1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 #ifndef KVM_X86_MMU_SPTE_H
4 #define KVM_X86_MMU_SPTE_H
5 
6 #include "mmu_internal.h"
7 
8 /*
9  * A MMU present SPTE is backed by actual memory and may or may not be present
10  * in hardware.  E.g. MMIO SPTEs are not considered present.  Use bit 11, as it
11  * is ignored by all flavors of SPTEs and checking a low bit often generates
12  * better code than for a high bit, e.g. 56+.  MMU present checks are pervasive
13  * enough that the improved code generation is noticeable in KVM's footprint.
14  */
15 #define SPTE_MMU_PRESENT_MASK		BIT_ULL(11)
16 
17 /*
18  * TDP SPTES (more specifically, EPT SPTEs) may not have A/D bits, and may also
19  * be restricted to using write-protection (for L2 when CPU dirty logging, i.e.
20  * PML, is enabled).  Use bits 52 and 53 to hold the type of A/D tracking that
21  * is must be employed for a given TDP SPTE.
22  *
23  * Note, the "enabled" mask must be '0', as bits 62:52 are _reserved_ for PAE
24  * paging, including NPT PAE.  This scheme works because legacy shadow paging
25  * is guaranteed to have A/D bits and write-protection is forced only for
26  * TDP with CPU dirty logging (PML).  If NPT ever gains PML-like support, it
27  * must be restricted to 64-bit KVM.
28  */
29 #define SPTE_TDP_AD_SHIFT		52
30 #define SPTE_TDP_AD_MASK		(3ULL << SPTE_TDP_AD_SHIFT)
31 #define SPTE_TDP_AD_ENABLED_MASK	(0ULL << SPTE_TDP_AD_SHIFT)
32 #define SPTE_TDP_AD_DISABLED_MASK	(1ULL << SPTE_TDP_AD_SHIFT)
33 #define SPTE_TDP_AD_WRPROT_ONLY_MASK	(2ULL << SPTE_TDP_AD_SHIFT)
34 static_assert(SPTE_TDP_AD_ENABLED_MASK == 0);
35 
36 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
37 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
38 #else
39 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
40 #endif
41 
42 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
43 			| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
44 
45 #define ACC_EXEC_MASK    1
46 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
47 #define ACC_USER_MASK    PT_USER_MASK
48 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
49 
50 /* The mask for the R/X bits in EPT PTEs */
51 #define PT64_EPT_READABLE_MASK			0x1ull
52 #define PT64_EPT_EXECUTABLE_MASK		0x4ull
53 
54 #define PT64_LEVEL_BITS 9
55 
56 #define PT64_LEVEL_SHIFT(level) \
57 		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
58 
59 #define PT64_INDEX(address, level)\
60 	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
61 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
62 
63 /*
64  * The mask/shift to use for saving the original R/X bits when marking the PTE
65  * as not-present for access tracking purposes. We do not save the W bit as the
66  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
67  * restored only when a write is attempted to the page.  This mask obviously
68  * must not overlap the A/D type mask.
69  */
70 #define SHADOW_ACC_TRACK_SAVED_BITS_MASK (PT64_EPT_READABLE_MASK | \
71 					  PT64_EPT_EXECUTABLE_MASK)
72 #define SHADOW_ACC_TRACK_SAVED_BITS_SHIFT 54
73 #define SHADOW_ACC_TRACK_SAVED_MASK	(SHADOW_ACC_TRACK_SAVED_BITS_MASK << \
74 					 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
75 static_assert(!(SPTE_TDP_AD_MASK & SHADOW_ACC_TRACK_SAVED_MASK));
76 
77 /*
78  * {DEFAULT,EPT}_SPTE_{HOST,MMU}_WRITABLE are used to keep track of why a given
79  * SPTE is write-protected. See is_writable_pte() for details.
80  */
81 
82 /* Bits 9 and 10 are ignored by all non-EPT PTEs. */
83 #define DEFAULT_SPTE_HOST_WRITABLE	BIT_ULL(9)
84 #define DEFAULT_SPTE_MMU_WRITABLE	BIT_ULL(10)
85 
86 /*
87  * Low ignored bits are at a premium for EPT, use high ignored bits, taking care
88  * to not overlap the A/D type mask or the saved access bits of access-tracked
89  * SPTEs when A/D bits are disabled.
