1 // SPDX-License-Identifier: GPL-2.0-only
2
3 #ifndef KVM_X86_MMU_SPTE_H
4 #define KVM_X86_MMU_SPTE_H
5
6 #include "mmu_internal.h"
7
8 /*
9 * A MMU present SPTE is backed by actual memory and may or may not be present
10 * in hardware. E.g. MMIO SPTEs are not considered present. Use bit 11, as it
11 * is ignored by all flavors of SPTEs and checking a low bit often generates
12 * better code than for a high bit, e.g. 56+. MMU present checks are pervasive
13 * enough that the improved code generation is noticeable in KVM's footprint.
14 */
15 #define SPTE_MMU_PRESENT_MASK BIT_ULL(11)
16
17 /*
18 * TDP SPTES (more specifically, EPT SPTEs) may not have A/D bits, and may also
19 * be restricted to using write-protection (for L2 when CPU dirty logging, i.e.
20 * PML, is enabled). Use bits 52 and 53 to hold the type of A/D tracking that
21 * is must be employed for a given TDP SPTE.
22 *
23 * Note, the "enabled" mask must be '0', as bits 62:52 are _reserved_ for PAE
24 * paging, including NPT PAE. This scheme works because legacy shadow paging
25 * is guaranteed to have A/D bits and write-protection is forced only for
26 * TDP with CPU dirty logging (PML). If NPT ever gains PML-like support, it
27 * must be restricted to 64-bit KVM.
28 */
29 #define SPTE_TDP_AD_SHIFT 52
30 #define SPTE_TDP_AD_MASK (3ULL << SPTE_TDP_AD_SHIFT)
31 #define SPTE_TDP_AD_ENABLED_MASK (0ULL << SPTE_TDP_AD_SHIFT)
32 #define SPTE_TDP_AD_DISABLED_MASK (1ULL << SPTE_TDP_AD_SHIFT)
33 #define SPTE_TDP_AD_WRPROT_ONLY_MASK (2ULL << SPTE_TDP_AD_SHIFT)
34 static_assert(SPTE_TDP_AD_ENABLED_MASK == 0);
35
36 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
37 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
38 #else
39 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
40 #endif
41
42 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
43 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
44
45 #define ACC_EXEC_MASK 1
46 #define ACC_WRITE_MASK PT_WRITABLE_MASK
47 #define ACC_USER_MASK PT_USER_MASK
48 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
49
50 /* The mask for the R/X bits in EPT PTEs */
51 #define PT64_EPT_READABLE_MASK 0x1ull
52 #define PT64_EPT_EXECUTABLE_MASK 0x4ull
53
54 #define PT64_LEVEL_BITS 9
55
56 #define PT64_LEVEL_SHIFT(level) \
57 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
58
59 #define PT64_INDEX(address, level)\
60 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
61 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
62
63 /*
64 * The mask/shift to use for saving the original R/X bits when marking the PTE
65 * as not-present for access tracking purposes. We do not save the W bit as the
66 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
67 * restored only when a write is attempted to the page. This mask obviously
68 * must not overlap the A/D type mask.
69 */
70 #define SHADOW_ACC_TRACK_SAVED_BITS_MASK (PT64_EPT_READABLE_MASK | \
71 PT64_EPT_EXECUTABLE_MASK)
72 #define SHADOW_ACC_TRACK_SAVED_BITS_SHIFT 54
73 #define SHADOW_ACC_TRACK_SAVED_MASK (SHADOW_ACC_TRACK_SAVED_BITS_MASK << \
74 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
75 static_assert(!(SPTE_TDP_AD_MASK & SHADOW_ACC_TRACK_SAVED_MASK));
76
77 /*
78 * {DEFAULT,EPT}_SPTE_{HOST,MMU}_WRITABLE are used to keep track of why a given
79 * SPTE is write-protected. See is_writable_pte() for details.
