1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/cache.h>
25 #include <linux/mutex.h>
26 #include <linux/of_device.h>
27 #include <linux/slab.h>
28 #include <linux/mod_devicetable.h>
29 #include <linux/spi/spi.h>
30 #include <linux/of_spi.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/export.h>
33 #include <linux/sched.h>
34 #include <linux/delay.h>
35 #include <linux/kthread.h>
36
spidev_release(struct device * dev)37 static void spidev_release(struct device *dev)
38 {
39 struct spi_device *spi = to_spi_device(dev);
40
41 /* spi masters may cleanup for released devices */
42 if (spi->master->cleanup)
43 spi->master->cleanup(spi);
44
45 spi_master_put(spi->master);
46 kfree(spi);
47 }
48
49 static ssize_t
modalias_show(struct device * dev,struct device_attribute * a,char * buf)50 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
51 {
52 const struct spi_device *spi = to_spi_device(dev);
53
54 return sprintf(buf, "%s\n", spi->modalias);
55 }
56
57 static struct device_attribute spi_dev_attrs[] = {
58 __ATTR_RO(modalias),
59 __ATTR_NULL,
60 };
61
62 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
63 * and the sysfs version makes coldplug work too.
64 */
65
spi_match_id(const struct spi_device_id * id,const struct spi_device * sdev)66 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
67 const struct spi_device *sdev)
68 {
69 while (id->name[0]) {
70 if (!strcmp(sdev->modalias, id->name))
71 return id;
72 id++;
73 }
74 return NULL;
75 }
76
spi_get_device_id(const struct spi_device * sdev)77 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
78 {
79 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
80
81 return spi_match_id(sdrv->id_table, sdev);
82 }
83 EXPORT_SYMBOL_GPL(spi_get_device_id);
84
spi_match_device(struct device * dev,struct device_driver * drv)85 static int spi_match_device(struct device *dev, struct device_driver *drv)
86 {
87 const struct spi_device *spi = to_spi_device(dev);
88 const struct spi_driver *sdrv = to_spi_driver(drv);
89
90 /* Attempt an OF style match */
91 if (of_driver_match_device(dev, drv))
92 return 1;
93
94 if (sdrv->id_table)
95 return !!spi_match_id(sdrv->id_table, spi);
96
97 return strcmp(spi->modalias, drv->name) == 0;
98 }
99
spi_uevent(struct device * dev,struct kobj_uevent_env * env)100 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
101 {
102 const struct spi_device *spi = to_spi_device(dev);
103
104 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
105 return 0;
106 }
107
108 #ifdef CONFIG_PM_SLEEP
spi_legacy_suspend(struct device * dev,pm_message_t message)109 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
110 {
111 int value = 0;
112 struct spi_driver *drv = to_spi_driver(dev->driver);
113
114 /* suspend will stop irqs and dma; no more i/o */
115 if (drv) {
116 if (drv->suspend)
117 value = drv->suspend(to_spi_device(dev), message);
118 else
119 dev_dbg(dev, "... can't suspend\n");
120 }
121 return value;
122 }
123
spi_legacy_resume(struct device * dev)124 static int spi_legacy_resume(struct device *dev)
125 {
126 int value = 0;
127 struct spi_driver *drv = to_spi_driver(dev->driver);
128
129 /* resume may restart the i/o queue */
130 if (drv) {
131 if (drv->resume)
132 value = drv->resume(to_spi_device(dev));
133 else
134 dev_dbg(dev, "... can't resume\n");
135 }
136 return value;
137 }
138
spi_pm_suspend(struct device * dev)139 static int spi_pm_suspend(struct device *dev)
140 {
141 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
142
143 if (pm)
144 return pm_generic_suspend(dev);
145 else
146 return spi_legacy_suspend(dev, PMSG_SUSPEND);
147 }
148
spi_pm_resume(struct device * dev)149 static int spi_pm_resume(struct device *dev)
150 {
151 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
152
153 if (pm)
154 return pm_generic_resume(dev);
155 else
156 return spi_legacy_resume(dev);
157 }
158
spi_pm_freeze(struct device * dev)159 static int spi_pm_freeze(struct device *dev)
160 {
161 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
162
163 if (pm)
164 return pm_generic_freeze(dev);
165 else
166 return spi_legacy_suspend(dev, PMSG_FREEZE);
167 }
168
spi_pm_thaw(struct device * dev)169 static int spi_pm_thaw(struct device *dev)
170 {
171 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
172
173 if (pm)
174 return pm_generic_thaw(dev);
175 else
176 return spi_legacy_resume(dev);
177 }
178
spi_pm_poweroff(struct device * dev)179 static int spi_pm_poweroff(struct device *dev)
180 {
181 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
182
183 if (pm)
184 return pm_generic_poweroff(dev);
185 else
186 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
187 }
188
spi_pm_restore(struct device * dev)189 static int spi_pm_restore(struct device *dev)
190 {
191 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
192
193 if (pm)
194 return pm_generic_restore(dev);
195 else
196 return spi_legacy_resume(dev);
197 }
198 #else
199 #define spi_pm_suspend NULL
200 #define spi_pm_resume NULL
201 #define spi_pm_freeze NULL
202 #define spi_pm_thaw NULL
203 #define spi_pm_poweroff NULL
204 #define spi_pm_restore NULL
205 #endif
206
207 static const struct dev_pm_ops spi_pm = {
208 .suspend = spi_pm_suspend,
209 .resume = spi_pm_resume,
210 .freeze = spi_pm_freeze,
211 .thaw = spi_pm_thaw,
212 .poweroff = spi_pm_poweroff,
213 .restore = spi_pm_restore,
214 SET_RUNTIME_PM_OPS(
215 pm_generic_runtime_suspend,
216 pm_generic_runtime_resume,
217 pm_generic_runtime_idle
218 )
219 };
220
221 struct bus_type spi_bus_type = {
222 .name = "spi",
223 .dev_attrs = spi_dev_attrs,
224 .match = spi_match_device,
225 .uevent = spi_uevent,
226 .pm = &spi_pm,
227 };
228 EXPORT_SYMBOL_GPL(spi_bus_type);
229
230
spi_drv_probe(struct device * dev)231 static int spi_drv_probe(struct device *dev)
232 {
233 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
234
235 return sdrv->probe(to_spi_device(dev));
236 }
237
spi_drv_remove(struct device * dev)238 static int spi_drv_remove(struct device *dev)
239 {
240 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
241
242 return sdrv->remove(to_spi_device(dev));
243 }
244
spi_drv_shutdown(struct device * dev)245 static void spi_drv_shutdown(struct device *dev)
246 {
247 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
248
249 sdrv->shutdown(to_spi_device(dev));
250 }
251
252 /**
253 * spi_register_driver - register a SPI driver
254 * @sdrv: the driver to register
255 * Context: can sleep
256 */
spi_register_driver(struct spi_driver * sdrv)257 int spi_register_driver(struct spi_driver *sdrv)
258 {
259 sdrv->driver.bus = &spi_bus_type;
260 if (sdrv->probe)
261 sdrv->driver.probe = spi_drv_probe;
262 if (sdrv->remove)
263 sdrv->driver.remove = spi_drv_remove;
264 if (sdrv->shutdown)
265 sdrv->driver.shutdown = spi_drv_shutdown;
266 return driver_register(&sdrv->driver);
267 }
268 EXPORT_SYMBOL_GPL(spi_register_driver);
269
270 /*-------------------------------------------------------------------------*/
271
272 /* SPI devices should normally not be created by SPI device drivers; that
273 * would make them board-specific. Similarly with SPI master drivers.
