1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * sonic.c
4 *
5 * (C) 2005 Finn Thain
6 *
7 * Converted to DMA API, added zero-copy buffer handling, and
8 * (from the mac68k project) introduced dhd's support for 16-bit cards.
9 *
10 * (C) 1996,1998 by Thomas Bogendoerfer (tsbogend@alpha.franken.de)
11 *
12 * This driver is based on work from Andreas Busse, but most of
13 * the code is rewritten.
14 *
15 * (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de)
16 *
17 * Core code included by system sonic drivers
18 *
19 * And... partially rewritten again by David Huggins-Daines in order
20 * to cope with screwed up Macintosh NICs that may or may not use
21 * 16-bit DMA.
22 *
23 * (C) 1999 David Huggins-Daines <dhd@debian.org>
24 *
25 */
26
27 /*
28 * Sources: Olivetti M700-10 Risc Personal Computer hardware handbook,
29 * National Semiconductors data sheet for the DP83932B Sonic Ethernet
30 * controller, and the files "8390.c" and "skeleton.c" in this directory.
31 *
32 * Additional sources: Nat Semi data sheet for the DP83932C and Nat Semi
33 * Application Note AN-746, the files "lance.c" and "ibmlana.c". See also
34 * the NetBSD file "sys/arch/mac68k/dev/if_sn.c".
35 */
36
37 static unsigned int version_printed;
38
39 static int sonic_debug = -1;
40 module_param(sonic_debug, int, 0);
41 MODULE_PARM_DESC(sonic_debug, "debug message level");
42
sonic_msg_init(struct net_device * dev)43 static void sonic_msg_init(struct net_device *dev)
44 {
45 struct sonic_local *lp = netdev_priv(dev);
46
47 lp->msg_enable = netif_msg_init(sonic_debug, 0);
48
49 if (version_printed++ == 0)
50 netif_dbg(lp, drv, dev, "%s", version);
51 }
52
sonic_alloc_descriptors(struct net_device * dev)53 static int sonic_alloc_descriptors(struct net_device *dev)
54 {
55 struct sonic_local *lp = netdev_priv(dev);
56
57 /* Allocate a chunk of memory for the descriptors. Note that this
58 * must not cross a 64K boundary. It is smaller than one page which
59 * means that page alignment is a sufficient condition.
60 */
61 lp->descriptors =
62 dma_alloc_coherent(lp->device,
63 SIZEOF_SONIC_DESC *
64 SONIC_BUS_SCALE(lp->dma_bitmode),
65 &lp->descriptors_laddr, GFP_KERNEL);
66
67 if (!lp->descriptors)
68 return -ENOMEM;
69
70 lp->cda = lp->descriptors;
71 lp->tda = lp->cda + SIZEOF_SONIC_CDA *
72 SONIC_BUS_SCALE(lp->dma_bitmode);
73 lp->rda = lp->tda + SIZEOF_SONIC_TD * SONIC_NUM_TDS *
74 SONIC_BUS_SCALE(lp->dma_bitmode);
75 lp->rra = lp->rda + SIZEOF_SONIC_RD * SONIC_NUM_RDS *
76 SONIC_BUS_SCALE(lp->dma_bitmode);
77
78 lp->cda_laddr = lp->descriptors_laddr;
79 lp->tda_laddr = lp->cda_laddr + SIZEOF_SONIC_CDA *
80 SONIC_BUS_SCALE(lp->dma_bitmode);
81 lp->rda_laddr = lp->tda_laddr + SIZEOF_SONIC_TD * SONIC_NUM_TDS *
82 SONIC_BUS_SCALE(lp->dma_bitmode);
83 lp->rra_laddr = lp->rda_laddr + SIZEOF_SONIC_RD * SONIC_NUM_RDS *
84 SONIC_BUS_SCALE(lp->dma_bitmode);
85
86 return 0;
87 }
88
89 /*
90 * Open/initialize the SONIC controller.
91 *
92 * This routine should set everything up anew at each open, even
93 * registers that "should" only need to be set once at boot, so that
94 * there is non-reboot way to recover if something goes wrong.
