1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Parallel SCSI (SPI) transport specific attributes exported to sysfs.
4 *
5 * Copyright (c) 2003 Silicon Graphics, Inc. All rights reserved.
6 * Copyright (c) 2004, 2005 James Bottomley <James.Bottomley@SteelEye.com>
7 */
8 #include <linux/ctype.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/workqueue.h>
12 #include <linux/blkdev.h>
13 #include <linux/mutex.h>
14 #include <linux/sysfs.h>
15 #include <linux/slab.h>
16 #include <linux/suspend.h>
17 #include <scsi/scsi.h>
18 #include "scsi_priv.h"
19 #include <scsi/scsi_device.h>
20 #include <scsi/scsi_host.h>
21 #include <scsi/scsi_cmnd.h>
22 #include <scsi/scsi_eh.h>
23 #include <scsi/scsi_tcq.h>
24 #include <scsi/scsi_transport.h>
25 #include <scsi/scsi_transport_spi.h>
26
27 #define SPI_NUM_ATTRS 14 /* increase this if you add attributes */
28 #define SPI_OTHER_ATTRS 1 /* Increase this if you add "always
29 * on" attributes */
30 #define SPI_HOST_ATTRS 1
31
32 #define SPI_MAX_ECHO_BUFFER_SIZE 4096
33
34 #define DV_LOOPS 3
35 #define DV_TIMEOUT (10*HZ)
36 #define DV_RETRIES 3 /* should only need at most
37 * two cc/ua clears */
38
39 /* Our blacklist flags */
40 enum {
41 SPI_BLIST_NOIUS = (__force blist_flags_t)0x1,
42 };
43
44 /* blacklist table, modelled on scsi_devinfo.c */
45 static struct {
46 char *vendor;
47 char *model;
48 blist_flags_t flags;
49 } spi_static_device_list[] __initdata = {
50 {"HP", "Ultrium 3-SCSI", SPI_BLIST_NOIUS },
51 {"IBM", "ULTRIUM-TD3", SPI_BLIST_NOIUS },
52 {NULL, NULL, 0}
53 };
54
55 /* Private data accessors (keep these out of the header file) */
56 #define spi_dv_in_progress(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_in_progress)
57 #define spi_dv_mutex(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_mutex)
58
59 struct spi_internal {
60 struct scsi_transport_template t;
61 struct spi_function_template *f;
62 };
63
64 #define to_spi_internal(tmpl) container_of(tmpl, struct spi_internal, t)
65
66 static const int ppr_to_ps[] = {
67 /* The PPR values 0-6 are reserved, fill them in when
68 * the committee defines them */
69 -1, /* 0x00 */
70 -1, /* 0x01 */
71 -1, /* 0x02 */
72 -1, /* 0x03 */
73 -1, /* 0x04 */
74 -1, /* 0x05 */
75 -1, /* 0x06 */
76 3125, /* 0x07 */
77 6250, /* 0x08 */
78 12500, /* 0x09 */
79 25000, /* 0x0a */
80 30300, /* 0x0b */
81 50000, /* 0x0c */
82 };
83 /* The PPR values at which you calculate the period in ns by multiplying
84 * by 4 */
85 #define SPI_STATIC_PPR 0x0c
86
sprint_frac(char * dest,int value,int denom)87 static int sprint_frac(char *dest, int value, int denom)
88 {
89 int frac = value % denom;
90 int result = sprintf(dest, "%d", value / denom);
91
92 if (frac == 0)
93 return result;
94 dest[result++] = '.';
95
96 do {
97 denom /= 10;
98 sprintf(dest + result, "%d", frac / denom);
99 result++;
100 frac %= denom;
101 } while (frac);
102
103 dest[result++] = '\0';
104 return result;
105 }
106
spi_execute(struct scsi_device * sdev,const void * cmd,enum dma_data_direction dir,void * buffer,unsigned bufflen,struct scsi_sense_hdr * sshdr)107 static int spi_execute(struct scsi_device *sdev, const void *cmd,
108 enum dma_data_direction dir,
109 void *buffer, unsigned bufflen,
110 struct scsi_sense_hdr *sshdr)
111 {
112 int i, result;
113 unsigned char sense[SCSI_SENSE_BUFFERSIZE];
114 struct scsi_sense_hdr sshdr_tmp;
115
116 if (!sshdr)
117 sshdr = &sshdr_tmp;
118
119 for(i = 0; i < DV_RETRIES; i++) {
120 /*
121 * The purpose of the RQF_PM flag below is to bypass the
122 * SDEV_QUIESCE state.
123 */
124 result = scsi_execute(sdev, cmd, dir, buffer, bufflen, sense,
125 sshdr, DV_TIMEOUT, /* retries */ 1,
126 REQ_FAILFAST_DEV |
127 REQ_FAILFAST_TRANSPORT |
128 REQ_FAILFAST_DRIVER,
129 RQF_PM, NULL);
130 if (result < 0 || !scsi_sense_valid(sshdr) ||
131 sshdr->sense_key != UNIT_ATTENTION)
132 break;
133 }
134 return result;
135 }
136
137 static struct {
138 enum spi_signal_type value;
139 char *name;
140 } signal_types[] = {
141 { SPI_SIGNAL_UNKNOWN, "unknown" },
142 { SPI_SIGNAL_SE, "SE" },
143 { SPI_SIGNAL_LVD, "LVD" },
144 { SPI_SIGNAL_HVD, "HVD" },
145 };
146
spi_signal_to_string(enum spi_signal_type type)147 static inline const char *spi_signal_to_string(enum spi_signal_type type)
148 {
149 int i;
150
151 for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
152 if (type == signal_types[i].value)
153 return signal_types[i].name;
154 }
155 return NULL;
156 }
spi_signal_to_value(const char * name)157 static inline enum spi_signal_type spi_signal_to_value(const char *name)
158 {
159 int i, len;
160
161 for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
162 len = strlen(signal_types[i].name);
163 if (strncmp(name, signal_types[i].name, len) == 0 &&
164 (name[len] == '\n' || name[len] == '\0'))
165 return signal_types[i].value;
166 }
167 return SPI_SIGNAL_UNKNOWN;
168 }
169
spi_host_setup(struct transport_container * tc,struct device * dev,struct device * cdev)170 static int spi_host_setup(struct transport_container *tc, struct device *dev,
171 struct device *cdev)
172 {
173 struct Scsi_Host *shost = dev_to_shost(dev);
174
175 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN;
176
177 return 0;
178 }
179
180 static int spi_host_configure(struct transport_container *tc,
181 struct device *dev,
182 struct device *cdev);
183
184 static DECLARE_TRANSPORT_CLASS(spi_host_class,
185 "spi_host",
186 spi_host_setup,
187 NULL,
188 spi_host_configure);
189
spi_host_match(struct attribute_container * cont,struct device * dev)190 static int spi_host_match(struct attribute_container *cont,
191 struct device *dev)
192 {
193 struct Scsi_Host *shost;
194
195 if (!scsi_is_host_device(dev))
196 return 0;
197
198 shost = dev_to_shost(dev);
199 if (!shost->transportt || shost->transportt->host_attrs.ac.class
200 != &spi_host_class.class)
201 return 0;
202
203 return &shost->transportt->host_attrs.ac == cont;
204 }
205
206 static int spi_target_configure(struct transport_container *tc,
207 struct device *dev,
208 struct device *cdev);
209
spi_device_configure(struct transport_container * tc,struct device * dev,struct device * cdev)210 static int spi_device_configure(struct transport_container *tc,
211 struct device *dev,
212 struct device *cdev)
213 {
214 struct scsi_device *sdev = to_scsi_device(dev);
215 struct scsi_target *starget = sdev->sdev_target;
216 blist_flags_t bflags;
217
218 bflags = scsi_get_device_flags_keyed(sdev, &sdev->inquiry[8],
219 &sdev->inquiry[16],
220 SCSI_DEVINFO_SPI);
221
222 /* Populate the target capability fields with the values
223 * gleaned from the device inquiry */
224
225 spi_support_sync(starget) = scsi_device_sync(sdev);
226 spi_support_wide(starget) = scsi_device_wide(sdev);
227 spi_support_dt(starget) = scsi_device_dt(sdev);
228 spi_support_dt_only(starget) = scsi_device_dt_only(sdev);
229 spi_support_ius(starget) = scsi_device_ius(sdev);
