1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5 *
6 * Copyright (C) 2005, Intec Automation Inc.
7 * Copyright (C) 2014, Freescale Semiconductor, Inc.
8 */
9
10 #include <linux/err.h>
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/delay.h>
14 #include <linux/device.h>
15 #include <linux/mutex.h>
16 #include <linux/math64.h>
17 #include <linux/sizes.h>
18 #include <linux/slab.h>
19
20 #include <linux/mtd/mtd.h>
21 #include <linux/of_platform.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/spi/flash.h>
24 #include <linux/mtd/spi-nor.h>
25
26 #include "core.h"
27
28 /* Define max times to check status register before we give up. */
29
30 /*
31 * For everything but full-chip erase; probably could be much smaller, but kept
32 * around for safety for now
33 */
34 #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
35
36 /*
37 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
38 * for larger flash
39 */
40 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
41
42 #define SPI_NOR_MAX_ADDR_NBYTES 4
43
44 #define SPI_NOR_SRST_SLEEP_MIN 200
45 #define SPI_NOR_SRST_SLEEP_MAX 400
46
47 /**
48 * spi_nor_get_cmd_ext() - Get the command opcode extension based on the
49 * extension type.
50 * @nor: pointer to a 'struct spi_nor'
51 * @op: pointer to the 'struct spi_mem_op' whose properties
52 * need to be initialized.
53 *
54 * Right now, only "repeat" and "invert" are supported.
55 *
56 * Return: The opcode extension.
57 */
spi_nor_get_cmd_ext(const struct spi_nor * nor,const struct spi_mem_op * op)58 static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor,
59 const struct spi_mem_op *op)
60 {
61 switch (nor->cmd_ext_type) {
62 case SPI_NOR_EXT_INVERT:
63 return ~op->cmd.opcode;
64
65 case SPI_NOR_EXT_REPEAT:
66 return op->cmd.opcode;
67
68 default:
69 dev_err(nor->dev, "Unknown command extension type\n");
70 return 0;
71 }
72 }
73
74 /**
75 * spi_nor_spimem_setup_op() - Set up common properties of a spi-mem op.
76 * @nor: pointer to a 'struct spi_nor'
77 * @op: pointer to the 'struct spi_mem_op' whose properties
78 * need to be initialized.
79 * @proto: the protocol from which the properties need to be set.
80 */
spi_nor_spimem_setup_op(const struct spi_nor * nor,struct spi_mem_op * op,const enum spi_nor_protocol proto)81 void spi_nor_spimem_setup_op(const struct spi_nor *nor,
82 struct spi_mem_op *op,
83 const enum spi_nor_protocol proto)
84 {
85 u8 ext;
86
87 op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto);
88
89 if (op->addr.nbytes)
90 op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto);
91
92 if (op->dummy.nbytes)
93 op->dummy.buswidth = spi_nor_get_protocol_addr_nbits(proto);
94
95 if (op->data.nbytes)
96 op->data.buswidth = spi_nor_get_protocol_data_nbits(proto);
97
98 if (spi_nor_protocol_is_dtr(proto)) {
99 /*
100 * SPIMEM supports mixed DTR modes, but right now we can only
101 * have all phases either DTR or STR. IOW, SPIMEM can have
102 * something like 4S-4D-4D, but SPI NOR can't. So, set all 4
103 * phases to either DTR or STR.
104 */
105 op->cmd.dtr = true;
106 op->addr.dtr = true;
107 op->dummy.dtr = true;
108 op->data.dtr = true;
109
110 /* 2 bytes per clock cycle in DTR mode. */
111 op->dummy.nbytes *= 2;
112
113 ext = spi_nor_get_cmd_ext(nor, op);
114 op->cmd.opcode = (op->cmd.opcode << 8) | ext;
115 op->cmd.nbytes = 2;
116 }
117 }
118
119 /**
120 * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
121 * transfer
122 * @nor: pointer to 'struct spi_nor'
123 * @op: pointer to 'struct spi_mem_op' template for transfer
124 *
125 * If we have to use the bounce buffer, the data field in @op will be updated.
126 *
127 * Return: true if the bounce buffer is needed, false if not
128 */
spi_nor_spimem_bounce(struct spi_nor * nor,struct spi_mem_op * op)129 static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
130 {
131 /* op->data.buf.in occupies the same memory as op->data.buf.out */
132 if (object_is_on_stack(op->data.buf.in) ||
133 !virt_addr_valid(op->data.buf.in)) {
134 if (op->data.nbytes > nor->bouncebuf_size)
135 op->data.nbytes = nor->bouncebuf_size;
136 op->data.buf.in = nor->bouncebuf;
137 return true;
138 }
139
140 return false;
141 }
142
143 /**
144 * spi_nor_spimem_exec_op() - execute a memory operation
145 * @nor: pointer to 'struct spi_nor'
146 * @op: pointer to 'struct spi_mem_op' template for transfer
147 *
148 * Return: 0 on success, -error otherwise.
149 */
spi_nor_spimem_exec_op(struct spi_nor * nor,struct spi_mem_op * op)150 static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
151 {
152 int error;
153
154 error = spi_mem_adjust_op_size(nor->spimem, op);
155 if (error)
156 return error;
157
158 return spi_mem_exec_op(nor->spimem, op);
159 }
160
spi_nor_controller_ops_read_reg(struct spi_nor * nor,u8 opcode,u8 * buf,size_t len)161 int spi_nor_controller_ops_read_reg(struct spi_nor *nor, u8 opcode,
162 u8 *buf, size_t len)
163 {
164 if (spi_nor_protocol_is_dtr(nor->reg_proto))
165 return -EOPNOTSUPP;
166
167 return nor->controller_ops->read_reg(nor, opcode, buf, len);
168 }
169
spi_nor_controller_ops_write_reg(struct spi_nor * nor,u8 opcode,const u8 * buf,size_t len)170 int spi_nor_controller_ops_write_reg(struct spi_nor *nor, u8 opcode,
171 const u8 *buf, size_t len)
172 {
173 if (spi_nor_protocol_is_dtr(nor->reg_proto))
174 return -EOPNOTSUPP;
175
176 return nor->controller_ops->write_reg(nor, opcode, buf, len);
177 }
178
spi_nor_controller_ops_erase(struct spi_nor * nor,loff_t offs)179 static int spi_nor_controller_ops_erase(struct spi_nor *nor, loff_t offs)
180 {
181 if (spi_nor_protocol_is_dtr(nor->reg_proto))
182 return -EOPNOTSUPP;
183
184 return nor->controller_ops->erase(nor, offs);
185 }
186
187 /**
188 * spi_nor_spimem_read_data() - read data from flash's memory region via
189 * spi-mem
190 * @nor: pointer to 'struct spi_nor'
191 * @from: offset to read from
192 * @len: number of bytes to read
193 * @buf: pointer to dst buffer
194 *
195 * Return: number of bytes read successfully, -errno otherwise
196 */
spi_nor_spimem_read_data(struct spi_nor * nor,loff_t from,size_t len,u8 * buf)197 static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
198 size_t len, u8 *buf)
199 {
200 struct spi_mem_op op =
201 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
202 SPI_MEM_OP_ADDR(nor->addr_nbytes, from, 0),
203 SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
204 SPI_MEM_OP_DATA_IN(len, buf, 0));
205 bool usebouncebuf;
206 ssize_t nbytes;
207 int error;
208
209 spi_nor_spimem_setup_op(nor, &op, nor->read_proto);
210
211 /* convert the dummy cycles to the number of bytes */
212 op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
213 if (spi_nor_protocol_is_dtr(nor->read_proto))
214 op.dummy.nbytes *= 2;
215
216 usebouncebuf = spi_nor_spimem_bounce(nor, &op);
217
218 if (nor->dirmap.rdesc) {
219 nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
220 op.data.nbytes, op.data.buf.in);
221 } else {
222 error = spi_nor_spimem_exec_op(nor, &op);
223 if (error)
224 return error;
225 nbytes = op.data.nbytes;
226 }
227
228 if (usebouncebuf && nbytes > 0)
229 memcpy(buf, op.data.buf.in, nbytes);
230
231 return nbytes;
232 }
233
234 /**
235 * spi_nor_read_data() - read data from flash memory
236 * @nor: pointer to 'struct spi_nor'
237 * @from: offset to read from
238 * @len: number of bytes to read
239 * @buf: pointer to dst buffer
240 *
241 * Return: number of bytes read successfully, -errno otherwise
242 */
spi_nor_read_data(struct spi_nor * nor,loff_t from,size_t len,u8 * buf)243 ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
244 {
245 if (nor->spimem)
246 return spi_nor_spimem_read_data(nor, from, len, buf);
247
248 return nor->controller_ops->read(nor, from, len, buf);
249 }
250
251 /**
252 * spi_nor_spimem_write_data() - write data to flash memory via
253 * spi-mem
254 * @nor: pointer to 'struct spi_nor'
255 * @to: offset to write to
256 * @len: number of bytes to write
257 * @buf: pointer to src buffer
258 *
259 * Return: number of bytes written successfully, -errno otherwise
260 */
spi_nor_spimem_write_data(struct spi_nor * nor,loff_t to,size_t len,const u8 * buf)261 static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
262 size_t len, const u8 *buf)
263 {
264 struct spi_mem_op op =
265 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
266 SPI_MEM_OP_ADDR(nor->addr_nbytes, to, 0),
267 SPI_MEM_OP_NO_DUMMY,
268 SPI_MEM_OP_DATA_OUT(len, buf, 0));
269 ssize_t nbytes;
270 int error;
271
272 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
273 op.addr.nbytes = 0;
274
275 spi_nor_spimem_setup_op(nor, &op, nor->write_proto);
276
277 if (spi_nor_spimem_bounce(nor, &op))
278 memcpy(nor->bouncebuf, buf, op.data.nbytes);
279
280 if (nor->dirmap.wdesc) {
281 nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
282 op.data.nbytes, op.data.buf.out);
283 } else {
284 error = spi_nor_spimem_exec_op(nor, &op);
285 if (error)
286 return error;
287 nbytes = op.data.nbytes;
288 }
289
290 return nbytes;
291 }
292
293 /**
294 * spi_nor_write_data() - write data to flash memory
295 * @nor: pointer to 'struct spi_nor'
296 * @to: offset to write to
297 * @len: number of bytes to write
298 * @buf: pointer to src buffer
299 *
300 * Return: number of bytes written successfully, -errno otherwise
301 */
spi_nor_write_data(struct spi_nor * nor,loff_t to,size_t len,const u8 * buf)302 ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
303 const u8 *buf)
304 {
305 if (nor->spimem)
306 return spi_nor_spimem_write_data(nor, to, len, buf);
307
308 return nor->controller_ops->write(nor, to, len, buf);
309 }
310
311 /**
312 * spi_nor_read_any_reg() - read any register from flash memory, nonvolatile or
313 * volatile.
314 * @nor: pointer to 'struct spi_nor'.
315 * @op: SPI memory operation. op->data.buf must be DMA-able.
316 * @proto: SPI protocol to use for the register operation.
317 *
318 * Return: zero on success, -errno otherwise
319 */
spi_nor_read_any_reg(struct spi_nor * nor,struct spi_mem_op * op,enum spi_nor_protocol proto)320 int spi_nor_read_any_reg(struct spi_nor *nor, struct spi_mem_op *op,
321 enum spi_nor_protocol proto)
322 {
323 if (!nor->spimem)
324 return -EOPNOTSUPP;
325
326 spi_nor_spimem_setup_op(nor, op, proto);
327 return spi_nor_spimem_exec_op(nor, op);
328 }
329
330 /**
331 * spi_nor_write_any_volatile_reg() - write any volatile register to flash
332 * memory.
333 * @nor: pointer to 'struct spi_nor'
334 * @op: SPI memory operation. op->data.buf must be DMA-able.
335 * @proto: SPI protocol to use for the register operation.
336 *
337 * Writing volatile registers are instant according to some manufacturers
338 * (Cypress, Micron) and do not need any status polling.
339 *
340 * Return: zero on success, -errno otherwise
341 */
spi_nor_write_any_volatile_reg(struct spi_nor * nor,struct spi_mem_op * op,enum spi_nor_protocol proto)342 int spi_nor_write_any_volatile_reg(struct spi_nor *nor, struct spi_mem_op *op,
343 enum spi_nor_protocol proto)
344 {
345 int ret;
346
347 if (!nor->spimem)
348 return -EOPNOTSUPP;
349
350 ret = spi_nor_write_enable(nor);
351 if (ret)
352 return ret;
353 spi_nor_spimem_setup_op(nor, op, proto);
354 return spi_nor_spimem_exec_op(nor, op);
355 }
356
357 /**
358 * spi_nor_write_enable() - Set write enable latch with Write Enable command.
359 * @nor: pointer to 'struct spi_nor'.
360 *
361 * Return: 0 on success, -errno otherwise.
362 */
spi_nor_write_enable(struct spi_nor * nor)363 int spi_nor_write_enable(struct spi_nor *nor)
364 {
365 int ret;
366
367 if (nor->spimem) {
368 struct spi_mem_op op = SPI_NOR_WREN_OP;
369
370 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
371
372 ret = spi_mem_exec_op(nor->spimem, &op);
373 } else {
374 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREN,
375 NULL, 0);
376 }
377
378 if (ret)
379 dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
380
381 return ret;
382 }
383
384 /**
385 * spi_nor_write_disable() - Send Write Disable instruction to the chip.
386 * @nor: pointer to 'struct spi_nor'.
387 *
388 * Return: 0 on success, -errno otherwise.
389 */
spi_nor_write_disable(struct spi_nor * nor)390 int spi_nor_write_disable(struct spi_nor *nor)
391 {
392 int ret;
393
394 if (nor->spimem) {
395 struct spi_mem_op op = SPI_NOR_WRDI_OP;
396
397 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
398
399 ret = spi_mem_exec_op(nor->spimem, &op);
400 } else {
401 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRDI,
402 NULL, 0);
403 }
404
405 if (ret)
406 dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
407
408 return ret;
409 }
410
411 /**
412 * spi_nor_read_id() - Read the JEDEC ID.
413 * @nor: pointer to 'struct spi_nor'.
