1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2 
3 #include <arpa/inet.h>
4 #include <errno.h>
5 #include <limits.h>
6 #include <net/if.h>
7 #include <netdb.h>
8 #include <netinet/ip.h>
9 #include <poll.h>
10 #include <stddef.h>
11 #include <stdint.h>
12 #include <stdio.h>
13 #include <stdlib.h>
14 #include <sys/ioctl.h>
15 #include <unistd.h>
16 #include <linux/if.h>
17 
18 #include "alloc-util.h"
19 #include "errno-util.h"
20 #include "escape.h"
21 #include "fd-util.h"
22 #include "fileio.h"
23 #include "format-util.h"
24 #include "io-util.h"
25 #include "log.h"
26 #include "memory-util.h"
27 #include "parse-util.h"
28 #include "path-util.h"
29 #include "process-util.h"
30 #include "socket-util.h"
31 #include "string-table.h"
32 #include "string-util.h"
33 #include "strv.h"
34 #include "sysctl-util.h"
35 #include "user-util.h"
36 #include "utf8.h"
37 
38 #if ENABLE_IDN
39 #  define IDN_FLAGS NI_IDN
40 #else
41 #  define IDN_FLAGS 0
42 #endif
43 
44 static const char* const socket_address_type_table[] = {
45         [SOCK_STREAM] =    "Stream",
46         [SOCK_DGRAM] =     "Datagram",
47         [SOCK_RAW] =       "Raw",
48         [SOCK_RDM] =       "ReliableDatagram",
49         [SOCK_SEQPACKET] = "SequentialPacket",
50         [SOCK_DCCP] =      "DatagramCongestionControl",
51 };
52 
53 DEFINE_STRING_TABLE_LOOKUP(socket_address_type, int);
54 
socket_address_verify(const SocketAddress * a,bool strict)55 int socket_address_verify(const SocketAddress *a, bool strict) {
56         assert(a);
57 
58         /* With 'strict' we enforce additional sanity constraints which are not set by the standard,
59          * but should only apply to sockets we create ourselves. */
60 
61         switch (socket_address_family(a)) {
62 
63         case AF_INET:
64                 if (a->size != sizeof(struct sockaddr_in))
65                         return -EINVAL;
66 
67                 if (a->sockaddr.in.sin_port == 0)
68                         return -EINVAL;
69 
70                 if (!IN_SET(a->type, 0, SOCK_STREAM, SOCK_DGRAM))
71                         return -EINVAL;
72 
73                 return 0;
74 
75         case AF_INET6:
76                 if (a->size != sizeof(struct sockaddr_in6))
77                         return -EINVAL;
78 
79                 if (a->sockaddr.in6.sin6_port == 0)
80                         return -EINVAL;
81 
82                 if (!IN_SET(a->type, 0, SOCK_STREAM, SOCK_DGRAM))
83                         return -EINVAL;
84 
85                 return 0;
86 
87         case AF_UNIX:
88                 if (a->size < offsetof(struct sockaddr_un, sun_path))
89                         return -EINVAL;
90                 if (a->size > sizeof(struct sockaddr_un) + !strict)
91                         /* If !strict, allow one extra byte, since getsockname() on Linux will append
92                          * a NUL byte if we have path sockets that are above sun_path's full size. */
93                         return -EINVAL;
94 
95                 if (a->size > offsetof(struct sockaddr_un, sun_path) &&
96                     a->sockaddr.un.sun_path[0] != 0 &&
97                     strict) {
98                         /* Only validate file system sockets here, and only in strict mode */
99                         const char *e;
100 
101                         e = memchr(a->sockaddr.un.sun_path, 0, sizeof(a->sockaddr.un.sun_path));
102                         if (e) {
103                                 /* If there's an embedded NUL byte, make sure the size of the socket address matches it */
104                                 if (a->size != offsetof(struct sockaddr_un, sun_path) + (e - a->sockaddr.un.sun_path) + 1)
105                                         return -EINVAL;
106                         } else {
107                                 /* If there's no embedded NUL byte, then the size needs to match the whole
108                                  * structure or the structure with one extra NUL byte suffixed. (Yeah, Linux is awful,
109                                  * and considers both equivalent: getsockname() even extends sockaddr_un beyond its
