1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/cache.h>
25 #include <linux/mutex.h>
26 #include <linux/of_device.h>
27 #include <linux/slab.h>
28 #include <linux/mod_devicetable.h>
29 #include <linux/spi/spi.h>
30 #include <linux/of_spi.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/export.h>
33 #include <linux/sched.h>
34 #include <linux/delay.h>
35 #include <linux/kthread.h>
36 
spidev_release(struct device * dev)37 static void spidev_release(struct device *dev)
38 {
39 	struct spi_device	*spi = to_spi_device(dev);
40 
41 	/* spi masters may cleanup for released devices */
42 	if (spi->master->cleanup)
43 		spi->master->cleanup(spi);
44 
45 	spi_master_put(spi->master);
46 	kfree(spi);
47 }
48 
49 static ssize_t
modalias_show(struct device * dev,struct device_attribute * a,char * buf)50 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
51 {
52 	const struct spi_device	*spi = to_spi_device(dev);
53 
54 	return sprintf(buf, "%s\n", spi->modalias);
55 }
56 
57 static struct device_attribute spi_dev_attrs[] = {
58 	__ATTR_RO(modalias),
59 	__ATTR_NULL,
60 };
61 
62 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
63  * and the sysfs version makes coldplug work too.
64  */
65 
spi_match_id(const struct spi_device_id * id,const struct spi_device * sdev)66 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
67 						const struct spi_device *sdev)
68 {
69 	while (id->name[0]) {
70 		if (!strcmp(sdev->modalias, id->name))
71 			return id;
72 		id++;
73 	}
74 	return NULL;
75 }
76 
spi_get_device_id(const struct spi_device * sdev)77 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
78 {
79 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
80 
81 	return spi_match_id(sdrv->id_table, sdev);
82 }
83 EXPORT_SYMBOL_GPL(spi_get_device_id);
84 
spi_match_device(struct device * dev,struct device_driver * drv)85 static int spi_match_device(struct device *dev, struct device_driver *drv)
86 {
87 	const struct spi_device	*spi = to_spi_device(dev);
88 	const struct spi_driver	*sdrv = to_spi_driver(drv);
89 
90 	/* Attempt an OF style match */
91 	if (of_driver_match_device(dev, drv))
92 		return 1;
93 
94 	if (sdrv->id_table)
95 		return !!spi_match_id(sdrv->id_table, spi);
96 
97 	return strcmp(spi->modalias, drv->name) == 0;
98 }
99 
spi_uevent(struct device * dev,struct kobj_uevent_env * env)100 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
101 {
102 	const struct spi_device		*spi = to_spi_device(dev);
103 
104 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
105 	return 0;
106 }
107 
108 #ifdef CONFIG_PM_SLEEP
spi_legacy_suspend(struct device * dev,pm_message_t message)109 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
110 {
111 	int			value = 0;
112 	struct spi_driver	*drv = to_spi_driver(dev->driver);
113 
114 	/* suspend will stop irqs and dma; no more i/o */
115 	if (drv) {
116 		if (drv->suspend)
117 			value = drv->suspend(to_spi_device(dev), message);
118 		else
119 			dev_dbg(dev, "... can't suspend\n");
120 	}
121 	return value;
122 }
123 
spi_legacy_resume(struct device * dev)124 static int spi_legacy_resume(struct device *dev)
125 {
126 	int			value = 0;
127 	struct spi_driver	*drv = to_spi_driver(dev->driver);
128 
129 	/* resume may restart the i/o queue */
130 	if (drv) {
131 		if (drv->resume)
132 			value = drv->resume(to_spi_device(dev));
133 		else
134 			dev_dbg(dev, "... can't resume\n");
135 	}
136 	return value;
137 }
138 
spi_pm_suspend(struct device * dev)139 static int spi_pm_suspend(struct device *dev)
140 {
141 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
142 
143 	if (pm)
144 		return pm_generic_suspend(dev);
145 	else
146 		return spi_legacy_suspend(dev, PMSG_SUSPEND);
147 }
148 
spi_pm_resume(struct device * dev)149 static int spi_pm_resume(struct device *dev)
150 {
151 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
152 
153 	if (pm)
154 		return pm_generic_resume(dev);
155 	else
156 		return spi_legacy_resume(dev);
157 }
158 
spi_pm_freeze(struct device * dev)159 static int spi_pm_freeze(struct device *dev)
160 {
161 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
162 
163 	if (pm)
164 		return pm_generic_freeze(dev);
165 	else
166 		return spi_legacy_suspend(dev, PMSG_FREEZE);
167 }
168 
spi_pm_thaw(struct device * dev)169 static int spi_pm_thaw(struct device *dev)
170 {
171 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
172 
173 	if (pm)
174 		return pm_generic_thaw(dev);
175 	else
176 		return spi_legacy_resume(dev);
177 }
178 
spi_pm_poweroff(struct device * dev)179 static int spi_pm_poweroff(struct device *dev)
180 {
181 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
182 
183 	if (pm)
184 		return pm_generic_poweroff(dev);
185 	else
186 		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
187 }
188 
spi_pm_restore(struct device * dev)189 static int spi_pm_restore(struct device *dev)
190 {
191 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
192 
193 	if (pm)
194 		return pm_generic_restore(dev);
195 	else
196 		return spi_legacy_resume(dev);
197 }
198 #else
199 #define spi_pm_suspend	NULL
200 #define spi_pm_resume	NULL
201 #define spi_pm_freeze	NULL
202 #define spi_pm_thaw	NULL
203 #define spi_pm_poweroff	NULL
204 #define spi_pm_restore	NULL
205 #endif
206 
207 static const struct dev_pm_ops spi_pm = {
208 	.suspend = spi_pm_suspend,
209 	.resume = spi_pm_resume,
210 	.freeze = spi_pm_freeze,
211 	.thaw = spi_pm_thaw,
212 	.poweroff = spi_pm_poweroff,
213 	.restore = spi_pm_restore,
214 	SET_RUNTIME_PM_OPS(
215 		pm_generic_runtime_suspend,
216 		pm_generic_runtime_resume,
217 		pm_generic_runtime_idle
218 	)
219 };
220 
221 struct bus_type spi_bus_type = {
222 	.name		= "spi",
223 	.dev_attrs	= spi_dev_attrs,
224 	.match		= spi_match_device,
225 	.uevent		= spi_uevent,
226 	.pm		= &spi_pm,
227 };
228 EXPORT_SYMBOL_GPL(spi_bus_type);
229 
230 
spi_drv_probe(struct device * dev)231 static int spi_drv_probe(struct device *dev)
232 {
233 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
234 
235 	return sdrv->probe(to_spi_device(dev));
236 }
237 
spi_drv_remove(struct device * dev)238 static int spi_drv_remove(struct device *dev)
239 {
240 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
241 
242 	return sdrv->remove(to_spi_device(dev));
243 }
244 
spi_drv_shutdown(struct device * dev)245 static void spi_drv_shutdown(struct device *dev)
246 {
247 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
248 
249 	sdrv->shutdown(to_spi_device(dev));
250 }
251 
252 /**
253  * spi_register_driver - register a SPI driver
254  * @sdrv: the driver to register
255  * Context: can sleep
256  */
spi_register_driver(struct spi_driver * sdrv)257 int spi_register_driver(struct spi_driver *sdrv)
258 {
259 	sdrv->driver.bus = &spi_bus_type;
260 	if (sdrv->probe)
261 		sdrv->driver.probe = spi_drv_probe;
262 	if (sdrv->remove)
263 		sdrv->driver.remove = spi_drv_remove;
264 	if (sdrv->shutdown)
265 		sdrv->driver.shutdown = spi_drv_shutdown;
266 	return driver_register(&sdrv->driver);
267 }
268 EXPORT_SYMBOL_GPL(spi_register_driver);
269 
270 /*-------------------------------------------------------------------------*/
271 
272 /* SPI devices should normally not be created by SPI device drivers; that
273  * would make them board-specific.  Similarly with SPI master drivers.