230 if (bflags & SPI_BLIST_NOIUS) {
231 dev_info(dev, "Information Units disabled by blacklist\n");
232 spi_support_ius(starget) = 0;
233 }
234 spi_support_qas(starget) = scsi_device_qas(sdev);
235
236 return 0;
237 }
238
spi_setup_transport_attrs(struct transport_container * tc,struct device * dev,struct device * cdev)239 static int spi_setup_transport_attrs(struct transport_container *tc,
240 struct device *dev,
241 struct device *cdev)
242 {
243 struct scsi_target *starget = to_scsi_target(dev);
244
245 spi_period(starget) = -1; /* illegal value */
246 spi_min_period(starget) = 0;
247 spi_offset(starget) = 0; /* async */
248 spi_max_offset(starget) = 255;
249 spi_width(starget) = 0; /* narrow */
250 spi_max_width(starget) = 1;
251 spi_iu(starget) = 0; /* no IU */
252 spi_max_iu(starget) = 1;
253 spi_dt(starget) = 0; /* ST */
254 spi_qas(starget) = 0;
255 spi_max_qas(starget) = 1;
256 spi_wr_flow(starget) = 0;
257 spi_rd_strm(starget) = 0;
258 spi_rti(starget) = 0;
259 spi_pcomp_en(starget) = 0;
260 spi_hold_mcs(starget) = 0;
261 spi_dv_pending(starget) = 0;
262 spi_dv_in_progress(starget) = 0;
263 spi_initial_dv(starget) = 0;
264 mutex_init(&spi_dv_mutex(starget));
265
266 return 0;
267 }
268
269 #define spi_transport_show_simple(field, format_string) \
270 \
271 static ssize_t \
272 show_spi_transport_##field(struct device *dev, \
273 struct device_attribute *attr, char *buf) \
274 { \
275 struct scsi_target *starget = transport_class_to_starget(dev); \
276 struct spi_transport_attrs *tp; \
277 \
278 tp = (struct spi_transport_attrs *)&starget->starget_data; \
279 return snprintf(buf, 20, format_string, tp->field); \
280 }
281
282 #define spi_transport_store_simple(field, format_string) \
283 \
284 static ssize_t \
285 store_spi_transport_##field(struct device *dev, \
286 struct device_attribute *attr, \
287 const char *buf, size_t count) \
288 { \
289 int val; \
290 struct scsi_target *starget = transport_class_to_starget(dev); \
291 struct spi_transport_attrs *tp; \
292 \
293 tp = (struct spi_transport_attrs *)&starget->starget_data; \
294 val = simple_strtoul(buf, NULL, 0); \
295 tp->field = val; \
296 return count; \
297 }
298
299 #define spi_transport_show_function(field, format_string) \
300 \
301 static ssize_t \
302 show_spi_transport_##field(struct device *dev, \
303 struct device_attribute *attr, char *buf) \
304 { \
305 struct scsi_target *starget = transport_class_to_starget(dev); \
306 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
307 struct spi_transport_attrs *tp; \
308 struct spi_internal *i = to_spi_internal(shost->transportt); \
309 tp = (struct spi_transport_attrs *)&starget->starget_data; \
310 if (i->f->get_##field) \
311 i->f->get_##field(starget); \
312 return snprintf(buf, 20, format_string, tp->field); \
313 }
314
315 #define spi_transport_store_function(field, format_string) \
316 static ssize_t \
317 store_spi_transport_##field(struct device *dev, \
318 struct device_attribute *attr, \
319 const char *buf, size_t count) \
320 { \
321 int val; \
322 struct scsi_target *starget = transport_class_to_starget(dev); \
323 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
324 struct spi_internal *i = to_spi_internal(shost->transportt); \
325 \
326 if (!i->f->set_##field) \
327 return -EINVAL; \
328 val = simple_strtoul(buf, NULL, 0); \
329 i->f->set_##field(starget, val); \
330 return count; \
331 }
332
333 #define spi_transport_store_max(field, format_string) \
334 static ssize_t \
335 store_spi_transport_##field(struct device *dev, \
336 struct device_attribute *attr, \
337 const char *buf, size_t count) \
338 { \
339 int val; \
340 struct scsi_target *starget = transport_class_to_starget(dev); \
341 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
342 struct spi_internal *i = to_spi_internal(shost->transportt); \
343 struct spi_transport_attrs *tp \
344 = (struct spi_transport_attrs *)&starget->starget_data; \
345 \
346 if (!i->f->set_##field) \
347 return -EINVAL; \
348 val = simple_strtoul(buf, NULL, 0); \
349 if (val > tp->max_##field) \
350 val = tp->max_##field; \
351 i->f->set_##field(starget, val); \
352 return count; \
353 }
354
355 #define spi_transport_rd_attr(field, format_string) \
356 spi_transport_show_function(field, format_string) \
357 spi_transport_store_function(field, format_string) \
358 static DEVICE_ATTR(field, S_IRUGO, \
359 show_spi_transport_##field, \
360 store_spi_transport_##field);
361
362 #define spi_transport_simple_attr(field, format_string) \
363 spi_transport_show_simple(field, format_string) \
364 spi_transport_store_simple(field, format_string) \
365 static DEVICE_ATTR(field, S_IRUGO, \
366 show_spi_transport_##field, \
367 store_spi_transport_##field);
368
369 #define spi_transport_max_attr(field, format_string) \
370 spi_transport_show_function(field, format_string) \
371 spi_transport_store_max(field, format_string) \
372 spi_transport_simple_attr(max_##field, format_string) \
373 static DEVICE_ATTR(field, S_IRUGO, \
374 show_spi_transport_##field, \
375 store_spi_transport_##field);
376
377 /* The Parallel SCSI Tranport Attributes: */
378 spi_transport_max_attr(offset, "%d\n");
379 spi_transport_max_attr(width, "%d\n");
380 spi_transport_max_attr(iu, "%d\n");
381 spi_transport_rd_attr(dt, "%d\n");
382 spi_transport_max_attr(qas, "%d\n");
383 spi_transport_rd_attr(wr_flow, "%d\n");
384 spi_transport_rd_attr(rd_strm, "%d\n");
385 spi_transport_rd_attr(rti, "%d\n");
386 spi_transport_rd_attr(pcomp_en, "%d\n");
387 spi_transport_rd_attr(hold_mcs, "%d\n");
388
389 /* we only care about the first child device that's a real SCSI device
390 * so we return 1 to terminate the iteration when we find it */
child_iter(struct device * dev,void * data)391 static int child_iter(struct device *dev, void *data)
392 {
393 if (!scsi_is_sdev_device(dev))
394 return 0;
395
396 spi_dv_device(to_scsi_device(dev));
397 return 1;
398 }
399
400 static ssize_t
store_spi_revalidate(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)401 store_spi_revalidate(struct device *dev, struct device_attribute *attr,
402 const char *buf, size_t count)
403 {
404 struct scsi_target *starget = transport_class_to_starget(dev);
405
406 device_for_each_child(&starget->dev, NULL, child_iter);
407 return count;
408 }
409 static DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate);
410
411 /* Translate the period into ns according to the current spec
412 * for SDTR/PPR messages */
period_to_str(char * buf,int period)413 static int period_to_str(char *buf, int period)
414 {
415 int len, picosec;
416
417 if (period < 0 || period > 0xff) {
418 picosec = -1;
419 } else if (period <= SPI_STATIC_PPR) {
420 picosec = ppr_to_ps[period];
421 } else {
422 picosec = period * 4000;
423 }
424
425 if (picosec == -1) {
426 len = sprintf(buf, "reserved");
427 } else {
