1 /*
2  * spi.c - SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/cache.h>
25 #include <linux/mutex.h>
26 #include <linux/of_device.h>
27 #include <linux/slab.h>
28 #include <linux/mod_devicetable.h>
29 #include <linux/spi/spi.h>
30 #include <linux/of_spi.h>
31 #include <linux/pm_runtime.h>
32 
spidev_release(struct device * dev)33 static void spidev_release(struct device *dev)
34 {
35 	struct spi_device	*spi = to_spi_device(dev);
36 
37 	/* spi masters may cleanup for released devices */
38 	if (spi->master->cleanup)
39 		spi->master->cleanup(spi);
40 
41 	spi_master_put(spi->master);
42 	kfree(spi);
43 }
44 
45 static ssize_t
modalias_show(struct device * dev,struct device_attribute * a,char * buf)46 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
47 {
48 	const struct spi_device	*spi = to_spi_device(dev);
49 
50 	return sprintf(buf, "%s\n", spi->modalias);
51 }
52 
53 static struct device_attribute spi_dev_attrs[] = {
54 	__ATTR_RO(modalias),
55 	__ATTR_NULL,
56 };
57 
58 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
59  * and the sysfs version makes coldplug work too.
60  */
61 
spi_match_id(const struct spi_device_id * id,const struct spi_device * sdev)62 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
63 						const struct spi_device *sdev)
64 {
65 	while (id->name[0]) {
66 		if (!strcmp(sdev->modalias, id->name))
67 			return id;
68 		id++;
69 	}
70 	return NULL;
71 }
72 
spi_get_device_id(const struct spi_device * sdev)73 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
74 {
75 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
76 
77 	return spi_match_id(sdrv->id_table, sdev);
78 }
79 EXPORT_SYMBOL_GPL(spi_get_device_id);
80 
spi_match_device(struct device * dev,struct device_driver * drv)81 static int spi_match_device(struct device *dev, struct device_driver *drv)
82 {
83 	const struct spi_device	*spi = to_spi_device(dev);
84 	const struct spi_driver	*sdrv = to_spi_driver(drv);
85 
86 	/* Attempt an OF style match */
87 	if (of_driver_match_device(dev, drv))
88 		return 1;
89 
90 	if (sdrv->id_table)
91 		return !!spi_match_id(sdrv->id_table, spi);
92 
93 	return strcmp(spi->modalias, drv->name) == 0;
94 }
95 
spi_uevent(struct device * dev,struct kobj_uevent_env * env)96 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
97 {
98 	const struct spi_device		*spi = to_spi_device(dev);
99 
100 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
101 	return 0;
102 }
103 
104 #ifdef CONFIG_PM_SLEEP
spi_legacy_suspend(struct device * dev,pm_message_t message)105 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
106 {
107 	int			value = 0;
108 	struct spi_driver	*drv = to_spi_driver(dev->driver);
109 
110 	/* suspend will stop irqs and dma; no more i/o */
111 	if (drv) {
112 		if (drv->suspend)
113 			value = drv->suspend(to_spi_device(dev), message);
114 		else
115 			dev_dbg(dev, "... can't suspend\n");
116 	}
117 	return value;
118 }
119 
spi_legacy_resume(struct device * dev)120 static int spi_legacy_resume(struct device *dev)
121 {
122 	int			value = 0;
123 	struct spi_driver	*drv = to_spi_driver(dev->driver);
124 
125 	/* resume may restart the i/o queue */
126 	if (drv) {
127 		if (drv->resume)
128 			value = drv->resume(to_spi_device(dev));
129 		else
130 			dev_dbg(dev, "... can't resume\n");
131 	}
132 	return value;
133 }
134 
spi_pm_suspend(struct device * dev)135 static int spi_pm_suspend(struct device *dev)
136 {
137 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
138 
139 	if (pm)
140 		return pm_generic_suspend(dev);
141 	else
142 		return spi_legacy_suspend(dev, PMSG_SUSPEND);
143 }
144 
spi_pm_resume(struct device * dev)145 static int spi_pm_resume(struct device *dev)
146 {
147 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
148 
149 	if (pm)
150 		return pm_generic_resume(dev);
151 	else
152 		return spi_legacy_resume(dev);
153 }
154 
spi_pm_freeze(struct device * dev)155 static int spi_pm_freeze(struct device *dev)
156 {
157 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
158 
159 	if (pm)
160 		return pm_generic_freeze(dev);
161 	else
162 		return spi_legacy_suspend(dev, PMSG_FREEZE);
163 }
164 
spi_pm_thaw(struct device * dev)165 static int spi_pm_thaw(struct device *dev)