274 * Device registration normally goes into like arch/.../mach.../board-YYY.c
275 * with other readonly (flashable) information about mainboard devices.
276 */
277
278 struct boardinfo {
279 struct list_head list;
280 struct spi_board_info board_info;
281 };
282
283 static LIST_HEAD(board_list);
284 static LIST_HEAD(spi_master_list);
285
286 /*
287 * Used to protect add/del opertion for board_info list and
288 * spi_master list, and their matching process
289 */
290 static DEFINE_MUTEX(board_lock);
291
292 /**
293 * spi_alloc_device - Allocate a new SPI device
294 * @master: Controller to which device is connected
295 * Context: can sleep
296 *
297 * Allows a driver to allocate and initialize a spi_device without
298 * registering it immediately. This allows a driver to directly
299 * fill the spi_device with device parameters before calling
300 * spi_add_device() on it.
301 *
302 * Caller is responsible to call spi_add_device() on the returned
303 * spi_device structure to add it to the SPI master. If the caller
304 * needs to discard the spi_device without adding it, then it should
305 * call spi_dev_put() on it.
306 *
307 * Returns a pointer to the new device, or NULL.
308 */
spi_alloc_device(struct spi_master * master)309 struct spi_device *spi_alloc_device(struct spi_master *master)
310 {
311 struct spi_device *spi;
312 struct device *dev = master->dev.parent;
313
314 if (!spi_master_get(master))
315 return NULL;
316
317 spi = kzalloc(sizeof *spi, GFP_KERNEL);
318 if (!spi) {
319 dev_err(dev, "cannot alloc spi_device\n");
320 spi_master_put(master);
321 return NULL;
322 }
323
324 spi->master = master;
325 spi->dev.parent = &master->dev;
326 spi->dev.bus = &spi_bus_type;
327 spi->dev.release = spidev_release;
328 device_initialize(&spi->dev);
329 return spi;
330 }
331 EXPORT_SYMBOL_GPL(spi_alloc_device);
332
333 /**
334 * spi_add_device - Add spi_device allocated with spi_alloc_device
335 * @spi: spi_device to register
336 *
337 * Companion function to spi_alloc_device. Devices allocated with
338 * spi_alloc_device can be added onto the spi bus with this function.
339 *
340 * Returns 0 on success; negative errno on failure
341 */
spi_add_device(struct spi_device * spi)342 int spi_add_device(struct spi_device *spi)
343 {
344 static DEFINE_MUTEX(spi_add_lock);
345 struct device *dev = spi->master->dev.parent;
346 struct device *d;
347 int status;
348
349 /* Chipselects are numbered 0..max; validate. */
350 if (spi->chip_select >= spi->master->num_chipselect) {
351 dev_err(dev, "cs%d >= max %d\n",
352 spi->chip_select,
353 spi->master->num_chipselect);
354 return -EINVAL;
355 }
356
357 /* Set the bus ID string */
358 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
359 spi->chip_select);
360
361
362 /* We need to make sure there's no other device with this
363 * chipselect **BEFORE** we call setup(), else we'll trash
364 * its configuration. Lock against concurrent add() calls.
365 */
366 mutex_lock(&spi_add_lock);
367
368 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
369 if (d != NULL) {
370 dev_err(dev, "chipselect %d already in use\n",
371 spi->chip_select);
372 put_device(d);
373 status = -EBUSY;
374 goto done;
375 }
376
377 /* Drivers may modify this initial i/o setup, but will
378 * normally rely on the device being setup. Devices
379 * using SPI_CS_HIGH can't coexist well otherwise...
380 */
381 status = spi_setup(spi);
382 if (status < 0) {
383 dev_err(dev, "can't setup %s, status %d\n",
384 dev_name(&spi->dev), status);
385 goto done;
386 }
387
388 /* Device may be bound to an active driver when this returns */
389 status = device_add(&spi->dev);
390 if (status < 0)
391 dev_err(dev, "can't add %s, status %d\n",
392 dev_name(&spi->dev), status);
393 else
394 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
395
396 done:
397 mutex_unlock(&spi_add_lock);
398 return status;
399 }
400 EXPORT_SYMBOL_GPL(spi_add_device);
401
402 /**
403 * spi_new_device - instantiate one new SPI device
404 * @master: Controller to which device is connected
405 * @chip: Describes the SPI device
406 * Context: can sleep
407 *
408 * On typical mainboards, this is purely internal; and it's not needed
409 * after board init creates the hard-wired devices. Some development
410 * platforms may not be able to use spi_register_board_info though, and
411 * this is exported so that for example a USB or parport based adapter
412 * driver could add devices (which it would learn about out-of-band).
