1 // SPDX-License-Identifier: GPL-2.0+
2 /* Microchip Sparx5 Switch driver
3 *
4 * Copyright (c) 2021 Microchip Technology Inc. and its subsidiaries.
5 *
6 * The Sparx5 Chip Register Model can be browsed at this location:
7 * https://github.com/microchip-ung/sparx-5_reginfo
8 */
9
10 #include <linux/types.h>
11 #include <linux/skbuff.h>
12 #include <linux/netdevice.h>
13 #include <linux/interrupt.h>
14 #include <linux/ip.h>
15 #include <linux/dma-mapping.h>
16
17 #include "sparx5_main_regs.h"
18 #include "sparx5_main.h"
19 #include "sparx5_port.h"
20
21 #define FDMA_XTR_CHANNEL 6
22 #define FDMA_INJ_CHANNEL 0
23
24 #define FDMA_DCB_INFO_DATAL(x) ((x) & GENMASK(15, 0))
25 #define FDMA_DCB_INFO_TOKEN BIT(17)
26 #define FDMA_DCB_INFO_INTR BIT(18)
27 #define FDMA_DCB_INFO_SW(x) (((x) << 24) & GENMASK(31, 24))
28
29 #define FDMA_DCB_STATUS_BLOCKL(x) ((x) & GENMASK(15, 0))
30 #define FDMA_DCB_STATUS_SOF BIT(16)
31 #define FDMA_DCB_STATUS_EOF BIT(17)
32 #define FDMA_DCB_STATUS_INTR BIT(18)
33 #define FDMA_DCB_STATUS_DONE BIT(19)
34 #define FDMA_DCB_STATUS_BLOCKO(x) (((x) << 20) & GENMASK(31, 20))
35 #define FDMA_DCB_INVALID_DATA 0x1
36
37 #define FDMA_XTR_BUFFER_SIZE 2048
38 #define FDMA_WEIGHT 4
39
40 /* Frame DMA DCB format
41 *
42 * +---------------------------+
43 * | Next Ptr |
44 * +---------------------------+
45 * | Reserved | Info |
46 * +---------------------------+
47 * | Data0 Ptr |
48 * +---------------------------+
49 * | Reserved | Status0 |
50 * +---------------------------+
51 * | Data1 Ptr |
52 * +---------------------------+
53 * | Reserved | Status1 |
54 * +---------------------------+
55 * | Data2 Ptr |
56 * +---------------------------+
57 * | Reserved | Status2 |
58 * |-------------|-------------|
59 * | |
60 * | |
61 * | |
62 * | |
63 * | |
64 * |---------------------------|
65 * | Data14 Ptr |
66 * +-------------|-------------+
67 * | Reserved | Status14 |
68 * +-------------|-------------+
69 */
70
71 /* For each hardware DB there is an entry in this list and when the HW DB
72 * entry is used, this SW DB entry is moved to the back of the list
73 */
74 struct sparx5_db {
75 struct list_head list;
76 void *cpu_addr;
77 };
78
sparx5_fdma_rx_add_dcb(struct sparx5_rx * rx,struct sparx5_rx_dcb_hw * dcb,u64 nextptr)79 static void sparx5_fdma_rx_add_dcb(struct sparx5_rx *rx,
80 struct sparx5_rx_dcb_hw *dcb,
81 u64 nextptr)
82 {
83 int idx = 0;
84
85 /* Reset the status of the DB */
86 for (idx = 0; idx < FDMA_RX_DCB_MAX_DBS; ++idx) {
87 struct sparx5_db_hw *db = &dcb->db[idx];
88
89 db->status = FDMA_DCB_STATUS_INTR;
90 }
91 dcb->nextptr = FDMA_DCB_INVALID_DATA;
92 dcb->info = FDMA_DCB_INFO_DATAL(FDMA_XTR_BUFFER_SIZE);
93 rx->last_entry->nextptr = nextptr;
94 rx->last_entry = dcb;
95 }
96
sparx5_fdma_tx_add_dcb(struct sparx5_tx * tx,struct sparx5_tx_dcb_hw * dcb,u64 nextptr)97 static void sparx5_fdma_tx_add_dcb(struct sparx5_tx *tx,
