1 /*
2 * linux/arch/sparc/mm/init.c
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7 * Copyright (C) 2000 Anton Blanchard (anton@samba.org)
8 */
9
10 #include <linux/module.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/errno.h>
15 #include <linux/string.h>
16 #include <linux/types.h>
17 #include <linux/ptrace.h>
18 #include <linux/mman.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/initrd.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/bootmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/poison.h>
27 #include <linux/gfp.h>
28
29 #include <asm/sections.h>
30 #include <asm/vac-ops.h>
31 #include <asm/page.h>
32 #include <asm/pgtable.h>
33 #include <asm/vaddrs.h>
34 #include <asm/pgalloc.h> /* bug in asm-generic/tlb.h: check_pgt_cache */
35 #include <asm/tlb.h>
36 #include <asm/prom.h>
37 #include <asm/leon.h>
38
39 unsigned long *sparc_valid_addr_bitmap;
40 EXPORT_SYMBOL(sparc_valid_addr_bitmap);
41
42 unsigned long phys_base;
43 EXPORT_SYMBOL(phys_base);
44
45 unsigned long pfn_base;
46 EXPORT_SYMBOL(pfn_base);
47
48 unsigned long page_kernel;
49 EXPORT_SYMBOL(page_kernel);
50
51 struct sparc_phys_banks sp_banks[SPARC_PHYS_BANKS+1];
52 unsigned long sparc_unmapped_base;
53
54 struct pgtable_cache_struct pgt_quicklists;
55
56 /* Initial ramdisk setup */
57 extern unsigned int sparc_ramdisk_image;
58 extern unsigned int sparc_ramdisk_size;
59
60 unsigned long highstart_pfn, highend_pfn;
61
62 pte_t *kmap_pte;
63 pgprot_t kmap_prot;
64
65 #define kmap_get_fixmap_pte(vaddr) \
66 pte_offset_kernel(pmd_offset(pgd_offset_k(vaddr), (vaddr)), (vaddr))
67
kmap_init(void)68 void __init kmap_init(void)
69 {
70 /* cache the first kmap pte */
71 kmap_pte = kmap_get_fixmap_pte(__fix_to_virt(FIX_KMAP_BEGIN));
72 kmap_prot = __pgprot(SRMMU_ET_PTE | SRMMU_PRIV | SRMMU_CACHE);
73 }
74
show_mem(unsigned int filter)75 void show_mem(unsigned int filter)
76 {
77 printk("Mem-info:\n");
78 show_free_areas(filter);
79 printk("Free swap: %6ldkB\n",
80 nr_swap_pages << (PAGE_SHIFT-10));
81 printk("%ld pages of RAM\n", totalram_pages);
82 printk("%ld free pages\n", nr_free_pages());
83 #if 0 /* undefined pgtable_cache_size, pgd_cache_size */
84 printk("%ld pages in page table cache\n",pgtable_cache_size);
85 #ifndef CONFIG_SMP
86 if (sparc_cpu_model == sun4m || sparc_cpu_model == sun4d)
87 printk("%ld entries in page dir cache\n",pgd_cache_size);
88 #endif
89 #endif
90 }
91
sparc_context_init(int numctx)92 void __init sparc_context_init(int numctx)
93 {
94 int ctx;
95
96 ctx_list_pool = __alloc_bootmem(numctx * sizeof(struct ctx_list), SMP_CACHE_BYTES, 0UL);
97
98 for(ctx = 0; ctx < numctx; ctx++) {
99 struct ctx_list *clist;
100
101 clist = (ctx_list_pool + ctx);
102 clist->ctx_number = ctx;
103 clist->ctx_mm = NULL;
104 }
105 ctx_free.next = ctx_free.prev = &ctx_free;
106 ctx_used.next = ctx_used.prev = &ctx_used;
107 for(ctx = 0; ctx < numctx; ctx++)
108 add_to_free_ctxlist(ctx_list_pool + ctx);
109 }
110
111 extern unsigned long cmdline_memory_size;
112 unsigned long last_valid_pfn;
113
calc_highpages(void)114 unsigned long calc_highpages(void)
115 {
116 int i;
117 int nr = 0;
118
119 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
120 unsigned long start_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;
121 unsigned long end_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;
122
123 if (end_pfn <= max_low_pfn)
124 continue;
125
126 if (start_pfn < max_low_pfn)
127 start_pfn = max_low_pfn;
128
129 nr += end_pfn - start_pfn;
130 }
131
132 return nr;
133 }
134
calc_max_low_pfn(void)135 static unsigned long calc_max_low_pfn(void)
136 {
137 int i;
138 unsigned long tmp = pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT);
139 unsigned long curr_pfn, last_pfn;
140
141 last_pfn = (sp_banks[0].base_addr + sp_banks[0].num_bytes) >> PAGE_SHIFT;
142 for (i = 1; sp_banks[i].num_bytes != 0; i++) {
143 curr_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;
144
145 if (curr_pfn >= tmp) {
146 if (last_pfn < tmp)
147 tmp = last_pfn;
148 break;
149 }
150
151 last_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;
