1 /*
2 * sparse memory mappings.
3 */
4 #include <linux/mm.h>
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/highmem.h>
9 #include <linux/export.h>
10 #include <linux/spinlock.h>
11 #include <linux/vmalloc.h>
12 #include "internal.h"
13 #include <asm/dma.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
16
17 /*
18 * Permanent SPARSEMEM data:
19 *
20 * 1) mem_section - memory sections, mem_map's for valid memory
21 */
22 #ifdef CONFIG_SPARSEMEM_EXTREME
23 struct mem_section *mem_section[NR_SECTION_ROOTS]
24 ____cacheline_internodealigned_in_smp;
25 #else
26 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
27 ____cacheline_internodealigned_in_smp;
28 #endif
29 EXPORT_SYMBOL(mem_section);
30
31 #ifdef NODE_NOT_IN_PAGE_FLAGS
32 /*
33 * If we did not store the node number in the page then we have to
34 * do a lookup in the section_to_node_table in order to find which
35 * node the page belongs to.
36 */
37 #if MAX_NUMNODES <= 256
38 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
39 #else
40 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #endif
42
page_to_nid(const struct page * page)43 int page_to_nid(const struct page *page)
44 {
45 return section_to_node_table[page_to_section(page)];
46 }
47 EXPORT_SYMBOL(page_to_nid);
48
set_section_nid(unsigned long section_nr,int nid)49 static void set_section_nid(unsigned long section_nr, int nid)
50 {
51 section_to_node_table[section_nr] = nid;
52 }
53 #else /* !NODE_NOT_IN_PAGE_FLAGS */
set_section_nid(unsigned long section_nr,int nid)54 static inline void set_section_nid(unsigned long section_nr, int nid)
55 {
56 }
57 #endif
58
59 #ifdef CONFIG_SPARSEMEM_EXTREME
sparse_index_alloc(int nid)60 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
61 {
62 struct mem_section *section = NULL;
63 unsigned long array_size = SECTIONS_PER_ROOT *
64 sizeof(struct mem_section);
65
66 if (slab_is_available()) {
67 if (node_state(nid, N_HIGH_MEMORY))
68 section = kmalloc_node(array_size, GFP_KERNEL, nid);
69 else
70 section = kmalloc(array_size, GFP_KERNEL);
71 } else
72 section = alloc_bootmem_node(NODE_DATA(nid), array_size);
73
74 if (section)
75 memset(section, 0, array_size);
76
77 return section;
78 }
79
sparse_index_init(unsigned long section_nr,int nid)80 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
81 {
82 static DEFINE_SPINLOCK(index_init_lock);
83 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
84 struct mem_section *section;
85 int ret = 0;
86
87 if (mem_section[root])
88 return -EEXIST;
89
90 section = sparse_index_alloc(nid);
91 if (!section)
92 return -ENOMEM;
93 /*
94 * This lock keeps two different sections from
95 * reallocating for the same index
96 */
97 spin_lock(&index_init_lock);
98
99 if (mem_section[root]) {
100 ret = -EEXIST;
101 goto out;
102 }
103
104 mem_section[root] = section;
105 out:
106 spin_unlock(&index_init_lock);
107 return ret;
108 }
109 #else /* !SPARSEMEM_EXTREME */
sparse_index_init(unsigned long section_nr,int nid)110 static inline int sparse_index_init(unsigned long section_nr, int nid)
111 {
112 return 0;
113 }
114 #endif
115
116 /*
117 * Although written for the SPARSEMEM_EXTREME case, this happens
118 * to also work for the flat array case because
119 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
120 */
__section_nr(struct mem_section * ms)121 int __section_nr(struct mem_section* ms)
122 {
123 unsigned long root_nr;
124 struct mem_section* root;
125
126 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
127 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
128 if (!root)
129 continue;
130
131 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
132 break;
133 }
134
135 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
136 }
137
138 /*
139 * During early boot, before section_mem_map is used for an actual
140 * mem_map, we use section_mem_map to store the section's NUMA
141 * node. This keeps us from having to use another data structure. The
142 * node information is cleared just before we store the real mem_map.