414 * @naddr: number of address bytes to send. Can be zero if the operation
415 * does not need to send an address.
416 * @ndummy: number of dummy bytes to send after an opcode or address. Can
417 * be zero if the operation does not require dummy bytes.
418 * @id: pointer to a DMA-able buffer where the value of the JEDEC ID
419 * will be written.
420 * @proto: the SPI protocol for register operation.
421 *
422 * Return: 0 on success, -errno otherwise.
423 */
spi_nor_read_id(struct spi_nor * nor,u8 naddr,u8 ndummy,u8 * id,enum spi_nor_protocol proto)424 int spi_nor_read_id(struct spi_nor *nor, u8 naddr, u8 ndummy, u8 *id,
425 enum spi_nor_protocol proto)
426 {
427 int ret;
428
429 if (nor->spimem) {
430 struct spi_mem_op op =
431 SPI_NOR_READID_OP(naddr, ndummy, id, SPI_NOR_MAX_ID_LEN);
432
433 spi_nor_spimem_setup_op(nor, &op, proto);
434 ret = spi_mem_exec_op(nor->spimem, &op);
435 } else {
436 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
437 SPI_NOR_MAX_ID_LEN);
438 }
439 return ret;
440 }
441
442 /**
443 * spi_nor_read_sr() - Read the Status Register.
444 * @nor: pointer to 'struct spi_nor'.
445 * @sr: pointer to a DMA-able buffer where the value of the
446 * Status Register will be written. Should be at least 2 bytes.
447 *
448 * Return: 0 on success, -errno otherwise.
449 */
spi_nor_read_sr(struct spi_nor * nor,u8 * sr)450 int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
451 {
452 int ret;
453
454 if (nor->spimem) {
455 struct spi_mem_op op = SPI_NOR_RDSR_OP(sr);
456
457 if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
458 op.addr.nbytes = nor->params->rdsr_addr_nbytes;
459 op.dummy.nbytes = nor->params->rdsr_dummy;
460 /*
461 * We don't want to read only one byte in DTR mode. So,
462 * read 2 and then discard the second byte.
463 */
464 op.data.nbytes = 2;
465 }
466
467 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
468
469 ret = spi_mem_exec_op(nor->spimem, &op);
470 } else {
471 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR, sr,
472 1);
473 }
474
475 if (ret)
476 dev_dbg(nor->dev, "error %d reading SR\n", ret);
477
478 return ret;
479 }
480
481 /**
482 * spi_nor_read_cr() - Read the Configuration Register using the
483 * SPINOR_OP_RDCR (35h) command.
484 * @nor: pointer to 'struct spi_nor'
485 * @cr: pointer to a DMA-able buffer where the value of the
486 * Configuration Register will be written.
487 *
488 * Return: 0 on success, -errno otherwise.
489 */
spi_nor_read_cr(struct spi_nor * nor,u8 * cr)490 int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
491 {
492 int ret;
493
494 if (nor->spimem) {
495 struct spi_mem_op op = SPI_NOR_RDCR_OP(cr);
496
497 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
498
499 ret = spi_mem_exec_op(nor->spimem, &op);
500 } else {
501 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDCR, cr,
502 1);
503 }
504
505 if (ret)
506 dev_dbg(nor->dev, "error %d reading CR\n", ret);
507
508 return ret;
509 }
510
511 /**
512 * spi_nor_set_4byte_addr_mode() - Enter/Exit 4-byte address mode.
513 * @nor: pointer to 'struct spi_nor'.
514 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
515 * address mode.
516 *
517 * Return: 0 on success, -errno otherwise.
518 */
spi_nor_set_4byte_addr_mode(struct spi_nor * nor,bool enable)519 int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
520 {
521 int ret;
522
523 if (nor->spimem) {
524 struct spi_mem_op op = SPI_NOR_EN4B_EX4B_OP(enable);
525
526 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
527
528 ret = spi_mem_exec_op(nor->spimem, &op);
529 } else {
530 ret = spi_nor_controller_ops_write_reg(nor,
531 enable ? SPINOR_OP_EN4B :
532 SPINOR_OP_EX4B,
533 NULL, 0);
534 }
535
536 if (ret)
537 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
538
539 return ret;
540 }
541
542 /**
543 * spansion_set_4byte_addr_mode() - Set 4-byte address mode for Spansion
544 * flashes.
545 * @nor: pointer to 'struct spi_nor'.
546 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
547 * address mode.
548 *
549 * Return: 0 on success, -errno otherwise.
550 */
spansion_set_4byte_addr_mode(struct spi_nor * nor,bool enable)551 static int spansion_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
552 {
553 int ret;
554
555 nor->bouncebuf[0] = enable << 7;
556
557 if (nor->spimem) {
558 struct spi_mem_op op = SPI_NOR_BRWR_OP(nor->bouncebuf);
559
560 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
561
562 ret = spi_mem_exec_op(nor->spimem, &op);
563 } else {
564 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_BRWR,
565 nor->bouncebuf, 1);
566 }
567
568 if (ret)
569 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
570
571 return ret;
572 }
573
574 /**
575 * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
576 * for new commands.
577 * @nor: pointer to 'struct spi_nor'.
578 *
579 * Return: 1 if ready, 0 if not ready, -errno on errors.
580 */
spi_nor_sr_ready(struct spi_nor * nor)581 int spi_nor_sr_ready(struct spi_nor *nor)
582 {
583 int ret;
584
585 ret = spi_nor_read_sr(nor, nor->bouncebuf);
586 if (ret)
587 return ret;
588
589 return !(nor->bouncebuf[0] & SR_WIP);
590 }
591
592 /**
593 * spi_nor_ready() - Query the flash to see if it is ready for new commands.
594 * @nor: pointer to 'struct spi_nor'.
595 *
596 * Return: 1 if ready, 0 if not ready, -errno on errors.
597 */
spi_nor_ready(struct spi_nor * nor)598 static int spi_nor_ready(struct spi_nor *nor)
599 {
600 /* Flashes might override the standard routine. */
601 if (nor->params->ready)
602 return nor->params->ready(nor);
603
604 return spi_nor_sr_ready(nor);
605 }
606
607 /**
608 * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
609 * Status Register until ready, or timeout occurs.
610 * @nor: pointer to "struct spi_nor".
611 * @timeout_jiffies: jiffies to wait until timeout.
612 *
613 * Return: 0 on success, -errno otherwise.
614 */
spi_nor_wait_till_ready_with_timeout(struct spi_nor * nor,unsigned long timeout_jiffies)615 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
616 unsigned long timeout_jiffies)
617 {
618 unsigned long deadline;
619 int timeout = 0, ret;
620
621 deadline = jiffies + timeout_jiffies;
622
623 while (!timeout) {
624 if (time_after_eq(jiffies, deadline))
625 timeout = 1;
626
627 ret = spi_nor_ready(nor);
628 if (ret < 0)
629 return ret;
630 if (ret)
631 return 0;
632
633 cond_resched();
634 }
635
636 dev_dbg(nor->dev, "flash operation timed out\n");
637
638 return -ETIMEDOUT;
639 }
640
641 /**
642 * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
643 * flash to be ready, or timeout occurs.
644 * @nor: pointer to "struct spi_nor".
645 *
646 * Return: 0 on success, -errno otherwise.
647 */
spi_nor_wait_till_ready(struct spi_nor * nor)648 int spi_nor_wait_till_ready(struct spi_nor *nor)
649 {
650 return spi_nor_wait_till_ready_with_timeout(nor,
651 DEFAULT_READY_WAIT_JIFFIES);
652 }
653
654 /**
655 * spi_nor_global_block_unlock() - Unlock Global Block Protection.
656 * @nor: pointer to 'struct spi_nor'.
657 *
658 * Return: 0 on success, -errno otherwise.
659 */
spi_nor_global_block_unlock(struct spi_nor * nor)660 int spi_nor_global_block_unlock(struct spi_nor *nor)
661 {
662 int ret;
663
664 ret = spi_nor_write_enable(nor);
665 if (ret)
666 return ret;
667
668 if (nor->spimem) {
669 struct spi_mem_op op = SPI_NOR_GBULK_OP;
670
671 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
672
673 ret = spi_mem_exec_op(nor->spimem, &op);
674 } else {
675 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_GBULK,
676 NULL, 0);
677 }
678
679 if (ret) {
680 dev_dbg(nor->dev, "error %d on Global Block Unlock\n", ret);
681 return ret;
682 }
683
684 return spi_nor_wait_till_ready(nor);
685 }
686
687 /**
688 * spi_nor_write_sr() - Write the Status Register.
689 * @nor: pointer to 'struct spi_nor'.
690 * @sr: pointer to DMA-able buffer to write to the Status Register.
691 * @len: number of bytes to write to the Status Register.
692 *
693 * Return: 0 on success, -errno otherwise.
694 */
spi_nor_write_sr(struct spi_nor * nor,const u8 * sr,size_t len)695 int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
696 {
697 int ret;
698
699 ret = spi_nor_write_enable(nor);
700 if (ret)
701 return ret;
702
703 if (nor->spimem) {
704 struct spi_mem_op op = SPI_NOR_WRSR_OP(sr, len);
705
706 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
707
708 ret = spi_mem_exec_op(nor->spimem, &op);
709 } else {
710 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR, sr,
711 len);
712 }
713
714 if (ret) {
715 dev_dbg(nor->dev, "error %d writing SR\n", ret);
716 return ret;
717 }
718
719 return spi_nor_wait_till_ready(nor);
720 }
721
722 /**
723 * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
724 * ensure that the byte written match the received value.
725 * @nor: pointer to a 'struct spi_nor'.
726 * @sr1: byte value to be written to the Status Register.
727 *
728 * Return: 0 on success, -errno otherwise.
729 */
spi_nor_write_sr1_and_check(struct spi_nor * nor,u8 sr1)730 static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
731 {
732 int ret;
733
734 nor->bouncebuf[0] = sr1;
735
736 ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
737 if (ret)
738 return ret;
739
740 ret = spi_nor_read_sr(nor, nor->bouncebuf);
741 if (ret)
742 return ret;
743
744 if (nor->bouncebuf[0] != sr1) {
745 dev_dbg(nor->dev, "SR1: read back test failed\n");
746 return -EIO;
747 }
748
749 return 0;
750 }
751
752 /**
753 * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
754 * Status Register 2 in one shot. Ensure that the byte written in the Status
755 * Register 1 match the received value, and that the 16-bit Write did not
756 * affect what was already in the Status Register 2.
757 * @nor: pointer to a 'struct spi_nor'.
758 * @sr1: byte value to be written to the Status Register 1.
759 *
760 * Return: 0 on success, -errno otherwise.
761 */
spi_nor_write_16bit_sr_and_check(struct spi_nor * nor,u8 sr1)762 static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
763 {
764 int ret;
765 u8 *sr_cr = nor->bouncebuf;
766 u8 cr_written;
767
768 /* Make sure we don't overwrite the contents of Status Register 2. */
769 if (!(nor->flags & SNOR_F_NO_READ_CR)) {
770 ret = spi_nor_read_cr(nor, &sr_cr[1]);
771 if (ret)
772 return ret;
773 } else if (nor->params->quad_enable) {
774 /*
775 * If the Status Register 2 Read command (35h) is not
776 * supported, we should at least be sure we don't
777 * change the value of the SR2 Quad Enable bit.
778 *
779 * We can safely assume that when the Quad Enable method is
780 * set, the value of the QE bit is one, as a consequence of the
781 * nor->params->quad_enable() call.
782 *
783 * We can safely assume that the Quad Enable bit is present in
784 * the Status Register 2 at BIT(1). According to the JESD216
785 * revB standard, BFPT DWORDS[15], bits 22:20, the 16-bit
786 * Write Status (01h) command is available just for the cases
787 * in which the QE bit is described in SR2 at BIT(1).
788 */
789 sr_cr[1] = SR2_QUAD_EN_BIT1;
790 } else {
791 sr_cr[1] = 0;
792 }
793
794 sr_cr[0] = sr1;
795
796 ret = spi_nor_write_sr(nor, sr_cr, 2);
797 if (ret)
798 return ret;
799
800 ret = spi_nor_read_sr(nor, sr_cr);
801 if (ret)
802 return ret;
803
804 if (sr1 != sr_cr[0]) {
805 dev_dbg(nor->dev, "SR: Read back test failed\n");
806 return -EIO;
807 }
808
809 if (nor->flags & SNOR_F_NO_READ_CR)
810 return 0;
811
812 cr_written = sr_cr[1];
813
814 ret = spi_nor_read_cr(nor, &sr_cr[1]);
815 if (ret)
816 return ret;
817
818 if (cr_written != sr_cr[1]) {
819 dev_dbg(nor->dev, "CR: read back test failed\n");
820 return -EIO;
821 }
822
823 return 0;
824 }
825
826 /**
827 * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
828 * Configuration Register in one shot. Ensure that the byte written in the
829 * Configuration Register match the received value, and that the 16-bit Write
830 * did not affect what was already in the Status Register 1.
831 * @nor: pointer to a 'struct spi_nor'.
832 * @cr: byte value to be written to the Configuration Register.
833 *
834 * Return: 0 on success, -errno otherwise.
835 */
spi_nor_write_16bit_cr_and_check(struct spi_nor * nor,u8 cr)836 int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
837 {
838 int ret;
839 u8 *sr_cr = nor->bouncebuf;
840 u8 sr_written;
841
842 /* Keep the current value of the Status Register 1. */
843 ret = spi_nor_read_sr(nor, sr_cr);
844 if (ret)
845 return ret;
846
847 sr_cr[1] = cr;
848
849 ret = spi_nor_write_sr(nor, sr_cr, 2);
850 if (ret)
851 return ret;
852
853 sr_written = sr_cr[0];
854
855 ret = spi_nor_read_sr(nor, sr_cr);
856 if (ret)
857 return ret;
858
859 if (sr_written != sr_cr[0]) {
860 dev_dbg(nor->dev, "SR: Read back test failed\n");
861 return -EIO;
862 }
863
864 if (nor->flags & SNOR_F_NO_READ_CR)
865 return 0;
866
867 ret = spi_nor_read_cr(nor, &sr_cr[1]);
868 if (ret)
869 return ret;
870
871 if (cr != sr_cr[1]) {
872 dev_dbg(nor->dev, "CR: read back test failed\n");
873 return -EIO;
874 }
875
876 return 0;
877 }
878
879 /**
880 * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
881 * the byte written match the received value without affecting other bits in the
882 * Status Register 1 and 2.
