1 /*
2  * Copyright (C) 2005 David Brownell
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  */
18 
19 #ifndef __LINUX_SPI_H
20 #define __LINUX_SPI_H
21 
22 #include <linux/device.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/slab.h>
25 
26 /*
27  * INTERFACES between SPI master-side drivers and SPI infrastructure.
28  * (There's no SPI slave support for Linux yet...)
29  */
30 extern struct bus_type spi_bus_type;
31 
32 /**
33  * struct spi_device - Master side proxy for an SPI slave device
34  * @dev: Driver model representation of the device.
35  * @master: SPI controller used with the device.
36  * @max_speed_hz: Maximum clock rate to be used with this chip
37  *	(on this board); may be changed by the device's driver.
38  *	The spi_transfer.speed_hz can override this for each transfer.
39  * @chip_select: Chipselect, distinguishing chips handled by @master.
40  * @mode: The spi mode defines how data is clocked out and in.
41  *	This may be changed by the device's driver.
42  *	The "active low" default for chipselect mode can be overridden
43  *	(by specifying SPI_CS_HIGH) as can the "MSB first" default for
44  *	each word in a transfer (by specifying SPI_LSB_FIRST).
45  * @bits_per_word: Data transfers involve one or more words; word sizes
46  *	like eight or 12 bits are common.  In-memory wordsizes are
47  *	powers of two bytes (e.g. 20 bit samples use 32 bits).
48  *	This may be changed by the device's driver, or left at the
49  *	default (0) indicating protocol words are eight bit bytes.
50  *	The spi_transfer.bits_per_word can override this for each transfer.
51  * @irq: Negative, or the number passed to request_irq() to receive
52  *	interrupts from this device.
53  * @controller_state: Controller's runtime state
54  * @controller_data: Board-specific definitions for controller, such as
55  *	FIFO initialization parameters; from board_info.controller_data
56  * @modalias: Name of the driver to use with this device, or an alias
57  *	for that name.  This appears in the sysfs "modalias" attribute
58  *	for driver coldplugging, and in uevents used for hotplugging
59  *
60  * A @spi_device is used to interchange data between an SPI slave
61  * (usually a discrete chip) and CPU memory.
62  *
63  * In @dev, the platform_data is used to hold information about this
64  * device that's meaningful to the device's protocol driver, but not
65  * to its controller.  One example might be an identifier for a chip
66  * variant with slightly different functionality; another might be
67  * information about how this particular board wires the chip's pins.
68  */
69 struct spi_device {
70 	struct device		dev;
71 	struct spi_master	*master;
72 	u32			max_speed_hz;
73 	u8			chip_select;
74 	u8			mode;
75 #define	SPI_CPHA	0x01			/* clock phase */
76 #define	SPI_CPOL	0x02			/* clock polarity */
77 #define	SPI_MODE_0	(0|0)			/* (original MicroWire) */
78 #define	SPI_MODE_1	(0|SPI_CPHA)
79 #define	SPI_MODE_2	(SPI_CPOL|0)
80 #define	SPI_MODE_3	(SPI_CPOL|SPI_CPHA)
81 #define	SPI_CS_HIGH	0x04			/* chipselect active high? */
82 #define	SPI_LSB_FIRST	0x08			/* per-word bits-on-wire */
83 #define	SPI_3WIRE	0x10			/* SI/SO signals shared */
84 #define	SPI_LOOP	0x20			/* loopback mode */
85 #define	SPI_NO_CS	0x40			/* 1 dev/bus, no chipselect */
86 #define	SPI_READY	0x80			/* slave pulls low to pause */
87 	u8			bits_per_word;
88 	int			irq;
89 	void			*controller_state;
90 	void			*controller_data;
91 	char			modalias[SPI_NAME_SIZE];
92 
93 	/*
94 	 * likely need more hooks for more protocol options affecting how
95 	 * the controller talks to each chip, like:
96 	 *  - memory packing (12 bit samples into low bits, others zeroed)
97 	 *  - priority
98 	 *  - drop chipselect after each word
99 	 *  - chipselect delays
100 	 *  - ...