98 struct sparx5_tx_dcb_hw *dcb,
99 u64 nextptr)
100 {
101 int idx = 0;
102
103 /* Reset the status of the DB */
104 for (idx = 0; idx < FDMA_TX_DCB_MAX_DBS; ++idx) {
105 struct sparx5_db_hw *db = &dcb->db[idx];
106
107 db->status = FDMA_DCB_STATUS_DONE;
108 }
109 dcb->nextptr = FDMA_DCB_INVALID_DATA;
110 dcb->info = FDMA_DCB_INFO_DATAL(FDMA_XTR_BUFFER_SIZE);
111 }
112
sparx5_fdma_rx_activate(struct sparx5 * sparx5,struct sparx5_rx * rx)113 static void sparx5_fdma_rx_activate(struct sparx5 *sparx5, struct sparx5_rx *rx)
114 {
115 /* Write the buffer address in the LLP and LLP1 regs */
116 spx5_wr(((u64)rx->dma) & GENMASK(31, 0), sparx5,
117 FDMA_DCB_LLP(rx->channel_id));
118 spx5_wr(((u64)rx->dma) >> 32, sparx5, FDMA_DCB_LLP1(rx->channel_id));
119
120 /* Set the number of RX DBs to be used, and DB end-of-frame interrupt */
121 spx5_wr(FDMA_CH_CFG_CH_DCB_DB_CNT_SET(FDMA_RX_DCB_MAX_DBS) |
122 FDMA_CH_CFG_CH_INTR_DB_EOF_ONLY_SET(1) |
123 FDMA_CH_CFG_CH_INJ_PORT_SET(XTR_QUEUE),
124 sparx5, FDMA_CH_CFG(rx->channel_id));
125
126 /* Set the RX Watermark to max */
127 spx5_rmw(FDMA_XTR_CFG_XTR_FIFO_WM_SET(31), FDMA_XTR_CFG_XTR_FIFO_WM,
128 sparx5,
129 FDMA_XTR_CFG);
130
131 /* Start RX fdma */
132 spx5_rmw(FDMA_PORT_CTRL_XTR_STOP_SET(0), FDMA_PORT_CTRL_XTR_STOP,
133 sparx5, FDMA_PORT_CTRL(0));
134
135 /* Enable RX channel DB interrupt */
136 spx5_rmw(BIT(rx->channel_id),
137 BIT(rx->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA,
138 sparx5, FDMA_INTR_DB_ENA);
139
140 /* Activate the RX channel */
141 spx5_wr(BIT(rx->channel_id), sparx5, FDMA_CH_ACTIVATE);
142 }
143
sparx5_fdma_rx_deactivate(struct sparx5 * sparx5,struct sparx5_rx * rx)144 static void sparx5_fdma_rx_deactivate(struct sparx5 *sparx5, struct sparx5_rx *rx)
145 {
146 /* Dectivate the RX channel */
147 spx5_rmw(0, BIT(rx->channel_id) & FDMA_CH_ACTIVATE_CH_ACTIVATE,
148 sparx5, FDMA_CH_ACTIVATE);
149
150 /* Disable RX channel DB interrupt */
151 spx5_rmw(0, BIT(rx->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA,
152 sparx5, FDMA_INTR_DB_ENA);
153
154 /* Stop RX fdma */
155 spx5_rmw(FDMA_PORT_CTRL_XTR_STOP_SET(1), FDMA_PORT_CTRL_XTR_STOP,
156 sparx5, FDMA_PORT_CTRL(0));
157 }
158
sparx5_fdma_tx_activate(struct sparx5 * sparx5,struct sparx5_tx * tx)159 static void sparx5_fdma_tx_activate(struct sparx5 *sparx5, struct sparx5_tx *tx)
160 {
161 /* Write the buffer address in the LLP and LLP1 regs */
162 spx5_wr(((u64)tx->dma) & GENMASK(31, 0), sparx5,
163 FDMA_DCB_LLP(tx->channel_id));
164 spx5_wr(((u64)tx->dma) >> 32, sparx5, FDMA_DCB_LLP1(tx->channel_id));
165
166 /* Set the number of TX DBs to be used, and DB end-of-frame interrupt */
167 spx5_wr(FDMA_CH_CFG_CH_DCB_DB_CNT_SET(FDMA_TX_DCB_MAX_DBS) |
168 FDMA_CH_CFG_CH_INTR_DB_EOF_ONLY_SET(1) |
169 FDMA_CH_CFG_CH_INJ_PORT_SET(INJ_QUEUE),
170 sparx5, FDMA_CH_CFG(tx->channel_id));
171