95 */
sonic_open(struct net_device * dev)96 static int sonic_open(struct net_device *dev)
97 {
98 struct sonic_local *lp = netdev_priv(dev);
99 int i;
100
101 netif_dbg(lp, ifup, dev, "%s: initializing sonic driver\n", __func__);
102
103 spin_lock_init(&lp->lock);
104
105 for (i = 0; i < SONIC_NUM_RRS; i++) {
106 struct sk_buff *skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
107 if (skb == NULL) {
108 while(i > 0) { /* free any that were allocated successfully */
109 i--;
110 dev_kfree_skb(lp->rx_skb[i]);
111 lp->rx_skb[i] = NULL;
112 }
113 printk(KERN_ERR "%s: couldn't allocate receive buffers\n",
114 dev->name);
115 return -ENOMEM;
116 }
117 /* align IP header unless DMA requires otherwise */
118 if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
119 skb_reserve(skb, 2);
120 lp->rx_skb[i] = skb;
121 }
122
123 for (i = 0; i < SONIC_NUM_RRS; i++) {
124 dma_addr_t laddr = dma_map_single(lp->device, skb_put(lp->rx_skb[i], SONIC_RBSIZE),
125 SONIC_RBSIZE, DMA_FROM_DEVICE);
126 if (dma_mapping_error(lp->device, laddr)) {
127 while(i > 0) { /* free any that were mapped successfully */
128 i--;
129 dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
130 lp->rx_laddr[i] = (dma_addr_t)0;
131 }
132 for (i = 0; i < SONIC_NUM_RRS; i++) {
133 dev_kfree_skb(lp->rx_skb[i]);
134 lp->rx_skb[i] = NULL;
135 }
136 printk(KERN_ERR "%s: couldn't map rx DMA buffers\n",
137 dev->name);
138 return -ENOMEM;
139 }
140 lp->rx_laddr[i] = laddr;
141 }
142
143 /*
144 * Initialize the SONIC
145 */
146 sonic_init(dev, true);
147
148 netif_start_queue(dev);
149
150 netif_dbg(lp, ifup, dev, "%s: Initialization done\n", __func__);
151
152 return 0;
153 }
154
155 /* Wait for the SONIC to become idle. */
sonic_quiesce(struct net_device * dev,u16 mask,bool may_sleep)156 static void sonic_quiesce(struct net_device *dev, u16 mask, bool may_sleep)
157 {
158 struct sonic_local * __maybe_unused lp = netdev_priv(dev);
159 int i;
160 u16 bits;
161
162 for (i = 0; i < 1000; ++i) {
163 bits = SONIC_READ(SONIC_CMD) & mask;
164 if (!bits)
165 return;
166 if (!may_sleep)
167 udelay(20);
168 else
169 usleep_range(100, 200);
170 }
171 WARN_ONCE(1, "command deadline expired! 0x%04x\n", bits);
172 }
173
174 /*
175 * Close the SONIC device
176 */
sonic_close(struct net_device * dev)177 static int sonic_close(struct net_device *dev)
178 {
179 struct sonic_local *lp = netdev_priv(dev);
180 int i;
181
182 netif_dbg(lp, ifdown, dev, "%s\n", __func__);
183
184 netif_stop_queue(dev);
185
186 /*
187 * stop the SONIC, disable interrupts
188 */
189 SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
190 sonic_quiesce(dev, SONIC_CR_ALL, true);
191
192 SONIC_WRITE(SONIC_IMR, 0);
193 SONIC_WRITE(SONIC_ISR, 0x7fff);
194 SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
195
196 /* unmap and free skbs that haven't been transmitted */
197 for (i = 0; i < SONIC_NUM_TDS; i++) {
198 if(lp->tx_laddr[i]) {
199 dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
200 lp->tx_laddr[i] = (dma_addr_t)0;
201 }
202 if(lp->tx_skb[i]) {
203 dev_kfree_skb(lp->tx_skb[i]);
204 lp->tx_skb[i] = NULL;
205 }
206 }
207
208 /* unmap and free the receive buffers */
209 for (i = 0; i < SONIC_NUM_RRS; i++) {
210 if(lp->rx_laddr[i]) {
211 dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
212 lp->rx_laddr[i] = (dma_addr_t)0;
213 }
214 if(lp->rx_skb[i]) {
215 dev_kfree_skb(lp->rx_skb[i]);
216 lp->rx_skb[i] = NULL;
217 }
218 }
219
220 return 0;
221 }
222
sonic_tx_timeout(struct net_device * dev,unsigned int txqueue)223 static void sonic_tx_timeout(struct net_device *dev, unsigned int txqueue)
224 {
225 struct sonic_local *lp = netdev_priv(dev);
226 int i;
227 /*
228 * put the Sonic into software-reset mode and
229 * disable all interrupts before releasing DMA buffers
230 */
231 SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
232 sonic_quiesce(dev, SONIC_CR_ALL, false);
233
234 SONIC_WRITE(SONIC_IMR, 0);
235 SONIC_WRITE(SONIC_ISR, 0x7fff);
236 SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
237 /* We could resend the original skbs. Easier to re-initialise. */
238 for (i = 0; i < SONIC_NUM_TDS; i++) {
239 if(lp->tx_laddr[i]) {
240 dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
241 lp->tx_laddr[i] = (dma_addr_t)0;
242 }
243 if(lp->tx_skb[i]) {
244 dev_kfree_skb(lp->tx_skb[i]);
245 lp->tx_skb[i] = NULL;
246 }
247 }
248 /* Try to restart the adaptor. */
249 sonic_init(dev, false);
250 lp->stats.tx_errors++;
251 netif_trans_update(dev); /* prevent tx timeout */
252 netif_wake_queue(dev);
253 }
254
255 /*
256 * transmit packet
257 *
258 * Appends new TD during transmission thus avoiding any TX interrupts
259 * until we run out of TDs.