80 */
81
82 /* Bits 9 and 10 are ignored by all non-EPT PTEs. */
83 #define DEFAULT_SPTE_HOST_WRITABLE BIT_ULL(9)
84 #define DEFAULT_SPTE_MMU_WRITABLE BIT_ULL(10)
85
86 /*
87 * Low ignored bits are at a premium for EPT, use high ignored bits, taking care
88 * to not overlap the A/D type mask or the saved access bits of access-tracked
89 * SPTEs when A/D bits are disabled.
90 */
91 #define EPT_SPTE_HOST_WRITABLE BIT_ULL(57)
92 #define EPT_SPTE_MMU_WRITABLE BIT_ULL(58)
93
94 static_assert(!(EPT_SPTE_HOST_WRITABLE & SPTE_TDP_AD_MASK));
95 static_assert(!(EPT_SPTE_MMU_WRITABLE & SPTE_TDP_AD_MASK));
96 static_assert(!(EPT_SPTE_HOST_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK));
97 static_assert(!(EPT_SPTE_MMU_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK));
98
99 /* Defined only to keep the above static asserts readable. */
100 #undef SHADOW_ACC_TRACK_SAVED_MASK
101
102 /*
103 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
104 * the memslots generation and is derived as follows:
105 *
106 * Bits 0-7 of the MMIO generation are propagated to spte bits 3-10
107 * Bits 8-18 of the MMIO generation are propagated to spte bits 52-62
108 *
109 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
110 * the MMIO generation number, as doing so would require stealing a bit from
111 * the "real" generation number and thus effectively halve the maximum number
112 * of MMIO generations that can be handled before encountering a wrap (which
113 * requires a full MMU zap). The flag is instead explicitly queried when
114 * checking for MMIO spte cache hits.
115 */
116
117 #define MMIO_SPTE_GEN_LOW_START 3
118 #define MMIO_SPTE_GEN_LOW_END 10
119
120 #define MMIO_SPTE_GEN_HIGH_START 52
121 #define MMIO_SPTE_GEN_HIGH_END 62
122
123 #define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
124 MMIO_SPTE_GEN_LOW_START)
125 #define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
126 MMIO_SPTE_GEN_HIGH_START)
127 static_assert(!(SPTE_MMU_PRESENT_MASK &
128 (MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK)));
129
130 #define MMIO_SPTE_GEN_LOW_BITS (MMIO_SPTE_GEN_LOW_END - MMIO_SPTE_GEN_LOW_START + 1)
131 #define MMIO_SPTE_GEN_HIGH_BITS (MMIO_SPTE_GEN_HIGH_END - MMIO_SPTE_GEN_HIGH_START + 1)
132
133 /* remember to adjust the comment above as well if you change these */
134 static_assert(MMIO_SPTE_GEN_LOW_BITS == 8 && MMIO_SPTE_GEN_HIGH_BITS == 11);
135
136 #define MMIO_SPTE_GEN_LOW_SHIFT (MMIO_SPTE_GEN_LOW_START - 0)
137 #define MMIO_SPTE_GEN_HIGH_SHIFT (MMIO_SPTE_GEN_HIGH_START - MMIO_SPTE_GEN_LOW_BITS)
138
139 #define MMIO_SPTE_GEN_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_BITS + MMIO_SPTE_GEN_HIGH_BITS - 1, 0)
140
141 extern u64 __read_mostly shadow_host_writable_mask;
142 extern u64 __read_mostly shadow_mmu_writable_mask;
143 extern u64 __read_mostly shadow_nx_mask;
144 extern u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
145 extern u64 __read_mostly shadow_user_mask;
146 extern u64 __read_mostly shadow_accessed_mask;
147 extern u64 __read_mostly shadow_dirty_mask;
148 extern u64 __read_mostly shadow_mmio_value;
149 extern u64 __read_mostly shadow_mmio_mask;
150 extern u64 __read_mostly shadow_mmio_access_mask;
151 extern u64 __read_mostly shadow_present_mask;
152 extern u64 __read_mostly shadow_me_value;
153 extern u64 __read_mostly shadow_me_mask;
154
155 /*
156 * SPTEs in MMUs without A/D bits are marked with SPTE_TDP_AD_DISABLED_MASK;
157 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
158 * pages.