143 */
sparse_encode_early_nid(int nid)144 static inline unsigned long sparse_encode_early_nid(int nid)
145 {
146 return (nid << SECTION_NID_SHIFT);
147 }
148
sparse_early_nid(struct mem_section * section)149 static inline int sparse_early_nid(struct mem_section *section)
150 {
151 return (section->section_mem_map >> SECTION_NID_SHIFT);
152 }
153
154 /* Validate the physical addressing limitations of the model */
mminit_validate_memmodel_limits(unsigned long * start_pfn,unsigned long * end_pfn)155 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
156 unsigned long *end_pfn)
157 {
158 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
159
160 /*
161 * Sanity checks - do not allow an architecture to pass
162 * in larger pfns than the maximum scope of sparsemem:
163 */
164 if (*start_pfn > max_sparsemem_pfn) {
165 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
166 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
167 *start_pfn, *end_pfn, max_sparsemem_pfn);
168 WARN_ON_ONCE(1);
169 *start_pfn = max_sparsemem_pfn;
170 *end_pfn = max_sparsemem_pfn;
171 } else if (*end_pfn > max_sparsemem_pfn) {
172 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
173 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
174 *start_pfn, *end_pfn, max_sparsemem_pfn);
175 WARN_ON_ONCE(1);
176 *end_pfn = max_sparsemem_pfn;
177 }
178 }
179
180 /* Record a memory area against a node. */
memory_present(int nid,unsigned long start,unsigned long end)181 void __init memory_present(int nid, unsigned long start, unsigned long end)
182 {
183 unsigned long pfn;
184
185 start &= PAGE_SECTION_MASK;
186 mminit_validate_memmodel_limits(&start, &end);
187 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
188 unsigned long section = pfn_to_section_nr(pfn);
189 struct mem_section *ms;
190
191 sparse_index_init(section, nid);
192 set_section_nid(section, nid);
193
194 ms = __nr_to_section(section);
195 if (!ms->section_mem_map)
196 ms->section_mem_map = sparse_encode_early_nid(nid) |
197 SECTION_MARKED_PRESENT;
198 }
199 }
200
201 /*
202 * Only used by the i386 NUMA architecures, but relatively
203 * generic code.
204 */
node_memmap_size_bytes(int nid,unsigned long start_pfn,unsigned long end_pfn)205 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
206 unsigned long end_pfn)
207 {
208 unsigned long pfn;
209 unsigned long nr_pages = 0;
210
211 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
212 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
213 if (nid != early_pfn_to_nid(pfn))
214 continue;
215
216 if (pfn_present(pfn))
217 nr_pages += PAGES_PER_SECTION;
218 }
219
220 return nr_pages * sizeof(struct page);
221 }
222
223 /*
224 * Subtle, we encode the real pfn into the mem_map such that
225 * the identity pfn - section_mem_map will return the actual
226 * physical page frame number.