172 /* Start TX fdma */
173 spx5_rmw(FDMA_PORT_CTRL_INJ_STOP_SET(0), FDMA_PORT_CTRL_INJ_STOP,
174 sparx5, FDMA_PORT_CTRL(0));
175
176 /* Activate the channel */
177 spx5_wr(BIT(tx->channel_id), sparx5, FDMA_CH_ACTIVATE);
178 }
179
sparx5_fdma_tx_deactivate(struct sparx5 * sparx5,struct sparx5_tx * tx)180 static void sparx5_fdma_tx_deactivate(struct sparx5 *sparx5, struct sparx5_tx *tx)
181 {
182 /* Disable the channel */
183 spx5_rmw(0, BIT(tx->channel_id) & FDMA_CH_ACTIVATE_CH_ACTIVATE,
184 sparx5, FDMA_CH_ACTIVATE);
185 }
186
sparx5_fdma_rx_reload(struct sparx5 * sparx5,struct sparx5_rx * rx)187 static void sparx5_fdma_rx_reload(struct sparx5 *sparx5, struct sparx5_rx *rx)
188 {
189 /* Reload the RX channel */
190 spx5_wr(BIT(rx->channel_id), sparx5, FDMA_CH_RELOAD);
191 }
192
sparx5_fdma_tx_reload(struct sparx5 * sparx5,struct sparx5_tx * tx)193 static void sparx5_fdma_tx_reload(struct sparx5 *sparx5, struct sparx5_tx *tx)
194 {
195 /* Reload the TX channel */
196 spx5_wr(BIT(tx->channel_id), sparx5, FDMA_CH_RELOAD);
197 }
198
sparx5_fdma_rx_alloc_skb(struct sparx5_rx * rx)199 static struct sk_buff *sparx5_fdma_rx_alloc_skb(struct sparx5_rx *rx)
200 {
201 return __netdev_alloc_skb(rx->ndev, FDMA_XTR_BUFFER_SIZE,
202 GFP_ATOMIC);
203 }
204
sparx5_fdma_rx_get_frame(struct sparx5 * sparx5,struct sparx5_rx * rx)205 static bool sparx5_fdma_rx_get_frame(struct sparx5 *sparx5, struct sparx5_rx *rx)
206 {
207 struct sparx5_db_hw *db_hw;
208 unsigned int packet_size;
209 struct sparx5_port *port;
210 struct sk_buff *new_skb;
211 struct frame_info fi;
212 struct sk_buff *skb;
213 dma_addr_t dma_addr;
214
215 /* Check if the DCB is done */
216 db_hw = &rx->dcb_entries[rx->dcb_index].db[rx->db_index];
217 if (unlikely(!(db_hw->status & FDMA_DCB_STATUS_DONE)))
218 return false;
219 skb = rx->skb[rx->dcb_index][rx->db_index];
220 /* Replace the DB entry with a new SKB */
221 new_skb = sparx5_fdma_rx_alloc_skb(rx);
222 if (unlikely(!new_skb))
223 return false;
224 /* Map the new skb data and set the new skb */
225 dma_addr = virt_to_phys(new_skb->data);
226 rx->skb[rx->dcb_index][rx->db_index] = new_skb;
227 db_hw->dataptr = dma_addr;
228 packet_size = FDMA_DCB_STATUS_BLOCKL(db_hw->status);
229 skb_put(skb, packet_size);
230 /* Now do the normal processing of the skb */
231 sparx5_ifh_parse((u32 *)skb->data, &fi);
232 /* Map to port netdev */
233 port = fi.src_port < SPX5_PORTS ? sparx5->ports[fi.src_port] : NULL;
234 if (!port || !port->ndev) {
235 dev_err(sparx5->dev, "Data on inactive port %d\n", fi.src_port);
236 sparx5_xtr_flush(sparx5, XTR_QUEUE);
237 return false;
238 }
239 skb->dev = port->ndev;
240 skb_pull(skb, IFH_LEN * sizeof(u32));
241 if (likely(!(skb->dev->features & NETIF_F_RXFCS)))
242 skb_trim(skb, skb->len - ETH_FCS_LEN);
243
244 sparx5_ptp_rxtstamp(sparx5, skb, fi.timestamp);
245 skb->protocol = eth_type_trans(skb, skb->dev);