166 {
167 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
168 
169 	if (pm)
170 		return pm_generic_thaw(dev);
171 	else
172 		return spi_legacy_resume(dev);
173 }
174 
spi_pm_poweroff(struct device * dev)175 static int spi_pm_poweroff(struct device *dev)
176 {
177 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
178 
179 	if (pm)
180 		return pm_generic_poweroff(dev);
181 	else
182 		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
183 }
184 
spi_pm_restore(struct device * dev)185 static int spi_pm_restore(struct device *dev)
186 {
187 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
188 
189 	if (pm)
190 		return pm_generic_restore(dev);
191 	else
192 		return spi_legacy_resume(dev);
193 }
194 #else
195 #define spi_pm_suspend	NULL
196 #define spi_pm_resume	NULL
197 #define spi_pm_freeze	NULL
198 #define spi_pm_thaw	NULL
199 #define spi_pm_poweroff	NULL
200 #define spi_pm_restore	NULL
201 #endif
202 
203 static const struct dev_pm_ops spi_pm = {
204 	.suspend = spi_pm_suspend,
205 	.resume = spi_pm_resume,
206 	.freeze = spi_pm_freeze,
207 	.thaw = spi_pm_thaw,
208 	.poweroff = spi_pm_poweroff,
209 	.restore = spi_pm_restore,
210 	SET_RUNTIME_PM_OPS(
211 		pm_generic_runtime_suspend,
212 		pm_generic_runtime_resume,
213 		pm_generic_runtime_idle
214 	)
215 };
216 
217 struct bus_type spi_bus_type = {
218 	.name		= "spi",
219 	.dev_attrs	= spi_dev_attrs,
220 	.match		= spi_match_device,
221 	.uevent		= spi_uevent,
222 	.pm		= &spi_pm,
223 };
224 EXPORT_SYMBOL_GPL(spi_bus_type);
225 
226 
spi_drv_probe(struct device * dev)227 static int spi_drv_probe(struct device *dev)
228 {
229 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
230 
231 	return sdrv->probe(to_spi_device(dev));
232 }
233 
spi_drv_remove(struct device * dev)234 static int spi_drv_remove(struct device *dev)
235 {
236 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
237 
238 	return sdrv->remove(to_spi_device(dev));
239 }
240 
spi_drv_shutdown(struct device * dev)241 static void spi_drv_shutdown(struct device *dev)
242 {
243 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
244 
245 	sdrv->shutdown(to_spi_device(dev));
246 }
247 
248 /**
249  * spi_register_driver - register a SPI driver
250  * @sdrv: the driver to register
251  * Context: can sleep
252  */
spi_register_driver(struct spi_driver * sdrv)253 int spi_register_driver(struct spi_driver *sdrv)
254 {
255 	sdrv->driver.bus = &spi_bus_type;
256 	if (sdrv->probe)
257 		sdrv->driver.probe = spi_drv_probe;
258 	if (sdrv->remove)
259 		sdrv->driver.remove = spi_drv_remove;
260 	if (sdrv->shutdown)
261 		sdrv->driver.shutdown = spi_drv_shutdown;
262 	return driver_register(&sdrv->driver);
263 }
264 EXPORT_SYMBOL_GPL(spi_register_driver);
265 
266 /*-------------------------------------------------------------------------*/
267 
268 /* SPI devices should normally not be created by SPI device drivers; that
269  * would make them board-specific.  Similarly with SPI master drivers.
270  * Device registration normally goes into like arch/.../mach.../board-YYY.c
271  * with other readonly (flashable) information about mainboard devices.
272  */
273 
274 struct boardinfo {
275 	struct list_head	list;
276 	struct spi_board_info	board_info;
277 };
278 
279 static LIST_HEAD(board_list);
280 static LIST_HEAD(spi_master_list);
281 
282 /*
283  * Used to protect add/del opertion for board_info list and
284  * spi_master list, and their matching process
285  */
286 static DEFINE_MUTEX(board_lock);
287 
288 /**
289  * spi_alloc_device - Allocate a new SPI device
290  * @master: Controller to which device is connected
291  * Context: can sleep
292  *
293  * Allows a driver to allocate and initialize a spi_device without
294  * registering it immediately.  This allows a driver to directly
295  * fill the spi_device with device parameters before calling
296  * spi_add_device() on it.
297  *
298  * Caller is responsible to call spi_add_device() on the returned
299  * spi_device structure to add it to the SPI master.  If the caller
300  * needs to discard the spi_device without adding it, then it should
301  * call spi_dev_put() on it.
302  *
303  * Returns a pointer to the new device, or NULL.