413 *
414 * Returns the new device, or NULL.
415 */
spi_new_device(struct spi_master * master,struct spi_board_info * chip)416 struct spi_device *spi_new_device(struct spi_master *master,
417 struct spi_board_info *chip)
418 {
419 struct spi_device *proxy;
420 int status;
421
422 /* NOTE: caller did any chip->bus_num checks necessary.
423 *
424 * Also, unless we change the return value convention to use
425 * error-or-pointer (not NULL-or-pointer), troubleshootability
426 * suggests syslogged diagnostics are best here (ugh).
427 */
428
429 proxy = spi_alloc_device(master);
430 if (!proxy)
431 return NULL;
432
433 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
434
435 proxy->chip_select = chip->chip_select;
436 proxy->max_speed_hz = chip->max_speed_hz;
437 proxy->mode = chip->mode;
438 proxy->irq = chip->irq;
439 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
440 proxy->dev.platform_data = (void *) chip->platform_data;
441 proxy->controller_data = chip->controller_data;
442 proxy->controller_state = NULL;
443
444 status = spi_add_device(proxy);
445 if (status < 0) {
446 spi_dev_put(proxy);
447 return NULL;
448 }
449
450 return proxy;
451 }
452 EXPORT_SYMBOL_GPL(spi_new_device);
453
spi_match_master_to_boardinfo(struct spi_master * master,struct spi_board_info * bi)454 static void spi_match_master_to_boardinfo(struct spi_master *master,
455 struct spi_board_info *bi)
456 {
457 struct spi_device *dev;
458
459 if (master->bus_num != bi->bus_num)
460 return;
461
462 dev = spi_new_device(master, bi);
463 if (!dev)
464 dev_err(master->dev.parent, "can't create new device for %s\n",
465 bi->modalias);
466 }
467
468 /**
469 * spi_register_board_info - register SPI devices for a given board
470 * @info: array of chip descriptors
471 * @n: how many descriptors are provided
472 * Context: can sleep
473 *
474 * Board-specific early init code calls this (probably during arch_initcall)
475 * with segments of the SPI device table. Any device nodes are created later,
476 * after the relevant parent SPI controller (bus_num) is defined. We keep
477 * this table of devices forever, so that reloading a controller driver will
478 * not make Linux forget about these hard-wired devices.
479 *
480 * Other code can also call this, e.g. a particular add-on board might provide
481 * SPI devices through its expansion connector, so code initializing that board
482 * would naturally declare its SPI devices.
483 *
484 * The board info passed can safely be __initdata ... but be careful of
485 * any embedded pointers (platform_data, etc), they're copied as-is.
486 */
487 int __devinit
spi_register_board_info(struct spi_board_info const * info,unsigned n)488 spi_register_board_info(struct spi_board_info const *info, unsigned n)
489 {
490 struct boardinfo *bi;
491 int i;
492
493 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
494 if (!bi)
495 return -ENOMEM;
496
497 for (i = 0; i < n; i++, bi++, info++) {
498 struct spi_master *master;
499
500 memcpy(&bi->board_info, info, sizeof(*info));
501 mutex_lock(&board_lock);
502 list_add_tail(&bi->list, &board_list);
503 list_for_each_entry(master, &spi_master_list, list)
504 spi_match_master_to_boardinfo(master, &bi->board_info);
505 mutex_unlock(&board_lock);
506 }
507
508 return 0;
509 }
510
511 /*-------------------------------------------------------------------------*/
512
513 /**
514 * spi_pump_messages - kthread work function which processes spi message queue
515 * @work: pointer to kthread work struct contained in the master struct
516 *
517 * This function checks if there is any spi message in the queue that
518 * needs processing and if so call out to the driver to initialize hardware
519 * and transfer each message.
520 *
521 */
spi_pump_messages(struct kthread_work * work)522 static void spi_pump_messages(struct kthread_work *work)
523 {
524 struct spi_master *master =
525 container_of(work, struct spi_master, pump_messages);
526 unsigned long flags;
527 bool was_busy = false;
528 int ret;
529
530 /* Lock queue and check for queue work */
531 spin_lock_irqsave(&master->queue_lock, flags);
532 if (list_empty(&master->queue) || !master->running) {
533 if (master->busy) {
534 ret = master->unprepare_transfer_hardware(master);
535 if (ret) {
536 spin_unlock_irqrestore(&master->queue_lock, flags);
537 dev_err(&master->dev,
538 "failed to unprepare transfer hardware\n");
539 return;
540 }
541 }
542 master->busy = false;
543 spin_unlock_irqrestore(&master->queue_lock, flags);
544 return;
545 }
546
547 /* Make sure we are not already running a message */
548 if (master->cur_msg) {
549 spin_unlock_irqrestore(&master->queue_lock, flags);
550 return;
551 }
552 /* Extract head of queue */
553 master->cur_msg =
554 list_entry(master->queue.next, struct spi_message, queue);
555
556 list_del_init(&master->cur_msg->queue);
557 if (master->busy)
558 was_busy = true;
559 else
560 master->busy = true;
561 spin_unlock_irqrestore(&master->queue_lock, flags);
562
563 if (!was_busy) {
564 ret = master->prepare_transfer_hardware(master);
565 if (ret) {
566 dev_err(&master->dev,
567 "failed to prepare transfer hardware\n");
568 return;
569 }
570 }
571
572 ret = master->transfer_one_message(master, master->cur_msg);
573 if (ret) {
574 dev_err(&master->dev,
575 "failed to transfer one message from queue\n");
576 return;
577 }
578 }
579
spi_init_queue(struct spi_master * master)580 static int spi_init_queue(struct spi_master *master)
581 {
582 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
583
584 INIT_LIST_HEAD(&master->queue);
585 spin_lock_init(&master->queue_lock);
586
587 master->running = false;
588 master->busy = false;
589
590 init_kthread_worker(&master->kworker);
591 master->kworker_task = kthread_run(kthread_worker_fn,
592 &master->kworker,
593 dev_name(&master->dev));
594 if (IS_ERR(master->kworker_task)) {
595 dev_err(&master->dev, "failed to create message pump task\n");
596 return -ENOMEM;
597 }
598 init_kthread_work(&master->pump_messages, spi_pump_messages);
599
600 /*
601 * Master config will indicate if this controller should run the
602 * message pump with high (realtime) priority to reduce the transfer
603 * latency on the bus by minimising the delay between a transfer
604 * request and the scheduling of the message pump thread. Without this
605 * setting the message pump thread will remain at default priority.