883 * @nor: pointer to a 'struct spi_nor'.
884 * @sr1: byte value to be written to the Status Register.
885 *
886 * Return: 0 on success, -errno otherwise.
887 */
spi_nor_write_sr_and_check(struct spi_nor * nor,u8 sr1)888 int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
889 {
890 if (nor->flags & SNOR_F_HAS_16BIT_SR)
891 return spi_nor_write_16bit_sr_and_check(nor, sr1);
892
893 return spi_nor_write_sr1_and_check(nor, sr1);
894 }
895
896 /**
897 * spi_nor_write_sr2() - Write the Status Register 2 using the
898 * SPINOR_OP_WRSR2 (3eh) command.
899 * @nor: pointer to 'struct spi_nor'.
900 * @sr2: pointer to DMA-able buffer to write to the Status Register 2.
901 *
902 * Return: 0 on success, -errno otherwise.
903 */
spi_nor_write_sr2(struct spi_nor * nor,const u8 * sr2)904 static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
905 {
906 int ret;
907
908 ret = spi_nor_write_enable(nor);
909 if (ret)
910 return ret;
911
912 if (nor->spimem) {
913 struct spi_mem_op op = SPI_NOR_WRSR2_OP(sr2);
914
915 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
916
917 ret = spi_mem_exec_op(nor->spimem, &op);
918 } else {
919 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR2,
920 sr2, 1);
921 }
922
923 if (ret) {
924 dev_dbg(nor->dev, "error %d writing SR2\n", ret);
925 return ret;
926 }
927
928 return spi_nor_wait_till_ready(nor);
929 }
930
931 /**
932 * spi_nor_read_sr2() - Read the Status Register 2 using the
933 * SPINOR_OP_RDSR2 (3fh) command.
934 * @nor: pointer to 'struct spi_nor'.
935 * @sr2: pointer to DMA-able buffer where the value of the
936 * Status Register 2 will be written.
937 *
938 * Return: 0 on success, -errno otherwise.
939 */
spi_nor_read_sr2(struct spi_nor * nor,u8 * sr2)940 static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
941 {
942 int ret;
943
944 if (nor->spimem) {
945 struct spi_mem_op op = SPI_NOR_RDSR2_OP(sr2);
946
947 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
948
949 ret = spi_mem_exec_op(nor->spimem, &op);
950 } else {
951 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR2, sr2,
952 1);
953 }
954
955 if (ret)
956 dev_dbg(nor->dev, "error %d reading SR2\n", ret);
957
958 return ret;
959 }
960
961 /**
962 * spi_nor_erase_chip() - Erase the entire flash memory.
963 * @nor: pointer to 'struct spi_nor'.
964 *
965 * Return: 0 on success, -errno otherwise.
966 */
spi_nor_erase_chip(struct spi_nor * nor)967 static int spi_nor_erase_chip(struct spi_nor *nor)
968 {
969 int ret;
970
971 dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
972
973 if (nor->spimem) {
974 struct spi_mem_op op = SPI_NOR_CHIP_ERASE_OP;
975
976 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
977
978 ret = spi_mem_exec_op(nor->spimem, &op);
979 } else {
980 ret = spi_nor_controller_ops_write_reg(nor,
981 SPINOR_OP_CHIP_ERASE,
982 NULL, 0);
983 }
984
985 if (ret)
986 dev_dbg(nor->dev, "error %d erasing chip\n", ret);
987
988 return ret;
989 }
990
spi_nor_convert_opcode(u8 opcode,const u8 table[][2],size_t size)991 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
992 {
993 size_t i;
994
995 for (i = 0; i < size; i++)
996 if (table[i][0] == opcode)
997 return table[i][1];
998
999 /* No conversion found, keep input op code. */
1000 return opcode;
1001 }
1002
spi_nor_convert_3to4_read(u8 opcode)1003 u8 spi_nor_convert_3to4_read(u8 opcode)
1004 {
1005 static const u8 spi_nor_3to4_read[][2] = {
1006 { SPINOR_OP_READ, SPINOR_OP_READ_4B },
1007 { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
1008 { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
1009 { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
1010 { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
1011 { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
1012 { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
1013 { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
1014
1015 { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
1016 { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
1017 { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B },
1018 };
1019
1020 return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
1021 ARRAY_SIZE(spi_nor_3to4_read));
1022 }
1023
spi_nor_convert_3to4_program(u8 opcode)1024 static u8 spi_nor_convert_3to4_program(u8 opcode)
1025 {
1026 static const u8 spi_nor_3to4_program[][2] = {
1027 { SPINOR_OP_PP, SPINOR_OP_PP_4B },
1028 { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
1029 { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
1030 { SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B },
1031 { SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B },
1032 };
1033
1034 return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
1035 ARRAY_SIZE(spi_nor_3to4_program));
1036 }
1037
spi_nor_convert_3to4_erase(u8 opcode)1038 static u8 spi_nor_convert_3to4_erase(u8 opcode)
1039 {
1040 static const u8 spi_nor_3to4_erase[][2] = {
1041 { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
1042 { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
1043 { SPINOR_OP_SE, SPINOR_OP_SE_4B },
1044 };
1045
1046 return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
1047 ARRAY_SIZE(spi_nor_3to4_erase));
1048 }
1049
spi_nor_has_uniform_erase(const struct spi_nor * nor)1050 static bool spi_nor_has_uniform_erase(const struct spi_nor *nor)
1051 {
1052 return !!nor->params->erase_map.uniform_erase_type;
1053 }
1054
spi_nor_set_4byte_opcodes(struct spi_nor * nor)1055 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
1056 {
1057 nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
1058 nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
1059 nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
1060
1061 if (!spi_nor_has_uniform_erase(nor)) {
1062 struct spi_nor_erase_map *map = &nor->params->erase_map;
1063 struct spi_nor_erase_type *erase;
1064 int i;
1065
1066 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1067 erase = &map->erase_type[i];
1068 erase->opcode =
1069 spi_nor_convert_3to4_erase(erase->opcode);
1070 }
1071 }
1072 }
1073
spi_nor_lock_and_prep(struct spi_nor * nor)1074 int spi_nor_lock_and_prep(struct spi_nor *nor)
1075 {
1076 int ret = 0;
1077
1078 mutex_lock(&nor->lock);
1079
1080 if (nor->controller_ops && nor->controller_ops->prepare) {
1081 ret = nor->controller_ops->prepare(nor);
1082 if (ret) {
1083 mutex_unlock(&nor->lock);
1084 return ret;
1085 }
1086 }
1087 return ret;
1088 }
1089
spi_nor_unlock_and_unprep(struct spi_nor * nor)1090 void spi_nor_unlock_and_unprep(struct spi_nor *nor)
1091 {
1092 if (nor->controller_ops && nor->controller_ops->unprepare)
1093 nor->controller_ops->unprepare(nor);
1094 mutex_unlock(&nor->lock);
1095 }
1096
spi_nor_convert_addr(struct spi_nor * nor,loff_t addr)1097 static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
1098 {
1099 if (!nor->params->convert_addr)
1100 return addr;
1101
1102 return nor->params->convert_addr(nor, addr);
1103 }
1104
1105 /*
1106 * Initiate the erasure of a single sector
1107 */
spi_nor_erase_sector(struct spi_nor * nor,u32 addr)1108 int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
1109 {
1110 int i;
1111
1112 addr = spi_nor_convert_addr(nor, addr);
1113
1114 if (nor->spimem) {
1115 struct spi_mem_op op =
1116 SPI_NOR_SECTOR_ERASE_OP(nor->erase_opcode,
1117 nor->addr_nbytes, addr);
1118
1119 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1120
1121 return spi_mem_exec_op(nor->spimem, &op);
1122 } else if (nor->controller_ops->erase) {
1123 return spi_nor_controller_ops_erase(nor, addr);
1124 }
1125
1126 /*
1127 * Default implementation, if driver doesn't have a specialized HW
1128 * control
1129 */
1130 for (i = nor->addr_nbytes - 1; i >= 0; i--) {
1131 nor->bouncebuf[i] = addr & 0xff;
1132 addr >>= 8;
1133 }
1134
1135 return spi_nor_controller_ops_write_reg(nor, nor->erase_opcode,
1136 nor->bouncebuf, nor->addr_nbytes);
1137 }
1138
1139 /**
1140 * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
1141 * @erase: pointer to a structure that describes a SPI NOR erase type
1142 * @dividend: dividend value
1143 * @remainder: pointer to u32 remainder (will be updated)
1144 *
1145 * Return: the result of the division
1146 */
spi_nor_div_by_erase_size(const struct spi_nor_erase_type * erase,u64 dividend,u32 * remainder)1147 static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
1148 u64 dividend, u32 *remainder)
1149 {
1150 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
1151 *remainder = (u32)dividend & erase->size_mask;
1152 return dividend >> erase->size_shift;
1153 }
1154
1155 /**
1156 * spi_nor_find_best_erase_type() - find the best erase type for the given
1157 * offset in the serial flash memory and the
1158 * number of bytes to erase. The region in
1159 * which the address fits is expected to be
1160 * provided.
1161 * @map: the erase map of the SPI NOR
1162 * @region: pointer to a structure that describes a SPI NOR erase region
1163 * @addr: offset in the serial flash memory
1164 * @len: number of bytes to erase
1165 *
1166 * Return: a pointer to the best fitted erase type, NULL otherwise.
1167 */
1168 static const struct spi_nor_erase_type *
spi_nor_find_best_erase_type(const struct spi_nor_erase_map * map,const struct spi_nor_erase_region * region,u64 addr,u32 len)1169 spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
1170 const struct spi_nor_erase_region *region,
1171 u64 addr, u32 len)
1172 {
1173 const struct spi_nor_erase_type *erase;
1174 u32 rem;
1175 int i;
1176 u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
1177
1178 /*
1179 * Erase types are ordered by size, with the smallest erase type at
1180 * index 0.
1181 */
1182 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
1183 /* Does the erase region support the tested erase type? */
1184 if (!(erase_mask & BIT(i)))
1185 continue;
1186
1187 erase = &map->erase_type[i];
1188 if (!erase->size)
1189 continue;
1190
1191 /* Alignment is not mandatory for overlaid regions */
1192 if (region->offset & SNOR_OVERLAID_REGION &&
1193 region->size <= len)
1194 return erase;
1195
1196 /* Don't erase more than what the user has asked for. */
1197 if (erase->size > len)
1198 continue;
1199
1200 spi_nor_div_by_erase_size(erase, addr, &rem);
1201 if (!rem)
1202 return erase;
1203 }
1204
1205 return NULL;
1206 }
1207
spi_nor_region_is_last(const struct spi_nor_erase_region * region)1208 static u64 spi_nor_region_is_last(const struct spi_nor_erase_region *region)
1209 {
1210 return region->offset & SNOR_LAST_REGION;
1211 }
1212
spi_nor_region_end(const struct spi_nor_erase_region * region)1213 static u64 spi_nor_region_end(const struct spi_nor_erase_region *region)
1214 {
1215 return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size;
1216 }
1217
1218 /**
1219 * spi_nor_region_next() - get the next spi nor region
1220 * @region: pointer to a structure that describes a SPI NOR erase region
1221 *
1222 * Return: the next spi nor region or NULL if last region.
1223 */
1224 struct spi_nor_erase_region *
spi_nor_region_next(struct spi_nor_erase_region * region)1225 spi_nor_region_next(struct spi_nor_erase_region *region)
1226 {
1227 if (spi_nor_region_is_last(region))
1228 return NULL;
1229 region++;
1230 return region;
1231 }
1232
1233 /**
1234 * spi_nor_find_erase_region() - find the region of the serial flash memory in
1235 * which the offset fits
1236 * @map: the erase map of the SPI NOR
1237 * @addr: offset in the serial flash memory
1238 *
1239 * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
1240 * otherwise.
1241 */
1242 static struct spi_nor_erase_region *
spi_nor_find_erase_region(const struct spi_nor_erase_map * map,u64 addr)1243 spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
1244 {
1245 struct spi_nor_erase_region *region = map->regions;
1246 u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1247 u64 region_end = region_start + region->size;
1248
1249 while (addr < region_start || addr >= region_end) {
1250 region = spi_nor_region_next(region);
1251 if (!region)
1252 return ERR_PTR(-EINVAL);
1253
1254 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1255 region_end = region_start + region->size;
1256 }
1257
1258 return region;
1259 }
1260
1261 /**
1262 * spi_nor_init_erase_cmd() - initialize an erase command
1263 * @region: pointer to a structure that describes a SPI NOR erase region
1264 * @erase: pointer to a structure that describes a SPI NOR erase type
1265 *
1266 * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
1267 * otherwise.
1268 */
1269 static struct spi_nor_erase_command *
spi_nor_init_erase_cmd(const struct spi_nor_erase_region * region,const struct spi_nor_erase_type * erase)1270 spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
1271 const struct spi_nor_erase_type *erase)
1272 {
1273 struct spi_nor_erase_command *cmd;
1274
1275 cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
1276 if (!cmd)
1277 return ERR_PTR(-ENOMEM);
1278
1279 INIT_LIST_HEAD(&cmd->list);
1280 cmd->opcode = erase->opcode;
1281 cmd->count = 1;
1282
1283 if (region->offset & SNOR_OVERLAID_REGION)
1284 cmd->size = region->size;
1285 else
1286 cmd->size = erase->size;
1287
1288 return cmd;
1289 }
1290
1291 /**
1292 * spi_nor_destroy_erase_cmd_list() - destroy erase command list
1293 * @erase_list: list of erase commands
1294 */
spi_nor_destroy_erase_cmd_list(struct list_head * erase_list)1295 static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
1296 {
1297 struct spi_nor_erase_command *cmd, *next;
1298
1299 list_for_each_entry_safe(cmd, next, erase_list, list) {
1300 list_del(&cmd->list);
1301 kfree(cmd);
1302 }
1303 }
1304
1305 /**
1306 * spi_nor_init_erase_cmd_list() - initialize erase command list
1307 * @nor: pointer to a 'struct spi_nor'
1308 * @erase_list: list of erase commands to be executed once we validate that the
1309 * erase can be performed
1310 * @addr: offset in the serial flash memory
1311 * @len: number of bytes to erase
1312 *
1313 * Builds the list of best fitted erase commands and verifies if the erase can
1314 * be performed.