227 */
sparse_encode_mem_map(struct page * mem_map,unsigned long pnum)228 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
229 {
230 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
231 }
232
233 /*
234 * Decode mem_map from the coded memmap
235 */
sparse_decode_mem_map(unsigned long coded_mem_map,unsigned long pnum)236 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
237 {
238 /* mask off the extra low bits of information */
239 coded_mem_map &= SECTION_MAP_MASK;
240 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
241 }
242
sparse_init_one_section(struct mem_section * ms,unsigned long pnum,struct page * mem_map,unsigned long * pageblock_bitmap)243 static int __meminit sparse_init_one_section(struct mem_section *ms,
244 unsigned long pnum, struct page *mem_map,
245 unsigned long *pageblock_bitmap)
246 {
247 if (!present_section(ms))
248 return -EINVAL;
249
250 ms->section_mem_map &= ~SECTION_MAP_MASK;
251 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
252 SECTION_HAS_MEM_MAP;
253 ms->pageblock_flags = pageblock_bitmap;
254
255 return 1;
256 }
257
usemap_size(void)258 unsigned long usemap_size(void)
259 {
260 unsigned long size_bytes;
261 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
262 size_bytes = roundup(size_bytes, sizeof(unsigned long));
263 return size_bytes;
264 }
265
266 #ifdef CONFIG_MEMORY_HOTPLUG
__kmalloc_section_usemap(void)267 static unsigned long *__kmalloc_section_usemap(void)
268 {
269 return kmalloc(usemap_size(), GFP_KERNEL);
270 }
271 #endif /* CONFIG_MEMORY_HOTPLUG */
272
273 #ifdef CONFIG_MEMORY_HOTREMOVE
274 static unsigned long * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data * pgdat,unsigned long count)275 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
276 unsigned long count)
277 {
278 unsigned long section_nr;
279
280 /*
281 * A page may contain usemaps for other sections preventing the
282 * page being freed and making a section unremovable while
283 * other sections referencing the usemap retmain active. Similarly,
284 * a pgdat can prevent a section being removed. If section A
285 * contains a pgdat and section B contains the usemap, both
286 * sections become inter-dependent. This allocates usemaps
287 * from the same section as the pgdat where possible to avoid
288 * this problem.
289 */
290 section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
291 return alloc_bootmem_section(usemap_size() * count, section_nr);
292 }
293
check_usemap_section_nr(int nid,unsigned long * usemap)294 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
295 {
296 unsigned long usemap_snr, pgdat_snr;
297 static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
298 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
299 struct pglist_data *pgdat = NODE_DATA(nid);
300 int usemap_nid;
301
302 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
303 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
304 if (usemap_snr == pgdat_snr)
305 return;
306
307 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
308 /* skip redundant message */
309 return;
310
311 old_usemap_snr = usemap_snr;
312 old_pgdat_snr = pgdat_snr;
313
314 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
315 if (usemap_nid != nid) {
316 printk(KERN_INFO
317 "node %d must be removed before remove section %ld\n",
318 nid, usemap_snr);
319 return;
320 }
321 /*
322 * There is a circular dependency.
323 * Some platforms allow un-removable section because they will just
324 * gather other removable sections for dynamic partitioning.
325 * Just notify un-removable section's number here.
326 */
327 printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
328 pgdat_snr, nid);
329 printk(KERN_CONT
330 " have a circular dependency on usemap and pgdat allocations\n");
331 }
332 #else
333 static unsigned long * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data * pgdat,unsigned long count)334 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
335 unsigned long count)
336 {
337 return NULL;
338 }
339
check_usemap_section_nr(int nid,unsigned long * usemap)340 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
341 {
342 }
343 #endif /* CONFIG_MEMORY_HOTREMOVE */
344
sparse_early_usemaps_alloc_node(unsigned long ** usemap_map,unsigned long pnum_begin,unsigned long pnum_end,unsigned long usemap_count,int nodeid)345 static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
346 unsigned long pnum_begin,
347 unsigned long pnum_end,
348 unsigned long usemap_count, int nodeid)
349 {
350 void *usemap;
351 unsigned long pnum;