101 	 */
102 };
103 
to_spi_device(struct device * dev)104 static inline struct spi_device *to_spi_device(struct device *dev)
105 {
106 	return dev ? container_of(dev, struct spi_device, dev) : NULL;
107 }
108 
109 /* most drivers won't need to care about device refcounting */
spi_dev_get(struct spi_device * spi)110 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
111 {
112 	return (spi && get_device(&spi->dev)) ? spi : NULL;
113 }
114 
spi_dev_put(struct spi_device * spi)115 static inline void spi_dev_put(struct spi_device *spi)
116 {
117 	if (spi)
118 		put_device(&spi->dev);
119 }
120 
121 /* ctldata is for the bus_master driver's runtime state */
spi_get_ctldata(struct spi_device * spi)122 static inline void *spi_get_ctldata(struct spi_device *spi)
123 {
124 	return spi->controller_state;
125 }
126 
spi_set_ctldata(struct spi_device * spi,void * state)127 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
128 {
129 	spi->controller_state = state;
130 }
131 
132 /* device driver data */
133 
spi_set_drvdata(struct spi_device * spi,void * data)134 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
135 {
136 	dev_set_drvdata(&spi->dev, data);
137 }
138 
spi_get_drvdata(struct spi_device * spi)139 static inline void *spi_get_drvdata(struct spi_device *spi)
140 {
141 	return dev_get_drvdata(&spi->dev);
142 }
143 
144 struct spi_message;
145 
146 
147 
148 /**
149  * struct spi_driver - Host side "protocol" driver
150  * @id_table: List of SPI devices supported by this driver
151  * @probe: Binds this driver to the spi device.  Drivers can verify
152  *	that the device is actually present, and may need to configure
153  *	characteristics (such as bits_per_word) which weren't needed for
154  *	the initial configuration done during system setup.
155  * @remove: Unbinds this driver from the spi device
156  * @shutdown: Standard shutdown callback used during system state
157  *	transitions such as powerdown/halt and kexec
158  * @suspend: Standard suspend callback used during system state transitions
159  * @resume: Standard resume callback used during system state transitions
160  * @driver: SPI device drivers should initialize the name and owner
161  *	field of this structure.
162  *
163  * This represents the kind of device driver that uses SPI messages to
164  * interact with the hardware at the other end of a SPI link.  It's called
165  * a "protocol" driver because it works through messages rather than talking
166  * directly to SPI hardware (which is what the underlying SPI controller
167  * driver does to pass those messages).  These protocols are defined in the
168  * specification for the device(s) supported by the driver.
169  *
170  * As a rule, those device protocols represent the lowest level interface
171  * supported by a driver, and it will support upper level interfaces too.
172  * Examples of such upper levels include frameworks like MTD, networking,
173  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
174  */
175 struct spi_driver {
176 	const struct spi_device_id *id_table;
177 	int			(*probe)(struct spi_device *spi);
178 	int			(*remove)(struct spi_device *spi);
179 	void			(*shutdown)(struct spi_device *spi);
180 	int			(*suspend)(struct spi_device *spi, pm_message_t mesg);
181 	int			(*resume)(struct spi_device *spi);
182 	struct device_driver	driver;
183 };
184 
to_spi_driver(struct device_driver * drv)185 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
186 {
187 	return drv ? container_of(drv, struct spi_driver, driver) : NULL;
188 }
189 
190 extern int spi_register_driver(struct spi_driver *sdrv);
191 
192 /**
193  * spi_unregister_driver - reverse effect of spi_register_driver
194  * @sdrv: the driver to unregister
195  * Context: can sleep
196  */
spi_unregister_driver(struct spi_driver * sdrv)197 static inline void spi_unregister_driver(struct spi_driver *sdrv)
198 {
199 	if (sdrv)
200 		driver_unregister(&sdrv->driver);
201 }
202 
203 
204 /**
205  * struct spi_master - interface to SPI master controller
206  * @dev: device interface to this driver
207  * @list: link with the global spi_master list
208  * @bus_num: board-specific (and often SOC-specific) identifier for a
209  *	given SPI controller.