1315 *
1316 * Return: 0 on success, -errno otherwise.
1317 */
spi_nor_init_erase_cmd_list(struct spi_nor * nor,struct list_head * erase_list,u64 addr,u32 len)1318 static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
1319 struct list_head *erase_list,
1320 u64 addr, u32 len)
1321 {
1322 const struct spi_nor_erase_map *map = &nor->params->erase_map;
1323 const struct spi_nor_erase_type *erase, *prev_erase = NULL;
1324 struct spi_nor_erase_region *region;
1325 struct spi_nor_erase_command *cmd = NULL;
1326 u64 region_end;
1327 int ret = -EINVAL;
1328
1329 region = spi_nor_find_erase_region(map, addr);
1330 if (IS_ERR(region))
1331 return PTR_ERR(region);
1332
1333 region_end = spi_nor_region_end(region);
1334
1335 while (len) {
1336 erase = spi_nor_find_best_erase_type(map, region, addr, len);
1337 if (!erase)
1338 goto destroy_erase_cmd_list;
1339
1340 if (prev_erase != erase ||
1341 erase->size != cmd->size ||
1342 region->offset & SNOR_OVERLAID_REGION) {
1343 cmd = spi_nor_init_erase_cmd(region, erase);
1344 if (IS_ERR(cmd)) {
1345 ret = PTR_ERR(cmd);
1346 goto destroy_erase_cmd_list;
1347 }
1348
1349 list_add_tail(&cmd->list, erase_list);
1350 } else {
1351 cmd->count++;
1352 }
1353
1354 addr += cmd->size;
1355 len -= cmd->size;
1356
1357 if (len && addr >= region_end) {
1358 region = spi_nor_region_next(region);
1359 if (!region)
1360 goto destroy_erase_cmd_list;
1361 region_end = spi_nor_region_end(region);
1362 }
1363
1364 prev_erase = erase;
1365 }
1366
1367 return 0;
1368
1369 destroy_erase_cmd_list:
1370 spi_nor_destroy_erase_cmd_list(erase_list);
1371 return ret;
1372 }
1373
1374 /**
1375 * spi_nor_erase_multi_sectors() - perform a non-uniform erase
1376 * @nor: pointer to a 'struct spi_nor'
1377 * @addr: offset in the serial flash memory
1378 * @len: number of bytes to erase
1379 *
1380 * Build a list of best fitted erase commands and execute it once we validate
1381 * that the erase can be performed.
1382 *
1383 * Return: 0 on success, -errno otherwise.
1384 */
spi_nor_erase_multi_sectors(struct spi_nor * nor,u64 addr,u32 len)1385 static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
1386 {
1387 LIST_HEAD(erase_list);
1388 struct spi_nor_erase_command *cmd, *next;
1389 int ret;
1390
1391 ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
1392 if (ret)
1393 return ret;
1394
1395 list_for_each_entry_safe(cmd, next, &erase_list, list) {
1396 nor->erase_opcode = cmd->opcode;
1397 while (cmd->count) {
1398 dev_vdbg(nor->dev, "erase_cmd->size = 0x%08x, erase_cmd->opcode = 0x%02x, erase_cmd->count = %u\n",
1399 cmd->size, cmd->opcode, cmd->count);
1400
1401 ret = spi_nor_write_enable(nor);
1402 if (ret)
1403 goto destroy_erase_cmd_list;
1404
1405 ret = spi_nor_erase_sector(nor, addr);
1406 if (ret)
1407 goto destroy_erase_cmd_list;
1408
1409 ret = spi_nor_wait_till_ready(nor);
1410 if (ret)
1411 goto destroy_erase_cmd_list;
1412
1413 addr += cmd->size;
1414 cmd->count--;
1415 }
1416 list_del(&cmd->list);
1417 kfree(cmd);
1418 }
1419
1420 return 0;
1421
1422 destroy_erase_cmd_list:
1423 spi_nor_destroy_erase_cmd_list(&erase_list);
1424 return ret;
1425 }
1426
1427 /*
1428 * Erase an address range on the nor chip. The address range may extend
1429 * one or more erase sectors. Return an error if there is a problem erasing.
1430 */
spi_nor_erase(struct mtd_info * mtd,struct erase_info * instr)1431 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
1432 {
1433 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1434 u32 addr, len;
1435 uint32_t rem;
1436 int ret;
1437
1438 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
1439 (long long)instr->len);
1440
1441 if (spi_nor_has_uniform_erase(nor)) {
1442 div_u64_rem(instr->len, mtd->erasesize, &rem);
1443 if (rem)
1444 return -EINVAL;
1445 }
1446
1447 addr = instr->addr;
1448 len = instr->len;
1449
1450 ret = spi_nor_lock_and_prep(nor);
1451 if (ret)
1452 return ret;
1453
1454 /* whole-chip erase? */
1455 if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
1456 unsigned long timeout;
1457
1458 ret = spi_nor_write_enable(nor);
1459 if (ret)
1460 goto erase_err;
1461
1462 ret = spi_nor_erase_chip(nor);
1463 if (ret)
1464 goto erase_err;
1465
1466 /*
1467 * Scale the timeout linearly with the size of the flash, with
1468 * a minimum calibrated to an old 2MB flash. We could try to
1469 * pull these from CFI/SFDP, but these values should be good
1470 * enough for now.
1471 */
1472 timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
1473 CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
1474 (unsigned long)(mtd->size / SZ_2M));
1475 ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1476 if (ret)
1477 goto erase_err;
1478
1479 /* REVISIT in some cases we could speed up erasing large regions
1480 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
1481 * to use "small sector erase", but that's not always optimal.
1482 */
1483
1484 /* "sector"-at-a-time erase */
1485 } else if (spi_nor_has_uniform_erase(nor)) {
1486 while (len) {
1487 ret = spi_nor_write_enable(nor);
1488 if (ret)
1489 goto erase_err;
1490
1491 ret = spi_nor_erase_sector(nor, addr);
1492 if (ret)
1493 goto erase_err;
1494
1495 ret = spi_nor_wait_till_ready(nor);
1496 if (ret)
1497 goto erase_err;
1498
1499 addr += mtd->erasesize;
1500 len -= mtd->erasesize;
1501 }
1502
1503 /* erase multiple sectors */
1504 } else {
1505 ret = spi_nor_erase_multi_sectors(nor, addr, len);
1506 if (ret)
1507 goto erase_err;
1508 }
1509
1510 ret = spi_nor_write_disable(nor);
1511
1512 erase_err:
1513 spi_nor_unlock_and_unprep(nor);
1514
1515 return ret;
1516 }
1517
1518 /**
1519 * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
1520 * Register 1.
1521 * @nor: pointer to a 'struct spi_nor'
1522 *
1523 * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
1524 *
1525 * Return: 0 on success, -errno otherwise.
1526 */
spi_nor_sr1_bit6_quad_enable(struct spi_nor * nor)1527 int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
1528 {
1529 int ret;
1530
1531 ret = spi_nor_read_sr(nor, nor->bouncebuf);
1532 if (ret)
1533 return ret;
1534
1535 if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
1536 return 0;
1537
1538 nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
1539
1540 return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
1541 }
1542
1543 /**
1544 * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
1545 * Register 2.
1546 * @nor: pointer to a 'struct spi_nor'.
1547 *
1548 * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
1549 *
1550 * Return: 0 on success, -errno otherwise.
1551 */
spi_nor_sr2_bit1_quad_enable(struct spi_nor * nor)1552 int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
1553 {
1554 int ret;
1555
1556 if (nor->flags & SNOR_F_NO_READ_CR)
1557 return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
1558
1559 ret = spi_nor_read_cr(nor, nor->bouncebuf);
1560 if (ret)
1561 return ret;
1562
1563 if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
1564 return 0;
1565
1566 nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
1567
1568 return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
1569 }
1570
1571 /**
1572 * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
1573 * @nor: pointer to a 'struct spi_nor'
1574 *
1575 * Set the Quad Enable (QE) bit in the Status Register 2.
1576 *
1577 * This is one of the procedures to set the QE bit described in the SFDP
1578 * (JESD216 rev B) specification but no manufacturer using this procedure has
1579 * been identified yet, hence the name of the function.
1580 *
1581 * Return: 0 on success, -errno otherwise.
1582 */
spi_nor_sr2_bit7_quad_enable(struct spi_nor * nor)1583 int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
1584 {
1585 u8 *sr2 = nor->bouncebuf;
1586 int ret;
1587 u8 sr2_written;
1588
1589 /* Check current Quad Enable bit value. */
1590 ret = spi_nor_read_sr2(nor, sr2);
1591 if (ret)
1592 return ret;
1593 if (*sr2 & SR2_QUAD_EN_BIT7)
1594 return 0;
1595
1596 /* Update the Quad Enable bit. */
1597 *sr2 |= SR2_QUAD_EN_BIT7;
1598
1599 ret = spi_nor_write_sr2(nor, sr2);
1600 if (ret)
1601 return ret;
1602
1603 sr2_written = *sr2;
1604
1605 /* Read back and check it. */
1606 ret = spi_nor_read_sr2(nor, sr2);
1607 if (ret)
1608 return ret;
1609
1610 if (*sr2 != sr2_written) {
1611 dev_dbg(nor->dev, "SR2: Read back test failed\n");
1612 return -EIO;
1613 }
1614
1615 return 0;
1616 }
1617
1618 static const struct spi_nor_manufacturer *manufacturers[] = {
1619 &spi_nor_atmel,
1620 &spi_nor_catalyst,
1621 &spi_nor_eon,
1622 &spi_nor_esmt,
1623 &spi_nor_everspin,
1624 &spi_nor_fujitsu,
1625 &spi_nor_gigadevice,
1626 &spi_nor_intel,
1627 &spi_nor_issi,
1628 &spi_nor_macronix,
1629 &spi_nor_micron,
1630 &spi_nor_st,
1631 &spi_nor_spansion,
1632 &spi_nor_sst,
1633 &spi_nor_winbond,
1634 &spi_nor_xilinx,
1635 &spi_nor_xmc,
1636 };
1637
spi_nor_match_id(struct spi_nor * nor,const u8 * id)1638 static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
1639 const u8 *id)
1640 {
1641 const struct flash_info *part;
1642 unsigned int i, j;
1643
1644 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
1645 for (j = 0; j < manufacturers[i]->nparts; j++) {
1646 part = &manufacturers[i]->parts[j];
1647 if (part->id_len &&
1648 !memcmp(part->id, id, part->id_len)) {
1649 nor->manufacturer = manufacturers[i];
1650 return part;
1651 }
1652 }
1653 }
1654
1655 return NULL;
1656 }
1657
spi_nor_detect(struct spi_nor * nor)1658 static const struct flash_info *spi_nor_detect(struct spi_nor *nor)
1659 {
1660 const struct flash_info *info;
1661 u8 *id = nor->bouncebuf;
1662 int ret;
1663
1664 ret = spi_nor_read_id(nor, 0, 0, id, nor->reg_proto);
1665 if (ret) {
1666 dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
1667 return ERR_PTR(ret);
1668 }
1669
1670 info = spi_nor_match_id(nor, id);
1671 if (!info) {
1672 dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
1673 SPI_NOR_MAX_ID_LEN, id);
1674 return ERR_PTR(-ENODEV);
1675 }
1676 return info;
1677 }
1678
spi_nor_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1679 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
1680 size_t *retlen, u_char *buf)
1681 {
1682 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1683 ssize_t ret;
1684
1685 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
1686
1687 ret = spi_nor_lock_and_prep(nor);
1688 if (ret)
1689 return ret;
1690
1691 while (len) {
1692 loff_t addr = from;
1693
1694 addr = spi_nor_convert_addr(nor, addr);
1695
1696 ret = spi_nor_read_data(nor, addr, len, buf);
1697 if (ret == 0) {
1698 /* We shouldn't see 0-length reads */
1699 ret = -EIO;
1700 goto read_err;
1701 }
1702 if (ret < 0)
1703 goto read_err;
1704
1705 WARN_ON(ret > len);
1706 *retlen += ret;
1707 buf += ret;
1708 from += ret;
1709 len -= ret;
1710 }
1711 ret = 0;
1712
1713 read_err:
1714 spi_nor_unlock_and_unprep(nor);
1715 return ret;
1716 }
1717
1718 /*
1719 * Write an address range to the nor chip. Data must be written in
1720 * FLASH_PAGESIZE chunks. The address range may be any size provided
1721 * it is within the physical boundaries.
1722 */
spi_nor_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1723 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
1724 size_t *retlen, const u_char *buf)
1725 {
1726 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1727 size_t page_offset, page_remain, i;
1728 ssize_t ret;
1729 u32 page_size = nor->params->page_size;
1730
1731 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1732
1733 ret = spi_nor_lock_and_prep(nor);
1734 if (ret)
1735 return ret;
1736
1737 for (i = 0; i < len; ) {
1738 ssize_t written;
1739 loff_t addr = to + i;
1740
1741 /*
1742 * If page_size is a power of two, the offset can be quickly
1743 * calculated with an AND operation. On the other cases we
1744 * need to do a modulus operation (more expensive).