159 */
160 extern u64 __read_mostly shadow_acc_track_mask;
161
162 /*
163 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
164 * to guard against L1TF attacks.
165 */
166 extern u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
167
168 /*
169 * The number of high-order 1 bits to use in the mask above.
170 */
171 #define SHADOW_NONPRESENT_OR_RSVD_MASK_LEN 5
172
173 /*
174 * If a thread running without exclusive control of the MMU lock must perform a
175 * multi-part operation on an SPTE, it can set the SPTE to REMOVED_SPTE as a
176 * non-present intermediate value. Other threads which encounter this value
177 * should not modify the SPTE.
178 *
179 * Use a semi-arbitrary value that doesn't set RWX bits, i.e. is not-present on
180 * bot AMD and Intel CPUs, and doesn't set PFN bits, i.e. doesn't create a L1TF
181 * vulnerability. Use only low bits to avoid 64-bit immediates.
182 *
183 * Only used by the TDP MMU.
184 */
185 #define REMOVED_SPTE 0x5a0ULL
186
187 /* Removed SPTEs must not be misconstrued as shadow present PTEs. */
188 static_assert(!(REMOVED_SPTE & SPTE_MMU_PRESENT_MASK));
189
is_removed_spte(u64 spte)190 static inline bool is_removed_spte(u64 spte)
191 {
192 return spte == REMOVED_SPTE;
193 }
194
195 /*
196 * In some cases, we need to preserve the GFN of a non-present or reserved
197 * SPTE when we usurp the upper five bits of the physical address space to
198 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
199 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
200 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
201 * high and low parts. This mask covers the lower bits of the GFN.
202 */
203 extern u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
204
is_mmio_spte(u64 spte)205 static inline bool is_mmio_spte(u64 spte)
206 {
207 return (spte & shadow_mmio_mask) == shadow_mmio_value &&
208 likely(enable_mmio_caching);
209 }
210
is_shadow_present_pte(u64 pte)211 static inline bool is_shadow_present_pte(u64 pte)
212 {
213 return !!(pte & SPTE_MMU_PRESENT_MASK);
214 }
215
216 /*
217 * Returns true if A/D bits are supported in hardware and are enabled by KVM.
218 * When enabled, KVM uses A/D bits for all non-nested MMUs. Because L1 can
219 * disable A/D bits in EPTP12, SP and SPTE variants are needed to handle the
220 * scenario where KVM is using A/D bits for L1, but not L2.
221 */
kvm_ad_enabled(void)222 static inline bool kvm_ad_enabled(void)
223 {
224 return !!shadow_accessed_mask;
225 }
226
sp_ad_disabled(struct kvm_mmu_page * sp)227 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
228 {
229 return sp->role.ad_disabled;
230 }
231
spte_ad_enabled(u64 spte)232 static inline bool spte_ad_enabled(u64 spte)
233 {
234 MMU_WARN_ON(!is_shadow_present_pte(spte));
235 return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_DISABLED_MASK;
236 }
237
spte_ad_need_write_protect(u64 spte)238 static inline bool spte_ad_need_write_protect(u64 spte)
239 {
240 MMU_WARN_ON(!is_shadow_present_pte(spte));
241 /*
242 * This is benign for non-TDP SPTEs as SPTE_TDP_AD_ENABLED_MASK is '0',
243 * and non-TDP SPTEs will never set these bits. Optimize for 64-bit
244 * TDP and do the A/D type check unconditionally.