274  * Device registration normally goes into like arch/.../mach.../board-YYY.c
275  * with other readonly (flashable) information about mainboard devices.
276  */
277 
278 struct boardinfo {
279 	struct list_head	list;
280 	struct spi_board_info	board_info;
281 };
282 
283 static LIST_HEAD(board_list);
284 static LIST_HEAD(spi_master_list);
285 
286 /*
287  * Used to protect add/del opertion for board_info list and
288  * spi_master list, and their matching process
289  */
290 static DEFINE_MUTEX(board_lock);
291 
292 /**
293  * spi_alloc_device - Allocate a new SPI device
294  * @master: Controller to which device is connected
295  * Context: can sleep
296  *
297  * Allows a driver to allocate and initialize a spi_device without
298  * registering it immediately.  This allows a driver to directly
299  * fill the spi_device with device parameters before calling
300  * spi_add_device() on it.
301  *
302  * Caller is responsible to call spi_add_device() on the returned
303  * spi_device structure to add it to the SPI master.  If the caller
304  * needs to discard the spi_device without adding it, then it should
305  * call spi_dev_put() on it.
306  *
307  * Returns a pointer to the new device, or NULL.
308  */
spi_alloc_device(struct spi_master * master)309 struct spi_device *spi_alloc_device(struct spi_master *master)
310 {
311 	struct spi_device	*spi;
312 	struct device		*dev = master->dev.parent;
313 
314 	if (!spi_master_get(master))
315 		return NULL;
316 
317 	spi = kzalloc(sizeof *spi, GFP_KERNEL);
318 	if (!spi) {
319 		dev_err(dev, "cannot alloc spi_device\n");
320 		spi_master_put(master);
321 		return NULL;
322 	}
323 
324 	spi->master = master;
325 	spi->dev.parent = &master->dev;
326 	spi->dev.bus = &spi_bus_type;
327 	spi->dev.release = spidev_release;
328 	device_initialize(&spi->dev);
329 	return spi;
330 }
331 EXPORT_SYMBOL_GPL(spi_alloc_device);
332 
333 /**
334  * spi_add_device - Add spi_device allocated with spi_alloc_device
335  * @spi: spi_device to register
336  *
337  * Companion function to spi_alloc_device.  Devices allocated with
338  * spi_alloc_device can be added onto the spi bus with this function.
339  *
340  * Returns 0 on success; negative errno on failure
341  */
spi_add_device(struct spi_device * spi)342 int spi_add_device(struct spi_device *spi)
343 {
344 	static DEFINE_MUTEX(spi_add_lock);
345 	struct device *dev = spi->master->dev.parent;
346 	struct device *d;
347 	int status;
348 
349 	/* Chipselects are numbered 0..max; validate. */
350 	if (spi->chip_select >= spi->master->num_chipselect) {
351 		dev_err(dev, "cs%d >= max %d\n",
352 			spi->chip_select,
353 			spi->master->num_chipselect);
354 		return -EINVAL;
355 	}
356 
357 	/* Set the bus ID string */
358 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
359 			spi->chip_select);
360 
361 
362 	/* We need to make sure there's no other device with this
363 	 * chipselect **BEFORE** we call setup(), else we'll trash
364 	 * its configuration.  Lock against concurrent add() calls.
365 	 */
366 	mutex_lock(&spi_add_lock);
367 
368 	d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
369 	if (d != NULL) {
370 		dev_err(dev, "chipselect %d already in use\n",
371 				spi->chip_select);
372 		put_device(d);
373 		status = -EBUSY;
374 		goto done;
375 	}
376 
377 	/* Drivers may modify this initial i/o setup, but will
378 	 * normally rely on the device being setup.  Devices
379 	 * using SPI_CS_HIGH can't coexist well otherwise...
380 	 */
381 	status = spi_setup(spi);
382 	if (status < 0) {
383 		dev_err(dev, "can't setup %s, status %d\n",
384 				dev_name(&spi->dev), status);
385 		goto done;
386 	}
387 
388 	/* Device may be bound to an active driver when this returns */
389 	status = device_add(&spi->dev);
390 	if (status < 0)
391 		dev_err(dev, "can't add %s, status %d\n",
392 				dev_name(&spi->dev), status);
393 	else
394 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
395 
396 done:
397 	mutex_unlock(&spi_add_lock);
398 	return status;
399 }
400 EXPORT_SYMBOL_GPL(spi_add_device);
401 
402 /**
403  * spi_new_device - instantiate one new SPI device
404  * @master: Controller to which device is connected
405  * @chip: Describes the SPI device
406  * Context: can sleep
407  *
408  * On typical mainboards, this is purely internal; and it's not needed
409  * after board init creates the hard-wired devices.  Some development
410  * platforms may not be able to use spi_register_board_info though, and
411  * this is exported so that for example a USB or parport based adapter
412  * driver could add devices (which it would learn about out-of-band).