352 int size = usemap_size();
353
354 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
355 usemap_count);
356 if (!usemap) {
357 usemap = alloc_bootmem_node(NODE_DATA(nodeid), size * usemap_count);
358 if (!usemap) {
359 printk(KERN_WARNING "%s: allocation failed\n", __func__);
360 return;
361 }
362 }
363
364 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
365 if (!present_section_nr(pnum))
366 continue;
367 usemap_map[pnum] = usemap;
368 usemap += size;
369 check_usemap_section_nr(nodeid, usemap_map[pnum]);
370 }
371 }
372
373 #ifndef CONFIG_SPARSEMEM_VMEMMAP
sparse_mem_map_populate(unsigned long pnum,int nid)374 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
375 {
376 struct page *map;
377 unsigned long size;
378
379 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
380 if (map)
381 return map;
382
383 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
384 map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
385 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
386 return map;
387 }
sparse_mem_maps_populate_node(struct page ** map_map,unsigned long pnum_begin,unsigned long pnum_end,unsigned long map_count,int nodeid)388 void __init sparse_mem_maps_populate_node(struct page **map_map,
389 unsigned long pnum_begin,
390 unsigned long pnum_end,
391 unsigned long map_count, int nodeid)
392 {
393 void *map;
394 unsigned long pnum;
395 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
396
397 map = alloc_remap(nodeid, size * map_count);
398 if (map) {
399 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
400 if (!present_section_nr(pnum))
401 continue;
402 map_map[pnum] = map;
403 map += size;
404 }
405 return;
406 }
407
408 size = PAGE_ALIGN(size);
409 map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
410 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
411 if (map) {
412 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
413 if (!present_section_nr(pnum))
414 continue;
415 map_map[pnum] = map;
416 map += size;
417 }
418 return;
419 }
420
421 /* fallback */
422 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
423 struct mem_section *ms;
424
425 if (!present_section_nr(pnum))
426 continue;
427 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
428 if (map_map[pnum])
429 continue;
430 ms = __nr_to_section(pnum);
431 printk(KERN_ERR "%s: sparsemem memory map backing failed "
432 "some memory will not be available.\n", __func__);
433 ms->section_mem_map = 0;
434 }
435 }
436 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
437
438 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
sparse_early_mem_maps_alloc_node(struct page ** map_map,unsigned long pnum_begin,unsigned long pnum_end,unsigned long map_count,int nodeid)439 static void __init sparse_early_mem_maps_alloc_node(struct page **map_map,
440 unsigned long pnum_begin,
441 unsigned long pnum_end,
442 unsigned long map_count, int nodeid)
443 {
444 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
445 map_count, nodeid);
446 }
447 #else
sparse_early_mem_map_alloc(unsigned long pnum)448 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
449 {
450 struct page *map;
451 struct mem_section *ms = __nr_to_section(pnum);
452 int nid = sparse_early_nid(ms);
453
454 map = sparse_mem_map_populate(pnum, nid);
455 if (map)
456 return map;
457
458 printk(KERN_ERR "%s: sparsemem memory map backing failed "
459 "some memory will not be available.\n", __func__);
460 ms->section_mem_map = 0;
461 return NULL;
462 }
463 #endif
464
vmemmap_populate_print_last(void)465 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
466 {
467 }
468
469 /*
470 * Allocate the accumulated non-linear sections, allocate a mem_map
471 * for each and record the physical to section mapping.
472 */
sparse_init(void)473 void __init sparse_init(void)
474 {
475 unsigned long pnum;
476 struct page *map;
477 unsigned long *usemap;
478 unsigned long **usemap_map;
479 int size;
480 int nodeid_begin = 0;
481 unsigned long pnum_begin = 0;
482 unsigned long usemap_count;
483 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
484 unsigned long map_count;
485 int size2;
486 struct page **map_map;
487 #endif
488
489 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
490 set_pageblock_order();
491
492 /*
493 * map is using big page (aka 2M in x86 64 bit)
494 * usemap is less one page (aka 24 bytes)
495 * so alloc 2M (with 2M align) and 24 bytes in turn will
496 * make next 2M slip to one more 2M later.
497 * then in big system, the memory will have a lot of holes...
498 * here try to allocate 2M pages continuously.