245 */
246 return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_ENABLED_MASK;
247 }
248
spte_shadow_accessed_mask(u64 spte)249 static inline u64 spte_shadow_accessed_mask(u64 spte)
250 {
251 MMU_WARN_ON(!is_shadow_present_pte(spte));
252 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
253 }
254
spte_shadow_dirty_mask(u64 spte)255 static inline u64 spte_shadow_dirty_mask(u64 spte)
256 {
257 MMU_WARN_ON(!is_shadow_present_pte(spte));
258 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
259 }
260
is_access_track_spte(u64 spte)261 static inline bool is_access_track_spte(u64 spte)
262 {
263 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
264 }
265
is_large_pte(u64 pte)266 static inline bool is_large_pte(u64 pte)
267 {
268 return pte & PT_PAGE_SIZE_MASK;
269 }
270
is_last_spte(u64 pte,int level)271 static inline bool is_last_spte(u64 pte, int level)
272 {
273 return (level == PG_LEVEL_4K) || is_large_pte(pte);
274 }
275
is_executable_pte(u64 spte)276 static inline bool is_executable_pte(u64 spte)
277 {
278 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
279 }
280
spte_to_pfn(u64 pte)281 static inline kvm_pfn_t spte_to_pfn(u64 pte)
282 {
283 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
284 }
285
is_accessed_spte(u64 spte)286 static inline bool is_accessed_spte(u64 spte)
287 {
288 u64 accessed_mask = spte_shadow_accessed_mask(spte);
289
290 return accessed_mask ? spte & accessed_mask
291 : !is_access_track_spte(spte);
292 }
293
is_dirty_spte(u64 spte)294 static inline bool is_dirty_spte(u64 spte)
295 {
296 u64 dirty_mask = spte_shadow_dirty_mask(spte);
297
298 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
299 }
300
get_rsvd_bits(struct rsvd_bits_validate * rsvd_check,u64 pte,int level)301 static inline u64 get_rsvd_bits(struct rsvd_bits_validate *rsvd_check, u64 pte,
302 int level)
303 {
304 int bit7 = (pte >> 7) & 1;
305
306 return rsvd_check->rsvd_bits_mask[bit7][level-1];
307 }
308
__is_rsvd_bits_set(struct rsvd_bits_validate * rsvd_check,u64 pte,int level)309 static inline bool __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check,
310 u64 pte, int level)
311 {
312 return pte & get_rsvd_bits(rsvd_check, pte, level);
313 }
314
__is_bad_mt_xwr(struct rsvd_bits_validate * rsvd_check,u64 pte)315 static inline bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check,
316 u64 pte)
317 {
318 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
319 }
320
is_rsvd_spte(struct rsvd_bits_validate * rsvd_check,u64 spte,int level)321 static __always_inline bool is_rsvd_spte(struct rsvd_bits_validate *rsvd_check,
322 u64 spte, int level)
323 {
324 return __is_bad_mt_xwr(rsvd_check, spte) ||
325 __is_rsvd_bits_set(rsvd_check, spte, level);
326 }
327
328 /*
329 * A shadow-present leaf SPTE may be non-writable for 4 possible reasons:
330 *
331 * 1. To intercept writes for dirty logging. KVM write-protects huge pages
332 * so that they can be split be split down into the dirty logging
333 * granularity (4KiB) whenever the guest writes to them. KVM also
334 * write-protects 4KiB pages so that writes can be recorded in the dirty log
335 * (e.g. if not using PML). SPTEs are write-protected for dirty logging
336 * during the VM-iotcls that enable dirty logging.
337 *
338 * 2. To intercept writes to guest page tables that KVM is shadowing. When a
339 * guest writes to its page table the corresponding shadow page table will
340 * be marked "unsync". That way KVM knows which shadow page tables need to
341 * be updated on the next TLB flush, INVLPG, etc. and which do not.
342 *
343 * 3. To prevent guest writes to read-only memory, such as for memory in a
344 * read-only memslot or guest memory backed by a read-only VMA. Writes to
345 * such pages are disallowed entirely.
346 *
347 * 4. To emulate the Accessed bit for SPTEs without A/D bits. Note, in this
348 * case, the SPTE is access-protected, not just write-protected!
349 *
350 * For cases #1 and #4, KVM can safely make such SPTEs writable without taking
351 * mmu_lock as capturing the Accessed/Dirty state doesn't require taking it.
352 * To differentiate #1 and #4 from #2 and #3, KVM uses two software-only bits
353 * in the SPTE:
354 *
355 * shadow_mmu_writable_mask, aka MMU-writable -
356 * Cleared on SPTEs that KVM is currently write-protecting for shadow paging
357 * purposes (case 2 above).