304  */
spi_alloc_device(struct spi_master * master)305 struct spi_device *spi_alloc_device(struct spi_master *master)
306 {
307 	struct spi_device	*spi;
308 	struct device		*dev = master->dev.parent;
309 
310 	if (!spi_master_get(master))
311 		return NULL;
312 
313 	spi = kzalloc(sizeof *spi, GFP_KERNEL);
314 	if (!spi) {
315 		dev_err(dev, "cannot alloc spi_device\n");
316 		spi_master_put(master);
317 		return NULL;
318 	}
319 
320 	spi->master = master;
321 	spi->dev.parent = dev;
322 	spi->dev.bus = &spi_bus_type;
323 	spi->dev.release = spidev_release;
324 	device_initialize(&spi->dev);
325 	return spi;
326 }
327 EXPORT_SYMBOL_GPL(spi_alloc_device);
328 
329 /**
330  * spi_add_device - Add spi_device allocated with spi_alloc_device
331  * @spi: spi_device to register
332  *
333  * Companion function to spi_alloc_device.  Devices allocated with
334  * spi_alloc_device can be added onto the spi bus with this function.
335  *
336  * Returns 0 on success; negative errno on failure
337  */
spi_add_device(struct spi_device * spi)338 int spi_add_device(struct spi_device *spi)
339 {
340 	static DEFINE_MUTEX(spi_add_lock);
341 	struct device *dev = spi->master->dev.parent;
342 	struct device *d;
343 	int status;
344 
345 	/* Chipselects are numbered 0..max; validate. */
346 	if (spi->chip_select >= spi->master->num_chipselect) {
347 		dev_err(dev, "cs%d >= max %d\n",
348 			spi->chip_select,
349 			spi->master->num_chipselect);
350 		return -EINVAL;
351 	}
352 
353 	/* Set the bus ID string */
354 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
355 			spi->chip_select);
356 
357 
358 	/* We need to make sure there's no other device with this
359 	 * chipselect **BEFORE** we call setup(), else we'll trash
360 	 * its configuration.  Lock against concurrent add() calls.
361 	 */
362 	mutex_lock(&spi_add_lock);
363 
364 	d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
365 	if (d != NULL) {
366 		dev_err(dev, "chipselect %d already in use\n",
367 				spi->chip_select);
368 		put_device(d);
369 		status = -EBUSY;
370 		goto done;
371 	}
372 
373 	/* Drivers may modify this initial i/o setup, but will
374 	 * normally rely on the device being setup.  Devices
375 	 * using SPI_CS_HIGH can't coexist well otherwise...
376 	 */
377 	status = spi_setup(spi);
378 	if (status < 0) {
379 		dev_err(dev, "can't setup %s, status %d\n",
380 				dev_name(&spi->dev), status);
381 		goto done;
382 	}
383 
384 	/* Device may be bound to an active driver when this returns */
385 	status = device_add(&spi->dev);
386 	if (status < 0)
387 		dev_err(dev, "can't add %s, status %d\n",
388 				dev_name(&spi->dev), status);
389 	else
390 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
391 
392 done:
393 	mutex_unlock(&spi_add_lock);
394 	return status;
395 }
396 EXPORT_SYMBOL_GPL(spi_add_device);
397 
398 /**
399  * spi_new_device - instantiate one new SPI device
400  * @master: Controller to which device is connected
401  * @chip: Describes the SPI device
402  * Context: can sleep
403  *
404  * On typical mainboards, this is purely internal; and it's not needed
405  * after board init creates the hard-wired devices.  Some development
406  * platforms may not be able to use spi_register_board_info though, and
407  * this is exported so that for example a USB or parport based adapter
408  * driver could add devices (which it would learn about out-of-band).
409  *
410  * Returns the new device, or NULL.
411  */
spi_new_device(struct spi_master * master,struct spi_board_info * chip)412 struct spi_device *spi_new_device(struct spi_master *master,
413 				  struct spi_board_info *chip)
414 {
415 	struct spi_device	*proxy;
416 	int			status;
417 
418 	/* NOTE:  caller did any chip->bus_num checks necessary.
419 	 *
420 	 * Also, unless we change the return value convention to use
421 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
422 	 * suggests syslogged diagnostics are best here (ugh).
423 	 */
424 
425 	proxy = spi_alloc_device(master);
426 	if (!proxy)
427 		return NULL;
428 
429 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
430 
431 	proxy->chip_select = chip->chip_select;
432 	proxy->max_speed_hz = chip->max_speed_hz;
433 	proxy->mode = chip->mode;
434 	proxy->irq = chip->irq;
435 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
436 	proxy->dev.platform_data = (void *) chip->platform_data;
437 	proxy->controller_data = chip->controller_data;
438 	proxy->controller_state = NULL;
439 
440 	status = spi_add_device(proxy);
441 	if (status < 0) {
442 		spi_dev_put(proxy);
443 		return NULL;
444 	}
445 
446 	return proxy;
447 }
448 EXPORT_SYMBOL_GPL(spi_new_device);
449 
spi_match_master_to_boardinfo(struct spi_master * master,struct spi_board_info * bi)450 static void spi_match_master_to_boardinfo(struct spi_master *master,
451 				struct spi_board_info *bi)
452 {
453 	struct spi_device *dev;
454 
455 	if (master->bus_num != bi->bus_num)
456 		return;
457 
458 	dev = spi_new_device(master, bi);
459 	if (!dev)
460 		dev_err(master->dev.parent, "can't create new device for %s\n",
461 			bi->modalias);
462 }
463 
464 /**
465  * spi_register_board_info - register SPI devices for a given board
466  * @info: array of chip descriptors
467  * @n: how many descriptors are provided
468  * Context: can sleep
469  *
470  * Board-specific early init code calls this (probably during arch_initcall)
471  * with segments of the SPI device table.  Any device nodes are created later,
472  * after the relevant parent SPI controller (bus_num) is defined.  We keep
473  * this table of devices forever, so that reloading a controller driver will
474  * not make Linux forget about these hard-wired devices.