1745 */
1746 if (is_power_of_2(page_size)) {
1747 page_offset = addr & (page_size - 1);
1748 } else {
1749 uint64_t aux = addr;
1750
1751 page_offset = do_div(aux, page_size);
1752 }
1753 /* the size of data remaining on the first page */
1754 page_remain = min_t(size_t, page_size - page_offset, len - i);
1755
1756 addr = spi_nor_convert_addr(nor, addr);
1757
1758 ret = spi_nor_write_enable(nor);
1759 if (ret)
1760 goto write_err;
1761
1762 ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
1763 if (ret < 0)
1764 goto write_err;
1765 written = ret;
1766
1767 ret = spi_nor_wait_till_ready(nor);
1768 if (ret)
1769 goto write_err;
1770 *retlen += written;
1771 i += written;
1772 }
1773
1774 write_err:
1775 spi_nor_unlock_and_unprep(nor);
1776 return ret;
1777 }
1778
spi_nor_check(struct spi_nor * nor)1779 static int spi_nor_check(struct spi_nor *nor)
1780 {
1781 if (!nor->dev ||
1782 (!nor->spimem && !nor->controller_ops) ||
1783 (!nor->spimem && nor->controller_ops &&
1784 (!nor->controller_ops->read ||
1785 !nor->controller_ops->write ||
1786 !nor->controller_ops->read_reg ||
1787 !nor->controller_ops->write_reg))) {
1788 pr_err("spi-nor: please fill all the necessary fields!\n");
1789 return -EINVAL;
1790 }
1791
1792 if (nor->spimem && nor->controller_ops) {
1793 dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
1794 return -EINVAL;
1795 }
1796
1797 return 0;
1798 }
1799
1800 void
spi_nor_set_read_settings(struct spi_nor_read_command * read,u8 num_mode_clocks,u8 num_wait_states,u8 opcode,enum spi_nor_protocol proto)1801 spi_nor_set_read_settings(struct spi_nor_read_command *read,
1802 u8 num_mode_clocks,
1803 u8 num_wait_states,
1804 u8 opcode,
1805 enum spi_nor_protocol proto)
1806 {
1807 read->num_mode_clocks = num_mode_clocks;
1808 read->num_wait_states = num_wait_states;
1809 read->opcode = opcode;
1810 read->proto = proto;
1811 }
1812
spi_nor_set_pp_settings(struct spi_nor_pp_command * pp,u8 opcode,enum spi_nor_protocol proto)1813 void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
1814 enum spi_nor_protocol proto)
1815 {
1816 pp->opcode = opcode;
1817 pp->proto = proto;
1818 }
1819
spi_nor_hwcaps2cmd(u32 hwcaps,const int table[][2],size_t size)1820 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
1821 {
1822 size_t i;
1823
1824 for (i = 0; i < size; i++)
1825 if (table[i][0] == (int)hwcaps)
1826 return table[i][1];
1827
1828 return -EINVAL;
1829 }
1830
spi_nor_hwcaps_read2cmd(u32 hwcaps)1831 int spi_nor_hwcaps_read2cmd(u32 hwcaps)
1832 {
1833 static const int hwcaps_read2cmd[][2] = {
1834 { SNOR_HWCAPS_READ, SNOR_CMD_READ },
1835 { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST },
1836 { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR },
1837 { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 },
1838 { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 },
1839 { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 },
1840 { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR },
1841 { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 },
1842 { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 },
1843 { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 },
1844 { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR },
1845 { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 },
1846 { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 },
1847 { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 },
1848 { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR },
1849 { SNOR_HWCAPS_READ_8_8_8_DTR, SNOR_CMD_READ_8_8_8_DTR },
1850 };
1851
1852 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
1853 ARRAY_SIZE(hwcaps_read2cmd));
1854 }
1855
spi_nor_hwcaps_pp2cmd(u32 hwcaps)1856 int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
1857 {
1858 static const int hwcaps_pp2cmd[][2] = {
1859 { SNOR_HWCAPS_PP, SNOR_CMD_PP },
1860 { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 },
1861 { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 },
1862 { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 },
1863 { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 },
1864 { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 },
1865 { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 },
1866 { SNOR_HWCAPS_PP_8_8_8_DTR, SNOR_CMD_PP_8_8_8_DTR },
1867 };
1868
1869 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
1870 ARRAY_SIZE(hwcaps_pp2cmd));
1871 }
1872
1873 /**
1874 * spi_nor_spimem_check_op - check if the operation is supported
1875 * by controller
1876 *@nor: pointer to a 'struct spi_nor'
1877 *@op: pointer to op template to be checked
1878 *
1879 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
1880 */
spi_nor_spimem_check_op(struct spi_nor * nor,struct spi_mem_op * op)1881 static int spi_nor_spimem_check_op(struct spi_nor *nor,
1882 struct spi_mem_op *op)
1883 {
1884 /*
1885 * First test with 4 address bytes. The opcode itself might
1886 * be a 3B addressing opcode but we don't care, because
1887 * SPI controller implementation should not check the opcode,
1888 * but just the sequence.
1889 */
1890 op->addr.nbytes = 4;
1891 if (!spi_mem_supports_op(nor->spimem, op)) {
1892 if (nor->params->size > SZ_16M)
1893 return -EOPNOTSUPP;
1894
1895 /* If flash size <= 16MB, 3 address bytes are sufficient */
1896 op->addr.nbytes = 3;
1897 if (!spi_mem_supports_op(nor->spimem, op))
1898 return -EOPNOTSUPP;
1899 }
1900
1901 return 0;
1902 }
1903
1904 /**
1905 * spi_nor_spimem_check_readop - check if the read op is supported
1906 * by controller
1907 *@nor: pointer to a 'struct spi_nor'
1908 *@read: pointer to op template to be checked
1909 *
1910 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
1911 */
spi_nor_spimem_check_readop(struct spi_nor * nor,const struct spi_nor_read_command * read)1912 static int spi_nor_spimem_check_readop(struct spi_nor *nor,
1913 const struct spi_nor_read_command *read)
1914 {
1915 struct spi_mem_op op = SPI_NOR_READ_OP(read->opcode);
1916
1917 spi_nor_spimem_setup_op(nor, &op, read->proto);
1918
1919 /* convert the dummy cycles to the number of bytes */
1920 op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
1921 op.dummy.buswidth / 8;
1922 if (spi_nor_protocol_is_dtr(nor->read_proto))
1923 op.dummy.nbytes *= 2;
1924
1925 return spi_nor_spimem_check_op(nor, &op);
1926 }
1927
1928 /**
1929 * spi_nor_spimem_check_pp - check if the page program op is supported
1930 * by controller
1931 *@nor: pointer to a 'struct spi_nor'
1932 *@pp: pointer to op template to be checked
1933 *
1934 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
1935 */
spi_nor_spimem_check_pp(struct spi_nor * nor,const struct spi_nor_pp_command * pp)1936 static int spi_nor_spimem_check_pp(struct spi_nor *nor,
1937 const struct spi_nor_pp_command *pp)
1938 {
1939 struct spi_mem_op op = SPI_NOR_PP_OP(pp->opcode);
1940
1941 spi_nor_spimem_setup_op(nor, &op, pp->proto);
1942
1943 return spi_nor_spimem_check_op(nor, &op);
1944 }
1945
1946 /**
1947 * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
1948 * based on SPI controller capabilities
1949 * @nor: pointer to a 'struct spi_nor'
1950 * @hwcaps: pointer to resulting capabilities after adjusting
1951 * according to controller and flash's capability
1952 */
1953 static void
spi_nor_spimem_adjust_hwcaps(struct spi_nor * nor,u32 * hwcaps)1954 spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
1955 {
1956 struct spi_nor_flash_parameter *params = nor->params;
1957 unsigned int cap;
1958
1959 /* X-X-X modes are not supported yet, mask them all. */
1960 *hwcaps &= ~SNOR_HWCAPS_X_X_X;
1961
1962 /*
1963 * If the reset line is broken, we do not want to enter a stateful
1964 * mode.
1965 */
1966 if (nor->flags & SNOR_F_BROKEN_RESET)
1967 *hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR);
1968
1969 for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
1970 int rdidx, ppidx;
1971
1972 if (!(*hwcaps & BIT(cap)))
1973 continue;
1974
1975 rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
1976 if (rdidx >= 0 &&
1977 spi_nor_spimem_check_readop(nor, ¶ms->reads[rdidx]))
1978 *hwcaps &= ~BIT(cap);
1979
1980 ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
1981 if (ppidx < 0)
1982 continue;
1983
1984 if (spi_nor_spimem_check_pp(nor,
1985 ¶ms->page_programs[ppidx]))
1986 *hwcaps &= ~BIT(cap);
1987 }
1988 }
1989
1990 /**
1991 * spi_nor_set_erase_type() - set a SPI NOR erase type
1992 * @erase: pointer to a structure that describes a SPI NOR erase type
1993 * @size: the size of the sector/block erased by the erase type
1994 * @opcode: the SPI command op code to erase the sector/block
1995 */
spi_nor_set_erase_type(struct spi_nor_erase_type * erase,u32 size,u8 opcode)1996 void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
1997 u8 opcode)
1998 {
1999 erase->size = size;
2000 erase->opcode = opcode;
2001 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
2002 erase->size_shift = ffs(erase->size) - 1;
2003 erase->size_mask = (1 << erase->size_shift) - 1;
2004 }
2005
2006 /**
2007 * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
2008 * @map: the erase map of the SPI NOR
2009 * @erase_mask: bitmask encoding erase types that can erase the entire
2010 * flash memory
2011 * @flash_size: the spi nor flash memory size
2012 */
spi_nor_init_uniform_erase_map(struct spi_nor_erase_map * map,u8 erase_mask,u64 flash_size)2013 void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
2014 u8 erase_mask, u64 flash_size)
2015 {
2016 /* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
2017 map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
2018 SNOR_LAST_REGION;
2019 map->uniform_region.size = flash_size;
2020 map->regions = &map->uniform_region;
2021 map->uniform_erase_type = erase_mask;
2022 }
2023
spi_nor_post_bfpt_fixups(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt)2024 int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
2025 const struct sfdp_parameter_header *bfpt_header,
2026 const struct sfdp_bfpt *bfpt)
2027 {
2028 int ret;
2029
2030 if (nor->manufacturer && nor->manufacturer->fixups &&
2031 nor->manufacturer->fixups->post_bfpt) {
2032 ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
2033 bfpt);
2034 if (ret)
2035 return ret;
2036 }
2037
2038 if (nor->info->fixups && nor->info->fixups->post_bfpt)
2039 return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt);
2040
2041 return 0;
2042 }
2043
spi_nor_select_read(struct spi_nor * nor,u32 shared_hwcaps)2044 static int spi_nor_select_read(struct spi_nor *nor,
2045 u32 shared_hwcaps)
2046 {
2047 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2048 const struct spi_nor_read_command *read;
2049
2050 if (best_match < 0)
2051 return -EINVAL;
2052
2053 cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2054 if (cmd < 0)
2055 return -EINVAL;
2056
2057 read = &nor->params->reads[cmd];
2058 nor->read_opcode = read->opcode;
2059 nor->read_proto = read->proto;
2060
2061 /*
2062 * In the SPI NOR framework, we don't need to make the difference
2063 * between mode clock cycles and wait state clock cycles.
2064 * Indeed, the value of the mode clock cycles is used by a QSPI
2065 * flash memory to know whether it should enter or leave its 0-4-4
2066 * (Continuous Read / XIP) mode.
2067 * eXecution In Place is out of the scope of the mtd sub-system.
2068 * Hence we choose to merge both mode and wait state clock cycles
2069 * into the so called dummy clock cycles.
2070 */
2071 nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2072 return 0;
2073 }
2074
spi_nor_select_pp(struct spi_nor * nor,u32 shared_hwcaps)2075 static int spi_nor_select_pp(struct spi_nor *nor,
2076 u32 shared_hwcaps)
2077 {
2078 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2079 const struct spi_nor_pp_command *pp;
2080
2081 if (best_match < 0)
2082 return -EINVAL;
2083
2084 cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2085 if (cmd < 0)
2086 return -EINVAL;
2087
2088 pp = &nor->params->page_programs[cmd];
2089 nor->program_opcode = pp->opcode;
2090 nor->write_proto = pp->proto;
2091 return 0;
2092 }
2093
2094 /**
2095 * spi_nor_select_uniform_erase() - select optimum uniform erase type
2096 * @map: the erase map of the SPI NOR
2097 * @wanted_size: the erase type size to search for. Contains the value of
2098 * info->sector_size or of the "small sector" size in case
2099 * CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
2100 *
2101 * Once the optimum uniform sector erase command is found, disable all the
2102 * other.
2103 *
2104 * Return: pointer to erase type on success, NULL otherwise.
2105 */
2106 static const struct spi_nor_erase_type *
spi_nor_select_uniform_erase(struct spi_nor_erase_map * map,const u32 wanted_size)2107 spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
2108 const u32 wanted_size)
2109 {
2110 const struct spi_nor_erase_type *tested_erase, *erase = NULL;
2111 int i;
2112 u8 uniform_erase_type = map->uniform_erase_type;
2113
2114 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2115 if (!(uniform_erase_type & BIT(i)))
2116 continue;
2117
2118 tested_erase = &map->erase_type[i];
2119
2120 /*
2121 * If the current erase size is the one, stop here:
2122 * we have found the right uniform Sector Erase command.
2123 */
2124 if (tested_erase->size == wanted_size) {
2125 erase = tested_erase;
2126 break;
2127 }
2128
2129 /*
2130 * Otherwise, the current erase size is still a valid candidate.
2131 * Select the biggest valid candidate.
2132 */
2133 if (!erase && tested_erase->size)
2134 erase = tested_erase;
2135 /* keep iterating to find the wanted_size */
2136 }
2137
2138 if (!erase)
2139 return NULL;
2140
2141 /* Disable all other Sector Erase commands. */
2142 map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
2143 map->uniform_erase_type |= BIT(erase - map->erase_type);
2144 return erase;
2145 }
2146
spi_nor_select_erase(struct spi_nor * nor)2147 static int spi_nor_select_erase(struct spi_nor *nor)
2148 {
2149 struct spi_nor_erase_map *map = &nor->params->erase_map;
2150 const struct spi_nor_erase_type *erase = NULL;
2151 struct mtd_info *mtd = &nor->mtd;
2152 u32 wanted_size = nor->info->sector_size;
2153 int i;
2154
2155 /*
2156 * The previous implementation handling Sector Erase commands assumed
2157 * that the SPI flash memory has an uniform layout then used only one
2158 * of the supported erase sizes for all Sector Erase commands.
2159 * So to be backward compatible, the new implementation also tries to
2160 * manage the SPI flash memory as uniform with a single erase sector
2161 * size, when possible.