606 */
607 if (master->rt) {
608 dev_info(&master->dev,
609 "will run message pump with realtime priority\n");
610 sched_setscheduler(master->kworker_task, SCHED_FIFO, ¶m);
611 }
612
613 return 0;
614 }
615
616 /**
617 * spi_get_next_queued_message() - called by driver to check for queued
618 * messages
619 * @master: the master to check for queued messages
620 *
621 * If there are more messages in the queue, the next message is returned from
622 * this call.
623 */
spi_get_next_queued_message(struct spi_master * master)624 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
625 {
626 struct spi_message *next;
627 unsigned long flags;
628
629 /* get a pointer to the next message, if any */
630 spin_lock_irqsave(&master->queue_lock, flags);
631 if (list_empty(&master->queue))
632 next = NULL;
633 else
634 next = list_entry(master->queue.next,
635 struct spi_message, queue);
636 spin_unlock_irqrestore(&master->queue_lock, flags);
637
638 return next;
639 }
640 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
641
642 /**
643 * spi_finalize_current_message() - the current message is complete
644 * @master: the master to return the message to
645 *
646 * Called by the driver to notify the core that the message in the front of the
647 * queue is complete and can be removed from the queue.
648 */
spi_finalize_current_message(struct spi_master * master)649 void spi_finalize_current_message(struct spi_master *master)
650 {
651 struct spi_message *mesg;
652 unsigned long flags;
653
654 spin_lock_irqsave(&master->queue_lock, flags);
655 mesg = master->cur_msg;
656 master->cur_msg = NULL;
657
658 queue_kthread_work(&master->kworker, &master->pump_messages);
659 spin_unlock_irqrestore(&master->queue_lock, flags);
660
661 mesg->state = NULL;
662 if (mesg->complete)
663 mesg->complete(mesg->context);
664 }
665 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
666
spi_start_queue(struct spi_master * master)667 static int spi_start_queue(struct spi_master *master)
668 {
669 unsigned long flags;
670
671 spin_lock_irqsave(&master->queue_lock, flags);
672
673 if (master->running || master->busy) {
674 spin_unlock_irqrestore(&master->queue_lock, flags);
675 return -EBUSY;
676 }
677
678 master->running = true;
679 master->cur_msg = NULL;
680 spin_unlock_irqrestore(&master->queue_lock, flags);
681
682 queue_kthread_work(&master->kworker, &master->pump_messages);
683
684 return 0;
685 }
686
spi_stop_queue(struct spi_master * master)687 static int spi_stop_queue(struct spi_master *master)
688 {
689 unsigned long flags;
690 unsigned limit = 500;
691 int ret = 0;
692
693 spin_lock_irqsave(&master->queue_lock, flags);
694
695 /*
696 * This is a bit lame, but is optimized for the common execution path.
697 * A wait_queue on the master->busy could be used, but then the common
698 * execution path (pump_messages) would be required to call wake_up or
699 * friends on every SPI message. Do this instead.
700 */
701 while ((!list_empty(&master->queue) || master->busy) && limit--) {
702 spin_unlock_irqrestore(&master->queue_lock, flags);
703 msleep(10);
704 spin_lock_irqsave(&master->queue_lock, flags);
705 }
706
707 if (!list_empty(&master->queue) || master->busy)
708 ret = -EBUSY;
709 else
710 master->running = false;
711
712 spin_unlock_irqrestore(&master->queue_lock, flags);
713
714 if (ret) {
715 dev_warn(&master->dev,
716 "could not stop message queue\n");
717 return ret;
718 }
719 return ret;
720 }
721
spi_destroy_queue(struct spi_master * master)722 static int spi_destroy_queue(struct spi_master *master)
723 {
724 int ret;
725
726 ret = spi_stop_queue(master);
727
728 /*
729 * flush_kthread_worker will block until all work is done.
730 * If the reason that stop_queue timed out is that the work will never
731 * finish, then it does no good to call flush/stop thread, so
732 * return anyway.