428 len = sprint_frac(buf, picosec, 1000);
429 }
430
431 return len;
432 }
433
434 static ssize_t
show_spi_transport_period_helper(char * buf,int period)435 show_spi_transport_period_helper(char *buf, int period)
436 {
437 int len = period_to_str(buf, period);
438 buf[len++] = '\n';
439 buf[len] = '\0';
440 return len;
441 }
442
443 static ssize_t
store_spi_transport_period_helper(struct device * dev,const char * buf,size_t count,int * periodp)444 store_spi_transport_period_helper(struct device *dev, const char *buf,
445 size_t count, int *periodp)
446 {
447 int j, picosec, period = -1;
448 char *endp;
449
450 picosec = simple_strtoul(buf, &endp, 10) * 1000;
451 if (*endp == '.') {
452 int mult = 100;
453 do {
454 endp++;
455 if (!isdigit(*endp))
456 break;
457 picosec += (*endp - '0') * mult;
458 mult /= 10;
459 } while (mult > 0);
460 }
461
462 for (j = 0; j <= SPI_STATIC_PPR; j++) {
463 if (ppr_to_ps[j] < picosec)
464 continue;
465 period = j;
466 break;
467 }
468
469 if (period == -1)
470 period = picosec / 4000;
471
472 if (period > 0xff)
473 period = 0xff;
474
475 *periodp = period;
476
477 return count;
478 }
479
480 static ssize_t
show_spi_transport_period(struct device * dev,struct device_attribute * attr,char * buf)481 show_spi_transport_period(struct device *dev,
482 struct device_attribute *attr, char *buf)
483 {
484 struct scsi_target *starget = transport_class_to_starget(dev);
485 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
486 struct spi_internal *i = to_spi_internal(shost->transportt);
487 struct spi_transport_attrs *tp =
488 (struct spi_transport_attrs *)&starget->starget_data;
489
490 if (i->f->get_period)
491 i->f->get_period(starget);
492
493 return show_spi_transport_period_helper(buf, tp->period);
494 }
495
496 static ssize_t
store_spi_transport_period(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)497 store_spi_transport_period(struct device *cdev, struct device_attribute *attr,
498 const char *buf, size_t count)
499 {
500 struct scsi_target *starget = transport_class_to_starget(cdev);
501 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
502 struct spi_internal *i = to_spi_internal(shost->transportt);
503 struct spi_transport_attrs *tp =
504 (struct spi_transport_attrs *)&starget->starget_data;
505 int period, retval;
506
507 if (!i->f->set_period)
508 return -EINVAL;
509
510 retval = store_spi_transport_period_helper(cdev, buf, count, &period);
511
512 if (period < tp->min_period)
513 period = tp->min_period;
514
515 i->f->set_period(starget, period);
516
517 return retval;
518 }
519
520 static DEVICE_ATTR(period, S_IRUGO,
521 show_spi_transport_period,
522 store_spi_transport_period);
523
524 static ssize_t
show_spi_transport_min_period(struct device * cdev,struct device_attribute * attr,char * buf)525 show_spi_transport_min_period(struct device *cdev,
526 struct device_attribute *attr, char *buf)
527 {
528 struct scsi_target *starget = transport_class_to_starget(cdev);
529 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
530 struct spi_internal *i = to_spi_internal(shost->transportt);
531 struct spi_transport_attrs *tp =
532 (struct spi_transport_attrs *)&starget->starget_data;
533
534 if (!i->f->set_period)
535 return -EINVAL;
536
537 return show_spi_transport_period_helper(buf, tp->min_period);
538 }
539
540 static ssize_t
store_spi_transport_min_period(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)541 store_spi_transport_min_period(struct device *cdev,
542 struct device_attribute *attr,
543 const char *buf, size_t count)
544 {
545 struct scsi_target *starget = transport_class_to_starget(cdev);
546 struct spi_transport_attrs *tp =
547 (struct spi_transport_attrs *)&starget->starget_data;
548
549 return store_spi_transport_period_helper(cdev, buf, count,
550 &tp->min_period);
551 }
552
553
554 static DEVICE_ATTR(min_period, S_IRUGO,
555 show_spi_transport_min_period,
556 store_spi_transport_min_period);
557
558
show_spi_host_signalling(struct device * cdev,struct device_attribute * attr,char * buf)559 static ssize_t show_spi_host_signalling(struct device *cdev,
560 struct device_attribute *attr,
561 char *buf)
562 {
563 struct Scsi_Host *shost = transport_class_to_shost(cdev);
564 struct spi_internal *i = to_spi_internal(shost->transportt);
565
566 if (i->f->get_signalling)
567 i->f->get_signalling(shost);
568
569 return sprintf(buf, "%s\n", spi_signal_to_string(spi_signalling(shost)));
570 }
store_spi_host_signalling(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)571 static ssize_t store_spi_host_signalling(struct device *dev,
572 struct device_attribute *attr,
573 const char *buf, size_t count)
574 {
575 struct Scsi_Host *shost = transport_class_to_shost(dev);
576 struct spi_internal *i = to_spi_internal(shost->transportt);
577 enum spi_signal_type type = spi_signal_to_value(buf);
578
579 if (!i->f->set_signalling)
580 return -EINVAL;
581
582 if (type != SPI_SIGNAL_UNKNOWN)
583 i->f->set_signalling(shost, type);
584
585 return count;
586 }
587 static DEVICE_ATTR(signalling, S_IRUGO,
588 show_spi_host_signalling,
589 store_spi_host_signalling);
590
show_spi_host_width(struct device * cdev,struct device_attribute * attr,char * buf)591 static ssize_t show_spi_host_width(struct device *cdev,
592 struct device_attribute *attr,
593 char *buf)
594 {
595 struct Scsi_Host *shost = transport_class_to_shost(cdev);
596
597 return sprintf(buf, "%s\n", shost->max_id == 16 ? "wide" : "narrow");
598 }
599 static DEVICE_ATTR(host_width, S_IRUGO,
600 show_spi_host_width, NULL);
601
show_spi_host_hba_id(struct device * cdev,struct device_attribute * attr,char * buf)602 static ssize_t show_spi_host_hba_id(struct device *cdev,
603 struct device_attribute *attr,
604 char *buf)
605 {
606 struct Scsi_Host *shost = transport_class_to_shost(cdev);
607
608 return sprintf(buf, "%d\n", shost->this_id);
609 }
610 static DEVICE_ATTR(hba_id, S_IRUGO,
611 show_spi_host_hba_id, NULL);
612
613 #define DV_SET(x, y) \
614 if(i->f->set_##x) \
615 i->f->set_##x(sdev->sdev_target, y)
616
617 enum spi_compare_returns {
618 SPI_COMPARE_SUCCESS,
619 SPI_COMPARE_FAILURE,
620 SPI_COMPARE_SKIP_TEST,
621 };
622
623
624 /* This is for read/write Domain Validation: If the device supports
625 * an echo buffer, we do read/write tests to it */
626 static enum spi_compare_returns
spi_dv_device_echo_buffer(struct scsi_device * sdev,u8 * buffer,u8 * ptr,const int retries)627 spi_dv_device_echo_buffer(struct scsi_device *sdev, u8 *buffer,
628 u8 *ptr, const int retries)
629 {
630 int len = ptr - buffer;
631 int j, k, r, result;
632 unsigned int pattern = 0x0000ffff;
633 struct scsi_sense_hdr sshdr;
634
635 const char spi_write_buffer[] = {
636 WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
637 };
638 const char spi_read_buffer[] = {
639 READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
640 };
641