2162 */
2163 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
2164 /* prefer "small sector" erase if possible */
2165 wanted_size = 4096u;
2166 #endif
2167
2168 if (spi_nor_has_uniform_erase(nor)) {
2169 erase = spi_nor_select_uniform_erase(map, wanted_size);
2170 if (!erase)
2171 return -EINVAL;
2172 nor->erase_opcode = erase->opcode;
2173 mtd->erasesize = erase->size;
2174 return 0;
2175 }
2176
2177 /*
2178 * For non-uniform SPI flash memory, set mtd->erasesize to the
2179 * maximum erase sector size. No need to set nor->erase_opcode.
2180 */
2181 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2182 if (map->erase_type[i].size) {
2183 erase = &map->erase_type[i];
2184 break;
2185 }
2186 }
2187
2188 if (!erase)
2189 return -EINVAL;
2190
2191 mtd->erasesize = erase->size;
2192 return 0;
2193 }
2194
spi_nor_default_setup(struct spi_nor * nor,const struct spi_nor_hwcaps * hwcaps)2195 static int spi_nor_default_setup(struct spi_nor *nor,
2196 const struct spi_nor_hwcaps *hwcaps)
2197 {
2198 struct spi_nor_flash_parameter *params = nor->params;
2199 u32 ignored_mask, shared_mask;
2200 int err;
2201
2202 /*
2203 * Keep only the hardware capabilities supported by both the SPI
2204 * controller and the SPI flash memory.
2205 */
2206 shared_mask = hwcaps->mask & params->hwcaps.mask;
2207
2208 if (nor->spimem) {
2209 /*
2210 * When called from spi_nor_probe(), all caps are set and we
2211 * need to discard some of them based on what the SPI
2212 * controller actually supports (using spi_mem_supports_op()).
2213 */
2214 spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
2215 } else {
2216 /*
2217 * SPI n-n-n protocols are not supported when the SPI
2218 * controller directly implements the spi_nor interface.
2219 * Yet another reason to switch to spi-mem.
2220 */
2221 ignored_mask = SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR;
2222 if (shared_mask & ignored_mask) {
2223 dev_dbg(nor->dev,
2224 "SPI n-n-n protocols are not supported.\n");
2225 shared_mask &= ~ignored_mask;
2226 }
2227 }
2228
2229 /* Select the (Fast) Read command. */
2230 err = spi_nor_select_read(nor, shared_mask);
2231 if (err) {
2232 dev_dbg(nor->dev,
2233 "can't select read settings supported by both the SPI controller and memory.\n");
2234 return err;
2235 }
2236
2237 /* Select the Page Program command. */
2238 err = spi_nor_select_pp(nor, shared_mask);
2239 if (err) {
2240 dev_dbg(nor->dev,
2241 "can't select write settings supported by both the SPI controller and memory.\n");
2242 return err;
2243 }
2244
2245 /* Select the Sector Erase command. */
2246 err = spi_nor_select_erase(nor);
2247 if (err) {
2248 dev_dbg(nor->dev,
2249 "can't select erase settings supported by both the SPI controller and memory.\n");
2250 return err;
2251 }
2252
2253 return 0;
2254 }
2255
spi_nor_set_addr_nbytes(struct spi_nor * nor)2256 static int spi_nor_set_addr_nbytes(struct spi_nor *nor)
2257 {
2258 if (nor->params->addr_nbytes) {
2259 nor->addr_nbytes = nor->params->addr_nbytes;
2260 } else if (nor->read_proto == SNOR_PROTO_8_8_8_DTR) {
2261 /*
2262 * In 8D-8D-8D mode, one byte takes half a cycle to transfer. So
2263 * in this protocol an odd addr_nbytes cannot be used because
2264 * then the address phase would only span a cycle and a half.
2265 * Half a cycle would be left over. We would then have to start
2266 * the dummy phase in the middle of a cycle and so too the data
2267 * phase, and we will end the transaction with half a cycle left
2268 * over.
2269 *
2270 * Force all 8D-8D-8D flashes to use an addr_nbytes of 4 to
2271 * avoid this situation.
2272 */
2273 nor->addr_nbytes = 4;
2274 } else if (nor->info->addr_nbytes) {
2275 nor->addr_nbytes = nor->info->addr_nbytes;
2276 } else {
2277 nor->addr_nbytes = 3;
2278 }
2279
2280 if (nor->addr_nbytes == 3 && nor->params->size > 0x1000000) {
2281 /* enable 4-byte addressing if the device exceeds 16MiB */
2282 nor->addr_nbytes = 4;
2283 }
2284
2285 if (nor->addr_nbytes > SPI_NOR_MAX_ADDR_NBYTES) {
2286 dev_dbg(nor->dev, "The number of address bytes is too large: %u\n",
2287 nor->addr_nbytes);
2288 return -EINVAL;
2289 }
2290
2291 /* Set 4byte opcodes when possible. */
2292 if (nor->addr_nbytes == 4 && nor->flags & SNOR_F_4B_OPCODES &&
2293 !(nor->flags & SNOR_F_HAS_4BAIT))
2294 spi_nor_set_4byte_opcodes(nor);
2295
2296 return 0;
2297 }
2298
spi_nor_setup(struct spi_nor * nor,const struct spi_nor_hwcaps * hwcaps)2299 static int spi_nor_setup(struct spi_nor *nor,
2300 const struct spi_nor_hwcaps *hwcaps)
2301 {
2302 int ret;
2303
2304 if (nor->params->setup)
2305 ret = nor->params->setup(nor, hwcaps);
2306 else
2307 ret = spi_nor_default_setup(nor, hwcaps);
2308 if (ret)
2309 return ret;
2310
2311 return spi_nor_set_addr_nbytes(nor);
2312 }
2313
2314 /**
2315 * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
2316 * settings based on MFR register and ->default_init() hook.
2317 * @nor: pointer to a 'struct spi_nor'.
2318 */
spi_nor_manufacturer_init_params(struct spi_nor * nor)2319 static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
2320 {
2321 if (nor->manufacturer && nor->manufacturer->fixups &&
2322 nor->manufacturer->fixups->default_init)
2323 nor->manufacturer->fixups->default_init(nor);
2324
2325 if (nor->info->fixups && nor->info->fixups->default_init)
2326 nor->info->fixups->default_init(nor);
2327 }
2328
2329 /**
2330 * spi_nor_no_sfdp_init_params() - Initialize the flash's parameters and
2331 * settings based on nor->info->sfdp_flags. This method should be called only by
2332 * flashes that do not define SFDP tables. If the flash supports SFDP but the
2333 * information is wrong and the settings from this function can not be retrieved
2334 * by parsing SFDP, one should instead use the fixup hooks and update the wrong
2335 * bits.
2336 * @nor: pointer to a 'struct spi_nor'.
2337 */
spi_nor_no_sfdp_init_params(struct spi_nor * nor)2338 static void spi_nor_no_sfdp_init_params(struct spi_nor *nor)
2339 {
2340 struct spi_nor_flash_parameter *params = nor->params;
2341 struct spi_nor_erase_map *map = ¶ms->erase_map;
2342 const u8 no_sfdp_flags = nor->info->no_sfdp_flags;
2343 u8 i, erase_mask;
2344
2345 if (no_sfdp_flags & SPI_NOR_DUAL_READ) {
2346 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2347 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2],
2348 0, 8, SPINOR_OP_READ_1_1_2,
2349 SNOR_PROTO_1_1_2);
2350 }
2351
2352 if (no_sfdp_flags & SPI_NOR_QUAD_READ) {
2353 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2354 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4],
2355 0, 8, SPINOR_OP_READ_1_1_4,
2356 SNOR_PROTO_1_1_4);
2357 }
2358
2359 if (no_sfdp_flags & SPI_NOR_OCTAL_READ) {
2360 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2361 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8],
2362 0, 8, SPINOR_OP_READ_1_1_8,
2363 SNOR_PROTO_1_1_8);
2364 }
2365
2366 if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_READ) {
2367 params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
2368 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_8_8_8_DTR],
2369 0, 20, SPINOR_OP_READ_FAST,
2370 SNOR_PROTO_8_8_8_DTR);
2371 }
2372
2373 if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_PP) {
2374 params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
2375 /*
2376 * Since xSPI Page Program opcode is backward compatible with
2377 * Legacy SPI, use Legacy SPI opcode there as well.
2378 */
2379 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_8_8_8_DTR],
2380 SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR);
2381 }
2382
2383 /*
2384 * Sector Erase settings. Sort Erase Types in ascending order, with the
2385 * smallest erase size starting at BIT(0).
2386 */
2387 erase_mask = 0;
2388 i = 0;
2389 if (no_sfdp_flags & SECT_4K) {
2390 erase_mask |= BIT(i);
2391 spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2392 SPINOR_OP_BE_4K);
2393 i++;
2394 }
2395 erase_mask |= BIT(i);
2396 spi_nor_set_erase_type(&map->erase_type[i], nor->info->sector_size,
2397 SPINOR_OP_SE);
2398 spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
2399 }
2400
2401 /**
2402 * spi_nor_init_flags() - Initialize NOR flags for settings that are not defined
2403 * in the JESD216 SFDP standard, thus can not be retrieved when parsing SFDP.
2404 * @nor: pointer to a 'struct spi_nor'
2405 */
spi_nor_init_flags(struct spi_nor * nor)2406 static void spi_nor_init_flags(struct spi_nor *nor)
2407 {
2408 struct device_node *np = spi_nor_get_flash_node(nor);
2409 const u16 flags = nor->info->flags;
2410
2411 if (of_property_read_bool(np, "broken-flash-reset"))
2412 nor->flags |= SNOR_F_BROKEN_RESET;
2413
2414 if (flags & SPI_NOR_SWP_IS_VOLATILE)
2415 nor->flags |= SNOR_F_SWP_IS_VOLATILE;
2416
2417 if (flags & SPI_NOR_HAS_LOCK)
2418 nor->flags |= SNOR_F_HAS_LOCK;
2419
2420 if (flags & SPI_NOR_HAS_TB) {
2421 nor->flags |= SNOR_F_HAS_SR_TB;
2422 if (flags & SPI_NOR_TB_SR_BIT6)
2423 nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
2424 }
2425
2426 if (flags & SPI_NOR_4BIT_BP) {
2427 nor->flags |= SNOR_F_HAS_4BIT_BP;
2428 if (flags & SPI_NOR_BP3_SR_BIT6)
2429 nor->flags |= SNOR_F_HAS_SR_BP3_BIT6;
2430 }
2431
2432 if (flags & NO_CHIP_ERASE)
2433 nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
2434 }
2435
2436 /**
2437 * spi_nor_init_fixup_flags() - Initialize NOR flags for settings that can not
2438 * be discovered by SFDP for this particular flash because the SFDP table that
2439 * indicates this support is not defined in the flash. In case the table for
2440 * this support is defined but has wrong values, one should instead use a
2441 * post_sfdp() hook to set the SNOR_F equivalent flag.
2442 * @nor: pointer to a 'struct spi_nor'
2443 */
spi_nor_init_fixup_flags(struct spi_nor * nor)2444 static void spi_nor_init_fixup_flags(struct spi_nor *nor)
2445 {
2446 const u8 fixup_flags = nor->info->fixup_flags;
2447
2448 if (fixup_flags & SPI_NOR_4B_OPCODES)
2449 nor->flags |= SNOR_F_4B_OPCODES;
2450
2451 if (fixup_flags & SPI_NOR_IO_MODE_EN_VOLATILE)
2452 nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
2453 }
2454
2455 /**
2456 * spi_nor_late_init_params() - Late initialization of default flash parameters.
2457 * @nor: pointer to a 'struct spi_nor'
2458 *
2459 * Used to initialize flash parameters that are not declared in the JESD216
2460 * SFDP standard, or where SFDP tables are not defined at all.
2461 * Will replace the spi_nor_manufacturer_init_params() method.
2462 */
spi_nor_late_init_params(struct spi_nor * nor)2463 static void spi_nor_late_init_params(struct spi_nor *nor)
2464 {
2465 if (nor->manufacturer && nor->manufacturer->fixups &&
2466 nor->manufacturer->fixups->late_init)
2467 nor->manufacturer->fixups->late_init(nor);
2468
2469 if (nor->info->fixups && nor->info->fixups->late_init)
2470 nor->info->fixups->late_init(nor);
2471
2472 spi_nor_init_flags(nor);
2473 spi_nor_init_fixup_flags(nor);
2474
2475 /*
2476 * NOR protection support. When locking_ops are not provided, we pick
2477 * the default ones.
2478 */
2479 if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops)
2480 spi_nor_init_default_locking_ops(nor);
2481 }
2482
2483 /**
2484 * spi_nor_sfdp_init_params_deprecated() - Deprecated way of initializing flash
2485 * parameters and settings based on JESD216 SFDP standard.
2486 * @nor: pointer to a 'struct spi_nor'.
2487 *
2488 * The method has a roll-back mechanism: in case the SFDP parsing fails, the
2489 * legacy flash parameters and settings will be restored.
2490 */
spi_nor_sfdp_init_params_deprecated(struct spi_nor * nor)2491 static void spi_nor_sfdp_init_params_deprecated(struct spi_nor *nor)
2492 {
2493 struct spi_nor_flash_parameter sfdp_params;
2494
2495 memcpy(&sfdp_params, nor->params, sizeof(sfdp_params));
2496
2497 if (spi_nor_parse_sfdp(nor)) {
2498 memcpy(nor->params, &sfdp_params, sizeof(*nor->params));
2499 nor->flags &= ~SNOR_F_4B_OPCODES;
2500 }
2501 }
2502
2503 /**
2504 * spi_nor_init_params_deprecated() - Deprecated way of initializing flash
2505 * parameters and settings.
2506 * @nor: pointer to a 'struct spi_nor'.
2507 *
2508 * The method assumes that flash doesn't support SFDP so it initializes flash
2509 * parameters in spi_nor_no_sfdp_init_params() which later on can be overwritten
2510 * when parsing SFDP, if supported.