733 */
734 if (ret) {
735 dev_err(&master->dev, "problem destroying queue\n");
736 return ret;
737 }
738
739 flush_kthread_worker(&master->kworker);
740 kthread_stop(master->kworker_task);
741
742 return 0;
743 }
744
745 /**
746 * spi_queued_transfer - transfer function for queued transfers
747 * @spi: spi device which is requesting transfer
748 * @msg: spi message which is to handled is queued to driver queue
749 */
spi_queued_transfer(struct spi_device * spi,struct spi_message * msg)750 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
751 {
752 struct spi_master *master = spi->master;
753 unsigned long flags;
754
755 spin_lock_irqsave(&master->queue_lock, flags);
756
757 if (!master->running) {
758 spin_unlock_irqrestore(&master->queue_lock, flags);
759 return -ESHUTDOWN;
760 }
761 msg->actual_length = 0;
762 msg->status = -EINPROGRESS;
763
764 list_add_tail(&msg->queue, &master->queue);
765 if (master->running && !master->busy)
766 queue_kthread_work(&master->kworker, &master->pump_messages);
767
768 spin_unlock_irqrestore(&master->queue_lock, flags);
769 return 0;
770 }
771
spi_master_initialize_queue(struct spi_master * master)772 static int spi_master_initialize_queue(struct spi_master *master)
773 {
774 int ret;
775
776 master->queued = true;
777 master->transfer = spi_queued_transfer;
778
779 /* Initialize and start queue */
780 ret = spi_init_queue(master);
781 if (ret) {
782 dev_err(&master->dev, "problem initializing queue\n");
783 goto err_init_queue;
784 }
785 ret = spi_start_queue(master);
786 if (ret) {
787 dev_err(&master->dev, "problem starting queue\n");
788 goto err_start_queue;
789 }
790
791 return 0;
792
793 err_start_queue:
794 err_init_queue:
795 spi_destroy_queue(master);
796 return ret;
797 }
798
799 /*-------------------------------------------------------------------------*/
800
spi_master_release(struct device * dev)801 static void spi_master_release(struct device *dev)
802 {
803 struct spi_master *master;
804
805 master = container_of(dev, struct spi_master, dev);
806 kfree(master);
807 }
808
809 static struct class spi_master_class = {
810 .name = "spi_master",
811 .owner = THIS_MODULE,
812 .dev_release = spi_master_release,
813 };
814
815
816
817 /**
818 * spi_alloc_master - allocate SPI master controller
819 * @dev: the controller, possibly using the platform_bus
820 * @size: how much zeroed driver-private data to allocate; the pointer to this
821 * memory is in the driver_data field of the returned device,
822 * accessible with spi_master_get_devdata().
823 * Context: can sleep
824 *
825 * This call is used only by SPI master controller drivers, which are the
826 * only ones directly touching chip registers. It's how they allocate
827 * an spi_master structure, prior to calling spi_register_master().
828 *
829 * This must be called from context that can sleep. It returns the SPI
830 * master structure on success, else NULL.
831 *
832 * The caller is responsible for assigning the bus number and initializing
833 * the master's methods before calling spi_register_master(); and (after errors
834 * adding the device) calling spi_master_put() and kfree() to prevent a memory
835 * leak.
836 */
spi_alloc_master(struct device * dev,unsigned size)837 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
838 {
839 struct spi_master *master;
840
841 if (!dev)
842 return NULL;
843
844 master = kzalloc(size + sizeof *master, GFP_KERNEL);
845 if (!master)
846 return NULL;
847
848 device_initialize(&master->dev);
849 master->dev.class = &spi_master_class;
850 master->dev.parent = get_device(dev);
851 spi_master_set_devdata(master, &master[1]);
852
853 return master;
854 }
855 EXPORT_SYMBOL_GPL(spi_alloc_master);
856
857 /**
858 * spi_register_master - register SPI master controller
859 * @master: initialized master, originally from spi_alloc_master()
860 * Context: can sleep
861 *
862 * SPI master controllers connect to their drivers using some non-SPI bus,
863 * such as the platform bus. The final stage of probe() in that code
864 * includes calling spi_register_master() to hook up to this SPI bus glue.
865 *
866 * SPI controllers use board specific (often SOC specific) bus numbers,
867 * and board-specific addressing for SPI devices combines those numbers
868 * with chip select numbers. Since SPI does not directly support dynamic
869 * device identification, boards need configuration tables telling which
870 * chip is at which address.
871 *
872 * This must be called from context that can sleep. It returns zero on
873 * success, else a negative error code (dropping the master's refcount).
874 * After a successful return, the caller is responsible for calling
875 * spi_unregister_master().
876 */
spi_register_master(struct spi_master * master)877 int spi_register_master(struct spi_master *master)
878 {
879 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
880 struct device *dev = master->dev.parent;
881 struct boardinfo *bi;
882 int status = -ENODEV;
883 int dynamic = 0;
884
885 if (!dev)
886 return -ENODEV;
887
888 /* even if it's just one always-selected device, there must
889 * be at least one chipselect
890 */
891 if (master->num_chipselect == 0)
892 return -EINVAL;
893
894 /* convention: dynamically assigned bus IDs count down from the max */
895 if (master->bus_num < 0) {
896 /* FIXME switch to an IDR based scheme, something like
897 * I2C now uses, so we can't run out of "dynamic" IDs
898 */
899 master->bus_num = atomic_dec_return(&dyn_bus_id);
900 dynamic = 1;
901 }
902
903 spin_lock_init(&master->bus_lock_spinlock);
904 mutex_init(&master->bus_lock_mutex);
905 master->bus_lock_flag = 0;
906
907 /* register the device, then userspace will see it.
908 * registration fails if the bus ID is in use.
909 */
910 dev_set_name(&master->dev, "spi%u", master->bus_num);
911 status = device_add(&master->dev);
912 if (status < 0)
913 goto done;
914 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
915 dynamic ? " (dynamic)" : "");
916
917 /* If we're using a queued driver, start the queue */
918 if (master->transfer)
919 dev_info(dev, "master is unqueued, this is deprecated\n");
920 else {
921 status = spi_master_initialize_queue(master);
922 if (status) {
923 device_unregister(&master->dev);
924 goto done;
925 }
926 }
927
928 mutex_lock(&board_lock);
929 list_add_tail(&master->list, &spi_master_list);
930 list_for_each_entry(bi, &board_list, list)
931 spi_match_master_to_boardinfo(master, &bi->board_info);
932 mutex_unlock(&board_lock);
933
934 /* Register devices from the device tree */
935 of_register_spi_devices(master);
936 done:
937 return status;
938 }
939 EXPORT_SYMBOL_GPL(spi_register_master);
940
__unregister(struct device * dev,void * null)941 static int __unregister(struct device *dev, void *null)
942 {
943 spi_unregister_device(to_spi_device(dev));
944 return 0;
945 }
946
947 /**
948 * spi_unregister_master - unregister SPI master controller
949 * @master: the master being unregistered
950 * Context: can sleep
951 *
952 * This call is used only by SPI master controller drivers, which are the
953 * only ones directly touching chip registers.
954 *
955 * This must be called from context that can sleep.