246 /* Everything we see on an interface that is in the HW bridge
247 * has already been forwarded
248 */
249 if (test_bit(port->portno, sparx5->bridge_mask))
250 skb->offload_fwd_mark = 1;
251 skb->dev->stats.rx_bytes += skb->len;
252 skb->dev->stats.rx_packets++;
253 rx->packets++;
254 netif_receive_skb(skb);
255 return true;
256 }
257
sparx5_fdma_napi_callback(struct napi_struct * napi,int weight)258 static int sparx5_fdma_napi_callback(struct napi_struct *napi, int weight)
259 {
260 struct sparx5_rx *rx = container_of(napi, struct sparx5_rx, napi);
261 struct sparx5 *sparx5 = container_of(rx, struct sparx5, rx);
262 int counter = 0;
263
264 while (counter < weight && sparx5_fdma_rx_get_frame(sparx5, rx)) {
265 struct sparx5_rx_dcb_hw *old_dcb;
266
267 rx->db_index++;
268 counter++;
269 /* Check if the DCB can be reused */
270 if (rx->db_index != FDMA_RX_DCB_MAX_DBS)
271 continue;
272 /* As the DCB can be reused, just advance the dcb_index
273 * pointer and set the nextptr in the DCB
274 */
275 rx->db_index = 0;
276 old_dcb = &rx->dcb_entries[rx->dcb_index];
277 rx->dcb_index++;
278 rx->dcb_index &= FDMA_DCB_MAX - 1;
279 sparx5_fdma_rx_add_dcb(rx, old_dcb,
280 rx->dma +
281 ((unsigned long)old_dcb -
282 (unsigned long)rx->dcb_entries));
283 }
284 if (counter < weight) {
285 napi_complete_done(&rx->napi, counter);
286 spx5_rmw(BIT(rx->channel_id),
287 BIT(rx->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA,
288 sparx5, FDMA_INTR_DB_ENA);
289 }
290 if (counter)
291 sparx5_fdma_rx_reload(sparx5, rx);
292 return counter;
293 }
294
sparx5_fdma_next_dcb(struct sparx5_tx * tx,struct sparx5_tx_dcb_hw * dcb)295 static struct sparx5_tx_dcb_hw *sparx5_fdma_next_dcb(struct sparx5_tx *tx,
296 struct sparx5_tx_dcb_hw *dcb)
297 {
298 struct sparx5_tx_dcb_hw *next_dcb;
299
300 next_dcb = dcb;
301 next_dcb++;
302 /* Handle wrap-around */
303 if ((unsigned long)next_dcb >=
304 ((unsigned long)tx->first_entry + FDMA_DCB_MAX * sizeof(*dcb)))
305 next_dcb = tx->first_entry;
306 return next_dcb;
307 }
308
sparx5_fdma_xmit(struct sparx5 * sparx5,u32 * ifh,struct sk_buff * skb)309 int sparx5_fdma_xmit(struct sparx5 *sparx5, u32 *ifh, struct sk_buff *skb)
310 {
311 struct sparx5_tx_dcb_hw *next_dcb_hw;
312 struct sparx5_tx *tx = &sparx5->tx;
313 static bool first_time = true;
314 struct sparx5_db_hw *db_hw;
315 struct sparx5_db *db;
316
317 next_dcb_hw = sparx5_fdma_next_dcb(tx, tx->curr_entry);
318 db_hw = &next_dcb_hw->db[0];
319 if (!(db_hw->status & FDMA_DCB_STATUS_DONE))
320 return -EINVAL;
321 db = list_first_entry(&tx->db_list, struct sparx5_db, list);
322 list_move_tail(&db->list, &tx->db_list);
323 next_dcb_hw->nextptr = FDMA_DCB_INVALID_DATA;
324 tx->curr_entry->nextptr = tx->dma +
325 ((unsigned long)next_dcb_hw -
326 (unsigned long)tx->first_entry);
327 tx->curr_entry = next_dcb_hw;
328 memset(db->cpu_addr, 0, FDMA_XTR_BUFFER_SIZE);