358 *
359 * shadow_host_writable_mask, aka Host-writable -
360 * Cleared on SPTEs that are not host-writable (case 3 above)
361 *
362 * Note, not all possible combinations of PT_WRITABLE_MASK,
363 * shadow_mmu_writable_mask, and shadow_host_writable_mask are valid. A given
364 * SPTE can be in only one of the following states, which map to the
365 * aforementioned 3 cases:
366 *
367 * shadow_host_writable_mask | shadow_mmu_writable_mask | PT_WRITABLE_MASK
368 * ------------------------- | ------------------------ | ----------------
369 * 1 | 1 | 1 (writable)
370 * 1 | 1 | 0 (case 1)
371 * 1 | 0 | 0 (case 2)
372 * 0 | 0 | 0 (case 3)
373 *
374 * The valid combinations of these bits are checked by
375 * check_spte_writable_invariants() whenever an SPTE is modified.
376 *
377 * Clearing the MMU-writable bit is always done under the MMU lock and always
378 * accompanied by a TLB flush before dropping the lock to avoid corrupting the
379 * shadow page tables between vCPUs. Write-protecting an SPTE for dirty logging
380 * (which does not clear the MMU-writable bit), does not flush TLBs before
381 * dropping the lock, as it only needs to synchronize guest writes with the
382 * dirty bitmap. Similarly, making the SPTE inaccessible (and non-writable) for
383 * access-tracking via the clear_young() MMU notifier also does not flush TLBs.
384 *
385 * So, there is the problem: clearing the MMU-writable bit can encounter a
386 * write-protected SPTE while CPUs still have writable mappings for that SPTE
387 * cached in their TLB. To address this, KVM always flushes TLBs when
388 * write-protecting SPTEs if the MMU-writable bit is set on the old SPTE.
389 *
390 * The Host-writable bit is not modified on present SPTEs, it is only set or
391 * cleared when an SPTE is first faulted in from non-present and then remains
392 * immutable.
393 */
is_writable_pte(unsigned long pte)394 static inline bool is_writable_pte(unsigned long pte)
395 {
396 return pte & PT_WRITABLE_MASK;
397 }
398
399 /* Note: spte must be a shadow-present leaf SPTE. */
check_spte_writable_invariants(u64 spte)400 static inline void check_spte_writable_invariants(u64 spte)
401 {
402 if (spte & shadow_mmu_writable_mask)
403 WARN_ONCE(!(spte & shadow_host_writable_mask),
404 "kvm: MMU-writable SPTE is not Host-writable: %llx",
405 spte);
406 else
407 WARN_ONCE(is_writable_pte(spte),
408 "kvm: Writable SPTE is not MMU-writable: %llx", spte);
409 }
410
is_mmu_writable_spte(u64 spte)411 static inline bool is_mmu_writable_spte(u64 spte)
412 {
413 return spte & shadow_mmu_writable_mask;
414 }
415
get_mmio_spte_generation(u64 spte)416 static inline u64 get_mmio_spte_generation(u64 spte)
417 {
418 u64 gen;
419
420 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_SHIFT;
421 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_SHIFT;
422 return gen;
423 }
424
425 bool spte_has_volatile_bits(u64 spte);
426
427 bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
428 const struct kvm_memory_slot *slot,
429 unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
430 u64 old_spte, bool prefetch, bool can_unsync,
431 bool host_writable, u64 *new_spte);
432 u64 make_huge_page_split_spte(u64 huge_spte, int huge_level, int index);
433 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled);
434 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access);
435 u64 mark_spte_for_access_track(u64 spte);
436
437 /* Restore an acc-track PTE back to a regular PTE */
restore_acc_track_spte(u64 spte)438 static inline u64 restore_acc_track_spte(u64 spte)
439 {
440 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
441 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
442
443 spte &= ~shadow_acc_track_mask;
444 spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
445 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
446 spte |= saved_bits;
447
448 return spte;
449 }
450
451 u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn);
452
453 void __init kvm_mmu_spte_module_init(void);
454 void kvm_mmu_reset_all_pte_masks(void);
455
456 #endif
457