956 */
spi_unregister_master(struct spi_master * master)957 void spi_unregister_master(struct spi_master *master)
958 {
959 int dummy;
960
961 if (master->queued) {
962 if (spi_destroy_queue(master))
963 dev_err(&master->dev, "queue remove failed\n");
964 }
965
966 mutex_lock(&board_lock);
967 list_del(&master->list);
968 mutex_unlock(&board_lock);
969
970 dummy = device_for_each_child(&master->dev, NULL, __unregister);
971 device_unregister(&master->dev);
972 }
973 EXPORT_SYMBOL_GPL(spi_unregister_master);
974
spi_master_suspend(struct spi_master * master)975 int spi_master_suspend(struct spi_master *master)
976 {
977 int ret;
978
979 /* Basically no-ops for non-queued masters */
980 if (!master->queued)
981 return 0;
982
983 ret = spi_stop_queue(master);
984 if (ret)
985 dev_err(&master->dev, "queue stop failed\n");
986
987 return ret;
988 }
989 EXPORT_SYMBOL_GPL(spi_master_suspend);
990
spi_master_resume(struct spi_master * master)991 int spi_master_resume(struct spi_master *master)
992 {
993 int ret;
994
995 if (!master->queued)
996 return 0;
997
998 ret = spi_start_queue(master);
999 if (ret)
1000 dev_err(&master->dev, "queue restart failed\n");
1001
1002 return ret;
1003 }
1004 EXPORT_SYMBOL_GPL(spi_master_resume);
1005
__spi_master_match(struct device * dev,void * data)1006 static int __spi_master_match(struct device *dev, void *data)
1007 {
1008 struct spi_master *m;
1009 u16 *bus_num = data;
1010
1011 m = container_of(dev, struct spi_master, dev);
1012 return m->bus_num == *bus_num;
1013 }
1014
1015 /**
1016 * spi_busnum_to_master - look up master associated with bus_num
1017 * @bus_num: the master's bus number
1018 * Context: can sleep
1019 *
1020 * This call may be used with devices that are registered after
1021 * arch init time. It returns a refcounted pointer to the relevant
1022 * spi_master (which the caller must release), or NULL if there is
1023 * no such master registered.
1024 */
spi_busnum_to_master(u16 bus_num)1025 struct spi_master *spi_busnum_to_master(u16 bus_num)
1026 {
1027 struct device *dev;
1028 struct spi_master *master = NULL;
1029
1030 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1031 __spi_master_match);
1032 if (dev)
1033 master = container_of(dev, struct spi_master, dev);
1034 /* reference got in class_find_device */
1035 return master;
1036 }
1037 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1038
1039
1040 /*-------------------------------------------------------------------------*/
1041
1042 /* Core methods for SPI master protocol drivers. Some of the
1043 * other core methods are currently defined as inline functions.
1044 */
1045
1046 /**
1047 * spi_setup - setup SPI mode and clock rate
1048 * @spi: the device whose settings are being modified
1049 * Context: can sleep, and no requests are queued to the device
1050 *
1051 * SPI protocol drivers may need to update the transfer mode if the
1052 * device doesn't work with its default. They may likewise need
1053 * to update clock rates or word sizes from initial values. This function
1054 * changes those settings, and must be called from a context that can sleep.
1055 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1056 * effect the next time the device is selected and data is transferred to
1057 * or from it. When this function returns, the spi device is deselected.
1058 *
1059 * Note that this call will fail if the protocol driver specifies an option
1060 * that the underlying controller or its driver does not support. For
1061 * example, not all hardware supports wire transfers using nine bit words,
1062 * LSB-first wire encoding, or active-high chipselects.
1063 */
spi_setup(struct spi_device * spi)1064 int spi_setup(struct spi_device *spi)
1065 {
1066 unsigned bad_bits;
1067 int status;
1068
1069 /* help drivers fail *cleanly* when they need options
1070 * that aren't supported with their current master
1071 */
1072 bad_bits = spi->mode & ~spi->master->mode_bits;
1073 if (bad_bits) {
1074 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1075 bad_bits);
1076 return -EINVAL;
1077 }
1078
1079 if (!spi->bits_per_word)
1080 spi->bits_per_word = 8;
1081
1082 status = spi->master->setup(spi);
1083
1084 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
1085 "%u bits/w, %u Hz max --> %d\n",
1086 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1087 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1088 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1089 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1090 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1091 spi->bits_per_word, spi->max_speed_hz,
1092 status);
1093
1094 return status;
1095 }
1096 EXPORT_SYMBOL_GPL(spi_setup);
1097
__spi_async(struct spi_device * spi,struct spi_message * message)1098 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1099 {
1100 struct spi_master *master = spi->master;
1101
1102 /* Half-duplex links include original MicroWire, and ones with
1103 * only one data pin like SPI_3WIRE (switches direction) or where
1104 * either MOSI or MISO is missing. They can also be caused by
1105 * software limitations.
1106 */
1107 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1108 || (spi->mode & SPI_3WIRE)) {
1109 struct spi_transfer *xfer;
1110 unsigned flags = master->flags;
1111
1112 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1113 if (xfer->rx_buf && xfer->tx_buf)
1114 return -EINVAL;
1115 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1116 return -EINVAL;
1117 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1118 return -EINVAL;
1119 }
1120 }
1121
1122 message->spi = spi;
1123 message->status = -EINPROGRESS;
1124 return master->transfer(spi, message);
1125 }
1126
1127 /**
1128 * spi_async - asynchronous SPI transfer
1129 * @spi: device with which data will be exchanged
1130 * @message: describes the data transfers, including completion callback
1131 * Context: any (irqs may be blocked, etc)
1132 *
1133 * This call may be used in_irq and other contexts which can't sleep,
1134 * as well as from task contexts which can sleep.
1135 *
1136 * The completion callback is invoked in a context which can't sleep.
1137 * Before that invocation, the value of message->status is undefined.