2511 */
spi_nor_init_params_deprecated(struct spi_nor * nor)2512 static void spi_nor_init_params_deprecated(struct spi_nor *nor)
2513 {
2514 spi_nor_no_sfdp_init_params(nor);
2515
2516 spi_nor_manufacturer_init_params(nor);
2517
2518 if (nor->info->no_sfdp_flags & (SPI_NOR_DUAL_READ |
2519 SPI_NOR_QUAD_READ |
2520 SPI_NOR_OCTAL_READ |
2521 SPI_NOR_OCTAL_DTR_READ))
2522 spi_nor_sfdp_init_params_deprecated(nor);
2523 }
2524
2525 /**
2526 * spi_nor_init_default_params() - Default initialization of flash parameters
2527 * and settings. Done for all flashes, regardless is they define SFDP tables
2528 * or not.
2529 * @nor: pointer to a 'struct spi_nor'.
2530 */
spi_nor_init_default_params(struct spi_nor * nor)2531 static void spi_nor_init_default_params(struct spi_nor *nor)
2532 {
2533 struct spi_nor_flash_parameter *params = nor->params;
2534 const struct flash_info *info = nor->info;
2535 struct device_node *np = spi_nor_get_flash_node(nor);
2536
2537 params->quad_enable = spi_nor_sr2_bit1_quad_enable;
2538 params->set_4byte_addr_mode = spansion_set_4byte_addr_mode;
2539 params->otp.org = &info->otp_org;
2540
2541 /* Default to 16-bit Write Status (01h) Command */
2542 nor->flags |= SNOR_F_HAS_16BIT_SR;
2543
2544 /* Set SPI NOR sizes. */
2545 params->writesize = 1;
2546 params->size = (u64)info->sector_size * info->n_sectors;
2547 params->page_size = info->page_size;
2548
2549 if (!(info->flags & SPI_NOR_NO_FR)) {
2550 /* Default to Fast Read for DT and non-DT platform devices. */
2551 params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
2552
2553 /* Mask out Fast Read if not requested at DT instantiation. */
2554 if (np && !of_property_read_bool(np, "m25p,fast-read"))
2555 params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
2556 }
2557
2558 /* (Fast) Read settings. */
2559 params->hwcaps.mask |= SNOR_HWCAPS_READ;
2560 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ],
2561 0, 0, SPINOR_OP_READ,
2562 SNOR_PROTO_1_1_1);
2563
2564 if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
2565 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST],
2566 0, 8, SPINOR_OP_READ_FAST,
2567 SNOR_PROTO_1_1_1);
2568 /* Page Program settings. */
2569 params->hwcaps.mask |= SNOR_HWCAPS_PP;
2570 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP],
2571 SPINOR_OP_PP, SNOR_PROTO_1_1_1);
2572 }
2573
2574 /**
2575 * spi_nor_init_params() - Initialize the flash's parameters and settings.
2576 * @nor: pointer to a 'struct spi_nor'.
2577 *
2578 * The flash parameters and settings are initialized based on a sequence of
2579 * calls that are ordered by priority:
2580 *
2581 * 1/ Default flash parameters initialization. The initializations are done
2582 * based on nor->info data:
2583 * spi_nor_info_init_params()
2584 *
2585 * which can be overwritten by:
2586 * 2/ Manufacturer flash parameters initialization. The initializations are
2587 * done based on MFR register, or when the decisions can not be done solely
2588 * based on MFR, by using specific flash_info tweeks, ->default_init():
2589 * spi_nor_manufacturer_init_params()
2590 *
2591 * which can be overwritten by:
2592 * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
2593 * should be more accurate that the above.
2594 * spi_nor_parse_sfdp() or spi_nor_no_sfdp_init_params()
2595 *
2596 * Please note that there is a ->post_bfpt() fixup hook that can overwrite
2597 * the flash parameters and settings immediately after parsing the Basic
2598 * Flash Parameter Table.
2599 * spi_nor_post_sfdp_fixups() is called after the SFDP tables are parsed.
2600 * It is used to tweak various flash parameters when information provided
2601 * by the SFDP tables are wrong.
2602 *
2603 * which can be overwritten by:
2604 * 4/ Late flash parameters initialization, used to initialize flash
2605 * parameters that are not declared in the JESD216 SFDP standard, or where SFDP
2606 * tables are not defined at all.
2607 * spi_nor_late_init_params()
2608 *
2609 * Return: 0 on success, -errno otherwise.
2610 */
spi_nor_init_params(struct spi_nor * nor)2611 static int spi_nor_init_params(struct spi_nor *nor)
2612 {
2613 int ret;
2614
2615 nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL);
2616 if (!nor->params)
2617 return -ENOMEM;
2618
2619 spi_nor_init_default_params(nor);
2620
2621 if (nor->info->parse_sfdp) {
2622 ret = spi_nor_parse_sfdp(nor);
2623 if (ret) {
2624 dev_err(nor->dev, "BFPT parsing failed. Please consider using SPI_NOR_SKIP_SFDP when declaring the flash\n");
2625 return ret;
2626 }
2627 } else if (nor->info->no_sfdp_flags & SPI_NOR_SKIP_SFDP) {
2628 spi_nor_no_sfdp_init_params(nor);
2629 } else {
2630 spi_nor_init_params_deprecated(nor);
2631 }
2632
2633 spi_nor_late_init_params(nor);
2634
2635 return 0;
2636 }
2637
2638 /** spi_nor_octal_dtr_enable() - enable Octal DTR I/O if needed
2639 * @nor: pointer to a 'struct spi_nor'
2640 * @enable: whether to enable or disable Octal DTR
2641 *
2642 * Return: 0 on success, -errno otherwise.
2643 */
spi_nor_octal_dtr_enable(struct spi_nor * nor,bool enable)2644 static int spi_nor_octal_dtr_enable(struct spi_nor *nor, bool enable)
2645 {
2646 int ret;
2647
2648 if (!nor->params->octal_dtr_enable)
2649 return 0;
2650
2651 if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR &&
2652 nor->write_proto == SNOR_PROTO_8_8_8_DTR))
2653 return 0;
2654
2655 if (!(nor->flags & SNOR_F_IO_MODE_EN_VOLATILE))
2656 return 0;
2657
2658 ret = nor->params->octal_dtr_enable(nor, enable);
2659 if (ret)
2660 return ret;
2661
2662 if (enable)
2663 nor->reg_proto = SNOR_PROTO_8_8_8_DTR;
2664 else
2665 nor->reg_proto = SNOR_PROTO_1_1_1;
2666
2667 return 0;
2668 }
2669
2670 /**
2671 * spi_nor_quad_enable() - enable Quad I/O if needed.
2672 * @nor: pointer to a 'struct spi_nor'
2673 *
2674 * Return: 0 on success, -errno otherwise.
2675 */
spi_nor_quad_enable(struct spi_nor * nor)2676 static int spi_nor_quad_enable(struct spi_nor *nor)
2677 {
2678 if (!nor->params->quad_enable)
2679 return 0;
2680
2681 if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
2682 spi_nor_get_protocol_width(nor->write_proto) == 4))
2683 return 0;
2684
2685 return nor->params->quad_enable(nor);
2686 }
2687
spi_nor_init(struct spi_nor * nor)2688 static int spi_nor_init(struct spi_nor *nor)
2689 {
2690 int err;
2691
2692 err = spi_nor_octal_dtr_enable(nor, true);
2693 if (err) {
2694 dev_dbg(nor->dev, "octal mode not supported\n");
2695 return err;
2696 }
2697
2698 err = spi_nor_quad_enable(nor);
2699 if (err) {
2700 dev_dbg(nor->dev, "quad mode not supported\n");
2701 return err;
2702 }
2703
2704 /*
2705 * Some SPI NOR flashes are write protected by default after a power-on
2706 * reset cycle, in order to avoid inadvertent writes during power-up.
2707 * Backward compatibility imposes to unlock the entire flash memory
2708 * array at power-up by default. Depending on the kernel configuration
2709 * (1) do nothing, (2) always unlock the entire flash array or (3)
2710 * unlock the entire flash array only when the software write
2711 * protection bits are volatile. The latter is indicated by
2712 * SNOR_F_SWP_IS_VOLATILE.
2713 */
2714 if (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE) ||
2715 (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE_ON_VOLATILE) &&
2716 nor->flags & SNOR_F_SWP_IS_VOLATILE))
2717 spi_nor_try_unlock_all(nor);
2718
2719 if (nor->addr_nbytes == 4 &&
2720 nor->read_proto != SNOR_PROTO_8_8_8_DTR &&
2721 !(nor->flags & SNOR_F_4B_OPCODES)) {
2722 /*
2723 * If the RESET# pin isn't hooked up properly, or the system
2724 * otherwise doesn't perform a reset command in the boot
2725 * sequence, it's impossible to 100% protect against unexpected
2726 * reboots (e.g., crashes). Warn the user (or hopefully, system
2727 * designer) that this is bad.
2728 */
2729 WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
2730 "enabling reset hack; may not recover from unexpected reboots\n");
2731 err = nor->params->set_4byte_addr_mode(nor, true);
2732 if (err && err != -ENOTSUPP)
2733 return err;
2734 }
2735
2736 return 0;
2737 }
2738
2739 /**
2740 * spi_nor_soft_reset() - Perform a software reset
2741 * @nor: pointer to 'struct spi_nor'
2742 *
2743 * Performs a "Soft Reset and Enter Default Protocol Mode" sequence which resets
2744 * the device to its power-on-reset state. This is useful when the software has
2745 * made some changes to device (volatile) registers and needs to reset it before
2746 * shutting down, for example.
2747 *
2748 * Not every flash supports this sequence. The same set of opcodes might be used
2749 * for some other operation on a flash that does not support this. Support for
2750 * this sequence can be discovered via SFDP in the BFPT table.
2751 *
2752 * Return: 0 on success, -errno otherwise.
2753 */
spi_nor_soft_reset(struct spi_nor * nor)2754 static void spi_nor_soft_reset(struct spi_nor *nor)
2755 {
2756 struct spi_mem_op op;
2757 int ret;
2758
2759 op = (struct spi_mem_op)SPINOR_SRSTEN_OP;
2760
2761 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
2762
2763 ret = spi_mem_exec_op(nor->spimem, &op);
2764 if (ret) {
2765 dev_warn(nor->dev, "Software reset failed: %d\n", ret);
2766 return;
2767 }
2768
2769 op = (struct spi_mem_op)SPINOR_SRST_OP;
2770
2771 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
2772
2773 ret = spi_mem_exec_op(nor->spimem, &op);
2774 if (ret) {
2775 dev_warn(nor->dev, "Software reset failed: %d\n", ret);
2776 return;
2777 }
2778
2779 /*
2780 * Software Reset is not instant, and the delay varies from flash to
2781 * flash. Looking at a few flashes, most range somewhere below 100
2782 * microseconds. So, sleep for a range of 200-400 us.
2783 */
2784 usleep_range(SPI_NOR_SRST_SLEEP_MIN, SPI_NOR_SRST_SLEEP_MAX);
2785 }
2786
2787 /* mtd suspend handler */
spi_nor_suspend(struct mtd_info * mtd)2788 static int spi_nor_suspend(struct mtd_info *mtd)
2789 {
2790 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2791 int ret;
2792
2793 /* Disable octal DTR mode if we enabled it. */
2794 ret = spi_nor_octal_dtr_enable(nor, false);
2795 if (ret)
2796 dev_err(nor->dev, "suspend() failed\n");
2797
2798 return ret;
2799 }
2800
2801 /* mtd resume handler */
spi_nor_resume(struct mtd_info * mtd)2802 static void spi_nor_resume(struct mtd_info *mtd)
2803 {
2804 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2805 struct device *dev = nor->dev;
2806 int ret;
2807
2808 /* re-initialize the nor chip */
2809 ret = spi_nor_init(nor);
2810 if (ret)
2811 dev_err(dev, "resume() failed\n");
2812 }
2813
spi_nor_get_device(struct mtd_info * mtd)2814 static int spi_nor_get_device(struct mtd_info *mtd)
2815 {
2816 struct mtd_info *master = mtd_get_master(mtd);
2817 struct spi_nor *nor = mtd_to_spi_nor(master);
2818 struct device *dev;
2819
2820 if (nor->spimem)
2821 dev = nor->spimem->spi->controller->dev.parent;
2822 else
2823 dev = nor->dev;
2824
2825 if (!try_module_get(dev->driver->owner))
2826 return -ENODEV;
2827
2828 return 0;
2829 }
2830
spi_nor_put_device(struct mtd_info * mtd)2831 static void spi_nor_put_device(struct mtd_info *mtd)
2832 {
2833 struct mtd_info *master = mtd_get_master(mtd);
2834 struct spi_nor *nor = mtd_to_spi_nor(master);
2835 struct device *dev;
2836
2837 if (nor->spimem)
2838 dev = nor->spimem->spi->controller->dev.parent;
2839 else
2840 dev = nor->dev;
2841
2842 module_put(dev->driver->owner);
2843 }
2844
spi_nor_restore(struct spi_nor * nor)2845 void spi_nor_restore(struct spi_nor *nor)
2846 {
2847 /* restore the addressing mode */
2848 if (nor->addr_nbytes == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
2849 nor->flags & SNOR_F_BROKEN_RESET)
2850 nor->params->set_4byte_addr_mode(nor, false);
2851
2852 if (nor->flags & SNOR_F_SOFT_RESET)
2853 spi_nor_soft_reset(nor);
2854 }
2855 EXPORT_SYMBOL_GPL(spi_nor_restore);
2856
spi_nor_match_name(struct spi_nor * nor,const char * name)2857 static const struct flash_info *spi_nor_match_name(struct spi_nor *nor,
2858 const char *name)
2859 {
2860 unsigned int i, j;
2861
2862 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
2863 for (j = 0; j < manufacturers[i]->nparts; j++) {
2864 if (!strcmp(name, manufacturers[i]->parts[j].name)) {
2865 nor->manufacturer = manufacturers[i];
2866 return &manufacturers[i]->parts[j];
2867 }
2868 }
2869 }
2870
2871 return NULL;
2872 }
2873
spi_nor_get_flash_info(struct spi_nor * nor,const char * name)2874 static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
2875 const char *name)
2876 {
2877 const struct flash_info *info = NULL;
2878
2879 if (name)
2880 info = spi_nor_match_name(nor, name);
2881 /* Try to auto-detect if chip name wasn't specified or not found */
2882 if (!info)
2883 return spi_nor_detect(nor);
2884
2885 /*
2886 * If caller has specified name of flash model that can normally be
2887 * detected using JEDEC, let's verify it.