210  * @num_chipselect: chipselects are used to distinguish individual
211  *	SPI slaves, and are numbered from zero to num_chipselects.
212  *	each slave has a chipselect signal, but it's common that not
213  *	every chipselect is connected to a slave.
214  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
215  * @mode_bits: flags understood by this controller driver
216  * @flags: other constraints relevant to this driver
217  * @bus_lock_spinlock: spinlock for SPI bus locking
218  * @bus_lock_mutex: mutex for SPI bus locking
219  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
220  * @setup: updates the device mode and clocking records used by a
221  *	device's SPI controller; protocol code may call this.  This
222  *	must fail if an unrecognized or unsupported mode is requested.
223  *	It's always safe to call this unless transfers are pending on
224  *	the device whose settings are being modified.
225  * @transfer: adds a message to the controller's transfer queue.
226  * @cleanup: frees controller-specific state
227  *
228  * Each SPI master controller can communicate with one or more @spi_device
229  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
230  * but not chip select signals.  Each device may be configured to use a
231  * different clock rate, since those shared signals are ignored unless
232  * the chip is selected.
233  *
234  * The driver for an SPI controller manages access to those devices through
235  * a queue of spi_message transactions, copying data between CPU memory and
236  * an SPI slave device.  For each such message it queues, it calls the
237  * message's completion function when the transaction completes.
238  */
239 struct spi_master {
240 	struct device	dev;
241 
242 	struct list_head list;
243 
244 	/* other than negative (== assign one dynamically), bus_num is fully
245 	 * board-specific.  usually that simplifies to being SOC-specific.
246 	 * example:  one SOC has three SPI controllers, numbered 0..2,
247 	 * and one board's schematics might show it using SPI-2.  software
248 	 * would normally use bus_num=2 for that controller.
249 	 */
250 	s16			bus_num;
251 
252 	/* chipselects will be integral to many controllers; some others
253 	 * might use board-specific GPIOs.
254 	 */
255 	u16			num_chipselect;
256 
257 	/* some SPI controllers pose alignment requirements on DMAable
258 	 * buffers; let protocol drivers know about these requirements.
259 	 */
260 	u16			dma_alignment;
261 
262 	/* spi_device.mode flags understood by this controller driver */
263 	u16			mode_bits;
264 
265 	/* other constraints relevant to this driver */
266 	u16			flags;
267 #define SPI_MASTER_HALF_DUPLEX	BIT(0)		/* can't do full duplex */
268 #define SPI_MASTER_NO_RX	BIT(1)		/* can't do buffer read */
269 #define SPI_MASTER_NO_TX	BIT(2)		/* can't do buffer write */
270 
271 	/* lock and mutex for SPI bus locking */
272 	spinlock_t		bus_lock_spinlock;
273 	struct mutex		bus_lock_mutex;
274 
275 	/* flag indicating that the SPI bus is locked for exclusive use */
276 	bool			bus_lock_flag;
277 
278 	/* Setup mode and clock, etc (spi driver may call many times).
279 	 *
280 	 * IMPORTANT:  this may be called when transfers to another
281 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
282 	 * which could break those transfers.
283 	 */
284 	int			(*setup)(struct spi_device *spi);
285 
286 	/* bidirectional bulk transfers
287 	 *
288 	 * + The transfer() method may not sleep; its main role is
289 	 *   just to add the message to the queue.