90  */
91 #define EPT_SPTE_HOST_WRITABLE		BIT_ULL(57)
92 #define EPT_SPTE_MMU_WRITABLE		BIT_ULL(58)
93 
94 static_assert(!(EPT_SPTE_HOST_WRITABLE & SPTE_TDP_AD_MASK));
95 static_assert(!(EPT_SPTE_MMU_WRITABLE & SPTE_TDP_AD_MASK));
96 static_assert(!(EPT_SPTE_HOST_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK));
97 static_assert(!(EPT_SPTE_MMU_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK));
98 
99 /* Defined only to keep the above static asserts readable. */
100 #undef SHADOW_ACC_TRACK_SAVED_MASK
101 
102 /*
103  * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
104  * the memslots generation and is derived as follows:
105  *
106  * Bits 0-7 of the MMIO generation are propagated to spte bits 3-10
107  * Bits 8-18 of the MMIO generation are propagated to spte bits 52-62
108  *
109  * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
110  * the MMIO generation number, as doing so would require stealing a bit from
111  * the "real" generation number and thus effectively halve the maximum number
112  * of MMIO generations that can be handled before encountering a wrap (which
113  * requires a full MMU zap).  The flag is instead explicitly queried when
114  * checking for MMIO spte cache hits.
115  */
116 
117 #define MMIO_SPTE_GEN_LOW_START		3
118 #define MMIO_SPTE_GEN_LOW_END		10
119 
120 #define MMIO_SPTE_GEN_HIGH_START	52
121 #define MMIO_SPTE_GEN_HIGH_END		62
122 
123 #define MMIO_SPTE_GEN_LOW_MASK		GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
124 						    MMIO_SPTE_GEN_LOW_START)
125 #define MMIO_SPTE_GEN_HIGH_MASK		GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
126 						    MMIO_SPTE_GEN_HIGH_START)
127 static_assert(!(SPTE_MMU_PRESENT_MASK &
128 		(MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK)));
129 
130 #define MMIO_SPTE_GEN_LOW_BITS		(MMIO_SPTE_GEN_LOW_END - MMIO_SPTE_GEN_LOW_START + 1)
131 #define MMIO_SPTE_GEN_HIGH_BITS		(MMIO_SPTE_GEN_HIGH_END - MMIO_SPTE_GEN_HIGH_START + 1)
132 
133 /* remember to adjust the comment above as well if you change these */
134 static_assert(MMIO_SPTE_GEN_LOW_BITS == 8 && MMIO_SPTE_GEN_HIGH_BITS == 11);
135 
136 #define MMIO_SPTE_GEN_LOW_SHIFT		(MMIO_SPTE_GEN_LOW_START - 0)
137 #define MMIO_SPTE_GEN_HIGH_SHIFT	(MMIO_SPTE_GEN_HIGH_START - MMIO_SPTE_GEN_LOW_BITS)
138 
139 #define MMIO_SPTE_GEN_MASK		GENMASK_ULL(MMIO_SPTE_GEN_LOW_BITS + MMIO_SPTE_GEN_HIGH_BITS - 1, 0)
140 
141 extern u64 __read_mostly shadow_host_writable_mask;
142 extern u64 __read_mostly shadow_mmu_writable_mask;
143 extern u64 __read_mostly shadow_nx_mask;
144 extern u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
145 extern u64 __read_mostly shadow_user_mask;
146 extern u64 __read_mostly shadow_accessed_mask;
147 extern u64 __read_mostly shadow_dirty_mask;
148 extern u64 __read_mostly shadow_mmio_value;
149 extern u64 __read_mostly shadow_mmio_mask;
150 extern u64 __read_mostly shadow_mmio_access_mask;
151 extern u64 __read_mostly shadow_present_mask;
152 extern u64 __read_mostly shadow_me_value;
153 extern u64 __read_mostly shadow_me_mask;
154 
155 /*
156  * SPTEs in MMUs without A/D bits are marked with SPTE_TDP_AD_DISABLED_MASK;
157  * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
158  * pages.