260 * This routine interacts closely with the ISR in that it may,
261 * set tx_skb[i]
262 * reset the status flags of the new TD
263 * set and reset EOL flags
264 * stop the tx queue
265 * The ISR interacts with this routine in various ways. It may,
266 * reset tx_skb[i]
267 * test the EOL and status flags of the TDs
268 * wake the tx queue
269 * Concurrently with all of this, the SONIC is potentially writing to
270 * the status flags of the TDs.
271 */
272
sonic_send_packet(struct sk_buff * skb,struct net_device * dev)273 static int sonic_send_packet(struct sk_buff *skb, struct net_device *dev)
274 {
275 struct sonic_local *lp = netdev_priv(dev);
276 dma_addr_t laddr;
277 int length;
278 int entry;
279 unsigned long flags;
280
281 netif_dbg(lp, tx_queued, dev, "%s: skb=%p\n", __func__, skb);
282
283 length = skb->len;
284 if (length < ETH_ZLEN) {
285 if (skb_padto(skb, ETH_ZLEN))
286 return NETDEV_TX_OK;
287 length = ETH_ZLEN;
288 }
289
290 /*
291 * Map the packet data into the logical DMA address space
292 */
293
294 laddr = dma_map_single(lp->device, skb->data, length, DMA_TO_DEVICE);
295 if (!laddr) {
296 pr_err_ratelimited("%s: failed to map tx DMA buffer.\n", dev->name);
297 dev_kfree_skb_any(skb);
298 return NETDEV_TX_OK;
299 }
300
301 spin_lock_irqsave(&lp->lock, flags);
302
303 entry = (lp->eol_tx + 1) & SONIC_TDS_MASK;
304
305 sonic_tda_put(dev, entry, SONIC_TD_STATUS, 0); /* clear status */
306 sonic_tda_put(dev, entry, SONIC_TD_FRAG_COUNT, 1); /* single fragment */
307 sonic_tda_put(dev, entry, SONIC_TD_PKTSIZE, length); /* length of packet */
308 sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_L, laddr & 0xffff);
309 sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_H, laddr >> 16);
310 sonic_tda_put(dev, entry, SONIC_TD_FRAG_SIZE, length);
311 sonic_tda_put(dev, entry, SONIC_TD_LINK,
312 sonic_tda_get(dev, entry, SONIC_TD_LINK) | SONIC_EOL);
313
314 sonic_tda_put(dev, lp->eol_tx, SONIC_TD_LINK, ~SONIC_EOL &
315 sonic_tda_get(dev, lp->eol_tx, SONIC_TD_LINK));
316
317 netif_dbg(lp, tx_queued, dev, "%s: issuing Tx command\n", __func__);
318
319 SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
320
321 lp->tx_len[entry] = length;
322 lp->tx_laddr[entry] = laddr;
323 lp->tx_skb[entry] = skb;
324
325 lp->eol_tx = entry;
326
327 entry = (entry + 1) & SONIC_TDS_MASK;
328 if (lp->tx_skb[entry]) {
329 /* The ring is full, the ISR has yet to process the next TD. */
330 netif_dbg(lp, tx_queued, dev, "%s: stopping queue\n", __func__);
331 netif_stop_queue(dev);
332 /* after this packet, wait for ISR to free up some TDAs */
333 }
334
335 spin_unlock_irqrestore(&lp->lock, flags);
336
337 return NETDEV_TX_OK;
338 }
339
340 /*
341 * The typical workload of the driver:
342 * Handle the network interface interrupts.