475  *
476  * Other code can also call this, e.g. a particular add-on board might provide
477  * SPI devices through its expansion connector, so code initializing that board
478  * would naturally declare its SPI devices.
479  *
480  * The board info passed can safely be __initdata ... but be careful of
481  * any embedded pointers (platform_data, etc), they're copied as-is.
482  */
483 int __init
spi_register_board_info(struct spi_board_info const * info,unsigned n)484 spi_register_board_info(struct spi_board_info const *info, unsigned n)
485 {
486 	struct boardinfo *bi;
487 	int i;
488 
489 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
490 	if (!bi)
491 		return -ENOMEM;
492 
493 	for (i = 0; i < n; i++, bi++, info++) {
494 		struct spi_master *master;
495 
496 		memcpy(&bi->board_info, info, sizeof(*info));
497 		mutex_lock(&board_lock);
498 		list_add_tail(&bi->list, &board_list);
499 		list_for_each_entry(master, &spi_master_list, list)
500 			spi_match_master_to_boardinfo(master, &bi->board_info);
501 		mutex_unlock(&board_lock);
502 	}
503 
504 	return 0;
505 }
506 
507 /*-------------------------------------------------------------------------*/
508 
spi_master_release(struct device * dev)509 static void spi_master_release(struct device *dev)
510 {
511 	struct spi_master *master;
512 
513 	master = container_of(dev, struct spi_master, dev);
514 	kfree(master);
515 }
516 
517 static struct class spi_master_class = {
518 	.name		= "spi_master",
519 	.owner		= THIS_MODULE,
520 	.dev_release	= spi_master_release,
521 };
522 
523 
524 /**
525  * spi_alloc_master - allocate SPI master controller
526  * @dev: the controller, possibly using the platform_bus
527  * @size: how much zeroed driver-private data to allocate; the pointer to this
528  *	memory is in the driver_data field of the returned device,
529  *	accessible with spi_master_get_devdata().
530  * Context: can sleep
531  *
532  * This call is used only by SPI master controller drivers, which are the
533  * only ones directly touching chip registers.  It's how they allocate
534  * an spi_master structure, prior to calling spi_register_master().
535  *
536  * This must be called from context that can sleep.  It returns the SPI
537  * master structure on success, else NULL.
538  *
539  * The caller is responsible for assigning the bus number and initializing
540  * the master's methods before calling spi_register_master(); and (after errors
541  * adding the device) calling spi_master_put() to prevent a memory leak.
542  */
spi_alloc_master(struct device * dev,unsigned size)543 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
544 {
545 	struct spi_master	*master;
546 
547 	if (!dev)
548 		return NULL;
549 
550 	master = kzalloc(size + sizeof *master, GFP_KERNEL);
551 	if (!master)
552 		return NULL;
553 
554 	device_initialize(&master->dev);
555 	master->dev.class = &spi_master_class;
556 	master->dev.parent = get_device(dev);
557 	spi_master_set_devdata(master, &master[1]);
558 
559 	return master;
560 }
561 EXPORT_SYMBOL_GPL(spi_alloc_master);
562 
563 /**
564  * spi_register_master - register SPI master controller
565  * @master: initialized master, originally from spi_alloc_master()
566  * Context: can sleep
567  *
568  * SPI master controllers connect to their drivers using some non-SPI bus,
569  * such as the platform bus.  The final stage of probe() in that code
570  * includes calling spi_register_master() to hook up to this SPI bus glue.
571  *
572  * SPI controllers use board specific (often SOC specific) bus numbers,
573  * and board-specific addressing for SPI devices combines those numbers
574  * with chip select numbers.  Since SPI does not directly support dynamic
575  * device identification, boards need configuration tables telling which
576  * chip is at which address.
577  *
578  * This must be called from context that can sleep.  It returns zero on
579  * success, else a negative error code (dropping the master's refcount).
580  * After a successful return, the caller is responsible for calling
581  * spi_unregister_master().
