWPoisonTakenOff(page);
9695 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9696 if (TestClearPageHWPoison(page)) {
9697 ret = true;
9698 }
9699 }
9700 spin_unlock_irqrestore(&zone->lock, flags);
9701
9702 return ret;
9703 }
9704 #endif
9705
9706 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)9707 bool has_managed_dma(void)
9708 {
9709 struct pglist_data *pgdat;
9710
9711 for_each_online_pgdat(pgdat) {
9712 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9713
9714 if (managed_zone(zone))
9715 return true;
9716 }
9717 return false;
9718 }
9719 #endif /* CONFIG_ZONE_DMA */
9720