110                                  * size if the path is non NUL terminated.) */
111                                 if (!IN_SET(a->size, sizeof(a->sockaddr.un.sun_path), sizeof(a->sockaddr.un.sun_path)+1))
112                                         return -EINVAL;
113                         }
114                 }
115 
116                 if (!IN_SET(a->type, 0, SOCK_STREAM, SOCK_DGRAM, SOCK_SEQPACKET))
117                         return -EINVAL;
118 
119                 return 0;
120 
121         case AF_NETLINK:
122 
123                 if (a->size != sizeof(struct sockaddr_nl))
124                         return -EINVAL;
125 
126                 if (!IN_SET(a->type, 0, SOCK_RAW, SOCK_DGRAM))
127                         return -EINVAL;
128 
129                 return 0;
130 
131         case AF_VSOCK:
132                 if (a->size != sizeof(struct sockaddr_vm))
133                         return -EINVAL;
134 
135                 if (!IN_SET(a->type, 0, SOCK_STREAM, SOCK_DGRAM))
136                         return -EINVAL;
137 
138                 return 0;
139 
140         default:
141                 return -EAFNOSUPPORT;
142         }
143 }
144 
socket_address_print(const SocketAddress * a,char ** ret)145 int socket_address_print(const SocketAddress *a, char **ret) {
146         int r;
147 
148         assert(a);
149         assert(ret);
150 
151         r = socket_address_verify(a, false); /* We do non-strict validation, because we want to be
152                                               * able to pretty-print any socket the kernel considers
153                                               * valid. We still need to do validation to know if we
154                                               * can meaningfully print the address. */
155         if (r < 0)
156                 return r;
157 
158         if (socket_address_family(a) == AF_NETLINK) {
159                 _cleanup_free_ char *sfamily = NULL;
160 
161                 r = netlink_family_to_string_alloc(a->protocol, &sfamily);
162                 if (r < 0)
163                         return r;
164 
165                 r = asprintf(ret, "%s %u", sfamily, a->sockaddr.nl.nl_groups);
166                 if (r < 0)
167                         return -ENOMEM;
168 
169                 return 0;
170         }
171 
172         return sockaddr_pretty(&a->sockaddr.sa, a->size, false, true, ret);
173 }
174 
socket_address_can_accept(const SocketAddress * a)175 bool socket_address_can_accept(const SocketAddress *a) {
176         assert(a);
177 
178         return
179                 IN_SET(a->type, SOCK_STREAM, SOCK_SEQPACKET);
180 }
181 
socket_address_equal(const SocketAddress * a,const SocketAddress * b)182 bool socket_address_equal(const SocketAddress *a, const SocketAddress *b) {
183         assert(a);
184         assert(b);
185 
186         /* Invalid addresses are unequal to all */
187         if (socket_address_verify(a, false) < 0 ||
188             socket_address_verify(b, false) < 0)
189                 return false;
190 
191         if (a->type != b->type)
192                 return false;
193 
194         if (socket_address_family(a) != socket_address_family(b))
195                 return false;
196 
197         switch (socket_address_family(a)) {
198 
199         case AF_INET:
200                 if (a->sockaddr.in.sin_addr.s_addr != b->sockaddr.in.sin_addr.s_addr)
201                         return false;
202 
203                 if (a->sockaddr.in.sin_port != b->sockaddr.in.sin_port)
204                         return false;
205 
206                 break;
207 
208         case AF_INET6:
209                 if (memcmp(&a->sockaddr.in6.sin6_addr, &b->sockaddr.in6.sin6_addr, sizeof(a->sockaddr.in6.sin6_addr)) != 0)
210                         return false;
211 
212                 if (a->sockaddr.in6.sin6_port != b->sockaddr.in6.sin6_port)
213                         return false;
214 
215                 break;
216 
217         case AF_UNIX:
218                 if (a->size <= offsetof(struct sockaddr_un, sun_path) ||
219                     b->size <= offsetof(struct sockaddr_un, sun_path))