582  */
spi_register_master(struct spi_master * master)583 int spi_register_master(struct spi_master *master)
584 {
585 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
586 	struct device		*dev = master->dev.parent;
587 	struct boardinfo	*bi;
588 	int			status = -ENODEV;
589 	int			dynamic = 0;
590 
591 	if (!dev)
592 		return -ENODEV;
593 
594 	/* even if it's just one always-selected device, there must
595 	 * be at least one chipselect
596 	 */
597 	if (master->num_chipselect == 0)
598 		return -EINVAL;
599 
600 	/* convention:  dynamically assigned bus IDs count down from the max */
601 	if (master->bus_num < 0) {
602 		/* FIXME switch to an IDR based scheme, something like
603 		 * I2C now uses, so we can't run out of "dynamic" IDs
604 		 */
605 		master->bus_num = atomic_dec_return(&dyn_bus_id);
606 		dynamic = 1;
607 	}
608 
609 	spin_lock_init(&master->bus_lock_spinlock);
610 	mutex_init(&master->bus_lock_mutex);
611 	master->bus_lock_flag = 0;
612 
613 	/* register the device, then userspace will see it.
614 	 * registration fails if the bus ID is in use.
615 	 */
616 	dev_set_name(&master->dev, "spi%u", master->bus_num);
617 	status = device_add(&master->dev);
618 	if (status < 0)
619 		goto done;
620 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
621 			dynamic ? " (dynamic)" : "");
622 
623 	mutex_lock(&board_lock);
624 	list_add_tail(&master->list, &spi_master_list);
625 	list_for_each_entry(bi, &board_list, list)
626 		spi_match_master_to_boardinfo(master, &bi->board_info);
627 	mutex_unlock(&board_lock);
628 
629 	status = 0;
630 
631 	/* Register devices from the device tree */
632 	of_register_spi_devices(master);
633 done:
634 	return status;
635 }
636 EXPORT_SYMBOL_GPL(spi_register_master);
637 
638 
__unregister(struct device * dev,void * null)639 static int __unregister(struct device *dev, void *null)
640 {
641 	spi_unregister_device(to_spi_device(dev));
642 	return 0;
643 }
644 
645 /**
646  * spi_unregister_master - unregister SPI master controller
647  * @master: the master being unregistered
648  * Context: can sleep
649  *
650  * This call is used only by SPI master controller drivers, which are the
651  * only ones directly touching chip registers.
652  *
653  * This must be called from context that can sleep.
654  */
spi_unregister_master(struct spi_master * master)655 void spi_unregister_master(struct spi_master *master)
656 {
657 	int dummy;
658 
659 	mutex_lock(&board_lock);
660 	list_del(&master->list);
661 	mutex_unlock(&board_lock);
662 
663 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
664 	device_unregister(&master->dev);
665 }
666 EXPORT_SYMBOL_GPL(spi_unregister_master);
667 
__spi_master_match(struct device * dev,void * data)668 static int __spi_master_match(struct device *dev, void *data)
669 {
670 	struct spi_master *m;
671 	u16 *bus_num = data;
672 
673 	m = container_of(dev, struct spi_master, dev);
674 	return m->bus_num == *bus_num;
675 }
676 
677 /**
678  * spi_busnum_to_master - look up master associated with bus_num
679  * @bus_num: the master's bus number
680  * Context: can sleep
681  *
682  * This call may be used with devices that are registered after
683  * arch init time.  It returns a refcounted pointer to the relevant
684  * spi_master (which the caller must release), or NULL if there is
685  * no such master registered.
686  */
spi_busnum_to_master(u16 bus_num)687 struct spi_master *spi_busnum_to_master(u16 bus_num)
688 {
689 	struct device		*dev;
690 	struct spi_master	*master = NULL;
691 
692 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
693 				__spi_master_match);
694 	if (dev)
695 		master = container_of(dev, struct spi_master, dev);
696 	/* reference got in class_find_device */
697 	return master;
698 }
699 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
700 
701 
702 /*-------------------------------------------------------------------------*/
703 
704 /* Core methods for SPI master protocol drivers.  Some of the
705  * other core methods are currently defined as inline functions.
706  */
707 
708 /**
709  * spi_setup - setup SPI mode and clock rate
710  * @spi: the device whose settings are being modified
711  * Context: can sleep, and no requests are queued to the device
712  *
713  * SPI protocol drivers may need to update the transfer mode if the
714  * device doesn't work with its default.  They may likewise need
715  * to update clock rates or word sizes from initial values.  This function
716  * changes those settings, and must be called from a context that can sleep.
717  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
718  * effect the next time the device is selected and data is transferred to
719  * or from it.  When this function returns, the spi device is deselected.
720  *
721  * Note that this call will fail if the protocol driver specifies an option
722  * that the underlying controller or its driver does not support.  For
723  * example, not all hardware supports wire transfers using nine bit words,
724  * LSB-first wire encoding, or active-high chipselects.