329 memcpy(db->cpu_addr, ifh, IFH_LEN * 4);
330 memcpy(db->cpu_addr + IFH_LEN * 4, skb->data, skb->len);
331 db_hw->status = FDMA_DCB_STATUS_SOF |
332 FDMA_DCB_STATUS_EOF |
333 FDMA_DCB_STATUS_BLOCKO(0) |
334 FDMA_DCB_STATUS_BLOCKL(skb->len + IFH_LEN * 4 + 4);
335 if (first_time) {
336 sparx5_fdma_tx_activate(sparx5, tx);
337 first_time = false;
338 } else {
339 sparx5_fdma_tx_reload(sparx5, tx);
340 }
341 return NETDEV_TX_OK;
342 }
343
sparx5_fdma_rx_alloc(struct sparx5 * sparx5)344 static int sparx5_fdma_rx_alloc(struct sparx5 *sparx5)
345 {
346 struct sparx5_rx *rx = &sparx5->rx;
347 struct sparx5_rx_dcb_hw *dcb;
348 int idx, jdx;
349 int size;
350
351 size = sizeof(struct sparx5_rx_dcb_hw) * FDMA_DCB_MAX;
352 size = ALIGN(size, PAGE_SIZE);
353 rx->dcb_entries = devm_kzalloc(sparx5->dev, size, GFP_KERNEL);
354 if (!rx->dcb_entries)
355 return -ENOMEM;
356 rx->dma = virt_to_phys(rx->dcb_entries);
357 rx->last_entry = rx->dcb_entries;
358 rx->db_index = 0;
359 rx->dcb_index = 0;
360 /* Now for each dcb allocate the db */
361 for (idx = 0; idx < FDMA_DCB_MAX; ++idx) {
362 dcb = &rx->dcb_entries[idx];
363 dcb->info = 0;
364 /* For each db allocate an skb and map skb data pointer to the DB
365 * dataptr. In this way when the frame is received the skb->data
366 * will contain the frame, so no memcpy is needed
367 */
368 for (jdx = 0; jdx < FDMA_RX_DCB_MAX_DBS; ++jdx) {
369 struct sparx5_db_hw *db_hw = &dcb->db[jdx];
370 dma_addr_t dma_addr;
371 struct sk_buff *skb;
372
373 skb = sparx5_fdma_rx_alloc_skb(rx);
374 if (!skb)
375 return -ENOMEM;
376
377 dma_addr = virt_to_phys(skb->data);
378 db_hw->dataptr = dma_addr;
379 db_hw->status = 0;
380 rx->skb[idx][jdx] = skb;
381 }
382 sparx5_fdma_rx_add_dcb(rx, dcb, rx->dma + sizeof(*dcb) * idx);
383 }
384 netif_napi_add_weight(rx->ndev, &rx->napi, sparx5_fdma_napi_callback,
385 FDMA_WEIGHT);
386 napi_enable(&rx->napi);
387 sparx5_fdma_rx_activate(sparx5, rx);
388 return 0;
389 }
390
sparx5_fdma_tx_alloc(struct sparx5 * sparx5)391 static int sparx5_fdma_tx_alloc(struct sparx5 *sparx5)
392 {
393 struct sparx5_tx *tx = &sparx5->tx;
394 struct sparx5_tx_dcb_hw *dcb;
395 int idx, jdx;
396 int size;
397
398 size = sizeof(struct sparx5_tx_dcb_hw) * FDMA_DCB_MAX;
399 size = ALIGN(size, PAGE_SIZE);
400 tx->curr_entry = devm_kzalloc(sparx5->dev, size, GFP_KERNEL);
401 if (!tx->curr_entry)
402 return -ENOMEM;
403 tx->dma = virt_to_phys(tx->curr_entry);
404 tx->first_entry = tx->curr_entry;
405 INIT_LIST_HEAD(&tx->db_list);
406 /* Now for each dcb allocate the db */
407 for (idx = 0; idx < FDMA_DCB_MAX; ++idx) {
408 dcb = &tx->curr_entry[idx];
409 dcb->info = 0;
410 /* TX databuffers must be 16byte aligned */
411 for (jdx = 0; jdx < FDMA_TX_DCB_MAX_DBS; ++jdx) {
412 struct sparx5_db_hw *db_hw = &dcb->db[jdx];
413 struct sparx5_db *db;
414 dma_addr_t phys;
415 void *cpu_addr;
416