290 	 * + For now there's no remove-from-queue operation, or
291 	 *   any other request management
292 	 * + To a given spi_device, message queueing is pure fifo
293 	 *
294 	 * + The master's main job is to process its message queue,
295 	 *   selecting a chip then transferring data
296 	 * + If there are multiple spi_device children, the i/o queue
297 	 *   arbitration algorithm is unspecified (round robin, fifo,
298 	 *   priority, reservations, preemption, etc)
299 	 *
300 	 * + Chipselect stays active during the entire message
301 	 *   (unless modified by spi_transfer.cs_change != 0).
302 	 * + The message transfers use clock and SPI mode parameters
303 	 *   previously established by setup() for this device
304 	 */
305 	int			(*transfer)(struct spi_device *spi,
306 						struct spi_message *mesg);
307 
308 	/* called on release() to free memory provided by spi_master */
309 	void			(*cleanup)(struct spi_device *spi);
310 };
311 
spi_master_get_devdata(struct spi_master * master)312 static inline void *spi_master_get_devdata(struct spi_master *master)
313 {
314 	return dev_get_drvdata(&master->dev);
315 }
316 
spi_master_set_devdata(struct spi_master * master,void * data)317 static inline void spi_master_set_devdata(struct spi_master *master, void *data)
318 {
319 	dev_set_drvdata(&master->dev, data);
320 }
321 
spi_master_get(struct spi_master * master)322 static inline struct spi_master *spi_master_get(struct spi_master *master)
323 {
324 	if (!master || !get_device(&master->dev))
325 		return NULL;
326 	return master;
327 }
328 
spi_master_put(struct spi_master * master)329 static inline void spi_master_put(struct spi_master *master)
330 {
331 	if (master)
332 		put_device(&master->dev);
333 }
334 
335 
336 /* the spi driver core manages memory for the spi_master classdev */
337 extern struct spi_master *
338 spi_alloc_master(struct device *host, unsigned size);
339 
340 extern int spi_register_master(struct spi_master *master);
341 extern void spi_unregister_master(struct spi_master *master);
342 
343 extern struct spi_master *spi_busnum_to_master(u16 busnum);
344 
345 /*---------------------------------------------------------------------------*/
346 
347 /*
348  * I/O INTERFACE between SPI controller and protocol drivers
349  *
350  * Protocol drivers use a queue of spi_messages, each transferring data
351  * between the controller and memory buffers.
352  *
353  * The spi_messages themselves consist of a series of read+write transfer
354  * segments.  Those segments always read the same number of bits as they
355  * write; but one or the other is easily ignored by passing a null buffer
356  * pointer.  (This is unlike most types of I/O API, because SPI hardware
357  * is full duplex.)
358  *
359  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
360  * up to the protocol driver, which guarantees the integrity of both (as
361  * well as the data buffers) for as long as the message is queued.
362  */
363 
364 /**
365  * struct spi_transfer - a read/write buffer pair
366  * @tx_buf: data to be written (dma-safe memory), or NULL
367  * @rx_buf: data to be read (dma-safe memory), or NULL
368  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
369  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
370  * @len: size of rx and tx buffers (in bytes)
371  * @speed_hz: Select a speed other than the device default for this
372  *      transfer. If 0 the default (from @spi_device) is used.
373  * @bits_per_word: select a bits_per_word other than the device default
374  *      for this transfer. If 0 the default (from @spi_device) is used.
375  * @cs_change: affects chipselect after this transfer completes
376  * @delay_usecs: microseconds to delay after this transfer before
377  *	(optionally) changing the chipselect status, then starting
378  *	the next transfer or completing this @spi_message.
379  * @transfer_list: transfers are sequenced through @spi_message.transfers
380  *
381  * SPI transfers always write the same number of bytes as they read.
382  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
383  * In some cases, they may also want to provide DMA addresses for
384  * the data being transferred; that may reduce overhead, when the
385  * underlying driver uses dma.
386  *
387  * If the transmit buffer is null, zeroes will be shifted out
388  * while filling @rx_buf.  If the receive buffer is null, the data
389  * shifted in will be discarded.  Only "len" bytes shift out (or in).