220                         return false;
221 
222                 if ((a->sockaddr.un.sun_path[0] == 0) != (b->sockaddr.un.sun_path[0] == 0))
223                         return false;
224 
225                 if (a->sockaddr.un.sun_path[0]) {
226                         if (!path_equal_or_files_same(a->sockaddr.un.sun_path, b->sockaddr.un.sun_path, 0))
227                                 return false;
228                 } else {
229                         if (a->size != b->size)
230                                 return false;
231 
232                         if (memcmp(a->sockaddr.un.sun_path, b->sockaddr.un.sun_path, a->size) != 0)
233                                 return false;
234                 }
235 
236                 break;
237 
238         case AF_NETLINK:
239                 if (a->protocol != b->protocol)
240                         return false;
241 
242                 if (a->sockaddr.nl.nl_groups != b->sockaddr.nl.nl_groups)
243                         return false;
244 
245                 break;
246 
247         case AF_VSOCK:
248                 if (a->sockaddr.vm.svm_cid != b->sockaddr.vm.svm_cid)
249                         return false;
250 
251                 if (a->sockaddr.vm.svm_port != b->sockaddr.vm.svm_port)
252                         return false;
253 
254                 break;
255 
256         default:
257                 /* Cannot compare, so we assume the addresses are different */
258                 return false;
259         }
260 
261         return true;
262 }
263 
socket_address_get_path(const SocketAddress * a)264 const char* socket_address_get_path(const SocketAddress *a) {
265         assert(a);
266 
267         if (socket_address_family(a) != AF_UNIX)
268                 return NULL;
269 
270         if (a->sockaddr.un.sun_path[0] == 0)
271                 return NULL;
272 
273         /* Note that this is only safe because we know that there's an extra NUL byte after the sockaddr_un
274          * structure. On Linux AF_UNIX file system socket addresses don't have to be NUL terminated if they take up the
275          * full sun_path space. */
276         assert_cc(sizeof(union sockaddr_union) >= sizeof(struct sockaddr_un)+1);
277         return a->sockaddr.un.sun_path;
278 }
279 
socket_ipv6_is_supported(void)280 bool socket_ipv6_is_supported(void) {
281         static int cached = -1;
282 
283         if (cached < 0) {
284 
285                 if (access("/proc/net/if_inet6", F_OK) < 0) {
286 
287                         if (errno != ENOENT) {
288                                 log_debug_errno(errno, "Unexpected error when checking whether /proc/net/if_inet6 exists: %m");
289                                 return false;
290                         }
291 
292                         cached = false;
293                 } else
294                         cached = true;
295         }
296 
297         return cached;
298 }
299 
socket_ipv6_is_enabled(void)300 bool socket_ipv6_is_enabled(void) {
301         _cleanup_free_ char *v = NULL;
302         int r;
303 
304         /* Much like socket_ipv6_is_supported(), but also checks that the sysctl that disables IPv6 on all
305          * interfaces isn't turned on */
306 
307         if (!socket_ipv6_is_supported())
308                 return false;
309 
310         r = sysctl_read_ip_property(AF_INET6, "all", "disable_ipv6", &v);
311         if (r < 0) {
312                 log_debug_errno(r, "Unexpected error reading 'net.ipv6.conf.all.disable_ipv6' sysctl: %m");
313                 return true;
314         }
315 
316         r = parse_boolean(v);
317         if (r < 0) {
318                 log_debug_errno(r, "Failed to pare 'net.ipv6.conf.all.disable_ipv6' sysctl: %m");
319                 return true;
320         }
321 
322         return !r;
323 }
324 
socket_address_matches_fd(const SocketAddress * a,int fd)325 bool socket_address_matches_fd(const SocketAddress *a, int fd) {
326         SocketAddress b;
327         socklen_t solen;
328 
329         assert(a);
330         assert(fd >= 0);
331 
332         b.size = sizeof(b.sockaddr);