413  *
414  * Returns the new device, or NULL.
415  */
spi_new_device(struct spi_master * master,struct spi_board_info * chip)416 struct spi_device *spi_new_device(struct spi_master *master,
417 				  struct spi_board_info *chip)
418 {
419 	struct spi_device	*proxy;
420 	int			status;
421 
422 	/* NOTE:  caller did any chip->bus_num checks necessary.
423 	 *
424 	 * Also, unless we change the return value convention to use
425 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
426 	 * suggests syslogged diagnostics are best here (ugh).
427 	 */
428 
429 	proxy = spi_alloc_device(master);
430 	if (!proxy)
431 		return NULL;
432 
433 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
434 
435 	proxy->chip_select = chip->chip_select;
436 	proxy->max_speed_hz = chip->max_speed_hz;
437 	proxy->mode = chip->mode;
438 	proxy->irq = chip->irq;
439 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
440 	proxy->dev.platform_data = (void *) chip->platform_data;
441 	proxy->controller_data = chip->controller_data;
442 	proxy->controller_state = NULL;
443 
444 	status = spi_add_device(proxy);
445 	if (status < 0) {
446 		spi_dev_put(proxy);
447 		return NULL;
448 	}
449 
450 	return proxy;
451 }
452 EXPORT_SYMBOL_GPL(spi_new_device);
453 
spi_match_master_to_boardinfo(struct spi_master * master,struct spi_board_info * bi)454 static void spi_match_master_to_boardinfo(struct spi_master *master,
455 				struct spi_board_info *bi)
456 {
457 	struct spi_device *dev;
458 
459 	if (master->bus_num != bi->bus_num)
460 		return;
461 
462 	dev = spi_new_device(master, bi);
463 	if (!dev)
464 		dev_err(master->dev.parent, "can't create new device for %s\n",
465 			bi->modalias);
466 }
467 
468 /**
469  * spi_register_board_info - register SPI devices for a given board
470  * @info: array of chip descriptors
471  * @n: how many descriptors are provided
472  * Context: can sleep
473  *
474  * Board-specific early init code calls this (probably during arch_initcall)
475  * with segments of the SPI device table.  Any device nodes are created later,
476  * after the relevant parent SPI controller (bus_num) is defined.  We keep
477  * this table of devices forever, so that reloading a controller driver will
478  * not make Linux forget about these hard-wired devices.
479  *
480  * Other code can also call this, e.g. a particular add-on board might provide
481  * SPI devices through its expansion connector, so code initializing that board
482  * would naturally declare its SPI devices.
483  *
484  * The board info passed can safely be __initdata ... but be careful of
485  * any embedded pointers (platform_data, etc), they're copied as-is.
486  */
487 int __devinit
spi_register_board_info(struct spi_board_info const * info,unsigned n)488 spi_register_board_info(struct spi_board_info const *info, unsigned n)
489 {
490 	struct boardinfo *bi;
491 	int i;
492 
493 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
494 	if (!bi)
495 		return -ENOMEM;
496 
497 	for (i = 0; i < n; i++, bi++, info++) {
498 		struct spi_master *master;
499 
500 		memcpy(&bi->board_info, info, sizeof(*info));
501 		mutex_lock(&board_lock);
502 		list_add_tail(&bi->list, &board_list);
503 		list_for_each_entry(master, &spi_master_list, list)
504 			spi_match_master_to_boardinfo(master, &bi->board_info);
505 		mutex_unlock(&board_lock);
506 	}
507 
508 	return 0;
509 }
510 
511 /*-------------------------------------------------------------------------*/
512 
513 /**
514  * spi_pump_messages - kthread work function which processes spi message queue
515  * @work: pointer to kthread work struct contained in the master struct
516  *
517  * This function checks if there is any spi message in the queue that
518  * needs processing and if so call out to the driver to initialize hardware
519  * and transfer each message.
520  *
521  */
spi_pump_messages(struct kthread_work * work)522 static void spi_pump_messages(struct kthread_work *work)
523 {
524 	struct spi_master *master =
525 		container_of(work, struct spi_master, pump_messages);
526 	unsigned long flags;
527 	bool was_busy = false;
528 	int ret;
529 
530 	/* Lock queue and check for queue work */
531 	spin_lock_irqsave(&master->queue_lock, flags);
532 	if (list_empty(&master->queue) || !master->running) {
533 		if (master->busy) {
534 			ret = master->unprepare_transfer_hardware(master);
535 			if (ret) {
536 				spin_unlock_irqrestore(&master->queue_lock, flags);
537 				dev_err(&master->dev,
538 					"failed to unprepare transfer hardware\n");
539 				return;
540 			}
541 		}
542 		master->busy = false;
543 		spin_unlock_irqrestore(&master->queue_lock, flags);
544 		return;
545 	}
546 
547 	/* Make sure we are not already running a message */
548 	if (master->cur_msg) {
549 		spin_unlock_irqrestore(&master->queue_lock, flags);
550 		return;
551 	}
552 	/* Extract head of queue */
553 	master->cur_msg =
554 	    list_entry(master->queue.next, struct spi_message, queue);
555 
556 	list_del_init(&master->cur_msg->queue);
557 	if (master->busy)
558 		was_busy = true;
559 	else
560 		master->busy = true;
561 	spin_unlock_irqrestore(&master->queue_lock, flags);
562 
563 	if (!was_busy) {
564 		ret = master->prepare_transfer_hardware(master);
565 		if (ret) {
566 			dev_err(&master->dev,
567 				"failed to prepare transfer hardware\n");
568 			return;
569 		}
570 	}
571 
572 	ret = master->transfer_one_message(master, master->cur_msg);
573 	if (ret) {
574 		dev_err(&master->dev,
575 			"failed to transfer one message from queue\n");
576 		return;
577 	}
578 }
579 
spi_init_queue(struct spi_master * master)580 static int spi_init_queue(struct spi_master *master)
581 {
582 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
583 
584 	INIT_LIST_HEAD(&master->queue);
585 	spin_lock_init(&master->queue_lock);
586 
587 	master->running = false;
588 	master->busy = false;
589 
590 	init_kthread_worker(&master->kworker);
591 	master->kworker_task = kthread_run(kthread_worker_fn,
592 					   &master->kworker,
593 					   dev_name(&master->dev));
594 	if (IS_ERR(master->kworker_task)) {
595 		dev_err(&master->dev, "failed to create message pump task\n");
596 		return -ENOMEM;
597 	}
598 	init_kthread_work(&master->pump_messages, spi_pump_messages);
599 
600 	/*
601 	 * Master config will indicate if this controller should run the
602 	 * message pump with high (realtime) priority to reduce the transfer
603 	 * latency on the bus by minimising the delay between a transfer
604 	 * request and the scheduling of the message pump thread. Without this
605 	 * setting the message pump thread will remain at default priority.