343 */
sonic_interrupt(int irq,void * dev_id)344 static irqreturn_t sonic_interrupt(int irq, void *dev_id)
345 {
346 struct net_device *dev = dev_id;
347 struct sonic_local *lp = netdev_priv(dev);
348 int status;
349 unsigned long flags;
350
351 /* The lock has two purposes. Firstly, it synchronizes sonic_interrupt()
352 * with sonic_send_packet() so that the two functions can share state.
353 * Secondly, it makes sonic_interrupt() re-entrant, as that is required
354 * by macsonic which must use two IRQs with different priority levels.
355 */
356 spin_lock_irqsave(&lp->lock, flags);
357
358 status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT;
359 if (!status) {
360 spin_unlock_irqrestore(&lp->lock, flags);
361
362 return IRQ_NONE;
363 }
364
365 do {
366 SONIC_WRITE(SONIC_ISR, status); /* clear the interrupt(s) */
367
368 if (status & SONIC_INT_PKTRX) {
369 netif_dbg(lp, intr, dev, "%s: packet rx\n", __func__);
370 sonic_rx(dev); /* got packet(s) */
371 }
372
373 if (status & SONIC_INT_TXDN) {
374 int entry = lp->cur_tx;
375 int td_status;
376 int freed_some = 0;
377
378 /* The state of a Transmit Descriptor may be inferred
379 * from { tx_skb[entry], td_status } as follows.
380 * { clear, clear } => the TD has never been used
381 * { set, clear } => the TD was handed to SONIC
382 * { set, set } => the TD was handed back
383 * { clear, set } => the TD is available for re-use
384 */
385
386 netif_dbg(lp, intr, dev, "%s: tx done\n", __func__);
387
388 while (lp->tx_skb[entry] != NULL) {
389 if ((td_status = sonic_tda_get(dev, entry, SONIC_TD_STATUS)) == 0)
390 break;
391
392 if (td_status & SONIC_TCR_PTX) {
393 lp->stats.tx_packets++;
394 lp->stats.tx_bytes += sonic_tda_get(dev, entry, SONIC_TD_PKTSIZE);
395 } else {
396 if (td_status & (SONIC_TCR_EXD |
397 SONIC_TCR_EXC | SONIC_TCR_BCM))
398 lp->stats.tx_aborted_errors++;
399 if (td_status &
400 (SONIC_TCR_NCRS | SONIC_TCR_CRLS))
401 lp->stats.tx_carrier_errors++;
402 if (td_status & SONIC_TCR_OWC)
403 lp->stats.tx_window_errors++;
404 if (td_status & SONIC_TCR_FU)
405 lp->stats.tx_fifo_errors++;
406 }
407
408 /* We must free the original skb */
409 dev_consume_skb_irq(lp->tx_skb[entry]);
410 lp->tx_skb[entry] = NULL;
411 /* and unmap DMA buffer */
412 dma_unmap_single(lp->device, lp->tx_laddr[entry], lp->tx_len[entry], DMA_TO_DEVICE);
413 lp->tx_laddr[entry] = (dma_addr_t)0;
414 freed_some = 1;
415
416 if (sonic_tda_get(dev, entry, SONIC_TD_LINK) & SONIC_EOL) {
417 entry = (entry + 1) & SONIC_TDS_MASK;
418 break;
419 }
420 entry = (entry + 1) & SONIC_TDS_MASK;
421 }
422
423 if (freed_some || lp->tx_skb[entry] == NULL)
424 netif_wake_queue(dev); /* The ring is no longer full */
425 lp->cur_tx = entry;
426 }
427
428 /*
429 * check error conditions
430 */
431 if (status & SONIC_INT_RFO) {
432 netif_dbg(lp, rx_err, dev, "%s: rx fifo overrun\n",
433 __func__);
434 }
435 if (status & SONIC_INT_RDE) {
436 netif_dbg(lp, rx_err, dev, "%s: rx descriptors exhausted\n",
437 __func__);
438 }
439 if (status & SONIC_INT_RBAE) {
440 netif_dbg(lp, rx_err, dev, "%s: rx buffer area exceeded\n",
441 __func__);
442 }
443
444 /* counter overruns; all counters are 16bit wide */
445 if (status & SONIC_INT_FAE)
446 lp->stats.rx_frame_errors += 65536;
447 if (status & SONIC_INT_CRC)
448 lp->stats.rx_crc_errors += 65536;
449 if (status & SONIC_INT_MP)
450 lp->stats.rx_missed_errors += 65536;