499 *
500 * powerpc need to call sparse_init_one_section right after each
501 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
502 */
503 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
504 usemap_map = alloc_bootmem(size);
505 if (!usemap_map)
506 panic("can not allocate usemap_map\n");
507
508 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
509 struct mem_section *ms;
510
511 if (!present_section_nr(pnum))
512 continue;
513 ms = __nr_to_section(pnum);
514 nodeid_begin = sparse_early_nid(ms);
515 pnum_begin = pnum;
516 break;
517 }
518 usemap_count = 1;
519 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
520 struct mem_section *ms;
521 int nodeid;
522
523 if (!present_section_nr(pnum))
524 continue;
525 ms = __nr_to_section(pnum);
526 nodeid = sparse_early_nid(ms);
527 if (nodeid == nodeid_begin) {
528 usemap_count++;
529 continue;
530 }
531 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
532 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
533 usemap_count, nodeid_begin);
534 /* new start, update count etc*/
535 nodeid_begin = nodeid;
536 pnum_begin = pnum;
537 usemap_count = 1;
538 }
539 /* ok, last chunk */
540 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
541 usemap_count, nodeid_begin);
542
543 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
544 size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
545 map_map = alloc_bootmem(size2);
546 if (!map_map)
547 panic("can not allocate map_map\n");
548
549 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
550 struct mem_section *ms;
551
552 if (!present_section_nr(pnum))
553 continue;
554 ms = __nr_to_section(pnum);
555 nodeid_begin = sparse_early_nid(ms);
556 pnum_begin = pnum;
557 break;
558 }
559 map_count = 1;
560 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
561 struct mem_section *ms;
562 int nodeid;
563
564 if (!present_section_nr(pnum))
565 continue;
566 ms = __nr_to_section(pnum);
567 nodeid = sparse_early_nid(ms);
568 if (nodeid == nodeid_begin) {
569 map_count++;
570 continue;
571 }
572 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
573 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum,
574 map_count, nodeid_begin);
575 /* new start, update count etc*/
576 nodeid_begin = nodeid;
577 pnum_begin = pnum;
578 map_count = 1;
579 }
580 /* ok, last chunk */
581 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS,
582 map_count, nodeid_begin);
583 #endif
584
585 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
586 if (!present_section_nr(pnum))
587 continue;
588
589 usemap = usemap_map[pnum];
590 if (!usemap)
591 continue;
592
593 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
594 map = map_map[pnum];
595 #else
596 map = sparse_early_mem_map_alloc(pnum);
597 #endif
598 if (!map)
599 continue;
600
601 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
602 usemap);
603 }
604
605 vmemmap_populate_print_last();
606
607 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
608 free_bootmem(__pa(map_map), size2);
609 #endif
610 free_bootmem(__pa(usemap_map), size);
611 }
612
613 #ifdef CONFIG_MEMORY_HOTPLUG
614 #ifdef CONFIG_SPARSEMEM_VMEMMAP
kmalloc_section_memmap(unsigned long pnum,int nid,unsigned long nr_pages)615 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
616 unsigned long nr_pages)
617 {
618 /* This will make the necessary allocations eventually. */
619 return sparse_mem_map_populate(pnum, nid);
620 }
__kfree_section_memmap(struct page * memmap,unsigned long nr_pages)621 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
622 {
623 return; /* XXX: Not implemented yet */
624 }
free_map_bootmem(struct page * memmap,unsigned long nr_pages)625 static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
626 {
627 }
628 #else
__kmalloc_section_memmap(unsigned long nr_pages)629 static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
630 {
631 struct page *page, *ret;
632 unsigned long memmap_size = sizeof(struct page) * nr_pages;
633
634 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
635 if (page)
636 goto got_map_page;
637
638 ret = vmalloc(memmap_size);
639 if (ret)
640 goto got_map_ptr;
641
642 return NULL;
643 got_map_page:
644 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
645 got_map_ptr:
646 memset(ret, 0, memmap_size);
647
648 return ret;
649 }
650
kmalloc_section_memmap(unsigned long pnum,int nid,unsigned long nr_pages)651 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
652 unsigned long nr_pages)
653 {
654 return __kmalloc_section_memmap(nr_pages);
655 }
656
__kfree_section_memmap(struct page * memmap,unsigned long nr_pages)657 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
658 {
659 if (is_vmalloc_addr(memmap))
660 vfree(memmap);
661 else
662 free_pages((unsigned long)memmap,
663 get_order(sizeof(struct page) * nr_pages));
664 }
665
free_map_bootmem(struct page * memmap,unsigned long nr_pages)666 static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
667 {
668 unsigned long maps_section_nr, removing_section_nr, i;
669 unsigned long magic;
670 struct page *page = virt_to_page(memmap);
671
672 for (i = 0; i < nr_pages; i++, page++) {
673 magic = (unsigned long) page->lru.next;
674
675 BUG_ON(magic == NODE_INFO);
676
677 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
678 removing_section_nr = page->private;
679
680 /*
681 * When this function is called, the removing section is
682 * logical offlined state. This means all pages are isolated
683 * from page allocator. If removing section's memmap is placed
684 * on the same section, it must not be freed.