642 /* set up the pattern buffer. Doesn't matter if we spill
643 * slightly beyond since that's where the read buffer is */
644 for (j = 0; j < len; ) {
645
646 /* fill the buffer with counting (test a) */
647 for ( ; j < min(len, 32); j++)
648 buffer[j] = j;
649 k = j;
650 /* fill the buffer with alternating words of 0x0 and
651 * 0xffff (test b) */
652 for ( ; j < min(len, k + 32); j += 2) {
653 u16 *word = (u16 *)&buffer[j];
654
655 *word = (j & 0x02) ? 0x0000 : 0xffff;
656 }
657 k = j;
658 /* fill with crosstalk (alternating 0x5555 0xaaa)
659 * (test c) */
660 for ( ; j < min(len, k + 32); j += 2) {
661 u16 *word = (u16 *)&buffer[j];
662
663 *word = (j & 0x02) ? 0x5555 : 0xaaaa;
664 }
665 k = j;
666 /* fill with shifting bits (test d) */
667 for ( ; j < min(len, k + 32); j += 4) {
668 u32 *word = (unsigned int *)&buffer[j];
669 u32 roll = (pattern & 0x80000000) ? 1 : 0;
670
671 *word = pattern;
672 pattern = (pattern << 1) | roll;
673 }
674 /* don't bother with random data (test e) */
675 }
676
677 for (r = 0; r < retries; r++) {
678 result = spi_execute(sdev, spi_write_buffer, DMA_TO_DEVICE,
679 buffer, len, &sshdr);
680 if(result || !scsi_device_online(sdev)) {
681
682 scsi_device_set_state(sdev, SDEV_QUIESCE);
683 if (scsi_sense_valid(&sshdr)
684 && sshdr.sense_key == ILLEGAL_REQUEST
685 /* INVALID FIELD IN CDB */
686 && sshdr.asc == 0x24 && sshdr.ascq == 0x00)
687 /* This would mean that the drive lied
688 * to us about supporting an echo
689 * buffer (unfortunately some Western
690 * Digital drives do precisely this)
691 */
692 return SPI_COMPARE_SKIP_TEST;
693
694
695 sdev_printk(KERN_ERR, sdev, "Write Buffer failure %x\n", result);
696 return SPI_COMPARE_FAILURE;
697 }
698
699 memset(ptr, 0, len);
700 spi_execute(sdev, spi_read_buffer, DMA_FROM_DEVICE,
701 ptr, len, NULL);
702 scsi_device_set_state(sdev, SDEV_QUIESCE);
703
704 if (memcmp(buffer, ptr, len) != 0)
705 return SPI_COMPARE_FAILURE;
706 }
707 return SPI_COMPARE_SUCCESS;
708 }
709
710 /* This is for the simplest form of Domain Validation: a read test
711 * on the inquiry data from the device */
712 static enum spi_compare_returns
spi_dv_device_compare_inquiry(struct scsi_device * sdev,u8 * buffer,u8 * ptr,const int retries)713 spi_dv_device_compare_inquiry(struct scsi_device *sdev, u8 *buffer,
714 u8 *ptr, const int retries)
715 {
716 int r, result;
717 const int len = sdev->inquiry_len;
718 const char spi_inquiry[] = {
719 INQUIRY, 0, 0, 0, len, 0
720 };
721
722 for (r = 0; r < retries; r++) {
723 memset(ptr, 0, len);
724
725 result = spi_execute(sdev, spi_inquiry, DMA_FROM_DEVICE,
726 ptr, len, NULL);
727
728 if(result || !scsi_device_online(sdev)) {
729 scsi_device_set_state(sdev, SDEV_QUIESCE);
730 return SPI_COMPARE_FAILURE;
731 }
732
733 /* If we don't have the inquiry data already, the
734 * first read gets it */
735 if (ptr == buffer) {
736 ptr += len;
737 --r;
738 continue;
739 }
740
741 if (memcmp(buffer, ptr, len) != 0)
742 /* failure */
743 return SPI_COMPARE_FAILURE;
744 }
745 return SPI_COMPARE_SUCCESS;
746 }
747
748 static enum spi_compare_returns
spi_dv_retrain(struct scsi_device * sdev,u8 * buffer,u8 * ptr,enum spi_compare_returns (* compare_fn)(struct scsi_device *,u8 *,u8 *,int))749 spi_dv_retrain(struct scsi_device *sdev, u8 *buffer, u8 *ptr,
750 enum spi_compare_returns
751 (*compare_fn)(struct scsi_device *, u8 *, u8 *, int))
752 {
753 struct spi_internal *i = to_spi_internal(sdev->host->transportt);
754 struct scsi_target *starget = sdev->sdev_target;
755 int period = 0, prevperiod = 0;
756 enum spi_compare_returns retval;
757
758
759 for (;;) {
760 int newperiod;
761 retval = compare_fn(sdev, buffer, ptr, DV_LOOPS);
762
763 if (retval == SPI_COMPARE_SUCCESS
764 || retval == SPI_COMPARE_SKIP_TEST)
765 break;
766
767 /* OK, retrain, fallback */
768 if (i->f->get_iu)
769 i->f->get_iu(starget);
770 if (i->f->get_qas)
771 i->f->get_qas(starget);
772 if (i->f->get_period)
773 i->f->get_period(sdev->sdev_target);
774
775 /* Here's the fallback sequence; first try turning off
776 * IU, then QAS (if we can control them), then finally
777 * fall down the periods */
778 if (i->f->set_iu && spi_iu(starget)) {
779 starget_printk(KERN_ERR, starget, "Domain Validation Disabling Information Units\n");
780 DV_SET(iu, 0);
781 } else if (i->f->set_qas && spi_qas(starget)) {
782 starget_printk(KERN_ERR, starget, "Domain Validation Disabling Quick Arbitration and Selection\n");
783 DV_SET(qas, 0);
784 } else {
785 newperiod = spi_period(starget);
786 period = newperiod > period ? newperiod : period;
787 if (period < 0x0d)
788 period++;
789 else
790 period += period >> 1;
791
792 if (unlikely(period > 0xff || period == prevperiod)) {
793 /* Total failure; set to async and return */
794 starget_printk(KERN_ERR, starget, "Domain Validation Failure, dropping back to Asynchronous\n");
795 DV_SET(offset, 0);
796 return SPI_COMPARE_FAILURE;
797 }
798 starget_printk(KERN_ERR, starget, "Domain Validation detected failure, dropping back\n");
799 DV_SET(period, period);
800 prevperiod = period;
801 }
802 }
803 return retval;
804 }
805
806 static int
spi_dv_device_get_echo_buffer(struct scsi_device * sdev,u8 * buffer)807 spi_dv_device_get_echo_buffer(struct scsi_device *sdev, u8 *buffer)
808 {
809 int l, result;
810
811 /* first off do a test unit ready. This can error out
812 * because of reservations or some other reason. If it
813 * fails, the device won't let us write to the echo buffer
814 * so just return failure */
815
816 static const char spi_test_unit_ready[] = {
817 TEST_UNIT_READY, 0, 0, 0, 0, 0
818 };
819
820 static const char spi_read_buffer_descriptor[] = {
821 READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0
822 };
823
824
825 /* We send a set of three TURs to clear any outstanding
826 * unit attention conditions if they exist (Otherwise the
827 * buffer tests won't be happy). If the TUR still fails
828 * (reservation conflict, device not ready, etc) just
829 * skip the write tests */
830 for (l = 0; ; l++) {
831 result = spi_execute(sdev, spi_test_unit_ready, DMA_NONE,
832 NULL, 0, NULL);
833
834 if(result) {
835 if(l >= 3)
836 return 0;
837 } else {
838 /* TUR succeeded */
839 break;
840 }
841 }
842
843 result = spi_execute(sdev, spi_read_buffer_descriptor,
844 DMA_FROM_DEVICE, buffer, 4, NULL);
845
846 if (result)
847 /* Device has no echo buffer */
848 return 0;
849
850 return buffer[3] + ((buffer[2] & 0x1f) << 8);
851 }
852
853 static void
spi_dv_device_internal(struct scsi_device * sdev,u8 * buffer)854 spi_dv_device_internal(struct scsi_device *sdev, u8 *buffer)
855 {
856 struct spi_internal *i = to_spi_internal(sdev->host->transportt);
857 struct scsi_target *starget = sdev->sdev_target;
858 struct Scsi_Host *shost = sdev->host;
859 int len = sdev->inquiry_len;
860 int min_period = spi_min_period(starget);
861 int max_width = spi_max_width(starget);