451
452 /* transmit error */
453 if (status & SONIC_INT_TXER) {
454 u16 tcr = SONIC_READ(SONIC_TCR);
455
456 netif_dbg(lp, tx_err, dev, "%s: TXER intr, TCR %04x\n",
457 __func__, tcr);
458
459 if (tcr & (SONIC_TCR_EXD | SONIC_TCR_EXC |
460 SONIC_TCR_FU | SONIC_TCR_BCM)) {
461 /* Aborted transmission. Try again. */
462 netif_stop_queue(dev);
463 SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
464 }
465 }
466
467 /* bus retry */
468 if (status & SONIC_INT_BR) {
469 printk(KERN_ERR "%s: Bus retry occurred! Device interrupt disabled.\n",
470 dev->name);
471 /* ... to help debug DMA problems causing endless interrupts. */
472 /* Bounce the eth interface to turn on the interrupt again. */
473 SONIC_WRITE(SONIC_IMR, 0);
474 }
475
476 status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT;
477 } while (status);
478
479 spin_unlock_irqrestore(&lp->lock, flags);
480
481 return IRQ_HANDLED;
482 }
483
484 /* Return the array index corresponding to a given Receive Buffer pointer. */
index_from_addr(struct sonic_local * lp,dma_addr_t addr,unsigned int last)485 static int index_from_addr(struct sonic_local *lp, dma_addr_t addr,
486 unsigned int last)
487 {
488 unsigned int i = last;
489
490 do {
491 i = (i + 1) & SONIC_RRS_MASK;
492 if (addr == lp->rx_laddr[i])
493 return i;
494 } while (i != last);
495
496 return -ENOENT;
497 }
498
499 /* Allocate and map a new skb to be used as a receive buffer. */
sonic_alloc_rb(struct net_device * dev,struct sonic_local * lp,struct sk_buff ** new_skb,dma_addr_t * new_addr)500 static bool sonic_alloc_rb(struct net_device *dev, struct sonic_local *lp,
501 struct sk_buff **new_skb, dma_addr_t *new_addr)
502 {
503 *new_skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
504 if (!*new_skb)
505 return false;
506
507 if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
508 skb_reserve(*new_skb, 2);
509
510 *new_addr = dma_map_single(lp->device, skb_put(*new_skb, SONIC_RBSIZE),
511 SONIC_RBSIZE, DMA_FROM_DEVICE);
512 if (!*new_addr) {
513 dev_kfree_skb(*new_skb);
514 *new_skb = NULL;
515 return false;
516 }
517
518 return true;
519 }
520
521 /* Place a new receive resource in the Receive Resource Area and update RWP. */
sonic_update_rra(struct net_device * dev,struct sonic_local * lp,dma_addr_t old_addr,dma_addr_t new_addr)522 static void sonic_update_rra(struct net_device *dev, struct sonic_local *lp,
523 dma_addr_t old_addr, dma_addr_t new_addr)
524 {
525 unsigned int entry = sonic_rr_entry(dev, SONIC_READ(SONIC_RWP));
526 unsigned int end = sonic_rr_entry(dev, SONIC_READ(SONIC_RRP));
527 u32 buf;
528
529 /* The resources in the range [RRP, RWP) belong to the SONIC. This loop
530 * scans the other resources in the RRA, those in the range [RWP, RRP).
531 */
532 do {
533 buf = (sonic_rra_get(dev, entry, SONIC_RR_BUFADR_H) << 16) |
534 sonic_rra_get(dev, entry, SONIC_RR_BUFADR_L);
535
536 if (buf == old_addr)
537 break;
538
539 entry = (entry + 1) & SONIC_RRS_MASK;
540 } while (entry != end);
541
542 WARN_ONCE(buf != old_addr, "failed to find resource!\n");
543
544 sonic_rra_put(dev, entry, SONIC_RR_BUFADR_H, new_addr >> 16);
545 sonic_rra_put(dev, entry, SONIC_RR_BUFADR_L, new_addr & 0xffff);
546
547 entry = (entry + 1) & SONIC_RRS_MASK;
548
549 SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, entry));
550 }
551
552 /*
553 * We have a good packet(s), pass it/them up the network stack.