152 }
153
154 return tmp;
155 }
156
bootmem_init(unsigned long * pages_avail)157 unsigned long __init bootmem_init(unsigned long *pages_avail)
158 {
159 unsigned long bootmap_size, start_pfn;
160 unsigned long end_of_phys_memory = 0UL;
161 unsigned long bootmap_pfn, bytes_avail, size;
162 int i;
163
164 bytes_avail = 0UL;
165 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
166 end_of_phys_memory = sp_banks[i].base_addr +
167 sp_banks[i].num_bytes;
168 bytes_avail += sp_banks[i].num_bytes;
169 if (cmdline_memory_size) {
170 if (bytes_avail > cmdline_memory_size) {
171 unsigned long slack = bytes_avail - cmdline_memory_size;
172
173 bytes_avail -= slack;
174 end_of_phys_memory -= slack;
175
176 sp_banks[i].num_bytes -= slack;
177 if (sp_banks[i].num_bytes == 0) {
178 sp_banks[i].base_addr = 0xdeadbeef;
179 } else {
180 sp_banks[i+1].num_bytes = 0;
181 sp_banks[i+1].base_addr = 0xdeadbeef;
182 }
183 break;
184 }
185 }
186 }
187
188 /* Start with page aligned address of last symbol in kernel
189 * image.
190 */
191 start_pfn = (unsigned long)__pa(PAGE_ALIGN((unsigned long) &_end));
192
193 /* Now shift down to get the real physical page frame number. */
194 start_pfn >>= PAGE_SHIFT;
195
196 bootmap_pfn = start_pfn;
197
198 max_pfn = end_of_phys_memory >> PAGE_SHIFT;
199
200 max_low_pfn = max_pfn;
201 highstart_pfn = highend_pfn = max_pfn;
202
203 if (max_low_pfn > pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT)) {
204 highstart_pfn = pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT);
205 max_low_pfn = calc_max_low_pfn();
206 printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
207 calc_highpages() >> (20 - PAGE_SHIFT));
208 }
209
210 #ifdef CONFIG_BLK_DEV_INITRD
211 /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
212 if (sparc_ramdisk_image) {
213 if (sparc_ramdisk_image >= (unsigned long)&_end - 2 * PAGE_SIZE)
214 sparc_ramdisk_image -= KERNBASE;
215 initrd_start = sparc_ramdisk_image + phys_base;
216 initrd_end = initrd_start + sparc_ramdisk_size;
217 if (initrd_end > end_of_phys_memory) {
218 printk(KERN_CRIT "initrd extends beyond end of memory "
219 "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
220 initrd_end, end_of_phys_memory);
221 initrd_start = 0;
222 }
223 if (initrd_start) {
224 if (initrd_start >= (start_pfn << PAGE_SHIFT) &&
225 initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE)
226 bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT;
227 }
228 }
229 #endif
230 /* Initialize the boot-time allocator. */
231 bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base,
232 max_low_pfn);
233
234 /* Now register the available physical memory with the
235 * allocator.
236 */
237 *pages_avail = 0;
238 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
239 unsigned long curr_pfn, last_pfn;
240
241 curr_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;
242 if (curr_pfn >= max_low_pfn)
243 break;
244
245 last_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;
246 if (last_pfn > max_low_pfn)
247 last_pfn = max_low_pfn;
248
249 /*
250 * .. finally, did all the rounding and playing
251 * around just make the area go away?
252 */
253 if (last_pfn <= curr_pfn)
254 continue;
255
256 size = (last_pfn - curr_pfn) << PAGE_SHIFT;
257 *pages_avail += last_pfn - curr_pfn;
258
259 free_bootmem(sp_banks[i].base_addr, size);
260 }
261
262 #ifdef CONFIG_BLK_DEV_INITRD
263 if (initrd_start) {
264 /* Reserve the initrd image area. */
265 size = initrd_end - initrd_start;
266 reserve_bootmem(initrd_start, size, BOOTMEM_DEFAULT);
267 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
268
269 initrd_start = (initrd_start - phys_base) + PAGE_OFFSET;
270 initrd_end = (initrd_end - phys_base) + PAGE_OFFSET;
271 }
272 #endif
273 /* Reserve the kernel text/data/bss. */
274 size = (start_pfn << PAGE_SHIFT) - phys_base;
275 reserve_bootmem(phys_base, size, BOOTMEM_DEFAULT);
276 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
277
278 /* Reserve the bootmem map. We do not account for it
279 * in pages_avail because we will release that memory
280 * in free_all_bootmem.