862 /* first set us up for narrow async */
863 DV_SET(offset, 0);
864 DV_SET(width, 0);
865
866 if (spi_dv_device_compare_inquiry(sdev, buffer, buffer, DV_LOOPS)
867 != SPI_COMPARE_SUCCESS) {
868 starget_printk(KERN_ERR, starget, "Domain Validation Initial Inquiry Failed\n");
869 /* FIXME: should probably offline the device here? */
870 return;
871 }
872
873 if (!spi_support_wide(starget)) {
874 spi_max_width(starget) = 0;
875 max_width = 0;
876 }
877
878 /* test width */
879 if (i->f->set_width && max_width) {
880 i->f->set_width(starget, 1);
881
882 if (spi_dv_device_compare_inquiry(sdev, buffer,
883 buffer + len,
884 DV_LOOPS)
885 != SPI_COMPARE_SUCCESS) {
886 starget_printk(KERN_ERR, starget, "Wide Transfers Fail\n");
887 i->f->set_width(starget, 0);
888 /* Make sure we don't force wide back on by asking
889 * for a transfer period that requires it */
890 max_width = 0;
891 if (min_period < 10)
892 min_period = 10;
893 }
894 }
895
896 if (!i->f->set_period)
897 return;
898
899 /* device can't handle synchronous */
900 if (!spi_support_sync(starget) && !spi_support_dt(starget))
901 return;
902
903 /* len == -1 is the signal that we need to ascertain the
904 * presence of an echo buffer before trying to use it. len ==
905 * 0 means we don't have an echo buffer */
906 len = -1;
907
908 retry:
909
910 /* now set up to the maximum */
911 DV_SET(offset, spi_max_offset(starget));
912 DV_SET(period, min_period);
913
914 /* try QAS requests; this should be harmless to set if the
915 * target supports it */
916 if (spi_support_qas(starget) && spi_max_qas(starget)) {
917 DV_SET(qas, 1);
918 } else {
919 DV_SET(qas, 0);
920 }
921
922 if (spi_support_ius(starget) && spi_max_iu(starget) &&
923 min_period < 9) {
924 /* This u320 (or u640). Set IU transfers */
925 DV_SET(iu, 1);
926 /* Then set the optional parameters */
927 DV_SET(rd_strm, 1);
928 DV_SET(wr_flow, 1);
929 DV_SET(rti, 1);
930 if (min_period == 8)
931 DV_SET(pcomp_en, 1);
932 } else {
933 DV_SET(iu, 0);
934 }
935
936 /* now that we've done all this, actually check the bus
937 * signal type (if known). Some devices are stupid on
938 * a SE bus and still claim they can try LVD only settings */
939 if (i->f->get_signalling)
940 i->f->get_signalling(shost);
941 if (spi_signalling(shost) == SPI_SIGNAL_SE ||
942 spi_signalling(shost) == SPI_SIGNAL_HVD ||
943 !spi_support_dt(starget)) {
944 DV_SET(dt, 0);
945 } else {
946 DV_SET(dt, 1);
947 }
948 /* set width last because it will pull all the other
949 * parameters down to required values */
950 DV_SET(width, max_width);
951
952 /* Do the read only INQUIRY tests */
953 spi_dv_retrain(sdev, buffer, buffer + sdev->inquiry_len,
954 spi_dv_device_compare_inquiry);
955 /* See if we actually managed to negotiate and sustain DT */
956 if (i->f->get_dt)
957 i->f->get_dt(starget);
958
959 /* see if the device has an echo buffer. If it does we can do
960 * the SPI pattern write tests. Because of some broken
961 * devices, we *only* try this on a device that has actually
962 * negotiated DT */
963
964 if (len == -1 && spi_dt(starget))
965 len = spi_dv_device_get_echo_buffer(sdev, buffer);
966
967 if (len <= 0) {
968 starget_printk(KERN_INFO, starget, "Domain Validation skipping write tests\n");
969 return;
970 }
971
972 if (len > SPI_MAX_ECHO_BUFFER_SIZE) {
973 starget_printk(KERN_WARNING, starget, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE);
974 len = SPI_MAX_ECHO_BUFFER_SIZE;
975 }
976
977 if (spi_dv_retrain(sdev, buffer, buffer + len,
978 spi_dv_device_echo_buffer)
979 == SPI_COMPARE_SKIP_TEST) {
980 /* OK, the stupid drive can't do a write echo buffer
981 * test after all, fall back to the read tests */
982 len = 0;
983 goto retry;
984 }
985 }
986
987
988 /** spi_dv_device - Do Domain Validation on the device
989 * @sdev: scsi device to validate
990 *
991 * Performs the domain validation on the given device in the
992 * current execution thread. Since DV operations may sleep,
993 * the current thread must have user context. Also no SCSI
994 * related locks that would deadlock I/O issued by the DV may
995 * be held.
996 */
997 void
spi_dv_device(struct scsi_device * sdev)998 spi_dv_device(struct scsi_device *sdev)
999 {
1000 struct scsi_target *starget = sdev->sdev_target;
1001 const int len = SPI_MAX_ECHO_BUFFER_SIZE*2;
1002 unsigned int sleep_flags;
1003 u8 *buffer;
1004
1005 /*
1006 * Because this function and the power management code both call
1007 * scsi_device_quiesce(), it is not safe to perform domain validation
1008 * while suspend or resume is in progress. Hence the
1009 * lock/unlock_system_sleep() calls.
1010 */
1011 sleep_flags = lock_system_sleep();
1012
1013 if (scsi_autopm_get_device(sdev))
1014 goto unlock_system_sleep;
1015
1016 if (unlikely(spi_dv_in_progress(starget)))
1017 goto put_autopm;
1018
1019 if (unlikely(scsi_device_get(sdev)))
1020 goto put_autopm;
1021
1022 spi_dv_in_progress(starget) = 1;
1023
1024 buffer = kzalloc(len, GFP_KERNEL);
1025
1026 if (unlikely(!buffer))
1027 goto put_sdev;
1028
1029 /* We need to verify that the actual device will quiesce; the
1030 * later target quiesce is just a nice to have */
1031 if (unlikely(scsi_device_quiesce(sdev)))
1032 goto free_buffer;
1033
1034 scsi_target_quiesce(starget);
1035
1036 spi_dv_pending(starget) = 1;
1037 mutex_lock(&spi_dv_mutex(starget));
1038
1039 starget_printk(KERN_INFO, starget, "Beginning Domain Validation\n");
1040
1041 spi_dv_device_internal(sdev, buffer);
1042
1043 starget_printk(KERN_INFO, starget, "Ending Domain Validation\n");
1044
1045 mutex_unlock(&spi_dv_mutex(starget));
1046 spi_dv_pending(starget) = 0;
1047
1048 scsi_target_resume(starget);
1049
1050 spi_initial_dv(starget) = 1;
1051
1052 free_buffer:
1053 kfree(buffer);
1054
1055 put_sdev:
1056 spi_dv_in_progress(starget) = 0;
1057 scsi_device_put(sdev);
1058 put_autopm:
1059 scsi_autopm_put_device(sdev);
1060
1061 unlock_system_sleep:
1062 unlock_system_sleep(sleep_flags);
1063 }
1064 EXPORT_SYMBOL(spi_dv_device);
1065
1066 struct work_queue_wrapper {
1067 struct work_struct work;
1068 struct scsi_device *sdev;
1069 };
1070
1071 static void
spi_dv_device_work_wrapper(struct work_struct * work)1072 spi_dv_device_work_wrapper(struct work_struct *work)
1073 {
1074 struct work_queue_wrapper *wqw =
1075 container_of(work, struct work_queue_wrapper, work);
1076 struct scsi_device *sdev = wqw->sdev;
1077
1078 kfree(wqw);
1079 spi_dv_device(sdev);
1080 spi_dv_pending(sdev->sdev_target) = 0;
1081 scsi_device_put(sdev);
1082 }
1083
1084
1085 /**
1086 * spi_schedule_dv_device - schedule domain validation to occur on the device
1087 * @sdev: The device to validate
1088 *
1089 * Identical to spi_dv_device() above, except that the DV will be
1090 * scheduled to occur in a workqueue later. All memory allocations
1091 * are atomic, so may be called from any context including those holding
1092 * SCSI locks.