554 */
sonic_rx(struct net_device * dev)555 static void sonic_rx(struct net_device *dev)
556 {
557 struct sonic_local *lp = netdev_priv(dev);
558 int entry = lp->cur_rx;
559 int prev_entry = lp->eol_rx;
560 bool rbe = false;
561
562 while (sonic_rda_get(dev, entry, SONIC_RD_IN_USE) == 0) {
563 u16 status = sonic_rda_get(dev, entry, SONIC_RD_STATUS);
564
565 /* If the RD has LPKT set, the chip has finished with the RB */
566 if ((status & SONIC_RCR_PRX) && (status & SONIC_RCR_LPKT)) {
567 struct sk_buff *new_skb;
568 dma_addr_t new_laddr;
569 u32 addr = (sonic_rda_get(dev, entry,
570 SONIC_RD_PKTPTR_H) << 16) |
571 sonic_rda_get(dev, entry, SONIC_RD_PKTPTR_L);
572 int i = index_from_addr(lp, addr, entry);
573
574 if (i < 0) {
575 WARN_ONCE(1, "failed to find buffer!\n");
576 break;
577 }
578
579 if (sonic_alloc_rb(dev, lp, &new_skb, &new_laddr)) {
580 struct sk_buff *used_skb = lp->rx_skb[i];
581 int pkt_len;
582
583 /* Pass the used buffer up the stack */
584 dma_unmap_single(lp->device, addr, SONIC_RBSIZE,
585 DMA_FROM_DEVICE);
586
587 pkt_len = sonic_rda_get(dev, entry,
588 SONIC_RD_PKTLEN);
589 skb_trim(used_skb, pkt_len);
590 used_skb->protocol = eth_type_trans(used_skb,
591 dev);
592 netif_rx(used_skb);
593 lp->stats.rx_packets++;
594 lp->stats.rx_bytes += pkt_len;
595
596 lp->rx_skb[i] = new_skb;
597 lp->rx_laddr[i] = new_laddr;
598 } else {
599 /* Failed to obtain a new buffer so re-use it */
600 new_laddr = addr;
601 lp->stats.rx_dropped++;
602 }
603 /* If RBE is already asserted when RWP advances then
604 * it's safe to clear RBE after processing this packet.
605 */
606 rbe = rbe || SONIC_READ(SONIC_ISR) & SONIC_INT_RBE;
607 sonic_update_rra(dev, lp, addr, new_laddr);
608 }
609 /*
610 * give back the descriptor
611 */
612 sonic_rda_put(dev, entry, SONIC_RD_STATUS, 0);
613 sonic_rda_put(dev, entry, SONIC_RD_IN_USE, 1);
614
615 prev_entry = entry;
616 entry = (entry + 1) & SONIC_RDS_MASK;
617 }
618
619 lp->cur_rx = entry;
620
621 if (prev_entry != lp->eol_rx) {
622 /* Advance the EOL flag to put descriptors back into service */
623 sonic_rda_put(dev, prev_entry, SONIC_RD_LINK, SONIC_EOL |
624 sonic_rda_get(dev, prev_entry, SONIC_RD_LINK));
625 sonic_rda_put(dev, lp->eol_rx, SONIC_RD_LINK, ~SONIC_EOL &
626 sonic_rda_get(dev, lp->eol_rx, SONIC_RD_LINK));
627 lp->eol_rx = prev_entry;
628 }
629
630 if (rbe)
631 SONIC_WRITE(SONIC_ISR, SONIC_INT_RBE);
632 }
633
634
635 /*
636 * Get the current statistics.
637 * This may be called with the device open or closed.
638 */
sonic_get_stats(struct net_device * dev)639 static struct net_device_stats *sonic_get_stats(struct net_device *dev)
640 {
641 struct sonic_local *lp = netdev_priv(dev);
642
643 /* read the tally counter from the SONIC and reset them */
644 lp->stats.rx_crc_errors += SONIC_READ(SONIC_CRCT);
645 SONIC_WRITE(SONIC_CRCT, 0xffff);
646 lp->stats.rx_frame_errors += SONIC_READ(SONIC_FAET);
647 SONIC_WRITE(SONIC_FAET, 0xffff);
648 lp->stats.rx_missed_errors += SONIC_READ(SONIC_MPT);
649 SONIC_WRITE(SONIC_MPT, 0xffff);
650
651 return &lp->stats;
652 }
653
654
655 /*
656 * Set or clear the multicast filter for this adaptor.