159  */
160 extern u64 __read_mostly shadow_acc_track_mask;
161 
162 /*
163  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
164  * to guard against L1TF attacks.
165  */
166 extern u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
167 
168 /*
169  * The number of high-order 1 bits to use in the mask above.
170  */
171 #define SHADOW_NONPRESENT_OR_RSVD_MASK_LEN 5
172 
173 /*
174  * If a thread running without exclusive control of the MMU lock must perform a
175  * multi-part operation on an SPTE, it can set the SPTE to REMOVED_SPTE as a
176  * non-present intermediate value. Other threads which encounter this value
177  * should not modify the SPTE.
178  *
179  * Use a semi-arbitrary value that doesn't set RWX bits, i.e. is not-present on
180  * bot AMD and Intel CPUs, and doesn't set PFN bits, i.e. doesn't create a L1TF
181  * vulnerability.  Use only low bits to avoid 64-bit immediates.
182  *
183  * Only used by the TDP MMU.
184  */
185 #define REMOVED_SPTE	0x5a0ULL
186 
187 /* Removed SPTEs must not be misconstrued as shadow present PTEs. */
188 static_assert(!(REMOVED_SPTE & SPTE_MMU_PRESENT_MASK));
189 
is_removed_spte(u64 spte)190 static inline bool is_removed_spte(u64 spte)
191 {
192 	return spte == REMOVED_SPTE;
193 }
194 
195 /*
196  * In some cases, we need to preserve the GFN of a non-present or reserved
197  * SPTE when we usurp the upper five bits of the physical address space to
198  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
199  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
200  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
201  * high and low parts.  This mask covers the lower bits of the GFN.
202  */
203 extern u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
204 
is_mmio_spte(u64 spte)205 static inline bool is_mmio_spte(u64 spte)
206 {
207 	return (spte & shadow_mmio_mask) == shadow_mmio_value &&
208 	       likely(enable_mmio_caching);
209 }
210 
is_shadow_present_pte(u64 pte)211 static inline bool is_shadow_present_pte(u64 pte)
212 {
213 	return !!(pte & SPTE_MMU_PRESENT_MASK);
214 }
215 
216 /*
217  * Returns true if A/D bits are supported in hardware and are enabled by KVM.
218  * When enabled, KVM uses A/D bits for all non-nested MMUs.  Because L1 can
219  * disable A/D bits in EPTP12, SP and SPTE variants are needed to handle the
220  * scenario where KVM is using A/D bits for L1, but not L2.
221  */
kvm_ad_enabled(void)222 static inline bool kvm_ad_enabled(void)
223 {
224 	return !!shadow_accessed_mask;
225 }
226 
sp_ad_disabled(struct kvm_mmu_page * sp)227 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
228 {
229 	return sp->role.ad_disabled;
230 }
231 
spte_ad_enabled(u64 spte)232 static inline bool spte_ad_enabled(u64 spte)
233 {
234 	MMU_WARN_ON(!is_shadow_present_pte(spte));
235 	return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_DISABLED_MASK;
236 }
237 
spte_ad_need_write_protect(u64 spte)238 static inline bool spte_ad_need_write_protect(u64 spte)
239 {
240 	MMU_WARN_ON(!is_shadow_present_pte(spte));
241 	/*
242 	 * This is benign for non-TDP SPTEs as SPTE_TDP_AD_ENABLED_MASK is '0',
243 	 * and non-TDP SPTEs will never set these bits.  Optimize for 64-bit
244 	 * TDP and do the A/D type check unconditionally.