606 	 */
607 	if (master->rt) {
608 		dev_info(&master->dev,
609 			"will run message pump with realtime priority\n");
610 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
611 	}
612 
613 	return 0;
614 }
615 
616 /**
617  * spi_get_next_queued_message() - called by driver to check for queued
618  * messages
619  * @master: the master to check for queued messages
620  *
621  * If there are more messages in the queue, the next message is returned from
622  * this call.
623  */
spi_get_next_queued_message(struct spi_master * master)624 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
625 {
626 	struct spi_message *next;
627 	unsigned long flags;
628 
629 	/* get a pointer to the next message, if any */
630 	spin_lock_irqsave(&master->queue_lock, flags);
631 	if (list_empty(&master->queue))
632 		next = NULL;
633 	else
634 		next = list_entry(master->queue.next,
635 				  struct spi_message, queue);
636 	spin_unlock_irqrestore(&master->queue_lock, flags);
637 
638 	return next;
639 }
640 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
641 
642 /**
643  * spi_finalize_current_message() - the current message is complete
644  * @master: the master to return the message to
645  *
646  * Called by the driver to notify the core that the message in the front of the
647  * queue is complete and can be removed from the queue.
648  */
spi_finalize_current_message(struct spi_master * master)649 void spi_finalize_current_message(struct spi_master *master)
650 {
651 	struct spi_message *mesg;
652 	unsigned long flags;
653 
654 	spin_lock_irqsave(&master->queue_lock, flags);
655 	mesg = master->cur_msg;
656 	master->cur_msg = NULL;
657 
658 	queue_kthread_work(&master->kworker, &master->pump_messages);
659 	spin_unlock_irqrestore(&master->queue_lock, flags);
660 
661 	mesg->state = NULL;
662 	if (mesg->complete)
663 		mesg->complete(mesg->context);
664 }
665 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
666 
spi_start_queue(struct spi_master * master)667 static int spi_start_queue(struct spi_master *master)
668 {
669 	unsigned long flags;
670 
671 	spin_lock_irqsave(&master->queue_lock, flags);
672 
673 	if (master->running || master->busy) {
674 		spin_unlock_irqrestore(&master->queue_lock, flags);
675 		return -EBUSY;
676 	}
677 
678 	master->running = true;
679 	master->cur_msg = NULL;
680 	spin_unlock_irqrestore(&master->queue_lock, flags);
681 
682 	queue_kthread_work(&master->kworker, &master->pump_messages);
683 
684 	return 0;
685 }
686 
spi_stop_queue(struct spi_master * master)687 static int spi_stop_queue(struct spi_master *master)
688 {
689 	unsigned long flags;
690 	unsigned limit = 500;
691 	int ret = 0;
692 
693 	spin_lock_irqsave(&master->queue_lock, flags);
694 
695 	/*
696 	 * This is a bit lame, but is optimized for the common execution path.
697 	 * A wait_queue on the master->busy could be used, but then the common
698 	 * execution path (pump_messages) would be required to call wake_up or
699 	 * friends on every SPI message. Do this instead.
700 	 */
701 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
702 		spin_unlock_irqrestore(&master->queue_lock, flags);
703 		msleep(10);
704 		spin_lock_irqsave(&master->queue_lock, flags);
705 	}
706 
707 	if (!list_empty(&master->queue) || master->busy)
708 		ret = -EBUSY;
709 	else
710 		master->running = false;
711 
712 	spin_unlock_irqrestore(&master->queue_lock, flags);
713 
714 	if (ret) {
715 		dev_warn(&master->dev,
716 			 "could not stop message queue\n");
717 		return ret;
718 	}
719 	return ret;
720 }
721 
spi_destroy_queue(struct spi_master * master)722 static int spi_destroy_queue(struct spi_master *master)
723 {
724 	int ret;
725 
726 	ret = spi_stop_queue(master);
727 
728 	/*
729 	 * flush_kthread_worker will block until all work is done.
730 	 * If the reason that stop_queue timed out is that the work will never
731 	 * finish, then it does no good to call flush/stop thread, so
732 	 * return anyway.