657 */
sonic_multicast_list(struct net_device * dev)658 static void sonic_multicast_list(struct net_device *dev)
659 {
660 struct sonic_local *lp = netdev_priv(dev);
661 unsigned int rcr;
662 struct netdev_hw_addr *ha;
663 unsigned char *addr;
664 int i;
665
666 rcr = SONIC_READ(SONIC_RCR) & ~(SONIC_RCR_PRO | SONIC_RCR_AMC);
667 rcr |= SONIC_RCR_BRD; /* accept broadcast packets */
668
669 if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
670 rcr |= SONIC_RCR_PRO;
671 } else {
672 if ((dev->flags & IFF_ALLMULTI) ||
673 (netdev_mc_count(dev) > 15)) {
674 rcr |= SONIC_RCR_AMC;
675 } else {
676 unsigned long flags;
677
678 netif_dbg(lp, ifup, dev, "%s: mc_count %d\n", __func__,
679 netdev_mc_count(dev));
680 sonic_set_cam_enable(dev, 1); /* always enable our own address */
681 i = 1;
682 netdev_for_each_mc_addr(ha, dev) {
683 addr = ha->addr;
684 sonic_cda_put(dev, i, SONIC_CD_CAP0, addr[1] << 8 | addr[0]);
685 sonic_cda_put(dev, i, SONIC_CD_CAP1, addr[3] << 8 | addr[2]);
686 sonic_cda_put(dev, i, SONIC_CD_CAP2, addr[5] << 8 | addr[4]);
687 sonic_set_cam_enable(dev, sonic_get_cam_enable(dev) | (1 << i));
688 i++;
689 }
690 SONIC_WRITE(SONIC_CDC, 16);
691 SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
692
693 /* LCAM and TXP commands can't be used simultaneously */
694 spin_lock_irqsave(&lp->lock, flags);
695 sonic_quiesce(dev, SONIC_CR_TXP, false);
696 SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
697 sonic_quiesce(dev, SONIC_CR_LCAM, false);
698 spin_unlock_irqrestore(&lp->lock, flags);
699 }
700 }
701
702 netif_dbg(lp, ifup, dev, "%s: setting RCR=%x\n", __func__, rcr);
703
704 SONIC_WRITE(SONIC_RCR, rcr);
705 }
706
707
708 /*
709 * Initialize the SONIC ethernet controller.
710 */
sonic_init(struct net_device * dev,bool may_sleep)711 static int sonic_init(struct net_device *dev, bool may_sleep)
712 {
713 struct sonic_local *lp = netdev_priv(dev);
714 int i;
715
716 /*
717 * put the Sonic into software-reset mode and
718 * disable all interrupts
719 */
720 SONIC_WRITE(SONIC_IMR, 0);
721 SONIC_WRITE(SONIC_ISR, 0x7fff);
722 SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
723
724 /* While in reset mode, clear CAM Enable register */
725 SONIC_WRITE(SONIC_CE, 0);
726
727 /*
728 * clear software reset flag, disable receiver, clear and
729 * enable interrupts, then completely initialize the SONIC
730 */
731 SONIC_WRITE(SONIC_CMD, 0);
732 SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS | SONIC_CR_STP);
733 sonic_quiesce(dev, SONIC_CR_ALL, may_sleep);
734
735 /*
736 * initialize the receive resource area
737 */
738 netif_dbg(lp, ifup, dev, "%s: initialize receive resource area\n",
739 __func__);
740
741 for (i = 0; i < SONIC_NUM_RRS; i++) {
742 u16 bufadr_l = (unsigned long)lp->rx_laddr[i] & 0xffff;
743 u16 bufadr_h = (unsigned long)lp->rx_laddr[i] >> 16;
744 sonic_rra_put(dev, i, SONIC_RR_BUFADR_L, bufadr_l);
745 sonic_rra_put(dev, i, SONIC_RR_BUFADR_H, bufadr_h);
746 sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_L, SONIC_RBSIZE >> 1);
747 sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_H, 0);
748 }
749
750 /* initialize all RRA registers */
751 SONIC_WRITE(SONIC_RSA, sonic_rr_addr(dev, 0));
752 SONIC_WRITE(SONIC_REA, sonic_rr_addr(dev, SONIC_NUM_RRS));
753 SONIC_WRITE(SONIC_RRP, sonic_rr_addr(dev, 0));
754 SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, SONIC_NUM_RRS - 1));
755 SONIC_WRITE(SONIC_URRA, lp->rra_laddr >> 16);
756 SONIC_WRITE(SONIC_EOBC, (SONIC_RBSIZE >> 1) - (lp->dma_bitmode ? 2 : 1));
757
758 /* load the resource pointers */
759 netif_dbg(lp, ifup, dev, "%s: issuing RRRA command\n", __func__);
760
761 SONIC_WRITE(SONIC_CMD, SONIC_CR_RRRA);
762 sonic_quiesce(dev, SONIC_CR_RRRA, may_sleep);
763
764 /*
765 * Initialize the receive descriptors so that they
766 * become a circular linked list, ie. let the last
767 * descriptor point to the first again.