417 cpu_addr = devm_kzalloc(sparx5->dev,
418 FDMA_XTR_BUFFER_SIZE,
419 GFP_KERNEL);
420 if (!cpu_addr)
421 return -ENOMEM;
422 phys = virt_to_phys(cpu_addr);
423 db_hw->dataptr = phys;
424 db_hw->status = 0;
425 db = devm_kzalloc(sparx5->dev, sizeof(*db), GFP_KERNEL);
426 if (!db)
427 return -ENOMEM;
428 db->cpu_addr = cpu_addr;
429 list_add_tail(&db->list, &tx->db_list);
430 }
431 sparx5_fdma_tx_add_dcb(tx, dcb, tx->dma + sizeof(*dcb) * idx);
432 /* Let the curr_entry to point to the last allocated entry */
433 if (idx == FDMA_DCB_MAX - 1)
434 tx->curr_entry = dcb;
435 }
436 return 0;
437 }
438
sparx5_fdma_rx_init(struct sparx5 * sparx5,struct sparx5_rx * rx,int channel)439 static void sparx5_fdma_rx_init(struct sparx5 *sparx5,
440 struct sparx5_rx *rx, int channel)
441 {
442 int idx;
443
444 rx->channel_id = channel;
445 /* Fetch a netdev for SKB and NAPI use, any will do */
446 for (idx = 0; idx < SPX5_PORTS; ++idx) {
447 struct sparx5_port *port = sparx5->ports[idx];
448
449 if (port && port->ndev) {
450 rx->ndev = port->ndev;
451 break;
452 }
453 }
454 }
455
sparx5_fdma_tx_init(struct sparx5 * sparx5,struct sparx5_tx * tx,int channel)456 static void sparx5_fdma_tx_init(struct sparx5 *sparx5,
457 struct sparx5_tx *tx, int channel)
458 {
459 tx->channel_id = channel;
460 }
461
sparx5_fdma_handler(int irq,void * args)462 irqreturn_t sparx5_fdma_handler(int irq, void *args)
463 {
464 struct sparx5 *sparx5 = args;
465 u32 db = 0, err = 0;
466
467 db = spx5_rd(sparx5, FDMA_INTR_DB);
468 err = spx5_rd(sparx5, FDMA_INTR_ERR);
469 /* Clear interrupt */
470 if (db) {
471 spx5_wr(0, sparx5, FDMA_INTR_DB_ENA);
472 spx5_wr(db, sparx5, FDMA_INTR_DB);
473 napi_schedule(&sparx5->rx.napi);
474 }
475 if (err) {
476 u32 err_type = spx5_rd(sparx5, FDMA_ERRORS);
477
478 dev_err_ratelimited(sparx5->dev,
479 "ERR: int: %#x, type: %#x\n",
480 err, err_type);
481 spx5_wr(err, sparx5, FDMA_INTR_ERR);
482 spx5_wr(err_type, sparx5, FDMA_ERRORS);
483 }
484 return IRQ_HANDLED;
485 }
486
sparx5_fdma_injection_mode(struct sparx5 * sparx5)487 static void sparx5_fdma_injection_mode(struct sparx5 *sparx5)
488 {
489 const int byte_swap = 1;
490 int portno;
491 int urgency;
492
493 /* Change mode to fdma extraction and injection */
494 spx5_wr(QS_XTR_GRP_CFG_MODE_SET(2) |
495 QS_XTR_GRP_CFG_STATUS_WORD_POS_SET(1) |
496 QS_XTR_GRP_CFG_BYTE_SWAP_SET(byte_swap),
497 sparx5, QS_XTR_GRP_CFG(XTR_QUEUE));
498 spx5_wr(QS_INJ_GRP_CFG_MODE_SET(2) |
499 QS_INJ_GRP_CFG_BYTE_SWAP_SET(byte_swap),
500 sparx5, QS_INJ_GRP_CFG(INJ_QUEUE));
501
502 /* CPU ports capture setup */
503 for (portno = SPX5_PORT_CPU_0; portno <= SPX5_PORT_CPU_1; portno++) {
504 /* ASM CPU port: No preamble, IFH, enable padding */
505 spx5_wr(ASM_PORT_CFG_PAD_ENA_SET(1) |
506 ASM_PORT_CFG_NO_PREAMBLE_ENA_SET(1) |
507 ASM_PORT_CFG_INJ_FORMAT_CFG_SET(1), /* 1 = IFH */
508 sparx5, ASM_PORT_CFG(portno));