333         if (getsockname(fd, &b.sockaddr.sa, &b.size) < 0)
334                 return false;
335 
336         if (b.sockaddr.sa.sa_family != a->sockaddr.sa.sa_family)
337                 return false;
338 
339         solen = sizeof(b.type);
340         if (getsockopt(fd, SOL_SOCKET, SO_TYPE, &b.type, &solen) < 0)
341                 return false;
342 
343         if (b.type != a->type)
344                 return false;
345 
346         if (a->protocol != 0)  {
347                 solen = sizeof(b.protocol);
348                 if (getsockopt(fd, SOL_SOCKET, SO_PROTOCOL, &b.protocol, &solen) < 0)
349                         return false;
350 
351                 if (b.protocol != a->protocol)
352                         return false;
353         }
354 
355         return socket_address_equal(a, &b);
356 }
357 
sockaddr_port(const struct sockaddr * _sa,unsigned * ret_port)358 int sockaddr_port(const struct sockaddr *_sa, unsigned *ret_port) {
359         const union sockaddr_union *sa = (const union sockaddr_union*) _sa;
360 
361         /* Note, this returns the port as 'unsigned' rather than 'uint16_t', as AF_VSOCK knows larger ports */
362 
363         assert(sa);
364 
365         switch (sa->sa.sa_family) {
366 
367         case AF_INET:
368                 *ret_port = be16toh(sa->in.sin_port);
369                 return 0;
370 
371         case AF_INET6:
372                 *ret_port = be16toh(sa->in6.sin6_port);
373                 return 0;
374 
375         case AF_VSOCK:
376                 *ret_port = sa->vm.svm_port;
377                 return 0;
378 
379         default:
380                 return -EAFNOSUPPORT;
381         }
382 }
383 
sockaddr_in_addr(const struct sockaddr * _sa)384 const union in_addr_union *sockaddr_in_addr(const struct sockaddr *_sa) {
385         const union sockaddr_union *sa = (const union sockaddr_union*) _sa;
386 
387         if (!sa)
388                 return NULL;
389 
390         switch (sa->sa.sa_family) {
391 
392         case AF_INET:
393                 return (const union in_addr_union*) &sa->in.sin_addr;
394 
395         case AF_INET6:
396                 return (const union in_addr_union*) &sa->in6.sin6_addr;
397 
398         default:
399                 return NULL;
400         }
401 }
402 
sockaddr_set_in_addr(union sockaddr_union * u,int family,const union in_addr_union * a,uint16_t port)403 int sockaddr_set_in_addr(
404                 union sockaddr_union *u,
405                 int family,
406                 const union in_addr_union *a,
407                 uint16_t port) {
408 
409         assert(u);
410         assert(a);
411 
412         switch (family) {
413 
414         case AF_INET:
415                 u->in = (struct sockaddr_in) {
416                         .sin_family = AF_INET,
417                         .sin_addr = a->in,
418                         .sin_port = htobe16(port),
419                 };
420 
421                 return 0;
422 
423         case AF_INET6:
424                 u->in6 = (struct sockaddr_in6) {
425                         .sin6_family = AF_INET6,
426                         .sin6_addr = a->in6,
427                         .sin6_port = htobe16(port),
428                 };
429 
430                 return 0;
431 
432         default:
433                 return -EAFNOSUPPORT;
434 
435         }
436 }
437 
sockaddr_pretty(const struct sockaddr * _sa,socklen_t salen,bool translate_ipv6,bool include_port,char ** ret)438 int sockaddr_pretty(
439                 const struct sockaddr *_sa,
440                 socklen_t salen,
441                 bool translate_ipv6,
442                 bool include_port,
443                 char **ret) {
444 
445         union sockaddr_union *sa = (union sockaddr_union*) _sa;
446         char *p;
447         int r;
448 
449         assert(sa);
450         assert(salen >= sizeof(sa->sa.sa_family));
451 
452         switch (sa->sa.sa_family) {
453 
454         case AF_INET: {
455                 uint32_t a;
456 
457                 a = be32toh(sa->in.sin_addr.s_addr);
458 
459                 if (include_port)
460                         r = asprintf(&p,