768 */
769 netif_dbg(lp, ifup, dev, "%s: initialize receive descriptors\n",
770 __func__);
771
772 for (i=0; i<SONIC_NUM_RDS; i++) {
773 sonic_rda_put(dev, i, SONIC_RD_STATUS, 0);
774 sonic_rda_put(dev, i, SONIC_RD_PKTLEN, 0);
775 sonic_rda_put(dev, i, SONIC_RD_PKTPTR_L, 0);
776 sonic_rda_put(dev, i, SONIC_RD_PKTPTR_H, 0);
777 sonic_rda_put(dev, i, SONIC_RD_SEQNO, 0);
778 sonic_rda_put(dev, i, SONIC_RD_IN_USE, 1);
779 sonic_rda_put(dev, i, SONIC_RD_LINK,
780 lp->rda_laddr +
781 ((i+1) * SIZEOF_SONIC_RD * SONIC_BUS_SCALE(lp->dma_bitmode)));
782 }
783 /* fix last descriptor */
784 sonic_rda_put(dev, SONIC_NUM_RDS - 1, SONIC_RD_LINK,
785 (lp->rda_laddr & 0xffff) | SONIC_EOL);
786 lp->eol_rx = SONIC_NUM_RDS - 1;
787 lp->cur_rx = 0;
788 SONIC_WRITE(SONIC_URDA, lp->rda_laddr >> 16);
789 SONIC_WRITE(SONIC_CRDA, lp->rda_laddr & 0xffff);
790
791 /*
792 * initialize transmit descriptors
793 */
794 netif_dbg(lp, ifup, dev, "%s: initialize transmit descriptors\n",
795 __func__);
796
797 for (i = 0; i < SONIC_NUM_TDS; i++) {
798 sonic_tda_put(dev, i, SONIC_TD_STATUS, 0);
799 sonic_tda_put(dev, i, SONIC_TD_CONFIG, 0);
800 sonic_tda_put(dev, i, SONIC_TD_PKTSIZE, 0);
801 sonic_tda_put(dev, i, SONIC_TD_FRAG_COUNT, 0);
802 sonic_tda_put(dev, i, SONIC_TD_LINK,
803 (lp->tda_laddr & 0xffff) +
804 (i + 1) * SIZEOF_SONIC_TD * SONIC_BUS_SCALE(lp->dma_bitmode));
805 lp->tx_skb[i] = NULL;
806 }
807 /* fix last descriptor */
808 sonic_tda_put(dev, SONIC_NUM_TDS - 1, SONIC_TD_LINK,
809 (lp->tda_laddr & 0xffff));
810
811 SONIC_WRITE(SONIC_UTDA, lp->tda_laddr >> 16);
812 SONIC_WRITE(SONIC_CTDA, lp->tda_laddr & 0xffff);
813 lp->cur_tx = 0;
814 lp->eol_tx = SONIC_NUM_TDS - 1;
815
816 /*
817 * put our own address to CAM desc[0]
818 */
819 sonic_cda_put(dev, 0, SONIC_CD_CAP0, dev->dev_addr[1] << 8 | dev->dev_addr[0]);
820 sonic_cda_put(dev, 0, SONIC_CD_CAP1, dev->dev_addr[3] << 8 | dev->dev_addr[2]);
821 sonic_cda_put(dev, 0, SONIC_CD_CAP2, dev->dev_addr[5] << 8 | dev->dev_addr[4]);
822 sonic_set_cam_enable(dev, 1);
823
824 for (i = 0; i < 16; i++)
825 sonic_cda_put(dev, i, SONIC_CD_ENTRY_POINTER, i);
826
827 /*
828 * initialize CAM registers
829 */
830 SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
831 SONIC_WRITE(SONIC_CDC, 16);
832
833 /*
834 * load the CAM
835 */
836 SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
837 sonic_quiesce(dev, SONIC_CR_LCAM, may_sleep);
838
839 /*
840 * enable receiver, disable loopback
841 * and enable all interrupts
842 */
843 SONIC_WRITE(SONIC_RCR, SONIC_RCR_DEFAULT);
844 SONIC_WRITE(SONIC_TCR, SONIC_TCR_DEFAULT);
845 SONIC_WRITE(SONIC_ISR, 0x7fff);
846 SONIC_WRITE(SONIC_IMR, SONIC_IMR_DEFAULT);
847 SONIC_WRITE(SONIC_CMD, SONIC_CR_RXEN);
848
849 netif_dbg(lp, ifup, dev, "%s: new status=%x\n", __func__,
850 SONIC_READ(SONIC_CMD));
851
852 return 0;
853 }
854
855 MODULE_LICENSE("GPL");
856