509
510 /* Reset WM cnt to unclog queued frames */
511 spx5_rmw(DSM_DEV_TX_STOP_WM_CFG_DEV_TX_CNT_CLR_SET(1),
512 DSM_DEV_TX_STOP_WM_CFG_DEV_TX_CNT_CLR,
513 sparx5,
514 DSM_DEV_TX_STOP_WM_CFG(portno));
515
516 /* Set Disassembler Stop Watermark level */
517 spx5_rmw(DSM_DEV_TX_STOP_WM_CFG_DEV_TX_STOP_WM_SET(100),
518 DSM_DEV_TX_STOP_WM_CFG_DEV_TX_STOP_WM,
519 sparx5,
520 DSM_DEV_TX_STOP_WM_CFG(portno));
521
522 /* Enable port in queue system */
523 urgency = sparx5_port_fwd_urg(sparx5, SPEED_2500);
524 spx5_rmw(QFWD_SWITCH_PORT_MODE_PORT_ENA_SET(1) |
525 QFWD_SWITCH_PORT_MODE_FWD_URGENCY_SET(urgency),
526 QFWD_SWITCH_PORT_MODE_PORT_ENA |
527 QFWD_SWITCH_PORT_MODE_FWD_URGENCY,
528 sparx5,
529 QFWD_SWITCH_PORT_MODE(portno));
530
531 /* Disable Disassembler buffer underrun watchdog
532 * to avoid truncated packets in XTR
533 */
534 spx5_rmw(DSM_BUF_CFG_UNDERFLOW_WATCHDOG_DIS_SET(1),
535 DSM_BUF_CFG_UNDERFLOW_WATCHDOG_DIS,
536 sparx5,
537 DSM_BUF_CFG(portno));
538
539 /* Disabling frame aging */
540 spx5_rmw(HSCH_PORT_MODE_AGE_DIS_SET(1),
541 HSCH_PORT_MODE_AGE_DIS,
542 sparx5,
543 HSCH_PORT_MODE(portno));
544 }
545 }
546
sparx5_fdma_start(struct sparx5 * sparx5)547 int sparx5_fdma_start(struct sparx5 *sparx5)
548 {
549 int err;
550
551 /* Reset FDMA state */
552 spx5_wr(FDMA_CTRL_NRESET_SET(0), sparx5, FDMA_CTRL);
553 spx5_wr(FDMA_CTRL_NRESET_SET(1), sparx5, FDMA_CTRL);
554
555 /* Force ACP caching but disable read/write allocation */
556 spx5_rmw(CPU_PROC_CTRL_ACP_CACHE_FORCE_ENA_SET(1) |
557 CPU_PROC_CTRL_ACP_AWCACHE_SET(0) |
558 CPU_PROC_CTRL_ACP_ARCACHE_SET(0),
559 CPU_PROC_CTRL_ACP_CACHE_FORCE_ENA |
560 CPU_PROC_CTRL_ACP_AWCACHE |
561 CPU_PROC_CTRL_ACP_ARCACHE,
562 sparx5, CPU_PROC_CTRL);
563
564 sparx5_fdma_injection_mode(sparx5);
565 sparx5_fdma_rx_init(sparx5, &sparx5->rx, FDMA_XTR_CHANNEL);
566 sparx5_fdma_tx_init(sparx5, &sparx5->tx, FDMA_INJ_CHANNEL);
567 err = sparx5_fdma_rx_alloc(sparx5);
568 if (err) {
569 dev_err(sparx5->dev, "Could not allocate RX buffers: %d\n", err);
570 return err;
571 }
572 err = sparx5_fdma_tx_alloc(sparx5);
573 if (err) {
574 dev_err(sparx5->dev, "Could not allocate TX buffers: %d\n", err);
575 return err;
576 }
577 return err;
578 }
579
sparx5_fdma_port_ctrl(struct sparx5 * sparx5)580 static u32 sparx5_fdma_port_ctrl(struct sparx5 *sparx5)
581 {
582 return spx5_rd(sparx5, FDMA_PORT_CTRL(0));
583 }
584
sparx5_fdma_stop(struct sparx5 * sparx5)585 int sparx5_fdma_stop(struct sparx5 *sparx5)
586 {
587 u32 val;
588
589 napi_disable(&sparx5->rx.napi);
590 /* Stop the fdma and channel interrupts */
591 sparx5_fdma_rx_deactivate(sparx5, &sparx5->rx);
592 sparx5_fdma_tx_deactivate(sparx5, &sparx5->tx);
593 /* Wait for the RX channel to stop */
594 read_poll_timeout(sparx5_fdma_port_ctrl, val,
595 FDMA_PORT_CTRL_XTR_BUF_IS_EMPTY_GET(val) == 0,
596 500, 10000, 0, sparx5);
597 return 0;
598 }
599