281 */
282 size = bootmap_size;
283 reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size, BOOTMEM_DEFAULT);
284 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
285
286 return max_pfn;
287 }
288
289 /*
290 * check_pgt_cache
291 *
292 * This is called at the end of unmapping of VMA (zap_page_range),
293 * to rescan the page cache for architecture specific things,
294 * presumably something like sun4/sun4c PMEGs. Most architectures
295 * define check_pgt_cache empty.
296 *
297 * We simply copy the 2.4 implementation for now.
298 */
299 static int pgt_cache_water[2] = { 25, 50 };
300
check_pgt_cache(void)301 void check_pgt_cache(void)
302 {
303 do_check_pgt_cache(pgt_cache_water[0], pgt_cache_water[1]);
304 }
305
306 /*
307 * paging_init() sets up the page tables: We call the MMU specific
308 * init routine based upon the Sun model type on the Sparc.
309 *
310 */
311 extern void sun4c_paging_init(void);
312 extern void srmmu_paging_init(void);
313 extern void device_scan(void);
314
315 pgprot_t PAGE_SHARED __read_mostly;
316 EXPORT_SYMBOL(PAGE_SHARED);
317
paging_init(void)318 void __init paging_init(void)
319 {
320 switch(sparc_cpu_model) {
321 case sun4c:
322 case sun4e:
323 case sun4:
324 sun4c_paging_init();
325 sparc_unmapped_base = 0xe0000000;
326 BTFIXUPSET_SETHI(sparc_unmapped_base, 0xe0000000);
327 break;
328 case sparc_leon:
329 leon_init();
330 /* fall through */
331 case sun4m:
332 case sun4d:
333 srmmu_paging_init();
334 sparc_unmapped_base = 0x50000000;
335 BTFIXUPSET_SETHI(sparc_unmapped_base, 0x50000000);
336 break;
337 default:
338 prom_printf("paging_init: Cannot init paging on this Sparc\n");
339 prom_printf("paging_init: sparc_cpu_model = %d\n", sparc_cpu_model);
340 prom_printf("paging_init: Halting...\n");
341 prom_halt();
342 }
343
344 /* Initialize the protection map with non-constant, MMU dependent values. */
345 protection_map[0] = PAGE_NONE;
346 protection_map[1] = PAGE_READONLY;
347 protection_map[2] = PAGE_COPY;
348 protection_map[3] = PAGE_COPY;
349 protection_map[4] = PAGE_READONLY;
350 protection_map[5] = PAGE_READONLY;
351 protection_map[6] = PAGE_COPY;
352 protection_map[7] = PAGE_COPY;
353 protection_map[8] = PAGE_NONE;
354 protection_map[9] = PAGE_READONLY;
355 protection_map[10] = PAGE_SHARED;
356 protection_map[11] = PAGE_SHARED;
357 protection_map[12] = PAGE_READONLY;
358 protection_map[13] = PAGE_READONLY;
359 protection_map[14] = PAGE_SHARED;
360 protection_map[15] = PAGE_SHARED;
361 btfixup();
362 prom_build_devicetree();
363 of_fill_in_cpu_data();
364 device_scan();
365 }
366
taint_real_pages(void)367 static void __init taint_real_pages(void)
368 {
369 int i;
370
371 for (i = 0; sp_banks[i].num_bytes; i++) {
372 unsigned long start, end;
373
374 start = sp_banks[i].base_addr;
375 end = start + sp_banks[i].num_bytes;
376
377 while (start < end) {
378 set_bit(start >> 20, sparc_valid_addr_bitmap);
379 start += PAGE_SIZE;
380 }
381 }
382 }
383
map_high_region(unsigned long start_pfn,unsigned long end_pfn)384 static void map_high_region(unsigned long start_pfn, unsigned long end_pfn)
385 {
386 unsigned long tmp;
387
388 #ifdef CONFIG_DEBUG_HIGHMEM
389 printk("mapping high region %08lx - %08lx\n", start_pfn, end_pfn);
390 #endif
391
392 for (tmp = start_pfn; tmp < end_pfn; tmp++) {
393 struct page *page = pfn_to_page(tmp);
394
395 ClearPageReserved(page);
396 init_page_count(page);
397 __free_page(page);
398 totalhigh_pages++;
399 }
400 }
401
mem_init(void)402 void __init mem_init(void)
403 {
404 int codepages = 0;
405 int datapages = 0;
406 int initpages = 0;
407 int reservedpages = 0;
408 int i;
409
410 if (PKMAP_BASE+LAST_PKMAP*PAGE_SIZE >= FIXADDR_START) {
411 prom_printf("BUG: fixmap and pkmap areas overlap\n");