461                                      "%u.%u.%u.%u:%u",
462                                      a >> 24, (a >> 16) & 0xFF, (a >> 8) & 0xFF, a & 0xFF,
463                                      be16toh(sa->in.sin_port));
464                 else
465                         r = asprintf(&p,
466                                      "%u.%u.%u.%u",
467                                      a >> 24, (a >> 16) & 0xFF, (a >> 8) & 0xFF, a & 0xFF);
468                 if (r < 0)
469                         return -ENOMEM;
470                 break;
471         }
472 
473         case AF_INET6: {
474                 static const unsigned char ipv4_prefix[] = {
475                         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF
476                 };
477 
478                 if (translate_ipv6 &&
479                     memcmp(&sa->in6.sin6_addr, ipv4_prefix, sizeof(ipv4_prefix)) == 0) {
480                         const uint8_t *a = sa->in6.sin6_addr.s6_addr+12;
481                         if (include_port)
482                                 r = asprintf(&p,
483                                              "%u.%u.%u.%u:%u",
484                                              a[0], a[1], a[2], a[3],
485                                              be16toh(sa->in6.sin6_port));
486                         else
487                                 r = asprintf(&p,
488                                              "%u.%u.%u.%u",
489                                              a[0], a[1], a[2], a[3]);
490                         if (r < 0)
491                                 return -ENOMEM;
492                 } else {
493                         char a[INET6_ADDRSTRLEN];
494 
495                         inet_ntop(AF_INET6, &sa->in6.sin6_addr, a, sizeof(a));
496 
497                         if (include_port) {
498                                 if (asprintf(&p,
499                                              "[%s]:%u%s%s",
500                                              a,
501                                              be16toh(sa->in6.sin6_port),
502                                              sa->in6.sin6_scope_id != 0 ? "%" : "",
503                                              FORMAT_IFNAME_FULL(sa->in6.sin6_scope_id, FORMAT_IFNAME_IFINDEX)) < 0)
504                                         return -ENOMEM;
505                         } else {
506                                 if (sa->in6.sin6_scope_id != 0)
507                                         p = strjoin(a, "%", FORMAT_IFNAME_FULL(sa->in6.sin6_scope_id, FORMAT_IFNAME_IFINDEX));
508                                 else
509                                         p = strdup(a);
510                                 if (!p)
511                                         return -ENOMEM;
512                         }
513                 }
514 
515                 break;
516         }
517 
518         case AF_UNIX:
519                 if (salen <= offsetof(struct sockaddr_un, sun_path) ||
520                     (sa->un.sun_path[0] == 0 && salen == offsetof(struct sockaddr_un, sun_path) + 1))
521                         /* The name must have at least one character (and the leading NUL does not count) */
522                         p = strdup("<unnamed>");
523                 else {
524                         /* Note that we calculate the path pointer here through the .un_buffer[] field, in order to
525                          * outtrick bounds checking tools such as ubsan, which are too smart for their own good: on
526                          * Linux the kernel may return sun_path[] data one byte longer than the declared size of the
527                          * field. */
528                         char *path = (char*) sa->un_buffer + offsetof(struct sockaddr_un, sun_path);
529                         size_t path_len = salen - offsetof(struct sockaddr_un, sun_path);
530 
531                         if (path[0] == 0) {
532                                 /* Abstract socket. When parsing address information from, we
533                                  * explicitly reject overly long paths and paths with embedded NULs.