733 	 */
734 	if (ret) {
735 		dev_err(&master->dev, "problem destroying queue\n");
736 		return ret;
737 	}
738 
739 	flush_kthread_worker(&master->kworker);
740 	kthread_stop(master->kworker_task);
741 
742 	return 0;
743 }
744 
745 /**
746  * spi_queued_transfer - transfer function for queued transfers
747  * @spi: spi device which is requesting transfer
748  * @msg: spi message which is to handled is queued to driver queue
749  */
spi_queued_transfer(struct spi_device * spi,struct spi_message * msg)750 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
751 {
752 	struct spi_master *master = spi->master;
753 	unsigned long flags;
754 
755 	spin_lock_irqsave(&master->queue_lock, flags);
756 
757 	if (!master->running) {
758 		spin_unlock_irqrestore(&master->queue_lock, flags);
759 		return -ESHUTDOWN;
760 	}
761 	msg->actual_length = 0;
762 	msg->status = -EINPROGRESS;
763 
764 	list_add_tail(&msg->queue, &master->queue);
765 	if (master->running && !master->busy)
766 		queue_kthread_work(&master->kworker, &master->pump_messages);
767 
768 	spin_unlock_irqrestore(&master->queue_lock, flags);
769 	return 0;
770 }
771 
spi_master_initialize_queue(struct spi_master * master)772 static int spi_master_initialize_queue(struct spi_master *master)
773 {
774 	int ret;
775 
776 	master->queued = true;
777 	master->transfer = spi_queued_transfer;
778 
779 	/* Initialize and start queue */
780 	ret = spi_init_queue(master);
781 	if (ret) {
782 		dev_err(&master->dev, "problem initializing queue\n");
783 		goto err_init_queue;
784 	}
785 	ret = spi_start_queue(master);
786 	if (ret) {
787 		dev_err(&master->dev, "problem starting queue\n");
788 		goto err_start_queue;
789 	}
790 
791 	return 0;
792 
793 err_start_queue:
794 err_init_queue:
795 	spi_destroy_queue(master);
796 	return ret;
797 }
798 
799 /*-------------------------------------------------------------------------*/
800 
spi_master_release(struct device * dev)801 static void spi_master_release(struct device *dev)
802 {
803 	struct spi_master *master;
804 
805 	master = container_of(dev, struct spi_master, dev);
806 	kfree(master);
807 }
808 
809 static struct class spi_master_class = {
810 	.name		= "spi_master",
811 	.owner		= THIS_MODULE,
812 	.dev_release	= spi_master_release,
813 };
814 
815 
816 
817 /**
818  * spi_alloc_master - allocate SPI master controller
819  * @dev: the controller, possibly using the platform_bus
820  * @size: how much zeroed driver-private data to allocate; the pointer to this
821  *	memory is in the driver_data field of the returned device,
822  *	accessible with spi_master_get_devdata().
823  * Context: can sleep
824  *
825  * This call is used only by SPI master controller drivers, which are the
826  * only ones directly touching chip registers.  It's how they allocate
827  * an spi_master structure, prior to calling spi_register_master().
828  *
829  * This must be called from context that can sleep.  It returns the SPI
830  * master structure on success, else NULL.
831  *
832  * The caller is responsible for assigning the bus number and initializing
833  * the master's methods before calling spi_register_master(); and (after errors
834  * adding the device) calling spi_master_put() and kfree() to prevent a memory
835  * leak.
836  */
spi_alloc_master(struct device * dev,unsigned size)837 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
838 {
839 	struct spi_master	*master;
840 
841 	if (!dev)
842 		return NULL;
843 
844 	master = kzalloc(size + sizeof *master, GFP_KERNEL);
845 	if (!master)
846 		return NULL;
847 
848 	device_initialize(&master->dev);
849 	master->dev.class = &spi_master_class;
850 	master->dev.parent = get_device(dev);
851 	spi_master_set_devdata(master, &master[1]);
852 
853 	return master;
854 }
855 EXPORT_SYMBOL_GPL(spi_alloc_master);
856 
857 /**
858  * spi_register_master - register SPI master controller
859  * @master: initialized master, originally from spi_alloc_master()
860  * Context: can sleep
861  *
862  * SPI master controllers connect to their drivers using some non-SPI bus,
863  * such as the platform bus.  The final stage of probe() in that code
864  * includes calling spi_register_master() to hook up to this SPI bus glue.
865  *
866  * SPI controllers use board specific (often SOC specific) bus numbers,
867  * and board-specific addressing for SPI devices combines those numbers
868  * with chip select numbers.  Since SPI does not directly support dynamic
869  * device identification, boards need configuration tables telling which
870  * chip is at which address.
871  *
872  * This must be called from context that can sleep.  It returns zero on
873  * success, else a negative error code (dropping the master's refcount).
874  * After a successful return, the caller is responsible for calling
875  * spi_unregister_master().
876  */
spi_register_master(struct spi_master * master)877 int spi_register_master(struct spi_master *master)
878 {
879 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
880 	struct device		*dev = master->dev.parent;
881 	struct boardinfo	*bi;
882 	int			status = -ENODEV;
883 	int			dynamic = 0;
884 
885 	if (!dev)
886 		return -ENODEV;
887 
888 	/* even if it's just one always-selected device, there must
889 	 * be at least one chipselect
890 	 */
891 	if (master->num_chipselect == 0)
892 		return -EINVAL;
893 
894 	/* convention:  dynamically assigned bus IDs count down from the max */
895 	if (master->bus_num < 0) {
896 		/* FIXME switch to an IDR based scheme, something like
897 		 * I2C now uses, so we can't run out of "dynamic" IDs
898 		 */
899 		master->bus_num = atomic_dec_return(&dyn_bus_id);
900 		dynamic = 1;
901 	}
902 
903 	spin_lock_init(&master->bus_lock_spinlock);
904 	mutex_init(&master->bus_lock_mutex);
905 	master->bus_lock_flag = 0;
906 
907 	/* register the device, then userspace will see it.
908 	 * registration fails if the bus ID is in use.
909 	 */
910 	dev_set_name(&master->dev, "spi%u", master->bus_num);
911 	status = device_add(&master->dev);
912 	if (status < 0)
913 		goto done;
914 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
915 			dynamic ? " (dynamic)" : "");
916 
917 	/* If we're using a queued driver, start the queue */
918 	if (master->transfer)
919 		dev_info(dev, "master is unqueued, this is deprecated\n");
920 	else {
921 		status = spi_master_initialize_queue(master);
922 		if (status) {
923 			device_unregister(&master->dev);
924 			goto done;
925 		}
926 	}
927 
928 	mutex_lock(&board_lock);
929 	list_add_tail(&master->list, &spi_master_list);
930 	list_for_each_entry(bi, &board_list, list)
931 		spi_match_master_to_boardinfo(master, &bi->board_info);
932 	mutex_unlock(&board_lock);
933 
934 	/* Register devices from the device tree */
935 	of_register_spi_devices(master);
936 done:
937 	return status;
938 }
939 EXPORT_SYMBOL_GPL(spi_register_master);
940 
__unregister(struct device * dev,void * null)941 static int __unregister(struct device *dev, void *null)
942 {
943 	spi_unregister_device(to_spi_device(dev));
944 	return 0;
945 }
946 
947 /**
948  * spi_unregister_master - unregister SPI master controller
949  * @master: the master being unregistered
950  * Context: can sleep
951  *
952  * This call is used only by SPI master controller drivers, which are the
953  * only ones directly touching chip registers.