390  * It's an error to try to shift out a partial word.  (For example, by
391  * shifting out three bytes with word size of sixteen or twenty bits;
392  * the former uses two bytes per word, the latter uses four bytes.)
393  *
394  * In-memory data values are always in native CPU byte order, translated
395  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
396  * for example when bits_per_word is sixteen, buffers are 2N bytes long
397  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
398  *
399  * When the word size of the SPI transfer is not a power-of-two multiple
400  * of eight bits, those in-memory words include extra bits.  In-memory
401  * words are always seen by protocol drivers as right-justified, so the
402  * undefined (rx) or unused (tx) bits are always the most significant bits.
403  *
404  * All SPI transfers start with the relevant chipselect active.  Normally
405  * it stays selected until after the last transfer in a message.  Drivers
406  * can affect the chipselect signal using cs_change.
407  *
408  * (i) If the transfer isn't the last one in the message, this flag is
409  * used to make the chipselect briefly go inactive in the middle of the
410  * message.  Toggling chipselect in this way may be needed to terminate
411  * a chip command, letting a single spi_message perform all of group of
412  * chip transactions together.
413  *
414  * (ii) When the transfer is the last one in the message, the chip may
415  * stay selected until the next transfer.  On multi-device SPI busses
416  * with nothing blocking messages going to other devices, this is just
417  * a performance hint; starting a message to another device deselects
418  * this one.  But in other cases, this can be used to ensure correctness.
419  * Some devices need protocol transactions to be built from a series of
420  * spi_message submissions, where the content of one message is determined
421  * by the results of previous messages and where the whole transaction
422  * ends when the chipselect goes intactive.
423  *
424  * The code that submits an spi_message (and its spi_transfers)
425  * to the lower layers is responsible for managing its memory.
426  * Zero-initialize every field you don't set up explicitly, to
427  * insulate against future API updates.  After you submit a message
428  * and its transfers, ignore them until its completion callback.
429  */
430 struct spi_transfer {
431 	/* it's ok if tx_buf == rx_buf (right?)
432 	 * for MicroWire, one buffer must be null
433 	 * buffers must work with dma_*map_single() calls, unless
434 	 *   spi_message.is_dma_mapped reports a pre-existing mapping
435 	 */
436 	const void	*tx_buf;
437 	void		*rx_buf;
438 	unsigned	len;
439 
440 	dma_addr_t	tx_dma;
441 	dma_addr_t	rx_dma;
442 
443 	unsigned	cs_change:1;
444 	u8		bits_per_word;
445 	u16		delay_usecs;
446 	u32		speed_hz;
447 
448 	struct list_head transfer_list;
449 };
450 
451 /**
452  * struct spi_message - one multi-segment SPI transaction
453  * @transfers: list of transfer segments in this transaction
454  * @spi: SPI device to which the transaction is queued
455  * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
456  *	addresses for each transfer buffer
457  * @complete: called to report transaction completions
458  * @context: the argument to complete() when it's called
459  * @actual_length: the total number of bytes that were transferred in all
460  *	successful segments
461  * @status: zero for success, else negative errno
462  * @queue: for use by whichever driver currently owns the message
463  * @state: for use by whichever driver currently owns the message
464  *
465  * A @spi_message is used to execute an atomic sequence of data transfers,
466  * each represented by a struct spi_transfer.  The sequence is "atomic"
467  * in the sense that no other spi_message may use that SPI bus until that
468  * sequence completes.  On some systems, many such sequences can execute as
469  * as single programmed DMA transfer.  On all systems, these messages are
470  * queued, and might complete after transactions to other devices.  Messages
471  * sent to a given spi_device are alway executed in FIFO order.
472  *
473  * The code that submits an spi_message (and its spi_transfers)
474  * to the lower layers is responsible for managing its memory.