725  */
spi_setup(struct spi_device * spi)726 int spi_setup(struct spi_device *spi)
727 {
728 	unsigned	bad_bits;
729 	int		status;
730 
731 	/* help drivers fail *cleanly* when they need options
732 	 * that aren't supported with their current master
733 	 */
734 	bad_bits = spi->mode & ~spi->master->mode_bits;
735 	if (bad_bits) {
736 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
737 			bad_bits);
738 		return -EINVAL;
739 	}
740 
741 	if (!spi->bits_per_word)
742 		spi->bits_per_word = 8;
743 
744 	status = spi->master->setup(spi);
745 
746 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
747 				"%u bits/w, %u Hz max --> %d\n",
748 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
749 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
750 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
751 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
752 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
753 			spi->bits_per_word, spi->max_speed_hz,
754 			status);
755 
756 	return status;
757 }
758 EXPORT_SYMBOL_GPL(spi_setup);
759 
__spi_async(struct spi_device * spi,struct spi_message * message)760 static int __spi_async(struct spi_device *spi, struct spi_message *message)
761 {
762 	struct spi_master *master = spi->master;
763 
764 	/* Half-duplex links include original MicroWire, and ones with
765 	 * only one data pin like SPI_3WIRE (switches direction) or where
766 	 * either MOSI or MISO is missing.  They can also be caused by
767 	 * software limitations.
768 	 */
769 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
770 			|| (spi->mode & SPI_3WIRE)) {
771 		struct spi_transfer *xfer;
772 		unsigned flags = master->flags;
773 
774 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
775 			if (xfer->rx_buf && xfer->tx_buf)
776 				return -EINVAL;
777 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
778 				return -EINVAL;
779 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
780 				return -EINVAL;
781 		}
782 	}
783 
784 	message->spi = spi;
785 	message->status = -EINPROGRESS;
786 	return master->transfer(spi, message);
787 }
788 
789 /**
790  * spi_async - asynchronous SPI transfer
791  * @spi: device with which data will be exchanged
792  * @message: describes the data transfers, including completion callback
793  * Context: any (irqs may be blocked, etc)
794  *
795  * This call may be used in_irq and other contexts which can't sleep,
796  * as well as from task contexts which can sleep.
797  *
798  * The completion callback is invoked in a context which can't sleep.
799  * Before that invocation, the value of message->status is undefined.
800  * When the callback is issued, message->status holds either zero (to
801  * indicate complete success) or a negative error code.  After that
802  * callback returns, the driver which issued the transfer request may
803  * deallocate the associated memory; it's no longer in use by any SPI
804  * core or controller driver code.
805  *
806  * Note that although all messages to a spi_device are handled in
807  * FIFO order, messages may go to different devices in other orders.
808  * Some device might be higher priority, or have various "hard" access
809  * time requirements, for example.
810  *
811  * On detection of any fault during the transfer, processing of
812  * the entire message is aborted, and the device is deselected.
813  * Until returning from the associated message completion callback,
814  * no other spi_message queued to that device will be processed.
815  * (This rule applies equally to all the synchronous transfer calls,
816  * which are wrappers around this core asynchronous primitive.)
817  */
spi_async(struct spi_device * spi,struct spi_message * message)818 int spi_async(struct spi_device *spi, struct spi_message *message)
819 {
820 	struct spi_master *master = spi->master;
821 	int ret;
822 	unsigned long flags;
823 
824 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
825 
826 	if (master->bus_lock_flag)
827 		ret = -EBUSY;
828 	else
829 		ret = __spi_async(spi, message);
830 
831 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
832 
833 	return ret;
834 }
835 EXPORT_SYMBOL_GPL(spi_async);
836 
837 /**
838  * spi_async_locked - version of spi_async with exclusive bus usage
839  * @spi: device with which data will be exchanged
840  * @message: describes the data transfers, including completion callback
841  * Context: any (irqs may be blocked, etc)
842  *
843  * This call may be used in_irq and other contexts which can't sleep,
844  * as well as from task contexts which can sleep.
845  *
846  * The completion callback is invoked in a context which can't sleep.
847  * Before that invocation, the value of message->status is undefined.
848  * When the callback is issued, message->status holds either zero (to
849  * indicate complete success) or a negative error code.  After that
850  * callback returns, the driver which issued the transfer request may
851  * deallocate the associated memory; it's no longer in use by any SPI
852  * core or controller driver code.
853  *
854  * Note that although all messages to a spi_device are handled in
855  * FIFO order, messages may go to different devices in other orders.
856  * Some device might be higher priority, or have various "hard" access
857  * time requirements, for example.
858  *
859  * On detection of any fault during the transfer, processing of
860  * the entire message is aborted, and the device is deselected.
861  * Until returning from the associated message completion callback,
862  * no other spi_message queued to that device will be processed.
863  * (This rule applies equally to all the synchronous transfer calls,
864  * which are wrappers around this core asynchronous primitive.)