954  *
955  * This must be called from context that can sleep.
956  */
spi_unregister_master(struct spi_master * master)957 void spi_unregister_master(struct spi_master *master)
958 {
959 	int dummy;
960 
961 	if (master->queued) {
962 		if (spi_destroy_queue(master))
963 			dev_err(&master->dev, "queue remove failed\n");
964 	}
965 
966 	mutex_lock(&board_lock);
967 	list_del(&master->list);
968 	mutex_unlock(&board_lock);
969 
970 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
971 	device_unregister(&master->dev);
972 }
973 EXPORT_SYMBOL_GPL(spi_unregister_master);
974 
spi_master_suspend(struct spi_master * master)975 int spi_master_suspend(struct spi_master *master)
976 {
977 	int ret;
978 
979 	/* Basically no-ops for non-queued masters */
980 	if (!master->queued)
981 		return 0;
982 
983 	ret = spi_stop_queue(master);
984 	if (ret)
985 		dev_err(&master->dev, "queue stop failed\n");
986 
987 	return ret;
988 }
989 EXPORT_SYMBOL_GPL(spi_master_suspend);
990 
spi_master_resume(struct spi_master * master)991 int spi_master_resume(struct spi_master *master)
992 {
993 	int ret;
994 
995 	if (!master->queued)
996 		return 0;
997 
998 	ret = spi_start_queue(master);
999 	if (ret)
1000 		dev_err(&master->dev, "queue restart failed\n");
1001 
1002 	return ret;
1003 }
1004 EXPORT_SYMBOL_GPL(spi_master_resume);
1005 
__spi_master_match(struct device * dev,void * data)1006 static int __spi_master_match(struct device *dev, void *data)
1007 {
1008 	struct spi_master *m;
1009 	u16 *bus_num = data;
1010 
1011 	m = container_of(dev, struct spi_master, dev);
1012 	return m->bus_num == *bus_num;
1013 }
1014 
1015 /**
1016  * spi_busnum_to_master - look up master associated with bus_num
1017  * @bus_num: the master's bus number
1018  * Context: can sleep
1019  *
1020  * This call may be used with devices that are registered after
1021  * arch init time.  It returns a refcounted pointer to the relevant
1022  * spi_master (which the caller must release), or NULL if there is
1023  * no such master registered.
1024  */
spi_busnum_to_master(u16 bus_num)1025 struct spi_master *spi_busnum_to_master(u16 bus_num)
1026 {
1027 	struct device		*dev;
1028 	struct spi_master	*master = NULL;
1029 
1030 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
1031 				__spi_master_match);
1032 	if (dev)
1033 		master = container_of(dev, struct spi_master, dev);
1034 	/* reference got in class_find_device */
1035 	return master;
1036 }
1037 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1038 
1039 
1040 /*-------------------------------------------------------------------------*/
1041 
1042 /* Core methods for SPI master protocol drivers.  Some of the
1043  * other core methods are currently defined as inline functions.
1044  */
1045 
1046 /**
1047  * spi_setup - setup SPI mode and clock rate
1048  * @spi: the device whose settings are being modified
1049  * Context: can sleep, and no requests are queued to the device
1050  *
1051  * SPI protocol drivers may need to update the transfer mode if the
1052  * device doesn't work with its default.  They may likewise need
1053  * to update clock rates or word sizes from initial values.  This function
1054  * changes those settings, and must be called from a context that can sleep.
1055  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1056  * effect the next time the device is selected and data is transferred to
1057  * or from it.  When this function returns, the spi device is deselected.
1058  *
1059  * Note that this call will fail if the protocol driver specifies an option
1060  * that the underlying controller or its driver does not support.  For
1061  * example, not all hardware supports wire transfers using nine bit words,
1062  * LSB-first wire encoding, or active-high chipselects.
1063  */
spi_setup(struct spi_device * spi)1064 int spi_setup(struct spi_device *spi)
1065 {
1066 	unsigned	bad_bits;
1067 	int		status;
1068 
1069 	/* help drivers fail *cleanly* when they need options
1070 	 * that aren't supported with their current master
1071 	 */
1072 	bad_bits = spi->mode & ~spi->master->mode_bits;
1073 	if (bad_bits) {
1074 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1075 			bad_bits);
1076 		return -EINVAL;
1077 	}
1078 
1079 	if (!spi->bits_per_word)
1080 		spi->bits_per_word = 8;
1081 
1082 	status = spi->master->setup(spi);
1083 
1084 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
1085 				"%u bits/w, %u Hz max --> %d\n",
1086 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1087 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1088 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1089 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
1090 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
1091 			spi->bits_per_word, spi->max_speed_hz,
1092 			status);
1093 
1094 	return status;
1095 }
1096 EXPORT_SYMBOL_GPL(spi_setup);
1097 
__spi_async(struct spi_device * spi,struct spi_message * message)1098 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1099 {
1100 	struct spi_master *master = spi->master;
1101 
1102 	/* Half-duplex links include original MicroWire, and ones with
1103 	 * only one data pin like SPI_3WIRE (switches direction) or where
1104 	 * either MOSI or MISO is missing.  They can also be caused by
1105 	 * software limitations.
1106 	 */
1107 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1108 			|| (spi->mode & SPI_3WIRE)) {
1109 		struct spi_transfer *xfer;
1110 		unsigned flags = master->flags;
1111 
1112 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
1113 			if (xfer->rx_buf && xfer->tx_buf)
1114 				return -EINVAL;
1115 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1116 				return -EINVAL;
1117 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1118 				return -EINVAL;
1119 		}
1120 	}
1121 
1122 	message->spi = spi;
1123 	message->status = -EINPROGRESS;
1124 	return master->transfer(spi, message);
1125 }
1126 
1127 /**
1128  * spi_async - asynchronous SPI transfer
1129  * @spi: device with which data will be exchanged
1130  * @message: describes the data transfers, including completion callback
1131  * Context: any (irqs may be blocked, etc)
1132  *
1133  * This call may be used in_irq and other contexts which can't sleep,
1134  * as well as from task contexts which can sleep.
1135  *
1136  * The completion callback is invoked in a context which can't sleep.
1137  * Before that invocation, the value of message->status is undefined.