412 prom_printf("pkbase: 0x%lx pkend: 0x%lx fixstart 0x%lx\n",
413 PKMAP_BASE,
414 (unsigned long)PKMAP_BASE+LAST_PKMAP*PAGE_SIZE,
415 FIXADDR_START);
416 prom_printf("Please mail sparclinux@vger.kernel.org.\n");
417 prom_halt();
418 }
419
420
421 /* Saves us work later. */
422 memset((void *)&empty_zero_page, 0, PAGE_SIZE);
423
424 i = last_valid_pfn >> ((20 - PAGE_SHIFT) + 5);
425 i += 1;
426 sparc_valid_addr_bitmap = (unsigned long *)
427 __alloc_bootmem(i << 2, SMP_CACHE_BYTES, 0UL);
428
429 if (sparc_valid_addr_bitmap == NULL) {
430 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
431 prom_halt();
432 }
433 memset(sparc_valid_addr_bitmap, 0, i << 2);
434
435 taint_real_pages();
436
437 max_mapnr = last_valid_pfn - pfn_base;
438 high_memory = __va(max_low_pfn << PAGE_SHIFT);
439
440 totalram_pages = free_all_bootmem();
441
442 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
443 unsigned long start_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;
444 unsigned long end_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;
445
446 num_physpages += sp_banks[i].num_bytes >> PAGE_SHIFT;
447
448 if (end_pfn <= highstart_pfn)
449 continue;
450
451 if (start_pfn < highstart_pfn)
452 start_pfn = highstart_pfn;
453
454 map_high_region(start_pfn, end_pfn);
455 }
456
457 totalram_pages += totalhigh_pages;
458
459 codepages = (((unsigned long) &_etext) - ((unsigned long)&_start));
460 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
461 datapages = (((unsigned long) &_edata) - ((unsigned long)&_etext));
462 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
463 initpages = (((unsigned long) &__init_end) - ((unsigned long) &__init_begin));
464 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
465
466 /* Ignore memory holes for the purpose of counting reserved pages */
467 for (i=0; i < max_low_pfn; i++)
468 if (test_bit(i >> (20 - PAGE_SHIFT), sparc_valid_addr_bitmap)
469 && PageReserved(pfn_to_page(i)))
470 reservedpages++;
471
472 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init, %ldk highmem)\n",
473 nr_free_pages() << (PAGE_SHIFT-10),
474 num_physpages << (PAGE_SHIFT - 10),
475 codepages << (PAGE_SHIFT-10),
476 reservedpages << (PAGE_SHIFT - 10),
477 datapages << (PAGE_SHIFT-10),
478 initpages << (PAGE_SHIFT-10),
479 totalhigh_pages << (PAGE_SHIFT-10));
480 }
481
free_initmem(void)482 void free_initmem (void)
483 {
484 unsigned long addr;
485 unsigned long freed;
486
487 addr = (unsigned long)(&__init_begin);
488 freed = (unsigned long)(&__init_end) - addr;
489 for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
490 struct page *p;
491
492 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
493 p = virt_to_page(addr);
494
495 ClearPageReserved(p);
496 init_page_count(p);
497 __free_page(p);
498 totalram_pages++;
499 num_physpages++;
500 }
501 printk(KERN_INFO "Freeing unused kernel memory: %ldk freed\n",
502 freed >> 10);
503 }
504
505 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)506 void free_initrd_mem(unsigned long start, unsigned long end)
507 {
508 if (start < end)
509 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n",
510 (end - start) >> 10);
511 for (; start < end; start += PAGE_SIZE) {
512 struct page *p;
513
514 memset((void *)start, POISON_FREE_INITMEM, PAGE_SIZE);
515 p = virt_to_page(start);
516
517 ClearPageReserved(p);
518 init_page_count(p);
519 __free_page(p);
520 totalram_pages++;
521 num_physpages++;
522 }
523 }
524 #endif
525
sparc_flush_page_to_ram(struct page * page)526 void sparc_flush_page_to_ram(struct page *page)
527 {
528 unsigned long vaddr = (unsigned long)page_address(page);
529
530 if (vaddr)
531 __flush_page_to_ram(vaddr);
532 }
533 EXPORT_SYMBOL(sparc_flush_page_to_ram);
534