1138 * When the callback is issued, message->status holds either zero (to
1139 * indicate complete success) or a negative error code. After that
1140 * callback returns, the driver which issued the transfer request may
1141 * deallocate the associated memory; it's no longer in use by any SPI
1142 * core or controller driver code.
1143 *
1144 * Note that although all messages to a spi_device are handled in
1145 * FIFO order, messages may go to different devices in other orders.
1146 * Some device might be higher priority, or have various "hard" access
1147 * time requirements, for example.
1148 *
1149 * On detection of any fault during the transfer, processing of
1150 * the entire message is aborted, and the device is deselected.
1151 * Until returning from the associated message completion callback,
1152 * no other spi_message queued to that device will be processed.
1153 * (This rule applies equally to all the synchronous transfer calls,
1154 * which are wrappers around this core asynchronous primitive.)
1155 */
spi_async(struct spi_device * spi,struct spi_message * message)1156 int spi_async(struct spi_device *spi, struct spi_message *message)
1157 {
1158 struct spi_master *master = spi->master;
1159 int ret;
1160 unsigned long flags;
1161
1162 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1163
1164 if (master->bus_lock_flag)
1165 ret = -EBUSY;
1166 else
1167 ret = __spi_async(spi, message);
1168
1169 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1170
1171 return ret;
1172 }
1173 EXPORT_SYMBOL_GPL(spi_async);
1174
1175 /**
1176 * spi_async_locked - version of spi_async with exclusive bus usage
1177 * @spi: device with which data will be exchanged
1178 * @message: describes the data transfers, including completion callback
1179 * Context: any (irqs may be blocked, etc)
1180 *
1181 * This call may be used in_irq and other contexts which can't sleep,
1182 * as well as from task contexts which can sleep.
1183 *
1184 * The completion callback is invoked in a context which can't sleep.
1185 * Before that invocation, the value of message->status is undefined.
1186 * When the callback is issued, message->status holds either zero (to
1187 * indicate complete success) or a negative error code. After that
1188 * callback returns, the driver which issued the transfer request may
1189 * deallocate the associated memory; it's no longer in use by any SPI
1190 * core or controller driver code.
1191 *
1192 * Note that although all messages to a spi_device are handled in
1193 * FIFO order, messages may go to different devices in other orders.
1194 * Some device might be higher priority, or have various "hard" access
1195 * time requirements, for example.
1196 *
1197 * On detection of any fault during the transfer, processing of
1198 * the entire message is aborted, and the device is deselected.
1199 * Until returning from the associated message completion callback,
1200 * no other spi_message queued to that device will be processed.
1201 * (This rule applies equally to all the synchronous transfer calls,
1202 * which are wrappers around this core asynchronous primitive.)
1203 */
spi_async_locked(struct spi_device * spi,struct spi_message * message)1204 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1205 {
1206 struct spi_master *master = spi->master;
1207 int ret;
1208 unsigned long flags;
1209
1210 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1211
1212 ret = __spi_async(spi, message);
1213
1214 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1215
1216 return ret;
1217
1218 }
1219 EXPORT_SYMBOL_GPL(spi_async_locked);
1220
1221
1222 /*-------------------------------------------------------------------------*/
1223
1224 /* Utility methods for SPI master protocol drivers, layered on
1225 * top of the core. Some other utility methods are defined as
1226 * inline functions.
1227 */
1228
spi_complete(void * arg)1229 static void spi_complete(void *arg)
1230 {
1231 complete(arg);
1232 }
1233
__spi_sync(struct spi_device * spi,struct spi_message * message,int bus_locked)1234 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1235 int bus_locked)
1236 {
1237 DECLARE_COMPLETION_ONSTACK(done);
1238 int status;
1239 struct spi_master *master = spi->master;
1240
1241 message->complete = spi_complete;
1242 message->context = &done;
1243
1244 if (!bus_locked)
1245 mutex_lock(&master->bus_lock_mutex);
1246
1247 status = spi_async_locked(spi, message);
1248
1249 if (!bus_locked)
1250 mutex_unlock(&master->bus_lock_mutex);
1251
1252 if (status == 0) {
1253 wait_for_completion(&done);
1254 status = message->status;
1255 }
1256 message->context = NULL;
1257 return status;
1258 }
1259
1260 /**
1261 * spi_sync - blocking/synchronous SPI data transfers
1262 * @spi: device with which data will be exchanged
1263 * @message: describes the data transfers
1264 * Context: can sleep
1265 *
1266 * This call may only be used from a context that may sleep. The sleep
1267 * is non-interruptible, and has no timeout. Low-overhead controller
1268 * drivers may DMA directly into and out of the message buffers.
1269 *
1270 * Note that the SPI device's chip select is active during the message,
1271 * and then is normally disabled between messages. Drivers for some
1272 * frequently-used devices may want to minimize costs of selecting a chip,
1273 * by leaving it selected in anticipation that the next message will go
1274 * to the same chip. (That may increase power usage.)
1275 *
1276 * Also, the caller is guaranteeing that the memory associated with the
1277 * message will not be freed before this call returns.
1278 *
1279 * It returns zero on success, else a negative error code.
1280 */
spi_sync(struct spi_device * spi,struct spi_message * message)1281 int spi_sync(struct spi_device *spi, struct spi_message *message)
1282 {
1283 return __spi_sync(spi, message, 0);
1284 }
1285 EXPORT_SYMBOL_GPL(spi_sync);
1286
1287 /**
1288 * spi_sync_locked - version of spi_sync with exclusive bus usage
1289 * @spi: device with which data will be exchanged
1290 * @message: describes the data transfers
1291 * Context: can sleep
1292 *
1293 * This call may only be used from a context that may sleep. The sleep
1294 * is non-interruptible, and has no timeout. Low-overhead controller
1295 * drivers may DMA directly into and out of the message buffers.
1296 *
1297 * This call should be used by drivers that require exclusive access to the
1298 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1299 * be released by a spi_bus_unlock call when the exclusive access is over.
1300 *
1301 * It returns zero on success, else a negative error code.
