1 /*
2  * polling/bitbanging SPI master controller driver utilities
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
17  */
18 
19 #include <linux/init.h>
20 #include <linux/spinlock.h>
21 #include <linux/workqueue.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/delay.h>
25 #include <linux/errno.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28 
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi_bitbang.h>
31 
32 
33 /*----------------------------------------------------------------------*/
34 
35 /*
36  * FIRST PART (OPTIONAL):  word-at-a-time spi_transfer support.
37  * Use this for GPIO or shift-register level hardware APIs.
38  *
39  * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
40  * to glue code.  These bitbang setup() and cleanup() routines are always
41  * used, though maybe they're called from controller-aware code.
42  *
43  * chipselect() and friends may use use spi_device->controller_data and
44  * controller registers as appropriate.
45  *
46  *
47  * NOTE:  SPI controller pins can often be used as GPIO pins instead,
48  * which means you could use a bitbang driver either to get hardware
49  * working quickly, or testing for differences that aren't speed related.
50  */
51 
52 struct spi_bitbang_cs {
53 	unsigned	nsecs;	/* (clock cycle time)/2 */
54 	u32		(*txrx_word)(struct spi_device *spi, unsigned nsecs,
55 					u32 word, u8 bits);
56 	unsigned	(*txrx_bufs)(struct spi_device *,
57 					u32 (*txrx_word)(
58 						struct spi_device *spi,
59 						unsigned nsecs,
60 						u32 word, u8 bits),
61 					unsigned, struct spi_transfer *);
62 };
63 
bitbang_txrx_8(struct spi_device * spi,u32 (* txrx_word)(struct spi_device * spi,unsigned nsecs,u32 word,u8 bits),unsigned ns,struct spi_transfer * t)64 static unsigned bitbang_txrx_8(
65 	struct spi_device	*spi,
66 	u32			(*txrx_word)(struct spi_device *spi,
67 					unsigned nsecs,
68 					u32 word, u8 bits),
69 	unsigned		ns,
70 	struct spi_transfer	*t
71 ) {
72 	unsigned		bits = t->bits_per_word ? : spi->bits_per_word;
73 	unsigned		count = t->len;
74 	const u8		*tx = t->tx_buf;
75 	u8			*rx = t->rx_buf;
76 
77 	while (likely(count > 0)) {
78 		u8		word = 0;
79 
80 		if (tx)
81 			word = *tx++;
82 		word = txrx_word(spi, ns, word, bits);
83 		if (rx)
84 			*rx++ = word;
85 		count -= 1;
86 	}
87 	return t->len - count;
88 }
89 
bitbang_txrx_16(struct spi_device * spi,u32 (* txrx_word)(struct spi_device * spi,unsigned nsecs,u32 word,u8 bits),unsigned ns,struct spi_transfer * t)90 static unsigned bitbang_txrx_16(
91 	struct spi_device	*spi,
92 	u32			(*txrx_word)(struct spi_device *spi,
93 					unsigned nsecs,
94 					u32 word, u8 bits),
95 	unsigned		ns,
96 	struct spi_transfer	*t
97 ) {
98 	unsigned		bits = t->bits_per_word ? : spi->bits_per_word;
99 	unsigned		count = t->len;
100 	const u16		*tx = t->tx_buf;
101 	u16			*rx = t->rx_buf;
102 
103 	while (likely(count > 1)) {
104 		u16		word = 0;
105 
106 		if (tx)
107 			word = *tx++;
108 		word = txrx_word(spi, ns, word, bits);
109 		if (rx)
110 			*rx++ = word;
111 		count -= 2;
112 	}
113 	return t->len - count;
114 }
115 
bitbang_txrx_32(struct spi_device * spi,u32 (* txrx_word)(struct spi_device * spi,unsigned nsecs,u32 word,u8 bits),unsigned ns,struct spi_transfer * t)116 static unsigned bitbang_txrx_32(
117 	struct spi_device	*spi,
118 	u32			(*txrx_word)(struct spi_device *spi,
119 					unsigned nsecs,
120 					u32 word, u8 bits),
121 	unsigned		ns,
122 	struct spi_transfer	*t
123 ) {
124 	unsigned		bits = t->bits_per_word ? : spi->bits_per_word;
125 	unsigned		count = t->len;
126 	const u32		*tx = t->tx_buf;
127 	u32			*rx = t->rx_buf;
128 
129 	while (likely(count > 3)) {
130 		u32		word = 0;
131 
132 		if (tx)
133 			word = *tx++;
134 		word = txrx_word(spi, ns, word, bits);