534                                  * But we might get such a socket from the outside. Let's return
535                                  * something meaningful and printable in this case. */
536 
537                                 _cleanup_free_ char *e = NULL;
538 
539                                 e = cescape_length(path + 1, path_len - 1);
540                                 if (!e)
541                                         return -ENOMEM;
542 
543                                 p = strjoin("@", e);
544                         } else {
545                                 if (path[path_len - 1] == '\0')
546                                         /* We expect a terminating NUL and don't print it */
547                                         path_len --;
548 
549                                 p = cescape_length(path, path_len);
550                         }
551                 }
552                 if (!p)
553                         return -ENOMEM;
554 
555                 break;
556 
557         case AF_VSOCK:
558                 if (include_port) {
559                         if (sa->vm.svm_cid == VMADDR_CID_ANY)
560                                 r = asprintf(&p, "vsock::%u", sa->vm.svm_port);
561                         else
562                                 r = asprintf(&p, "vsock:%u:%u", sa->vm.svm_cid, sa->vm.svm_port);
563                 } else
564                         r = asprintf(&p, "vsock:%u", sa->vm.svm_cid);
565                 if (r < 0)
566                         return -ENOMEM;
567                 break;
568 
569         default:
570                 return -EOPNOTSUPP;
571         }
572 
573         *ret = p;
574         return 0;
575 }
576 
getpeername_pretty(int fd,bool include_port,char ** ret)577 int getpeername_pretty(int fd, bool include_port, char **ret) {
578         union sockaddr_union sa;
579         socklen_t salen = sizeof(sa);
580         int r;
581 
582         assert(fd >= 0);
583         assert(ret);
584 
585         if (getpeername(fd, &sa.sa, &salen) < 0)
586                 return -errno;
587 
588         if (sa.sa.sa_family == AF_UNIX) {
589                 struct ucred ucred = UCRED_INVALID;
590 
591                 /* UNIX connection sockets are anonymous, so let's use
592                  * PID/UID as pretty credentials instead */
593 
594                 r = getpeercred(fd, &ucred);
595                 if (r < 0)
596                         return r;
597 
598                 if (asprintf(ret, "PID "PID_FMT"/UID "UID_FMT, ucred.pid, ucred.uid) < 0)
599                         return -ENOMEM;
600 
601                 return 0;
602         }
603 
604         /* For remote sockets we translate IPv6 addresses back to IPv4
605          * if applicable, since that's nicer. */
606 
607         return sockaddr_pretty(&sa.sa, salen, true, include_port, ret);
608 }
609 
getsockname_pretty(int fd,char ** ret)610 int getsockname_pretty(int fd, char **ret) {
611         union sockaddr_union sa;
612         socklen_t salen = sizeof(sa);
613 
614         assert(fd >= 0);
615         assert(ret);
616 
617         if (getsockname(fd, &sa.sa, &salen) < 0)
618                 return -errno;
619 
620         /* For local sockets we do not translate IPv6 addresses back
621          * to IPv6 if applicable, since this is usually used for
622          * listening sockets where the difference between IPv4 and
623          * IPv6 matters. */
624 
625         return sockaddr_pretty(&sa.sa, salen, false, true, ret);
626 }
627 
socknameinfo_pretty(union sockaddr_union * sa,socklen_t salen,char ** _ret)628 int socknameinfo_pretty(union sockaddr_union *sa, socklen_t salen, char **_ret) {
629         int r;
630         char host[NI_MAXHOST], *ret;
631 
632         assert(_ret);
633 
634         r = getnameinfo(&sa->sa, salen, host, sizeof(host), NULL, 0, IDN_FLAGS);
635         if (r != 0) {
636                 int saved_errno = errno;
637 
638                 r = sockaddr_pretty(&sa->sa, salen, true, true, &ret);
639                 if (r < 0)
640                         return r;
641 