865  */
spi_async_locked(struct spi_device * spi,struct spi_message * message)866 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
867 {
868 	struct spi_master *master = spi->master;
869 	int ret;
870 	unsigned long flags;
871 
872 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
873 
874 	ret = __spi_async(spi, message);
875 
876 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
877 
878 	return ret;
879 
880 }
881 EXPORT_SYMBOL_GPL(spi_async_locked);
882 
883 
884 /*-------------------------------------------------------------------------*/
885 
886 /* Utility methods for SPI master protocol drivers, layered on
887  * top of the core.  Some other utility methods are defined as
888  * inline functions.
889  */
890 
spi_complete(void * arg)891 static void spi_complete(void *arg)
892 {
893 	complete(arg);
894 }
895 
__spi_sync(struct spi_device * spi,struct spi_message * message,int bus_locked)896 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
897 		      int bus_locked)
898 {
899 	DECLARE_COMPLETION_ONSTACK(done);
900 	int status;
901 	struct spi_master *master = spi->master;
902 
903 	message->complete = spi_complete;
904 	message->context = &done;
905 
906 	if (!bus_locked)
907 		mutex_lock(&master->bus_lock_mutex);
908 
909 	status = spi_async_locked(spi, message);
910 
911 	if (!bus_locked)
912 		mutex_unlock(&master->bus_lock_mutex);
913 
914 	if (status == 0) {
915 		wait_for_completion(&done);
916 		status = message->status;
917 	}
918 	message->context = NULL;
919 	return status;
920 }
921 
922 /**
923  * spi_sync - blocking/synchronous SPI data transfers
924  * @spi: device with which data will be exchanged
925  * @message: describes the data transfers
926  * Context: can sleep
927  *
928  * This call may only be used from a context that may sleep.  The sleep
929  * is non-interruptible, and has no timeout.  Low-overhead controller
930  * drivers may DMA directly into and out of the message buffers.
931  *
932  * Note that the SPI device's chip select is active during the message,
933  * and then is normally disabled between messages.  Drivers for some
934  * frequently-used devices may want to minimize costs of selecting a chip,
935  * by leaving it selected in anticipation that the next message will go
936  * to the same chip.  (That may increase power usage.)
937  *
938  * Also, the caller is guaranteeing that the memory associated with the
939  * message will not be freed before this call returns.
940  *
941  * It returns zero on success, else a negative error code.
942  */
spi_sync(struct spi_device * spi,struct spi_message * message)943 int spi_sync(struct spi_device *spi, struct spi_message *message)
944 {
945 	return __spi_sync(spi, message, 0);
946 }
947 EXPORT_SYMBOL_GPL(spi_sync);
948 
949 /**
950  * spi_sync_locked - version of spi_sync with exclusive bus usage
951  * @spi: device with which data will be exchanged
952  * @message: describes the data transfers
953  * Context: can sleep
954  *
955  * This call may only be used from a context that may sleep.  The sleep
956  * is non-interruptible, and has no timeout.  Low-overhead controller
957  * drivers may DMA directly into and out of the message buffers.
958  *
959  * This call should be used by drivers that require exclusive access to the
960  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
961  * be released by a spi_bus_unlock call when the exclusive access is over.
962  *
963  * It returns zero on success, else a negative error code.
964  */
spi_sync_locked(struct spi_device * spi,struct spi_message * message)965 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
966 {
967 	return __spi_sync(spi, message, 1);
968 }
969 EXPORT_SYMBOL_GPL(spi_sync_locked);
970 
971 /**
972  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
973  * @master: SPI bus master that should be locked for exclusive bus access
974  * Context: can sleep
975  *
976  * This call may only be used from a context that may sleep.  The sleep
977  * is non-interruptible, and has no timeout.
978  *
979  * This call should be used by drivers that require exclusive access to the
980  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
981  * exclusive access is over. Data transfer must be done by spi_sync_locked
982  * and spi_async_locked calls when the SPI bus lock is held.
983  *
984  * It returns zero on success, else a negative error code.
985  */
spi_bus_lock(struct spi_master * master)986 int spi_bus_lock(struct spi_master *master)
987 {
988 	unsigned long flags;
989 
990 	mutex_lock(&master->bus_lock_mutex);
991 
992 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
993 	master->bus_lock_flag = 1;
994 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
995 
996 	/* mutex remains locked until spi_bus_unlock is called */
997 
998 	return 0;
999 }
1000 EXPORT_SYMBOL_GPL(spi_bus_lock);
1001 
1002 /**
1003  * spi_bus_unlock - release the lock for exclusive SPI bus usage
1004  * @master: SPI bus master that was locked for exclusive bus access
1005  * Context: can sleep
1006  *
1007  * This call may only be used from a context that may sleep.  The sleep
1008  * is non-interruptible, and has no timeout.
1009  *
1010  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1011  * call.