1138  * When the callback is issued, message->status holds either zero (to
1139  * indicate complete success) or a negative error code.  After that
1140  * callback returns, the driver which issued the transfer request may
1141  * deallocate the associated memory; it's no longer in use by any SPI
1142  * core or controller driver code.
1143  *
1144  * Note that although all messages to a spi_device are handled in
1145  * FIFO order, messages may go to different devices in other orders.
1146  * Some device might be higher priority, or have various "hard" access
1147  * time requirements, for example.
1148  *
1149  * On detection of any fault during the transfer, processing of
1150  * the entire message is aborted, and the device is deselected.
1151  * Until returning from the associated message completion callback,
1152  * no other spi_message queued to that device will be processed.
1153  * (This rule applies equally to all the synchronous transfer calls,
1154  * which are wrappers around this core asynchronous primitive.)
1155  */
spi_async(struct spi_device * spi,struct spi_message * message)1156 int spi_async(struct spi_device *spi, struct spi_message *message)
1157 {
1158 	struct spi_master *master = spi->master;
1159 	int ret;
1160 	unsigned long flags;
1161 
1162 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1163 
1164 	if (master->bus_lock_flag)
1165 		ret = -EBUSY;
1166 	else
1167 		ret = __spi_async(spi, message);
1168 
1169 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1170 
1171 	return ret;
1172 }
1173 EXPORT_SYMBOL_GPL(spi_async);
1174 
1175 /**
1176  * spi_async_locked - version of spi_async with exclusive bus usage
1177  * @spi: device with which data will be exchanged
1178  * @message: describes the data transfers, including completion callback
1179  * Context: any (irqs may be blocked, etc)
1180  *
1181  * This call may be used in_irq and other contexts which can't sleep,
1182  * as well as from task contexts which can sleep.
1183  *
1184  * The completion callback is invoked in a context which can't sleep.
1185  * Before that invocation, the value of message->status is undefined.
1186  * When the callback is issued, message->status holds either zero (to
1187  * indicate complete success) or a negative error code.  After that
1188  * callback returns, the driver which issued the transfer request may
1189  * deallocate the associated memory; it's no longer in use by any SPI
1190  * core or controller driver code.
1191  *
1192  * Note that although all messages to a spi_device are handled in
1193  * FIFO order, messages may go to different devices in other orders.
1194  * Some device might be higher priority, or have various "hard" access
1195  * time requirements, for example.
1196  *
1197  * On detection of any fault during the transfer, processing of
1198  * the entire message is aborted, and the device is deselected.
1199  * Until returning from the associated message completion callback,
1200  * no other spi_message queued to that device will be processed.
1201  * (This rule applies equally to all the synchronous transfer calls,
1202  * which are wrappers around this core asynchronous primitive.)
1203  */
spi_async_locked(struct spi_device * spi,struct spi_message * message)1204 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1205 {
1206 	struct spi_master *master = spi->master;
1207 	int ret;
1208 	unsigned long flags;
1209 
1210 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1211 
1212 	ret = __spi_async(spi, message);
1213 
1214 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1215 
1216 	return ret;
1217 
1218 }
1219 EXPORT_SYMBOL_GPL(spi_async_locked);
1220 
1221 
1222 /*-------------------------------------------------------------------------*/
1223 
1224 /* Utility methods for SPI master protocol drivers, layered on
1225  * top of the core.  Some other utility methods are defined as
1226  * inline functions.
1227  */
1228 
spi_complete(void * arg)1229 static void spi_complete(void *arg)
1230 {
1231 	complete(arg);
1232 }
1233 
__spi_sync(struct spi_device * spi,struct spi_message * message,int bus_locked)1234 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1235 		      int bus_locked)
1236 {
1237 	DECLARE_COMPLETION_ONSTACK(done);
1238 	int status;
1239 	struct spi_master *master = spi->master;
1240 
1241 	message->complete = spi_complete;
1242 	message->context = &done;
1243 
1244 	if (!bus_locked)
1245 		mutex_lock(&master->bus_lock_mutex);
1246 
1247 	status = spi_async_locked(spi, message);
1248 
1249 	if (!bus_locked)
1250 		mutex_unlock(&master->bus_lock_mutex);
1251 
1252 	if (status == 0) {
1253 		wait_for_completion(&done);
1254 		status = message->status;
1255 	}
1256 	message->context = NULL;
1257 	return status;
1258 }
1259 
1260 /**
1261  * spi_sync - blocking/synchronous SPI data transfers
1262  * @spi: device with which data will be exchanged
1263  * @message: describes the data transfers
1264  * Context: can sleep
1265  *
1266  * This call may only be used from a context that may sleep.  The sleep
1267  * is non-interruptible, and has no timeout.  Low-overhead controller
1268  * drivers may DMA directly into and out of the message buffers.
1269  *
1270  * Note that the SPI device's chip select is active during the message,
1271  * and then is normally disabled between messages.  Drivers for some
1272  * frequently-used devices may want to minimize costs of selecting a chip,
1273  * by leaving it selected in anticipation that the next message will go
1274  * to the same chip.  (That may increase power usage.)
1275  *
1276  * Also, the caller is guaranteeing that the memory associated with the
1277  * message will not be freed before this call returns.
1278  *
1279  * It returns zero on success, else a negative error code.
1280  */
spi_sync(struct spi_device * spi,struct spi_message * message)1281 int spi_sync(struct spi_device *spi, struct spi_message *message)
1282 {
1283 	return __spi_sync(spi, message, 0);
1284 }
1285 EXPORT_SYMBOL_GPL(spi_sync);
1286 
1287 /**
1288  * spi_sync_locked - version of spi_sync with exclusive bus usage
1289  * @spi: device with which data will be exchanged
1290  * @message: describes the data transfers
1291  * Context: can sleep
1292  *
1293  * This call may only be used from a context that may sleep.  The sleep
1294  * is non-interruptible, and has no timeout.  Low-overhead controller
1295  * drivers may DMA directly into and out of the message buffers.
1296  *
1297  * This call should be used by drivers that require exclusive access to the
1298  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1299  * be released by a spi_bus_unlock call when the exclusive access is over.
1300  *
1301  * It returns zero on success, else a negative error code.