1302 */
spi_sync_locked(struct spi_device * spi,struct spi_message * message)1303 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1304 {
1305 return __spi_sync(spi, message, 1);
1306 }
1307 EXPORT_SYMBOL_GPL(spi_sync_locked);
1308
1309 /**
1310 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1311 * @master: SPI bus master that should be locked for exclusive bus access
1312 * Context: can sleep
1313 *
1314 * This call may only be used from a context that may sleep. The sleep
1315 * is non-interruptible, and has no timeout.
1316 *
1317 * This call should be used by drivers that require exclusive access to the
1318 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1319 * exclusive access is over. Data transfer must be done by spi_sync_locked
1320 * and spi_async_locked calls when the SPI bus lock is held.
1321 *
1322 * It returns zero on success, else a negative error code.
1323 */
spi_bus_lock(struct spi_master * master)1324 int spi_bus_lock(struct spi_master *master)
1325 {
1326 unsigned long flags;
1327
1328 mutex_lock(&master->bus_lock_mutex);
1329
1330 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1331 master->bus_lock_flag = 1;
1332 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1333
1334 /* mutex remains locked until spi_bus_unlock is called */
1335
1336 return 0;
1337 }
1338 EXPORT_SYMBOL_GPL(spi_bus_lock);
1339
1340 /**
1341 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1342 * @master: SPI bus master that was locked for exclusive bus access
1343 * Context: can sleep
1344 *
1345 * This call may only be used from a context that may sleep. The sleep
1346 * is non-interruptible, and has no timeout.
1347 *
1348 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1349 * call.
1350 *
1351 * It returns zero on success, else a negative error code.
1352 */
spi_bus_unlock(struct spi_master * master)1353 int spi_bus_unlock(struct spi_master *master)
1354 {
1355 master->bus_lock_flag = 0;
1356
1357 mutex_unlock(&master->bus_lock_mutex);
1358
1359 return 0;
1360 }
1361 EXPORT_SYMBOL_GPL(spi_bus_unlock);
1362
1363 /* portable code must never pass more than 32 bytes */
1364 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
1365
1366 static u8 *buf;
1367
1368 /**
1369 * spi_write_then_read - SPI synchronous write followed by read
1370 * @spi: device with which data will be exchanged
1371 * @txbuf: data to be written (need not be dma-safe)
1372 * @n_tx: size of txbuf, in bytes
1373 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1374 * @n_rx: size of rxbuf, in bytes
1375 * Context: can sleep
1376 *
1377 * This performs a half duplex MicroWire style transaction with the
1378 * device, sending txbuf and then reading rxbuf. The return value
1379 * is zero for success, else a negative errno status code.
1380 * This call may only be used from a context that may sleep.
1381 *
1382 * Parameters to this routine are always copied using a small buffer;
1383 * portable code should never use this for more than 32 bytes.
1384 * Performance-sensitive or bulk transfer code should instead use
1385 * spi_{async,sync}() calls with dma-safe buffers.
1386 */
spi_write_then_read(struct spi_device * spi,const void * txbuf,unsigned n_tx,void * rxbuf,unsigned n_rx)1387 int spi_write_then_read(struct spi_device *spi,
1388 const void *txbuf, unsigned n_tx,
1389 void *rxbuf, unsigned n_rx)
1390 {
1391 static DEFINE_MUTEX(lock);
1392
1393 int status;
1394 struct spi_message message;
1395 struct spi_transfer x[2];
1396 u8 *local_buf;
1397
1398 /* Use preallocated DMA-safe buffer. We can't avoid copying here,
1399 * (as a pure convenience thing), but we can keep heap costs
1400 * out of the hot path ...
1401 */
1402 if ((n_tx + n_rx) > SPI_BUFSIZ)
1403 return -EINVAL;
1404
1405 spi_message_init(&message);
1406 memset(x, 0, sizeof x);
1407 if (n_tx) {
1408 x[0].len = n_tx;
1409 spi_message_add_tail(&x[0], &message);
1410 }
1411 if (n_rx) {
1412 x[1].len = n_rx;
1413 spi_message_add_tail(&x[1], &message);
1414 }
1415
1416 /* ... unless someone else is using the pre-allocated buffer */
1417 if (!mutex_trylock(&lock)) {
1418 local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1419 if (!local_buf)
1420 return -ENOMEM;
1421 } else
1422 local_buf = buf;
1423
1424 memcpy(local_buf, txbuf, n_tx);
1425 x[0].tx_buf = local_buf;
1426 x[1].rx_buf = local_buf + n_tx;
1427
1428 /* do the i/o */
1429 status = spi_sync(spi, &message);
1430 if (status == 0)
1431 memcpy(rxbuf, x[1].rx_buf, n_rx);
1432
1433 if (x[0].tx_buf == buf)
1434 mutex_unlock(&lock);
1435 else
1436 kfree(local_buf);
1437
1438 return status;
1439 }
1440 EXPORT_SYMBOL_GPL(spi_write_then_read);
1441
1442 /*-------------------------------------------------------------------------*/
1443
spi_init(void)1444 static int __init spi_init(void)
1445 {
1446 int status;
1447
1448 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1449 if (!buf) {
1450 status = -ENOMEM;
1451 goto err0;
1452 }
1453
1454 status = bus_register(&spi_bus_type);
1455 if (status < 0)
1456 goto err1;
1457
1458 status = class_register(&spi_master_class);
1459 if (status < 0)
1460 goto err2;
1461 return 0;
1462
1463 err2:
1464 bus_unregister(&spi_bus_type);
1465 err1:
1466 kfree(buf);
1467 buf = NULL;
1468 err0:
1469 return status;
1470 }
1471
1472 /* board_info is normally registered in arch_initcall(),
1473 * but even essential drivers wait till later
1474 *
1475 * REVISIT only boardinfo really needs static linking. the rest (device and
1476 * driver registration) _could_ be dynamically linked (modular) ... costs
1477 * include needing to have boardinfo data structures be much more public.
1478 */
1479 postcore_initcall(spi_init);
1480
1481