475  * Zero-initialize every field you don't set up explicitly, to
476  * insulate against future API updates.  After you submit a message
477  * and its transfers, ignore them until its completion callback.
478  */
479 struct spi_message {
480 	struct list_head	transfers;
481 
482 	struct spi_device	*spi;
483 
484 	unsigned		is_dma_mapped:1;
485 
486 	/* REVISIT:  we might want a flag affecting the behavior of the
487 	 * last transfer ... allowing things like "read 16 bit length L"
488 	 * immediately followed by "read L bytes".  Basically imposing
489 	 * a specific message scheduling algorithm.
490 	 *
491 	 * Some controller drivers (message-at-a-time queue processing)
492 	 * could provide that as their default scheduling algorithm.  But
493 	 * others (with multi-message pipelines) could need a flag to
494 	 * tell them about such special cases.
495 	 */
496 
497 	/* completion is reported through a callback */
498 	void			(*complete)(void *context);
499 	void			*context;
500 	unsigned		actual_length;
501 	int			status;
502 
503 	/* for optional use by whatever driver currently owns the
504 	 * spi_message ...  between calls to spi_async and then later
505 	 * complete(), that's the spi_master controller driver.
506 	 */
507 	struct list_head	queue;
508 	void			*state;
509 };
510 
spi_message_init(struct spi_message * m)511 static inline void spi_message_init(struct spi_message *m)
512 {
513 	memset(m, 0, sizeof *m);
514 	INIT_LIST_HEAD(&m->transfers);
515 }
516 
517 static inline void
spi_message_add_tail(struct spi_transfer * t,struct spi_message * m)518 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
519 {
520 	list_add_tail(&t->transfer_list, &m->transfers);
521 }
522 
523 static inline void
spi_transfer_del(struct spi_transfer * t)524 spi_transfer_del(struct spi_transfer *t)
525 {
526 	list_del(&t->transfer_list);
527 }
528 
529 /* It's fine to embed message and transaction structures in other data
530  * structures so long as you don't free them while they're in use.
531  */
532 
spi_message_alloc(unsigned ntrans,gfp_t flags)533 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
534 {
535 	struct spi_message *m;
536 
537 	m = kzalloc(sizeof(struct spi_message)
538 			+ ntrans * sizeof(struct spi_transfer),
539 			flags);
540 	if (m) {
541 		int i;
542 		struct spi_transfer *t = (struct spi_transfer *)(m + 1);
543 
544 		INIT_LIST_HEAD(&m->transfers);
545 		for (i = 0; i < ntrans; i++, t++)
546 			spi_message_add_tail(t, m);
547 	}
548 	return m;
549 }
550 
spi_message_free(struct spi_message * m)551 static inline void spi_message_free(struct spi_message *m)
552 {
553 	kfree(m);
554 }
555 
556 extern int spi_setup(struct spi_device *spi);
557 extern int spi_async(struct spi_device *spi, struct spi_message *message);
558 extern int spi_async_locked(struct spi_device *spi,
559 			    struct spi_message *message);
560 
561 /*---------------------------------------------------------------------------*/
562 
563 /* All these synchronous SPI transfer routines are utilities layered
564  * over the core async transfer primitive.  Here, "synchronous" means
565  * they will sleep uninterruptibly until the async transfer completes.
566  */
567 
568 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
569 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
570 extern int spi_bus_lock(struct spi_master *master);
571 extern int spi_bus_unlock(struct spi_master *master);
572 
573 /**
574  * spi_write - SPI synchronous write
575  * @spi: device to which data will be written
576  * @buf: data buffer
577  * @len: data buffer size
578  * Context: can sleep
579  *
580  * This writes the buffer and returns zero or a negative error code.
581  * Callable only from contexts that can sleep.