1093 */
1094 void
spi_schedule_dv_device(struct scsi_device * sdev)1095 spi_schedule_dv_device(struct scsi_device *sdev)
1096 {
1097 struct work_queue_wrapper *wqw =
1098 kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC);
1099
1100 if (unlikely(!wqw))
1101 return;
1102
1103 if (unlikely(spi_dv_pending(sdev->sdev_target))) {
1104 kfree(wqw);
1105 return;
1106 }
1107 /* Set pending early (dv_device doesn't check it, only sets it) */
1108 spi_dv_pending(sdev->sdev_target) = 1;
1109 if (unlikely(scsi_device_get(sdev))) {
1110 kfree(wqw);
1111 spi_dv_pending(sdev->sdev_target) = 0;
1112 return;
1113 }
1114
1115 INIT_WORK(&wqw->work, spi_dv_device_work_wrapper);
1116 wqw->sdev = sdev;
1117
1118 schedule_work(&wqw->work);
1119 }
1120 EXPORT_SYMBOL(spi_schedule_dv_device);
1121
1122 /**
1123 * spi_display_xfer_agreement - Print the current target transfer agreement
1124 * @starget: The target for which to display the agreement
1125 *
1126 * Each SPI port is required to maintain a transfer agreement for each
1127 * other port on the bus. This function prints a one-line summary of
1128 * the current agreement; more detailed information is available in sysfs.
1129 */
spi_display_xfer_agreement(struct scsi_target * starget)1130 void spi_display_xfer_agreement(struct scsi_target *starget)
1131 {
1132 struct spi_transport_attrs *tp;
1133 tp = (struct spi_transport_attrs *)&starget->starget_data;
1134
1135 if (tp->offset > 0 && tp->period > 0) {
1136 unsigned int picosec, kb100;
1137 char *scsi = "FAST-?";
1138 char tmp[8];
1139
1140 if (tp->period <= SPI_STATIC_PPR) {
1141 picosec = ppr_to_ps[tp->period];
1142 switch (tp->period) {
1143 case 7: scsi = "FAST-320"; break;
1144 case 8: scsi = "FAST-160"; break;
1145 case 9: scsi = "FAST-80"; break;
1146 case 10:
1147 case 11: scsi = "FAST-40"; break;
1148 case 12: scsi = "FAST-20"; break;
1149 }
1150 } else {
1151 picosec = tp->period * 4000;
1152 if (tp->period < 25)
1153 scsi = "FAST-20";
1154 else if (tp->period < 50)
1155 scsi = "FAST-10";
1156 else
1157 scsi = "FAST-5";
1158 }
1159
1160 kb100 = (10000000 + picosec / 2) / picosec;
1161 if (tp->width)
1162 kb100 *= 2;
1163 sprint_frac(tmp, picosec, 1000);
1164
1165 dev_info(&starget->dev,
1166 "%s %sSCSI %d.%d MB/s %s%s%s%s%s%s%s%s (%s ns, offset %d)\n",
1167 scsi, tp->width ? "WIDE " : "", kb100/10, kb100 % 10,
1168 tp->dt ? "DT" : "ST",
1169 tp->iu ? " IU" : "",
1170 tp->qas ? " QAS" : "",
1171 tp->rd_strm ? " RDSTRM" : "",
1172 tp->rti ? " RTI" : "",
1173 tp->wr_flow ? " WRFLOW" : "",
1174 tp->pcomp_en ? " PCOMP" : "",
1175 tp->hold_mcs ? " HMCS" : "",
1176 tmp, tp->offset);
1177 } else {
1178 dev_info(&starget->dev, "%sasynchronous\n",
1179 tp->width ? "wide " : "");
1180 }
1181 }
1182 EXPORT_SYMBOL(spi_display_xfer_agreement);
1183
spi_populate_width_msg(unsigned char * msg,int width)1184 int spi_populate_width_msg(unsigned char *msg, int width)
1185 {
1186 msg[0] = EXTENDED_MESSAGE;
1187 msg[1] = 2;
1188 msg[2] = EXTENDED_WDTR;
1189 msg[3] = width;
1190 return 4;
1191 }
1192 EXPORT_SYMBOL_GPL(spi_populate_width_msg);
1193
spi_populate_sync_msg(unsigned char * msg,int period,int offset)1194 int spi_populate_sync_msg(unsigned char *msg, int period, int offset)
1195 {
1196 msg[0] = EXTENDED_MESSAGE;
1197 msg[1] = 3;
1198 msg[2] = EXTENDED_SDTR;
1199 msg[3] = period;
1200 msg[4] = offset;
1201 return 5;
1202 }
1203 EXPORT_SYMBOL_GPL(spi_populate_sync_msg);
1204
spi_populate_ppr_msg(unsigned char * msg,int period,int offset,int width,int options)1205 int spi_populate_ppr_msg(unsigned char *msg, int period, int offset,
1206 int width, int options)
1207 {
1208 msg[0] = EXTENDED_MESSAGE;
1209 msg[1] = 6;
1210 msg[2] = EXTENDED_PPR;
1211 msg[3] = period;
1212 msg[4] = 0;
1213 msg[5] = offset;
1214 msg[6] = width;
1215 msg[7] = options;
1216 return 8;
1217 }
1218 EXPORT_SYMBOL_GPL(spi_populate_ppr_msg);
1219
1220 /**
1221 * spi_populate_tag_msg - place a tag message in a buffer
1222 * @msg: pointer to the area to place the tag
1223 * @cmd: pointer to the scsi command for the tag
1224 *
1225 * Notes:
1226 * designed to create the correct type of tag message for the
1227 * particular request. Returns the size of the tag message.
1228 * May return 0 if TCQ is disabled for this device.