1012  *
1013  * It returns zero on success, else a negative error code.
1014  */
spi_bus_unlock(struct spi_master * master)1015 int spi_bus_unlock(struct spi_master *master)
1016 {
1017 	master->bus_lock_flag = 0;
1018 
1019 	mutex_unlock(&master->bus_lock_mutex);
1020 
1021 	return 0;
1022 }
1023 EXPORT_SYMBOL_GPL(spi_bus_unlock);
1024 
1025 /* portable code must never pass more than 32 bytes */
1026 #define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
1027 
1028 static u8	*buf;
1029 
1030 /**
1031  * spi_write_then_read - SPI synchronous write followed by read
1032  * @spi: device with which data will be exchanged
1033  * @txbuf: data to be written (need not be dma-safe)
1034  * @n_tx: size of txbuf, in bytes
1035  * @rxbuf: buffer into which data will be read (need not be dma-safe)
1036  * @n_rx: size of rxbuf, in bytes
1037  * Context: can sleep
1038  *
1039  * This performs a half duplex MicroWire style transaction with the
1040  * device, sending txbuf and then reading rxbuf.  The return value
1041  * is zero for success, else a negative errno status code.
1042  * This call may only be used from a context that may sleep.
1043  *
1044  * Parameters to this routine are always copied using a small buffer;
1045  * portable code should never use this for more than 32 bytes.
1046  * Performance-sensitive or bulk transfer code should instead use
1047  * spi_{async,sync}() calls with dma-safe buffers.
1048  */
spi_write_then_read(struct spi_device * spi,const u8 * txbuf,unsigned n_tx,u8 * rxbuf,unsigned n_rx)1049 int spi_write_then_read(struct spi_device *spi,
1050 		const u8 *txbuf, unsigned n_tx,
1051 		u8 *rxbuf, unsigned n_rx)
1052 {
1053 	static DEFINE_MUTEX(lock);
1054 
1055 	int			status;
1056 	struct spi_message	message;
1057 	struct spi_transfer	x[2];
1058 	u8			*local_buf;
1059 
1060 	/* Use preallocated DMA-safe buffer.  We can't avoid copying here,
1061 	 * (as a pure convenience thing), but we can keep heap costs
1062 	 * out of the hot path ...
1063 	 */
1064 	if ((n_tx + n_rx) > SPI_BUFSIZ)
1065 		return -EINVAL;
1066 
1067 	spi_message_init(&message);
1068 	memset(x, 0, sizeof x);
1069 	if (n_tx) {
1070 		x[0].len = n_tx;
1071 		spi_message_add_tail(&x[0], &message);
1072 	}
1073 	if (n_rx) {
1074 		x[1].len = n_rx;
1075 		spi_message_add_tail(&x[1], &message);
1076 	}
1077 
1078 	/* ... unless someone else is using the pre-allocated buffer */
1079 	if (!mutex_trylock(&lock)) {
1080 		local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1081 		if (!local_buf)
1082 			return -ENOMEM;
1083 	} else
1084 		local_buf = buf;
1085 
1086 	memcpy(local_buf, txbuf, n_tx);
1087 	x[0].tx_buf = local_buf;
1088 	x[1].rx_buf = local_buf + n_tx;
1089 
1090 	/* do the i/o */
1091 	status = spi_sync(spi, &message);
1092 	if (status == 0)
1093 		memcpy(rxbuf, x[1].rx_buf, n_rx);
1094 
1095 	if (x[0].tx_buf == buf)
1096 		mutex_unlock(&lock);
1097 	else
1098 		kfree(local_buf);
1099 
1100 	return status;
1101 }
1102 EXPORT_SYMBOL_GPL(spi_write_then_read);
1103 
1104 /*-------------------------------------------------------------------------*/
1105 
spi_init(void)1106 static int __init spi_init(void)
1107 {
1108 	int	status;
1109 
1110 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1111 	if (!buf) {
1112 		status = -ENOMEM;
1113 		goto err0;
1114 	}
1115 
1116 	status = bus_register(&spi_bus_type);
1117 	if (status < 0)
1118 		goto err1;
1119 
1120 	status = class_register(&spi_master_class);
1121 	if (status < 0)
1122 		goto err2;
1123 	return 0;
1124 
1125 err2:
1126 	bus_unregister(&spi_bus_type);
1127 err1:
1128 	kfree(buf);
1129 	buf = NULL;
1130 err0:
1131 	return status;
1132 }
1133 
1134 /* board_info is normally registered in arch_initcall(),
1135  * but even essential drivers wait till later
1136  *
1137  * REVISIT only boardinfo really needs static linking. the rest (device and
1138  * driver registration) _could_ be dynamically linked (modular) ... costs
1139  * include needing to have boardinfo data structures be much more public.
1140  */
1141 postcore_initcall(spi_init);
1142 
1143