582  */
583 static inline int
spi_write(struct spi_device * spi,const u8 * buf,size_t len)584 spi_write(struct spi_device *spi, const u8 *buf, size_t len)
585 {
586 	struct spi_transfer	t = {
587 			.tx_buf		= buf,
588 			.len		= len,
589 		};
590 	struct spi_message	m;
591 
592 	spi_message_init(&m);
593 	spi_message_add_tail(&t, &m);
594 	return spi_sync(spi, &m);
595 }
596 
597 /**
598  * spi_read - SPI synchronous read
599  * @spi: device from which data will be read
600  * @buf: data buffer
601  * @len: data buffer size
602  * Context: can sleep
603  *
604  * This reads the buffer and returns zero or a negative error code.
605  * Callable only from contexts that can sleep.
606  */
607 static inline int
spi_read(struct spi_device * spi,u8 * buf,size_t len)608 spi_read(struct spi_device *spi, u8 *buf, size_t len)
609 {
610 	struct spi_transfer	t = {
611 			.rx_buf		= buf,
612 			.len		= len,
613 		};
614 	struct spi_message	m;
615 
616 	spi_message_init(&m);
617 	spi_message_add_tail(&t, &m);
618 	return spi_sync(spi, &m);
619 }
620 
621 /* this copies txbuf and rxbuf data; for small transfers only! */
622 extern int spi_write_then_read(struct spi_device *spi,
623 		const u8 *txbuf, unsigned n_tx,
624 		u8 *rxbuf, unsigned n_rx);
625 
626 /**
627  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
628  * @spi: device with which data will be exchanged
629  * @cmd: command to be written before data is read back
630  * Context: can sleep
631  *
632  * This returns the (unsigned) eight bit number returned by the
633  * device, or else a negative error code.  Callable only from
634  * contexts that can sleep.
635  */
spi_w8r8(struct spi_device * spi,u8 cmd)636 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
637 {
638 	ssize_t			status;
639 	u8			result;
640 
641 	status = spi_write_then_read(spi, &cmd, 1, &result, 1);
642 
643 	/* return negative errno or unsigned value */
644 	return (status < 0) ? status : result;
645 }
646 
647 /**
648  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
649  * @spi: device with which data will be exchanged
650  * @cmd: command to be written before data is read back
651  * Context: can sleep
652  *
653  * This returns the (unsigned) sixteen bit number returned by the
654  * device, or else a negative error code.  Callable only from
655  * contexts that can sleep.
656  *
657  * The number is returned in wire-order, which is at least sometimes
658  * big-endian.
659  */
spi_w8r16(struct spi_device * spi,u8 cmd)660 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
661 {
662 	ssize_t			status;
663 	u16			result;
664 
665 	status = spi_write_then_read(spi, &cmd, 1, (u8 *) &result, 2);
666 
667 	/* return negative errno or unsigned value */
668 	return (status < 0) ? status : result;
669 }
670 
671 /*---------------------------------------------------------------------------*/
672 
673 /*
674  * INTERFACE between board init code and SPI infrastructure.
675  *
676  * No SPI driver ever sees these SPI device table segments, but
677  * it's how the SPI core (or adapters that get hotplugged) grows
678  * the driver model tree.
679  *
680  * As a rule, SPI devices can't be probed.  Instead, board init code
681  * provides a table listing the devices which are present, with enough
682  * information to bind and set up the device's driver.  There's basic
683  * support for nonstatic configurations too; enough to handle adding
684  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
685  */
686 
687 /**
688  * struct spi_board_info - board-specific template for a SPI device
689  * @modalias: Initializes spi_device.modalias; identifies the driver.
690  * @platform_data: Initializes spi_device.platform_data; the particular
691  *	data stored there is driver-specific.
692  * @controller_data: Initializes spi_device.controller_data; some
693  *	controllers need hints about hardware setup, e.g. for DMA.
694  * @irq: Initializes spi_device.irq; depends on how the board is wired.
695  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
696  *	from the chip datasheet and board-specific signal quality issues.