135 		if (rx)
136 			*rx++ = word;
137 		count -= 4;
138 	}
139 	return t->len - count;
140 }
141 
spi_bitbang_setup_transfer(struct spi_device * spi,struct spi_transfer * t)142 int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
143 {
144 	struct spi_bitbang_cs	*cs = spi->controller_state;
145 	u8			bits_per_word;
146 	u32			hz;
147 
148 	if (t) {
149 		bits_per_word = t->bits_per_word;
150 		hz = t->speed_hz;
151 	} else {
152 		bits_per_word = 0;
153 		hz = 0;
154 	}
155 
156 	/* spi_transfer level calls that work per-word */
157 	if (!bits_per_word)
158 		bits_per_word = spi->bits_per_word;
159 	if (bits_per_word <= 8)
160 		cs->txrx_bufs = bitbang_txrx_8;
161 	else if (bits_per_word <= 16)
162 		cs->txrx_bufs = bitbang_txrx_16;
163 	else if (bits_per_word <= 32)
164 		cs->txrx_bufs = bitbang_txrx_32;
165 	else
166 		return -EINVAL;
167 
168 	/* nsecs = (clock period)/2 */
169 	if (!hz)
170 		hz = spi->max_speed_hz;
171 	if (hz) {
172 		cs->nsecs = (1000000000/2) / hz;
173 		if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
174 			return -EINVAL;
175 	}
176 
177 	return 0;
178 }
179 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
180 
181 /**
182  * spi_bitbang_setup - default setup for per-word I/O loops
183  */
spi_bitbang_setup(struct spi_device * spi)184 int spi_bitbang_setup(struct spi_device *spi)
185 {
186 	struct spi_bitbang_cs	*cs = spi->controller_state;
187 	struct spi_bitbang	*bitbang;
188 	int			retval;
189 	unsigned long		flags;
190 
191 	bitbang = spi_master_get_devdata(spi->master);
192 
193 	if (!cs) {
194 		cs = kzalloc(sizeof *cs, GFP_KERNEL);
195 		if (!cs)
196 			return -ENOMEM;
197 		spi->controller_state = cs;
198 	}
199 
200 	/* per-word shift register access, in hardware or bitbanging */
201 	cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
202 	if (!cs->txrx_word)
203 		return -EINVAL;
204 
205 	retval = bitbang->setup_transfer(spi, NULL);
206 	if (retval < 0)
207 		return retval;
208 
209 	dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
210 
211 	/* NOTE we _need_ to call chipselect() early, ideally with adapter
212 	 * setup, unless the hardware defaults cooperate to avoid confusion
213 	 * between normal (active low) and inverted chipselects.
214 	 */
215 
216 	/* deselect chip (low or high) */
217 	spin_lock_irqsave(&bitbang->lock, flags);
218 	if (!bitbang->busy) {
219 		bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
220 		ndelay(cs->nsecs);
221 	}
222 	spin_unlock_irqrestore(&bitbang->lock, flags);
223 
224 	return 0;
225 }
226 EXPORT_SYMBOL_GPL(spi_bitbang_setup);
227 
228 /**
229  * spi_bitbang_cleanup - default cleanup for per-word I/O loops
230  */
spi_bitbang_cleanup(struct spi_device * spi)231 void spi_bitbang_cleanup(struct spi_device *spi)
232 {
233 	kfree(spi->controller_state);
234 }
235 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
236 
spi_bitbang_bufs(struct spi_device * spi,struct spi_transfer * t)237 static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
238 {
239 	struct spi_bitbang_cs	*cs = spi->controller_state;
240 	unsigned		nsecs = cs->nsecs;
241 
242 	return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t);
243 }
244 
245 /*----------------------------------------------------------------------*/
246 
247 /*
248  * SECOND PART ... simple transfer queue runner.
249  *
250  * This costs a task context per controller, running the queue by
251  * performing each transfer in sequence.  Smarter hardware can queue
252  * several DMA transfers at once, and process several controller queues
253  * in parallel; this driver doesn't match such hardware very well.
254  *
255  * Drivers can provide word-at-a-time i/o primitives, or provide
256  * transfer-at-a-time ones to leverage dma or fifo hardware.