245 	 */
246 	return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_ENABLED_MASK;
247 }
248 
spte_shadow_accessed_mask(u64 spte)249 static inline u64 spte_shadow_accessed_mask(u64 spte)
250 {
251 	MMU_WARN_ON(!is_shadow_present_pte(spte));
252 	return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
253 }
254 
spte_shadow_dirty_mask(u64 spte)255 static inline u64 spte_shadow_dirty_mask(u64 spte)
256 {
257 	MMU_WARN_ON(!is_shadow_present_pte(spte));
258 	return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
259 }
260 
is_access_track_spte(u64 spte)261 static inline bool is_access_track_spte(u64 spte)
262 {
263 	return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
264 }
265 
is_large_pte(u64 pte)266 static inline bool is_large_pte(u64 pte)
267 {
268 	return pte & PT_PAGE_SIZE_MASK;
269 }
270 
is_last_spte(u64 pte,int level)271 static inline bool is_last_spte(u64 pte, int level)
272 {
273 	return (level == PG_LEVEL_4K) || is_large_pte(pte);
274 }
275 
is_executable_pte(u64 spte)276 static inline bool is_executable_pte(u64 spte)
277 {
278 	return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
279 }
280 
spte_to_pfn(u64 pte)281 static inline kvm_pfn_t spte_to_pfn(u64 pte)
282 {
283 	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
284 }
285 
is_accessed_spte(u64 spte)286 static inline bool is_accessed_spte(u64 spte)
287 {
288 	u64 accessed_mask = spte_shadow_accessed_mask(spte);
289 
290 	return accessed_mask ? spte & accessed_mask
291 			     : !is_access_track_spte(spte);
292 }
293 
is_dirty_spte(u64 spte)294 static inline bool is_dirty_spte(u64 spte)
295 {
296 	u64 dirty_mask = spte_shadow_dirty_mask(spte);
297 
298 	return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
299 }
300 
get_rsvd_bits(struct rsvd_bits_validate * rsvd_check,u64 pte,int level)301 static inline u64 get_rsvd_bits(struct rsvd_bits_validate *rsvd_check, u64 pte,
302 				int level)
303 {
304 	int bit7 = (pte >> 7) & 1;
305 
306 	return rsvd_check->rsvd_bits_mask[bit7][level-1];
307 }
308 
__is_rsvd_bits_set(struct rsvd_bits_validate * rsvd_check,u64 pte,int level)309 static inline bool __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check,
310 				      u64 pte, int level)
311 {
312 	return pte & get_rsvd_bits(rsvd_check, pte, level);
313 }
314 
__is_bad_mt_xwr(struct rsvd_bits_validate * rsvd_check,u64 pte)315 static inline bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check,
316 				   u64 pte)
317 {
318 	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
319 }
320 
is_rsvd_spte(struct rsvd_bits_validate * rsvd_check,u64 spte,int level)321 static __always_inline bool is_rsvd_spte(struct rsvd_bits_validate *rsvd_check,
322 					 u64 spte, int level)
323 {
324 	return __is_bad_mt_xwr(rsvd_check, spte) ||
325 	       __is_rsvd_bits_set(rsvd_check, spte, level);
326 }
327 
328 /*
329  * A shadow-present leaf SPTE may be non-writable for 4 possible reasons:
330  *
331  *  1. To intercept writes for dirty logging. KVM write-protects huge pages
332  *     so that they can be split be split down into the dirty logging
333  *     granularity (4KiB) whenever the guest writes to them. KVM also
334  *     write-protects 4KiB pages so that writes can be recorded in the dirty log
335  *     (e.g. if not using PML). SPTEs are write-protected for dirty logging
336  *     during the VM-iotcls that enable dirty logging.
337  *
338  *  2. To intercept writes to guest page tables that KVM is shadowing. When a
339  *     guest writes to its page table the corresponding shadow page table will
340  *     be marked "unsync". That way KVM knows which shadow page tables need to
341  *     be updated on the next TLB flush, INVLPG, etc. and which do not.
342  *
343  *  3. To prevent guest writes to read-only memory, such as for memory in a
344  *     read-only memslot or guest memory backed by a read-only VMA. Writes to
345  *     such pages are disallowed entirely.
346  *
347  *  4. To emulate the Accessed bit for SPTEs without A/D bits.  Note, in this
348  *     case, the SPTE is access-protected, not just write-protected!
349  *
350  * For cases #1 and #4, KVM can safely make such SPTEs writable without taking
351  * mmu_lock as capturing the Accessed/Dirty state doesn't require taking it.
352  * To differentiate #1 and #4 from #2 and #3, KVM uses two software-only bits
353  * in the SPTE:
354  *
355  *  shadow_mmu_writable_mask, aka MMU-writable -
356  *    Cleared on SPTEs that KVM is currently write-protecting for shadow paging
357  *    purposes (case 2 above).