697  * @bus_num: Identifies which spi_master parents the spi_device; unused
698  *	by spi_new_device(), and otherwise depends on board wiring.
699  * @chip_select: Initializes spi_device.chip_select; depends on how
700  *	the board is wired.
701  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
702  *	wiring (some devices support both 3WIRE and standard modes), and
703  *	possibly presence of an inverter in the chipselect path.
704  *
705  * When adding new SPI devices to the device tree, these structures serve
706  * as a partial device template.  They hold information which can't always
707  * be determined by drivers.  Information that probe() can establish (such
708  * as the default transfer wordsize) is not included here.
709  *
710  * These structures are used in two places.  Their primary role is to
711  * be stored in tables of board-specific device descriptors, which are
712  * declared early in board initialization and then used (much later) to
713  * populate a controller's device tree after the that controller's driver
714  * initializes.  A secondary (and atypical) role is as a parameter to
715  * spi_new_device() call, which happens after those controller drivers
716  * are active in some dynamic board configuration models.
717  */
718 struct spi_board_info {
719 	/* the device name and module name are coupled, like platform_bus;
720 	 * "modalias" is normally the driver name.
721 	 *
722 	 * platform_data goes to spi_device.dev.platform_data,
723 	 * controller_data goes to spi_device.controller_data,
724 	 * irq is copied too
725 	 */
726 	char		modalias[SPI_NAME_SIZE];
727 	const void	*platform_data;
728 	void		*controller_data;
729 	int		irq;
730 
731 	/* slower signaling on noisy or low voltage boards */
732 	u32		max_speed_hz;
733 
734 
735 	/* bus_num is board specific and matches the bus_num of some
736 	 * spi_master that will probably be registered later.
737 	 *
738 	 * chip_select reflects how this chip is wired to that master;
739 	 * it's less than num_chipselect.
740 	 */
741 	u16		bus_num;
742 	u16		chip_select;
743 
744 	/* mode becomes spi_device.mode, and is essential for chips
745 	 * where the default of SPI_CS_HIGH = 0 is wrong.
746 	 */
747 	u8		mode;
748 
749 	/* ... may need additional spi_device chip config data here.
750 	 * avoid stuff protocol drivers can set; but include stuff
751 	 * needed to behave without being bound to a driver:
752 	 *  - quirks like clock rate mattering when not selected
753 	 */
754 };
755 
756 #ifdef	CONFIG_SPI
757 extern int
758 spi_register_board_info(struct spi_board_info const *info, unsigned n);
759 #else
760 /* board init code may ignore whether SPI is configured or not */
761 static inline int
spi_register_board_info(struct spi_board_info const * info,unsigned n)762 spi_register_board_info(struct spi_board_info const *info, unsigned n)
763 	{ return 0; }
764 #endif
765 
766 
767 /* If you're hotplugging an adapter with devices (parport, usb, etc)
768  * use spi_new_device() to describe each device.  You can also call
769  * spi_unregister_device() to start making that device vanish, but
770  * normally that would be handled by spi_unregister_master().
771  *
772  * You can also use spi_alloc_device() and spi_add_device() to use a two
773  * stage registration sequence for each spi_device.  This gives the caller
774  * some more control over the spi_device structure before it is registered,
775  * but requires that caller to initialize fields that would otherwise
776  * be defined using the board info.
777  */
778 extern struct spi_device *
779 spi_alloc_device(struct spi_master *master);
780 
781 extern int
782 spi_add_device(struct spi_device *spi);
783 
784 extern struct spi_device *
785 spi_new_device(struct spi_master *, struct spi_board_info *);
786 
787 static inline void
spi_unregister_device(struct spi_device * spi)788 spi_unregister_device(struct spi_device *spi)
789 {
790 	if (spi)
791 		device_unregister(&spi->dev);
792 }
793 
794 extern const struct spi_device_id *
795 spi_get_device_id(const struct spi_device *sdev);
796 
797 #endif /* __LINUX_SPI_H */
798