257  */
bitbang_work(struct work_struct * work)258 static void bitbang_work(struct work_struct *work)
259 {
260 	struct spi_bitbang	*bitbang =
261 		container_of(work, struct spi_bitbang, work);
262 	unsigned long		flags;
263 
264 	spin_lock_irqsave(&bitbang->lock, flags);
265 	bitbang->busy = 1;
266 	while (!list_empty(&bitbang->queue)) {
267 		struct spi_message	*m;
268 		struct spi_device	*spi;
269 		unsigned		nsecs;
270 		struct spi_transfer	*t = NULL;
271 		unsigned		tmp;
272 		unsigned		cs_change;
273 		int			status;
274 		int			do_setup = -1;
275 
276 		m = container_of(bitbang->queue.next, struct spi_message,
277 				queue);
278 		list_del_init(&m->queue);
279 		spin_unlock_irqrestore(&bitbang->lock, flags);
280 
281 		/* FIXME this is made-up ... the correct value is known to
282 		 * word-at-a-time bitbang code, and presumably chipselect()
283 		 * should enforce these requirements too?
284 		 */
285 		nsecs = 100;
286 
287 		spi = m->spi;
288 		tmp = 0;
289 		cs_change = 1;
290 		status = 0;
291 
292 		list_for_each_entry (t, &m->transfers, transfer_list) {
293 
294 			/* override speed or wordsize? */
295 			if (t->speed_hz || t->bits_per_word)
296 				do_setup = 1;
297 
298 			/* init (-1) or override (1) transfer params */
299 			if (do_setup != 0) {
300 				status = bitbang->setup_transfer(spi, t);
301 				if (status < 0)
302 					break;
303 				if (do_setup == -1)
304 					do_setup = 0;
305 			}
306 
307 			/* set up default clock polarity, and activate chip;
308 			 * this implicitly updates clock and spi modes as
309 			 * previously recorded for this device via setup().
310 			 * (and also deselects any other chip that might be
311 			 * selected ...)
312 			 */
313 			if (cs_change) {
314 				bitbang->chipselect(spi, BITBANG_CS_ACTIVE);
315 				ndelay(nsecs);
316 			}
317 			cs_change = t->cs_change;
318 			if (!t->tx_buf && !t->rx_buf && t->len) {
319 				status = -EINVAL;
320 				break;
321 			}
322 
323 			/* transfer data.  the lower level code handles any
324 			 * new dma mappings it needs. our caller always gave
325 			 * us dma-safe buffers.
326 			 */
327 			if (t->len) {
328 				/* REVISIT dma API still needs a designated
329 				 * DMA_ADDR_INVALID; ~0 might be better.
330 				 */
331 				if (!m->is_dma_mapped)
332 					t->rx_dma = t->tx_dma = 0;
333 				status = bitbang->txrx_bufs(spi, t);
334 			}
335 			if (status > 0)
336 				m->actual_length += status;
337 			if (status != t->len) {
338 				/* always report some kind of error */
339 				if (status >= 0)
340 					status = -EREMOTEIO;
341 				break;
342 			}
343 			status = 0;
344 
345 			/* protocol tweaks before next transfer */
346 			if (t->delay_usecs)
347 				udelay(t->delay_usecs);
348 
349 			if (!cs_change)
350 				continue;
351 			if (t->transfer_list.next == &m->transfers)
352 				break;
353 
354 			/* sometimes a short mid-message deselect of the chip
355 			 * may be needed to terminate a mode or command
356 			 */
357 			ndelay(nsecs);
358 			bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
359 			ndelay(nsecs);
360 		}
361 
362 		m->status = status;
363 		m->complete(m->context);
364 
365 		/* normally deactivate chipselect ... unless no error and
366 		 * cs_change has hinted that the next message will probably
367 		 * be for this chip too.