1229 **/
spi_populate_tag_msg(unsigned char * msg,struct scsi_cmnd * cmd)1230 int spi_populate_tag_msg(unsigned char *msg, struct scsi_cmnd *cmd)
1231 {
1232 if (cmd->flags & SCMD_TAGGED) {
1233 *msg++ = SIMPLE_QUEUE_TAG;
1234 *msg++ = scsi_cmd_to_rq(cmd)->tag;
1235 return 2;
1236 }
1237
1238 return 0;
1239 }
1240 EXPORT_SYMBOL_GPL(spi_populate_tag_msg);
1241
1242 #ifdef CONFIG_SCSI_CONSTANTS
1243 static const char * const one_byte_msgs[] = {
1244 /* 0x00 */ "Task Complete", NULL /* Extended Message */, "Save Pointers",
1245 /* 0x03 */ "Restore Pointers", "Disconnect", "Initiator Error",
1246 /* 0x06 */ "Abort Task Set", "Message Reject", "Nop", "Message Parity Error",
1247 /* 0x0a */ "Linked Command Complete", "Linked Command Complete w/flag",
1248 /* 0x0c */ "Target Reset", "Abort Task", "Clear Task Set",
1249 /* 0x0f */ "Initiate Recovery", "Release Recovery",
1250 /* 0x11 */ "Terminate Process", "Continue Task", "Target Transfer Disable",
1251 /* 0x14 */ NULL, NULL, "Clear ACA", "LUN Reset"
1252 };
1253
1254 static const char * const two_byte_msgs[] = {
1255 /* 0x20 */ "Simple Queue Tag", "Head of Queue Tag", "Ordered Queue Tag",
1256 /* 0x23 */ "Ignore Wide Residue", "ACA"
1257 };
1258
1259 static const char * const extended_msgs[] = {
1260 /* 0x00 */ "Modify Data Pointer", "Synchronous Data Transfer Request",
1261 /* 0x02 */ "SCSI-I Extended Identify", "Wide Data Transfer Request",
1262 /* 0x04 */ "Parallel Protocol Request", "Modify Bidirectional Data Pointer"
1263 };
1264
print_nego(const unsigned char * msg,int per,int off,int width)1265 static void print_nego(const unsigned char *msg, int per, int off, int width)
1266 {
1267 if (per) {
1268 char buf[20];
1269 period_to_str(buf, msg[per]);
1270 printk("period = %s ns ", buf);
1271 }
1272
1273 if (off)
1274 printk("offset = %d ", msg[off]);
1275 if (width)
1276 printk("width = %d ", 8 << msg[width]);
1277 }
1278
print_ptr(const unsigned char * msg,int msb,const char * desc)1279 static void print_ptr(const unsigned char *msg, int msb, const char *desc)
1280 {
1281 int ptr = (msg[msb] << 24) | (msg[msb+1] << 16) | (msg[msb+2] << 8) |
1282 msg[msb+3];
1283 printk("%s = %d ", desc, ptr);
1284 }
1285
spi_print_msg(const unsigned char * msg)1286 int spi_print_msg(const unsigned char *msg)
1287 {
1288 int len = 1, i;
1289 if (msg[0] == EXTENDED_MESSAGE) {
1290 len = 2 + msg[1];
1291 if (len == 2)
1292 len += 256;
1293 if (msg[2] < ARRAY_SIZE(extended_msgs))
1294 printk ("%s ", extended_msgs[msg[2]]);
1295 else
1296 printk ("Extended Message, reserved code (0x%02x) ",
1297 (int) msg[2]);
1298 switch (msg[2]) {
1299 case EXTENDED_MODIFY_DATA_POINTER:
1300 print_ptr(msg, 3, "pointer");
1301 break;
1302 case EXTENDED_SDTR:
1303 print_nego(msg, 3, 4, 0);
1304 break;
1305 case EXTENDED_WDTR:
1306 print_nego(msg, 0, 0, 3);
1307 break;
1308 case EXTENDED_PPR:
1309 print_nego(msg, 3, 5, 6);
1310 break;
1311 case EXTENDED_MODIFY_BIDI_DATA_PTR:
1312 print_ptr(msg, 3, "out");
1313 print_ptr(msg, 7, "in");
1314 break;
1315 default:
1316 for (i = 2; i < len; ++i)
1317 printk("%02x ", msg[i]);
1318 }
1319 /* Identify */
1320 } else if (msg[0] & 0x80) {
1321 printk("Identify disconnect %sallowed %s %d ",
1322 (msg[0] & 0x40) ? "" : "not ",
1323 (msg[0] & 0x20) ? "target routine" : "lun",
1324 msg[0] & 0x7);
1325 /* Normal One byte */
1326 } else if (msg[0] < 0x1f) {
1327 if (msg[0] < ARRAY_SIZE(one_byte_msgs) && one_byte_msgs[msg[0]])
1328 printk("%s ", one_byte_msgs[msg[0]]);
1329 else
1330 printk("reserved (%02x) ", msg[0]);
1331 } else if (msg[0] == 0x55) {
1332 printk("QAS Request ");
1333 /* Two byte */
1334 } else if (msg[0] <= 0x2f) {
1335 if ((msg[0] - 0x20) < ARRAY_SIZE(two_byte_msgs))
1336 printk("%s %02x ", two_byte_msgs[msg[0] - 0x20],
1337 msg[1]);
1338 else
1339 printk("reserved two byte (%02x %02x) ",
1340 msg[0], msg[1]);
1341 len = 2;
1342 } else
1343 printk("reserved ");
1344 return len;
1345 }
1346 EXPORT_SYMBOL(spi_print_msg);
1347
1348 #else /* ifndef CONFIG_SCSI_CONSTANTS */
1349
spi_print_msg(const unsigned char * msg)1350 int spi_print_msg(const unsigned char *msg)
1351 {
1352 int len = 1, i;
1353
1354 if (msg[0] == EXTENDED_MESSAGE) {
1355 len = 2 + msg[1];
1356 if (len == 2)
1357 len += 256;
1358 for (i = 0; i < len; ++i)
1359 printk("%02x ", msg[i]);
1360 /* Identify */
1361 } else if (msg[0] & 0x80) {
1362 printk("%02x ", msg[0]);
1363 /* Normal One byte */
1364 } else if ((msg[0] < 0x1f) || (msg[0] == 0x55)) {
1365 printk("%02x ", msg[0]);
1366 /* Two byte */
1367 } else if (msg[0] <= 0x2f) {
1368 printk("%02x %02x", msg[0], msg[1]);
1369 len = 2;
1370 } else
1371 printk("%02x ", msg[0]);
1372 return len;
1373 }
1374 EXPORT_SYMBOL(spi_print_msg);
1375 #endif /* ! CONFIG_SCSI_CONSTANTS */
1376
spi_device_match(struct attribute_container * cont,struct device * dev)1377 static int spi_device_match(struct attribute_container *cont,
1378 struct device *dev)
1379 {
1380 struct scsi_device *sdev;
1381 struct Scsi_Host *shost;
1382 struct spi_internal *i;
1383
1384 if (!scsi_is_sdev_device(dev))
1385 return 0;
1386
1387 sdev = to_scsi_device(dev);
1388 shost = sdev->host;
1389 if (!shost->transportt || shost->transportt->host_attrs.ac.class
1390 != &spi_host_class.class)
1391 return 0;
1392 /* Note: this class has no device attributes, so it has
1393 * no per-HBA allocation and thus we don't need to distinguish
1394 * the attribute containers for the device */
1395 i = to_spi_internal(shost->transportt);
1396 if (i->f->deny_binding && i->f->deny_binding(sdev->sdev_target))
1397 return 0;
1398 return 1;
1399 }
1400
spi_target_match(struct attribute_container * cont,struct device * dev)1401 static int spi_target_match(struct attribute_container *cont,
1402 struct device *dev)
1403 {
1404 struct Scsi_Host *shost;
1405 struct scsi_target *starget;
1406 struct spi_internal *i;
1407
1408 if (!scsi_is_target_device(dev))
1409 return 0;
1410
1411 shost = dev_to_shost(dev->parent);
1412 if (!shost->transportt || shost->transportt->host_attrs.ac.class
1413 != &spi_host_class.class)
1414 return 0;
1415
1416 i = to_spi_internal(shost->transportt);
1417 starget = to_scsi_target(dev);
1418
1419 if (i->f->deny_binding && i->f->deny_binding(starget))
1420 return 0;
1421
1422 return &i->t.target_attrs.ac == cont;
1423 }
1424
1425 static DECLARE_TRANSPORT_CLASS(spi_transport_class,
1426 "spi_transport",
1427 spi_setup_transport_attrs,
1428 NULL,
1429 spi_target_configure);
1430
1431 static DECLARE_ANON_TRANSPORT_CLASS(spi_device_class,
1432 spi_device_match,
1433 spi_device_configure);
1434
1435 static struct attribute *host_attributes[] = {
1436 &dev_attr_signalling.attr,
1437 &dev_attr_host_width.attr,
1438 &dev_attr_hba_id.attr,
1439 NULL
1440 };
1441
1442 static struct attribute_group host_attribute_group = {
1443 .attrs = host_attributes,
1444 };
1445
spi_host_configure(struct transport_container * tc,struct device * dev,struct device * cdev)1446 static int spi_host_configure(struct transport_container *tc,