685 * If it is freed, page allocator may allocate it which will
686 * be removed physically soon.
687 */
688 if (maps_section_nr != removing_section_nr)
689 put_page_bootmem(page);
690 }
691 }
692 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
693
free_section_usemap(struct page * memmap,unsigned long * usemap)694 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
695 {
696 struct page *usemap_page;
697 unsigned long nr_pages;
698
699 if (!usemap)
700 return;
701
702 usemap_page = virt_to_page(usemap);
703 /*
704 * Check to see if allocation came from hot-plug-add
705 */
706 if (PageSlab(usemap_page)) {
707 kfree(usemap);
708 if (memmap)
709 __kfree_section_memmap(memmap, PAGES_PER_SECTION);
710 return;
711 }
712
713 /*
714 * The usemap came from bootmem. This is packed with other usemaps
715 * on the section which has pgdat at boot time. Just keep it as is now.
716 */
717
718 if (memmap) {
719 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
720 >> PAGE_SHIFT;
721
722 free_map_bootmem(memmap, nr_pages);
723 }
724 }
725
726 /*
727 * returns the number of sections whose mem_maps were properly
728 * set. If this is <=0, then that means that the passed-in
729 * map was not consumed and must be freed.
730 */
sparse_add_one_section(struct zone * zone,unsigned long start_pfn,int nr_pages)731 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
732 int nr_pages)
733 {
734 unsigned long section_nr = pfn_to_section_nr(start_pfn);
735 struct pglist_data *pgdat = zone->zone_pgdat;
736 struct mem_section *ms;
737 struct page *memmap;
738 unsigned long *usemap;
739 unsigned long flags;
740 int ret;
741
742 /*
743 * no locking for this, because it does its own
744 * plus, it does a kmalloc
745 */
746 ret = sparse_index_init(section_nr, pgdat->node_id);
747 if (ret < 0 && ret != -EEXIST)
748 return ret;
749 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
750 if (!memmap)
751 return -ENOMEM;
752 usemap = __kmalloc_section_usemap();
753 if (!usemap) {
754 __kfree_section_memmap(memmap, nr_pages);
755 return -ENOMEM;
756 }
757
758 pgdat_resize_lock(pgdat, &flags);
759
760 ms = __pfn_to_section(start_pfn);
761 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
762 ret = -EEXIST;
763 goto out;
764 }
765
766 ms->section_mem_map |= SECTION_MARKED_PRESENT;
767
768 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
769
770 out:
771 pgdat_resize_unlock(pgdat, &flags);
772 if (ret <= 0) {
773 kfree(usemap);
774 __kfree_section_memmap(memmap, nr_pages);
775 }
776 return ret;
777 }
778
sparse_remove_one_section(struct zone * zone,struct mem_section * ms)779 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
780 {
781 struct page *memmap = NULL;
782 unsigned long *usemap = NULL;
783
784 if (ms->section_mem_map) {
785 usemap = ms->pageblock_flags;
786 memmap = sparse_decode_mem_map(ms->section_mem_map,
787 __section_nr(ms));
788 ms->section_mem_map = 0;
789 ms->pageblock_flags = NULL;
790 }
791
792 free_section_usemap(memmap, usemap);
793 }
794 #endif
795