368 		 */
369 		if (!(status == 0 && cs_change)) {
370 			ndelay(nsecs);
371 			bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
372 			ndelay(nsecs);
373 		}
374 
375 		spin_lock_irqsave(&bitbang->lock, flags);
376 	}
377 	bitbang->busy = 0;
378 	spin_unlock_irqrestore(&bitbang->lock, flags);
379 }
380 
381 /**
382  * spi_bitbang_transfer - default submit to transfer queue
383  */
spi_bitbang_transfer(struct spi_device * spi,struct spi_message * m)384 int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m)
385 {
386 	struct spi_bitbang	*bitbang;
387 	unsigned long		flags;
388 	int			status = 0;
389 
390 	m->actual_length = 0;
391 	m->status = -EINPROGRESS;
392 
393 	bitbang = spi_master_get_devdata(spi->master);
394 
395 	spin_lock_irqsave(&bitbang->lock, flags);
396 	if (!spi->max_speed_hz)
397 		status = -ENETDOWN;
398 	else {
399 		list_add_tail(&m->queue, &bitbang->queue);
400 		queue_work(bitbang->workqueue, &bitbang->work);
401 	}
402 	spin_unlock_irqrestore(&bitbang->lock, flags);
403 
404 	return status;
405 }
406 EXPORT_SYMBOL_GPL(spi_bitbang_transfer);
407 
408 /*----------------------------------------------------------------------*/
409 
410 /**
411  * spi_bitbang_start - start up a polled/bitbanging SPI master driver
412  * @bitbang: driver handle
413  *
414  * Caller should have zero-initialized all parts of the structure, and then
415  * provided callbacks for chip selection and I/O loops.  If the master has
416  * a transfer method, its final step should call spi_bitbang_transfer; or,
417  * that's the default if the transfer routine is not initialized.  It should
418  * also set up the bus number and number of chipselects.
419  *
420  * For i/o loops, provide callbacks either per-word (for bitbanging, or for
421  * hardware that basically exposes a shift register) or per-spi_transfer
422  * (which takes better advantage of hardware like fifos or DMA engines).
423  *
424  * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
425  * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
426  * master methods.  Those methods are the defaults if the bitbang->txrx_bufs
427  * routine isn't initialized.
428  *
429  * This routine registers the spi_master, which will process requests in a
430  * dedicated task, keeping IRQs unblocked most of the time.  To stop
431  * processing those requests, call spi_bitbang_stop().
432  */
spi_bitbang_start(struct spi_bitbang * bitbang)433 int spi_bitbang_start(struct spi_bitbang *bitbang)
434 {
435 	int	status;
436 
437 	if (!bitbang->master || !bitbang->chipselect)
438 		return -EINVAL;
439 
440 	INIT_WORK(&bitbang->work, bitbang_work);
441 	spin_lock_init(&bitbang->lock);
442 	INIT_LIST_HEAD(&bitbang->queue);
443 
444 	if (!bitbang->master->mode_bits)
445 		bitbang->master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
446 
447 	if (!bitbang->master->transfer)
448 		bitbang->master->transfer = spi_bitbang_transfer;
449 	if (!bitbang->txrx_bufs) {
450 		bitbang->use_dma = 0;
451 		bitbang->txrx_bufs = spi_bitbang_bufs;
452 		if (!bitbang->master->setup) {
453 			if (!bitbang->setup_transfer)
454 				bitbang->setup_transfer =
455 					 spi_bitbang_setup_transfer;
456 			bitbang->master->setup = spi_bitbang_setup;
457 			bitbang->master->cleanup = spi_bitbang_cleanup;
458 		}
459 	} else if (!bitbang->master->setup)
460 		return -EINVAL;
461 	if (bitbang->master->transfer == spi_bitbang_transfer &&
462 			!bitbang->setup_transfer)
463 		return -EINVAL;
464 
465 	/* this task is the only thing to touch the SPI bits */
466 	bitbang->busy = 0;
467 	bitbang->workqueue = create_singlethread_workqueue(
468 			dev_name(bitbang->master->dev.parent));
469 	if (bitbang->workqueue == NULL) {
470 		status = -EBUSY;
471 		goto err1;
472 	}
473 
474 	/* driver may get busy before register() returns, especially
475 	 * if someone registered boardinfo for devices
476 	 */
477 	status = spi_register_master(bitbang->master);
478 	if (status < 0)
479 		goto err2;
480 
481 	return status;
482 
483 err2:
484 	destroy_workqueue(bitbang->workqueue);
485 err1:
486 	return status;
487 }
488 EXPORT_SYMBOL_GPL(spi_bitbang_start);
489 
490 /**
491  * spi_bitbang_stop - stops the task providing spi communication
492  */
spi_bitbang_stop(struct spi_bitbang * bitbang)493 int spi_bitbang_stop(struct spi_bitbang *bitbang)
494 {
495 	spi_unregister_master(bitbang->master);
496 
497 	WARN_ON(!list_empty(&bitbang->queue));
498 
499 	destroy_workqueue(bitbang->workqueue);
500 
501 	return 0;
502 }
503 EXPORT_SYMBOL_GPL(spi_bitbang_stop);
504 
505 MODULE_LICENSE("GPL");
506 
507