2888 */
2889 if (name && info->id_len) {
2890 const struct flash_info *jinfo;
2891
2892 jinfo = spi_nor_detect(nor);
2893 if (IS_ERR(jinfo)) {
2894 return jinfo;
2895 } else if (jinfo != info) {
2896 /*
2897 * JEDEC knows better, so overwrite platform ID. We
2898 * can't trust partitions any longer, but we'll let
2899 * mtd apply them anyway, since some partitions may be
2900 * marked read-only, and we don't want to lose that
2901 * information, even if it's not 100% accurate.
2902 */
2903 dev_warn(nor->dev, "found %s, expected %s\n",
2904 jinfo->name, info->name);
2905 info = jinfo;
2906 }
2907 }
2908
2909 return info;
2910 }
2911
spi_nor_set_mtd_info(struct spi_nor * nor)2912 static void spi_nor_set_mtd_info(struct spi_nor *nor)
2913 {
2914 struct mtd_info *mtd = &nor->mtd;
2915 struct device *dev = nor->dev;
2916
2917 spi_nor_set_mtd_locking_ops(nor);
2918 spi_nor_set_mtd_otp_ops(nor);
2919
2920 mtd->dev.parent = dev;
2921 if (!mtd->name)
2922 mtd->name = dev_name(dev);
2923 mtd->type = MTD_NORFLASH;
2924 mtd->flags = MTD_CAP_NORFLASH;
2925 if (nor->info->flags & SPI_NOR_NO_ERASE)
2926 mtd->flags |= MTD_NO_ERASE;
2927 else
2928 mtd->_erase = spi_nor_erase;
2929 mtd->writesize = nor->params->writesize;
2930 mtd->writebufsize = nor->params->page_size;
2931 mtd->size = nor->params->size;
2932 mtd->_read = spi_nor_read;
2933 /* Might be already set by some SST flashes. */
2934 if (!mtd->_write)
2935 mtd->_write = spi_nor_write;
2936 mtd->_suspend = spi_nor_suspend;
2937 mtd->_resume = spi_nor_resume;
2938 mtd->_get_device = spi_nor_get_device;
2939 mtd->_put_device = spi_nor_put_device;
2940 }
2941
spi_nor_scan(struct spi_nor * nor,const char * name,const struct spi_nor_hwcaps * hwcaps)2942 int spi_nor_scan(struct spi_nor *nor, const char *name,
2943 const struct spi_nor_hwcaps *hwcaps)
2944 {
2945 const struct flash_info *info;
2946 struct device *dev = nor->dev;
2947 struct mtd_info *mtd = &nor->mtd;
2948 int ret;
2949 int i;
2950
2951 ret = spi_nor_check(nor);
2952 if (ret)
2953 return ret;
2954
2955 /* Reset SPI protocol for all commands. */
2956 nor->reg_proto = SNOR_PROTO_1_1_1;
2957 nor->read_proto = SNOR_PROTO_1_1_1;
2958 nor->write_proto = SNOR_PROTO_1_1_1;
2959
2960 /*
2961 * We need the bounce buffer early to read/write registers when going
2962 * through the spi-mem layer (buffers have to be DMA-able).
2963 * For spi-mem drivers, we'll reallocate a new buffer if
2964 * nor->params->page_size turns out to be greater than PAGE_SIZE (which
2965 * shouldn't happen before long since NOR pages are usually less
2966 * than 1KB) after spi_nor_scan() returns.
2967 */
2968 nor->bouncebuf_size = PAGE_SIZE;
2969 nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
2970 GFP_KERNEL);
2971 if (!nor->bouncebuf)
2972 return -ENOMEM;
2973
2974 info = spi_nor_get_flash_info(nor, name);
2975 if (IS_ERR(info))
2976 return PTR_ERR(info);
2977
2978 nor->info = info;
2979
2980 mutex_init(&nor->lock);
2981
2982 /* Init flash parameters based on flash_info struct and SFDP */
2983 ret = spi_nor_init_params(nor);
2984 if (ret)
2985 return ret;
2986
2987 /*
2988 * Configure the SPI memory:
2989 * - select op codes for (Fast) Read, Page Program and Sector Erase.
2990 * - set the number of dummy cycles (mode cycles + wait states).
2991 * - set the SPI protocols for register and memory accesses.
2992 * - set the number of address bytes.
2993 */
2994 ret = spi_nor_setup(nor, hwcaps);
2995 if (ret)
2996 return ret;
2997
2998 /* Send all the required SPI flash commands to initialize device */
2999 ret = spi_nor_init(nor);
3000 if (ret)
3001 return ret;
3002
3003 /* No mtd_info fields should be used up to this point. */
3004 spi_nor_set_mtd_info(nor);
3005
3006 dev_info(dev, "%s (%lld Kbytes)\n", info->name,
3007 (long long)mtd->size >> 10);
3008
3009 dev_dbg(dev,
3010 "mtd .name = %s, .size = 0x%llx (%lldMiB), "
3011 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
3012 mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
3013 mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
3014
3015 if (mtd->numeraseregions)
3016 for (i = 0; i < mtd->numeraseregions; i++)
3017 dev_dbg(dev,
3018 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
3019 ".erasesize = 0x%.8x (%uKiB), "
3020 ".numblocks = %d }\n",
3021 i, (long long)mtd->eraseregions[i].offset,
3022 mtd->eraseregions[i].erasesize,
3023 mtd->eraseregions[i].erasesize / 1024,
3024 mtd->eraseregions[i].numblocks);
3025 return 0;
3026 }
3027 EXPORT_SYMBOL_GPL(spi_nor_scan);
3028
spi_nor_create_read_dirmap(struct spi_nor * nor)3029 static int spi_nor_create_read_dirmap(struct spi_nor *nor)
3030 {
3031 struct spi_mem_dirmap_info info = {
3032 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
3033 SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0),
3034 SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
3035 SPI_MEM_OP_DATA_IN(0, NULL, 0)),
3036 .offset = 0,
3037 .length = nor->params->size,
3038 };
3039 struct spi_mem_op *op = &info.op_tmpl;
3040
3041 spi_nor_spimem_setup_op(nor, op, nor->read_proto);
3042
3043 /* convert the dummy cycles to the number of bytes */
3044 op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
3045 if (spi_nor_protocol_is_dtr(nor->read_proto))
3046 op->dummy.nbytes *= 2;
3047
3048 /*
3049 * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3050 * of data bytes is non-zero, the data buswidth won't be set here. So,
3051 * do it explicitly.
3052 */
3053 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
3054
3055 nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3056 &info);
3057 return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
3058 }
3059
spi_nor_create_write_dirmap(struct spi_nor * nor)3060 static int spi_nor_create_write_dirmap(struct spi_nor *nor)
3061 {
3062 struct spi_mem_dirmap_info info = {
3063 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
3064 SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0),
3065 SPI_MEM_OP_NO_DUMMY,
3066 SPI_MEM_OP_DATA_OUT(0, NULL, 0)),
3067 .offset = 0,
3068 .length = nor->params->size,
3069 };
3070 struct spi_mem_op *op = &info.op_tmpl;
3071
3072 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
3073 op->addr.nbytes = 0;
3074
3075 spi_nor_spimem_setup_op(nor, op, nor->write_proto);
3076
3077 /*
3078 * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3079 * of data bytes is non-zero, the data buswidth won't be set here. So,
3080 * do it explicitly.
3081 */
3082 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
3083
3084 nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3085 &info);
3086 return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
3087 }
3088
spi_nor_probe(struct spi_mem * spimem)3089 static int spi_nor_probe(struct spi_mem *spimem)
3090 {
3091 struct spi_device *spi = spimem->spi;
3092 struct flash_platform_data *data = dev_get_platdata(&spi->dev);
3093 struct spi_nor *nor;
3094 /*
3095 * Enable all caps by default. The core will mask them after
3096 * checking what's really supported using spi_mem_supports_op().
3097 */
3098 const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
3099 char *flash_name;
3100 int ret;
3101
3102 nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
3103 if (!nor)
3104 return -ENOMEM;
3105
3106 nor->spimem = spimem;
3107 nor->dev = &spi->dev;
3108 spi_nor_set_flash_node(nor, spi->dev.of_node);
3109
3110 spi_mem_set_drvdata(spimem, nor);
3111
3112 if (data && data->name)
3113 nor->mtd.name = data->name;
3114
3115 if (!nor->mtd.name)
3116 nor->mtd.name = spi_mem_get_name(spimem);
3117
3118 /*
3119 * For some (historical?) reason many platforms provide two different
3120 * names in flash_platform_data: "name" and "type". Quite often name is
3121 * set to "m25p80" and then "type" provides a real chip name.
3122 * If that's the case, respect "type" and ignore a "name".
3123 */
3124 if (data && data->type)
3125 flash_name = data->type;
3126 else if (!strcmp(spi->modalias, "spi-nor"))
3127 flash_name = NULL; /* auto-detect */
3128 else
3129 flash_name = spi->modalias;
3130
3131 ret = spi_nor_scan(nor, flash_name, &hwcaps);
3132 if (ret)
3133 return ret;
3134
3135 spi_nor_debugfs_register(nor);
3136
3137 /*
3138 * None of the existing parts have > 512B pages, but let's play safe
3139 * and add this logic so that if anyone ever adds support for such
3140 * a NOR we don't end up with buffer overflows.
3141 */
3142 if (nor->params->page_size > PAGE_SIZE) {
3143 nor->bouncebuf_size = nor->params->page_size;
3144 devm_kfree(nor->dev, nor->bouncebuf);
3145 nor->bouncebuf = devm_kmalloc(nor->dev,
3146 nor->bouncebuf_size,
3147 GFP_KERNEL);
3148 if (!nor->bouncebuf)
3149 return -ENOMEM;
3150 }
3151
3152 ret = spi_nor_create_read_dirmap(nor);
3153 if (ret)
3154 return ret;
3155
3156 ret = spi_nor_create_write_dirmap(nor);
3157 if (ret)
3158 return ret;
3159
3160 return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
3161 data ? data->nr_parts : 0);
3162 }
3163
spi_nor_remove(struct spi_mem * spimem)3164 static int spi_nor_remove(struct spi_mem *spimem)
3165 {
3166 struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3167
3168 spi_nor_restore(nor);
3169
3170 /* Clean up MTD stuff. */
3171 return mtd_device_unregister(&nor->mtd);
3172 }
3173
spi_nor_shutdown(struct spi_mem * spimem)3174 static void spi_nor_shutdown(struct spi_mem *spimem)
3175 {
3176 struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3177
3178 spi_nor_restore(nor);
3179 }
3180
3181 /*
3182 * Do NOT add to this array without reading the following:
3183 *
3184 * Historically, many flash devices are bound to this driver by their name. But
3185 * since most of these flash are compatible to some extent, and their
3186 * differences can often be differentiated by the JEDEC read-ID command, we
3187 * encourage new users to add support to the spi-nor library, and simply bind
3188 * against a generic string here (e.g., "jedec,spi-nor").
3189 *
3190 * Many flash names are kept here in this list to keep them available
3191 * as module aliases for existing platforms.
3192 */
3193 static const struct spi_device_id spi_nor_dev_ids[] = {
3194 /*
3195 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
3196 * hack around the fact that the SPI core does not provide uevent
3197 * matching for .of_match_table
3198 */
3199 {"spi-nor"},
3200
3201 /*
3202 * Entries not used in DTs that should be safe to drop after replacing
3203 * them with "spi-nor" in platform data.
3204 */
3205 {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"},
3206
3207 /*
3208 * Entries that were used in DTs without "jedec,spi-nor" fallback and
3209 * should be kept for backward compatibility.
3210 */
3211 {"at25df321a"}, {"at25df641"}, {"at26df081a"},
3212 {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"},
3213 {"mx25l25635e"},{"mx66l51235l"},
3214 {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"},
3215 {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"},
3216 {"s25fl064k"},
3217 {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
3218 {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"},
3219 {"m25p64"}, {"m25p128"},
3220 {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"},
3221 {"w25q80bl"}, {"w25q128"}, {"w25q256"},
3222
3223 /* Flashes that can't be detected using JEDEC */
3224 {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"},
3225 {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"},
3226 {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"},
3227
3228 /* Everspin MRAMs (non-JEDEC) */
3229 { "mr25h128" }, /* 128 Kib, 40 MHz */
3230 { "mr25h256" }, /* 256 Kib, 40 MHz */
3231 { "mr25h10" }, /* 1 Mib, 40 MHz */
3232 { "mr25h40" }, /* 4 Mib, 40 MHz */
3233
3234 { },
3235 };
3236 MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
3237
3238 static const struct of_device_id spi_nor_of_table[] = {
3239 /*
3240 * Generic compatibility for SPI NOR that can be identified by the
3241 * JEDEC READ ID opcode (0x9F). Use this, if possible.
3242 */
3243 { .compatible = "jedec,spi-nor" },
3244 { /* sentinel */ },
3245 };
3246 MODULE_DEVICE_TABLE(of, spi_nor_of_table);
3247
3248 /*
3249 * REVISIT: many of these chips have deep power-down modes, which
3250 * should clearly be entered on suspend() to minimize power use.
3251 * And also when they're otherwise idle...
3252 */
3253 static struct spi_mem_driver spi_nor_driver = {
3254 .spidrv = {
3255 .driver = {
3256 .name = "spi-nor",
3257 .of_match_table = spi_nor_of_table,
3258 .dev_groups = spi_nor_sysfs_groups,
3259 },
3260 .id_table = spi_nor_dev_ids,
3261 },
3262 .probe = spi_nor_probe,
3263 .remove = spi_nor_remove,
3264 .shutdown = spi_nor_shutdown,
3265 };
3266 module_spi_mem_driver(spi_nor_driver);
3267
3268 MODULE_LICENSE("GPL v2");
3269 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
3270 MODULE_AUTHOR("Mike Lavender");
3271 MODULE_DESCRIPTION("framework for SPI NOR");
3272