1302  */
spi_sync_locked(struct spi_device * spi,struct spi_message * message)1303 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1304 {
1305 	return __spi_sync(spi, message, 1);
1306 }
1307 EXPORT_SYMBOL_GPL(spi_sync_locked);
1308 
1309 /**
1310  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1311  * @master: SPI bus master that should be locked for exclusive bus access
1312  * Context: can sleep
1313  *
1314  * This call may only be used from a context that may sleep.  The sleep
1315  * is non-interruptible, and has no timeout.
1316  *
1317  * This call should be used by drivers that require exclusive access to the
1318  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1319  * exclusive access is over. Data transfer must be done by spi_sync_locked
1320  * and spi_async_locked calls when the SPI bus lock is held.
1321  *
1322  * It returns zero on success, else a negative error code.
1323  */
spi_bus_lock(struct spi_master * master)1324 int spi_bus_lock(struct spi_master *master)
1325 {
1326 	unsigned long flags;
1327 
1328 	mutex_lock(&master->bus_lock_mutex);
1329 
1330 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1331 	master->bus_lock_flag = 1;
1332 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1333 
1334 	/* mutex remains locked until spi_bus_unlock is called */
1335 
1336 	return 0;
1337 }
1338 EXPORT_SYMBOL_GPL(spi_bus_lock);
1339 
1340 /**
1341  * spi_bus_unlock - release the lock for exclusive SPI bus usage
1342  * @master: SPI bus master that was locked for exclusive bus access
1343  * Context: can sleep
1344  *
1345  * This call may only be used from a context that may sleep.  The sleep
1346  * is non-interruptible, and has no timeout.
1347  *
1348  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1349  * call.
1350  *
1351  * It returns zero on success, else a negative error code.
1352  */
spi_bus_unlock(struct spi_master * master)1353 int spi_bus_unlock(struct spi_master *master)
1354 {
1355 	master->bus_lock_flag = 0;
1356 
1357 	mutex_unlock(&master->bus_lock_mutex);
1358 
1359 	return 0;
1360 }
1361 EXPORT_SYMBOL_GPL(spi_bus_unlock);
1362 
1363 /* portable code must never pass more than 32 bytes */
1364 #define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
1365 
1366 static u8	*buf;
1367 
1368 /**
1369  * spi_write_then_read - SPI synchronous write followed by read
1370  * @spi: device with which data will be exchanged
1371  * @txbuf: data to be written (need not be dma-safe)
1372  * @n_tx: size of txbuf, in bytes
1373  * @rxbuf: buffer into which data will be read (need not be dma-safe)
1374  * @n_rx: size of rxbuf, in bytes
1375  * Context: can sleep
1376  *
1377  * This performs a half duplex MicroWire style transaction with the
1378  * device, sending txbuf and then reading rxbuf.  The return value
1379  * is zero for success, else a negative errno status code.
1380  * This call may only be used from a context that may sleep.
1381  *
1382  * Parameters to this routine are always copied using a small buffer;
1383  * portable code should never use this for more than 32 bytes.
1384  * Performance-sensitive or bulk transfer code should instead use
1385  * spi_{async,sync}() calls with dma-safe buffers.
1386  */
spi_write_then_read(struct spi_device * spi,const void * txbuf,unsigned n_tx,void * rxbuf,unsigned n_rx)1387 int spi_write_then_read(struct spi_device *spi,
1388 		const void *txbuf, unsigned n_tx,
1389 		void *rxbuf, unsigned n_rx)
1390 {
1391 	static DEFINE_MUTEX(lock);
1392 
1393 	int			status;
1394 	struct spi_message	message;
1395 	struct spi_transfer	x[2];
1396 	u8			*local_buf;
1397 
1398 	/* Use preallocated DMA-safe buffer.  We can't avoid copying here,
1399 	 * (as a pure convenience thing), but we can keep heap costs
1400 	 * out of the hot path ...
1401 	 */
1402 	if ((n_tx + n_rx) > SPI_BUFSIZ)
1403 		return -EINVAL;
1404 
1405 	spi_message_init(&message);
1406 	memset(x, 0, sizeof x);
1407 	if (n_tx) {
1408 		x[0].len = n_tx;
1409 		spi_message_add_tail(&x[0], &message);
1410 	}
1411 	if (n_rx) {
1412 		x[1].len = n_rx;
1413 		spi_message_add_tail(&x[1], &message);
1414 	}
1415 
1416 	/* ... unless someone else is using the pre-allocated buffer */
1417 	if (!mutex_trylock(&lock)) {
1418 		local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1419 		if (!local_buf)
1420 			return -ENOMEM;
1421 	} else
1422 		local_buf = buf;
1423 
1424 	memcpy(local_buf, txbuf, n_tx);
1425 	x[0].tx_buf = local_buf;
1426 	x[1].rx_buf = local_buf + n_tx;
1427 
1428 	/* do the i/o */
1429 	status = spi_sync(spi, &message);
1430 	if (status == 0)
1431 		memcpy(rxbuf, x[1].rx_buf, n_rx);
1432 
1433 	if (x[0].tx_buf == buf)
1434 		mutex_unlock(&lock);
1435 	else
1436 		kfree(local_buf);
1437 
1438 	return status;
1439 }
1440 EXPORT_SYMBOL_GPL(spi_write_then_read);
1441 
1442 /*-------------------------------------------------------------------------*/
1443 
spi_init(void)1444 static int __init spi_init(void)
1445 {
1446 	int	status;
1447 
1448 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1449 	if (!buf) {
1450 		status = -ENOMEM;
1451 		goto err0;
1452 	}
1453 
1454 	status = bus_register(&spi_bus_type);
1455 	if (status < 0)
1456 		goto err1;
1457 
1458 	status = class_register(&spi_master_class);
1459 	if (status < 0)
1460 		goto err2;
1461 	return 0;
1462 
1463 err2:
1464 	bus_unregister(&spi_bus_type);
1465 err1:
1466 	kfree(buf);
1467 	buf = NULL;
1468 err0:
1469 	return status;
1470 }
1471 
1472 /* board_info is normally registered in arch_initcall(),
1473  * but even essential drivers wait till later
1474  *
1475  * REVISIT only boardinfo really needs static linking. the rest (device and
1476  * driver registration) _could_ be dynamically linked (modular) ... costs
1477  * include needing to have boardinfo data structures be much more public.
1478  */
1479 postcore_initcall(spi_init);
1480 
1481