358  *
359  *  shadow_host_writable_mask, aka Host-writable -
360  *    Cleared on SPTEs that are not host-writable (case 3 above)
361  *
362  * Note, not all possible combinations of PT_WRITABLE_MASK,
363  * shadow_mmu_writable_mask, and shadow_host_writable_mask are valid. A given
364  * SPTE can be in only one of the following states, which map to the
365  * aforementioned 3 cases:
366  *
367  *   shadow_host_writable_mask | shadow_mmu_writable_mask | PT_WRITABLE_MASK
368  *   ------------------------- | ------------------------ | ----------------
369  *   1                         | 1                        | 1       (writable)
370  *   1                         | 1                        | 0       (case 1)
371  *   1                         | 0                        | 0       (case 2)
372  *   0                         | 0                        | 0       (case 3)
373  *
374  * The valid combinations of these bits are checked by
375  * check_spte_writable_invariants() whenever an SPTE is modified.
376  *
377  * Clearing the MMU-writable bit is always done under the MMU lock and always
378  * accompanied by a TLB flush before dropping the lock to avoid corrupting the
379  * shadow page tables between vCPUs. Write-protecting an SPTE for dirty logging
380  * (which does not clear the MMU-writable bit), does not flush TLBs before
381  * dropping the lock, as it only needs to synchronize guest writes with the
382  * dirty bitmap. Similarly, making the SPTE inaccessible (and non-writable) for
383  * access-tracking via the clear_young() MMU notifier also does not flush TLBs.
384  *
385  * So, there is the problem: clearing the MMU-writable bit can encounter a
386  * write-protected SPTE while CPUs still have writable mappings for that SPTE
387  * cached in their TLB. To address this, KVM always flushes TLBs when
388  * write-protecting SPTEs if the MMU-writable bit is set on the old SPTE.
389  *
390  * The Host-writable bit is not modified on present SPTEs, it is only set or
391  * cleared when an SPTE is first faulted in from non-present and then remains
392  * immutable.
393  */
is_writable_pte(unsigned long pte)394 static inline bool is_writable_pte(unsigned long pte)
395 {
396 	return pte & PT_WRITABLE_MASK;
397 }
398 
399 /* Note: spte must be a shadow-present leaf SPTE. */
check_spte_writable_invariants(u64 spte)400 static inline void check_spte_writable_invariants(u64 spte)
401 {
402 	if (spte & shadow_mmu_writable_mask)
403 		WARN_ONCE(!(spte & shadow_host_writable_mask),
404 			  "kvm: MMU-writable SPTE is not Host-writable: %llx",
405 			  spte);
406 	else
407 		WARN_ONCE(is_writable_pte(spte),
408 			  "kvm: Writable SPTE is not MMU-writable: %llx", spte);
409 }
410 
is_mmu_writable_spte(u64 spte)411 static inline bool is_mmu_writable_spte(u64 spte)
412 {
413 	return spte & shadow_mmu_writable_mask;
414 }
415 
get_mmio_spte_generation(u64 spte)416 static inline u64 get_mmio_spte_generation(u64 spte)
417 {
418 	u64 gen;
419 
420 	gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_SHIFT;
421 	gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_SHIFT;
422 	return gen;
423 }
424 
425 bool spte_has_volatile_bits(u64 spte);
426 
427 bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
428 	       const struct kvm_memory_slot *slot,
429 	       unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
430 	       u64 old_spte, bool prefetch, bool can_unsync,
431 	       bool host_writable, u64 *new_spte);
432 u64 make_huge_page_split_spte(u64 huge_spte, int huge_level, int index);
433 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled);
434 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access);
435 u64 mark_spte_for_access_track(u64 spte);
436 
437 /* Restore an acc-track PTE back to a regular PTE */
restore_acc_track_spte(u64 spte)438 static inline u64 restore_acc_track_spte(u64 spte)
439 {
440 	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
441 			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
442 
443 	spte &= ~shadow_acc_track_mask;
444 	spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
445 		  SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
446 	spte |= saved_bits;
447 
448 	return spte;
449 }
450 
451 u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn);
452 
453 void __init kvm_mmu_spte_module_init(void);
454 void kvm_mmu_reset_all_pte_masks(void);
455 
456 #endif
457