1447 struct device *dev,
1448 struct device *cdev)
1449 {
1450 struct kobject *kobj = &cdev->kobj;
1451 struct Scsi_Host *shost = transport_class_to_shost(cdev);
1452 struct spi_internal *si = to_spi_internal(shost->transportt);
1453 struct attribute *attr = &dev_attr_signalling.attr;
1454 int rc = 0;
1455
1456 if (si->f->set_signalling)
1457 rc = sysfs_chmod_file(kobj, attr, attr->mode | S_IWUSR);
1458
1459 return rc;
1460 }
1461
1462 /* returns true if we should be showing the variable. Also
1463 * overloads the return by setting 1<<1 if the attribute should
1464 * be writeable */
1465 #define TARGET_ATTRIBUTE_HELPER(name) \
1466 (si->f->show_##name ? S_IRUGO : 0) | \
1467 (si->f->set_##name ? S_IWUSR : 0)
1468
target_attribute_is_visible(struct kobject * kobj,struct attribute * attr,int i)1469 static umode_t target_attribute_is_visible(struct kobject *kobj,
1470 struct attribute *attr, int i)
1471 {
1472 struct device *cdev = container_of(kobj, struct device, kobj);
1473 struct scsi_target *starget = transport_class_to_starget(cdev);
1474 struct Scsi_Host *shost = transport_class_to_shost(cdev);
1475 struct spi_internal *si = to_spi_internal(shost->transportt);
1476
1477 if (attr == &dev_attr_period.attr &&
1478 spi_support_sync(starget))
1479 return TARGET_ATTRIBUTE_HELPER(period);
1480 else if (attr == &dev_attr_min_period.attr &&
1481 spi_support_sync(starget))
1482 return TARGET_ATTRIBUTE_HELPER(period);
1483 else if (attr == &dev_attr_offset.attr &&
1484 spi_support_sync(starget))
1485 return TARGET_ATTRIBUTE_HELPER(offset);
1486 else if (attr == &dev_attr_max_offset.attr &&
1487 spi_support_sync(starget))
1488 return TARGET_ATTRIBUTE_HELPER(offset);
1489 else if (attr == &dev_attr_width.attr &&
1490 spi_support_wide(starget))
1491 return TARGET_ATTRIBUTE_HELPER(width);
1492 else if (attr == &dev_attr_max_width.attr &&
1493 spi_support_wide(starget))
1494 return TARGET_ATTRIBUTE_HELPER(width);
1495 else if (attr == &dev_attr_iu.attr &&
1496 spi_support_ius(starget))
1497 return TARGET_ATTRIBUTE_HELPER(iu);
1498 else if (attr == &dev_attr_max_iu.attr &&
1499 spi_support_ius(starget))
1500 return TARGET_ATTRIBUTE_HELPER(iu);
1501 else if (attr == &dev_attr_dt.attr &&
1502 spi_support_dt(starget))
1503 return TARGET_ATTRIBUTE_HELPER(dt);
1504 else if (attr == &dev_attr_qas.attr &&
1505 spi_support_qas(starget))
1506 return TARGET_ATTRIBUTE_HELPER(qas);
1507 else if (attr == &dev_attr_max_qas.attr &&
1508 spi_support_qas(starget))
1509 return TARGET_ATTRIBUTE_HELPER(qas);
1510 else if (attr == &dev_attr_wr_flow.attr &&
1511 spi_support_ius(starget))
1512 return TARGET_ATTRIBUTE_HELPER(wr_flow);
1513 else if (attr == &dev_attr_rd_strm.attr &&
1514 spi_support_ius(starget))
1515 return TARGET_ATTRIBUTE_HELPER(rd_strm);
1516 else if (attr == &dev_attr_rti.attr &&
1517 spi_support_ius(starget))
1518 return TARGET_ATTRIBUTE_HELPER(rti);
1519 else if (attr == &dev_attr_pcomp_en.attr &&
1520 spi_support_ius(starget))
1521 return TARGET_ATTRIBUTE_HELPER(pcomp_en);
1522 else if (attr == &dev_attr_hold_mcs.attr &&
1523 spi_support_ius(starget))
1524 return TARGET_ATTRIBUTE_HELPER(hold_mcs);
1525 else if (attr == &dev_attr_revalidate.attr)
1526 return S_IWUSR;
1527
1528 return 0;
1529 }
1530
1531 static struct attribute *target_attributes[] = {
1532 &dev_attr_period.attr,
1533 &dev_attr_min_period.attr,
1534 &dev_attr_offset.attr,
1535 &dev_attr_max_offset.attr,
1536 &dev_attr_width.attr,
1537 &dev_attr_max_width.attr,
1538 &dev_attr_iu.attr,
1539 &dev_attr_max_iu.attr,
1540 &dev_attr_dt.attr,
1541 &dev_attr_qas.attr,
1542 &dev_attr_max_qas.attr,
1543 &dev_attr_wr_flow.attr,
1544 &dev_attr_rd_strm.attr,
1545 &dev_attr_rti.attr,
1546 &dev_attr_pcomp_en.attr,
1547 &dev_attr_hold_mcs.attr,
1548 &dev_attr_revalidate.attr,
1549 NULL
1550 };
1551
1552 static struct attribute_group target_attribute_group = {
1553 .attrs = target_attributes,
1554 .is_visible = target_attribute_is_visible,
1555 };
1556
spi_target_configure(struct transport_container * tc,struct device * dev,struct device * cdev)1557 static int spi_target_configure(struct transport_container *tc,
1558 struct device *dev,
1559 struct device *cdev)
1560 {
1561 struct kobject *kobj = &cdev->kobj;
1562
1563 /* force an update based on parameters read from the device */
1564 sysfs_update_group(kobj, &target_attribute_group);
1565
1566 return 0;
1567 }
1568
1569 struct scsi_transport_template *
spi_attach_transport(struct spi_function_template * ft)1570 spi_attach_transport(struct spi_function_template *ft)
1571 {
1572 struct spi_internal *i = kzalloc(sizeof(struct spi_internal),
1573 GFP_KERNEL);
1574
1575 if (unlikely(!i))
1576 return NULL;
1577
1578 i->t.target_attrs.ac.class = &spi_transport_class.class;
1579 i->t.target_attrs.ac.grp = &target_attribute_group;
1580 i->t.target_attrs.ac.match = spi_target_match;
1581 transport_container_register(&i->t.target_attrs);
1582 i->t.target_size = sizeof(struct spi_transport_attrs);
1583 i->t.host_attrs.ac.class = &spi_host_class.class;
1584 i->t.host_attrs.ac.grp = &host_attribute_group;
1585 i->t.host_attrs.ac.match = spi_host_match;
1586 transport_container_register(&i->t.host_attrs);
1587 i->t.host_size = sizeof(struct spi_host_attrs);
1588 i->f = ft;
1589
1590 return &i->t;
1591 }
1592 EXPORT_SYMBOL(spi_attach_transport);
1593
spi_release_transport(struct scsi_transport_template * t)1594 void spi_release_transport(struct scsi_transport_template *t)
1595 {
1596 struct spi_internal *i = to_spi_internal(t);
1597
1598 transport_container_unregister(&i->t.target_attrs);
1599 transport_container_unregister(&i->t.host_attrs);
1600
1601 kfree(i);
1602 }
1603 EXPORT_SYMBOL(spi_release_transport);
1604
spi_transport_init(void)1605 static __init int spi_transport_init(void)
1606 {
1607 int error = scsi_dev_info_add_list(SCSI_DEVINFO_SPI,
1608 "SCSI Parallel Transport Class");
1609 if (!error) {
1610 int i;
1611
1612 for (i = 0; spi_static_device_list[i].vendor; i++)
1613 scsi_dev_info_list_add_keyed(1, /* compatible */
1614 spi_static_device_list[i].vendor,
1615 spi_static_device_list[i].model,
1616 NULL,
1617 spi_static_device_list[i].flags,
1618 SCSI_DEVINFO_SPI);
1619 }
1620
1621 error = transport_class_register(&spi_transport_class);
1622 if (error)
1623 return error;
1624 error = anon_transport_class_register(&spi_device_class);
1625 return transport_class_register(&spi_host_class);
1626 }
1627
spi_transport_exit(void)1628 static void __exit spi_transport_exit(void)
1629 {
1630 transport_class_unregister(&spi_transport_class);
1631 anon_transport_class_unregister(&spi_device_class);
1632 transport_class_unregister(&spi_host_class);
1633 scsi_dev_info_remove_list(SCSI_DEVINFO_SPI);
1634 }
1635
1636 MODULE_AUTHOR("Martin Hicks");
1637 MODULE_DESCRIPTION("SPI Transport Attributes");
1638 MODULE_LICENSE("GPL");
1639
1640 module_init(spi_transport_init);
1641 module_exit(spi_transport_exit);
1642