642                 log_debug_errno(saved_errno, "getnameinfo(%s) failed: %m", ret);
643         } else {
644                 ret = strdup(host);
645                 if (!ret)
646                         return -ENOMEM;
647         }
648 
649         *_ret = ret;
650         return 0;
651 }
652 
653 static const char* const netlink_family_table[] = {
654         [NETLINK_ROUTE] = "route",
655         [NETLINK_FIREWALL] = "firewall",
656         [NETLINK_INET_DIAG] = "inet-diag",
657         [NETLINK_NFLOG] = "nflog",
658         [NETLINK_XFRM] = "xfrm",
659         [NETLINK_SELINUX] = "selinux",
660         [NETLINK_ISCSI] = "iscsi",
661         [NETLINK_AUDIT] = "audit",
662         [NETLINK_FIB_LOOKUP] = "fib-lookup",
663         [NETLINK_CONNECTOR] = "connector",
664         [NETLINK_NETFILTER] = "netfilter",
665         [NETLINK_IP6_FW] = "ip6-fw",
666         [NETLINK_DNRTMSG] = "dnrtmsg",
667         [NETLINK_KOBJECT_UEVENT] = "kobject-uevent",
668         [NETLINK_GENERIC] = "generic",
669         [NETLINK_SCSITRANSPORT] = "scsitransport",
670         [NETLINK_ECRYPTFS] = "ecryptfs",
671         [NETLINK_RDMA] = "rdma",
672 };
673 
674 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(netlink_family, int, INT_MAX);
675 
676 static const char* const socket_address_bind_ipv6_only_table[_SOCKET_ADDRESS_BIND_IPV6_ONLY_MAX] = {
677         [SOCKET_ADDRESS_DEFAULT] = "default",
678         [SOCKET_ADDRESS_BOTH] = "both",
679         [SOCKET_ADDRESS_IPV6_ONLY] = "ipv6-only"
680 };
681 
682 DEFINE_STRING_TABLE_LOOKUP(socket_address_bind_ipv6_only, SocketAddressBindIPv6Only);
683 
socket_address_bind_ipv6_only_or_bool_from_string(const char * n)684 SocketAddressBindIPv6Only socket_address_bind_ipv6_only_or_bool_from_string(const char *n) {
685         int r;
686 
687         r = parse_boolean(n);
688         if (r > 0)
689                 return SOCKET_ADDRESS_IPV6_ONLY;
690         if (r == 0)
691                 return SOCKET_ADDRESS_BOTH;
692 
693         return socket_address_bind_ipv6_only_from_string(n);
694 }
695 
sockaddr_equal(const union sockaddr_union * a,const union sockaddr_union * b)696 bool sockaddr_equal(const union sockaddr_union *a, const union sockaddr_union *b) {
697         assert(a);
698         assert(b);
699 
700         if (a->sa.sa_family != b->sa.sa_family)
701                 return false;
702 
703         if (a->sa.sa_family == AF_INET)
704                 return a->in.sin_addr.s_addr == b->in.sin_addr.s_addr;
705 
706         if (a->sa.sa_family == AF_INET6)
707                 return memcmp(&a->in6.sin6_addr, &b->in6.sin6_addr, sizeof(a->in6.sin6_addr)) == 0;
708 
709         if (a->sa.sa_family == AF_VSOCK)
710                 return a->vm.svm_cid == b->vm.svm_cid;
711 
712         return false;
713 }
714 
fd_set_sndbuf(int fd,size_t n,bool increase)715 int fd_set_sndbuf(int fd, size_t n, bool increase) {
716         int r, value;
717         socklen_t l = sizeof(value);
718 
719         if (n > INT_MAX)
720                 return -ERANGE;
721 
722         r = getsockopt(fd, SOL_SOCKET, SO_SNDBUF, &value, &l);
723         if (r >= 0 && l == sizeof(value) && increase ? (size_t) value >= n*2 : (size_t) value == n*2)
724                 return 0;
725 
726         /* First, try to set the buffer size with SO_SNDBUF. */
727         r = setsockopt_int(fd, SOL_SOCKET, SO_SNDBUF, n);
728         if (r < 0)
729                 return r;
730 
731         /* SO_SNDBUF above may set to the kernel limit, instead of the requested size.
732          * So, we need to check the actual buffer size here. */
733         l = sizeof(value);
734         r = getsockopt(fd, SOL_SOCKET, SO_SNDBUF, &value, &l);
735         if (r >= 0 && l == sizeof(value) && increase ? (size_t) value >= n*2 : (size_t) value == n*2)
736                 return 1;
737 
738         /* If we have the privileges we will ignore the kernel limit. */
739         r = setsockopt_int(fd, SOL_SOCKET, SO_SNDBUFFORCE, n);
740         if (r < 0)
741                 return r;
742 
743         return 1;
744 }
745 
fd_set_rcvbuf(int fd,size_t n,bool increase)746 int fd_set_rcvbuf(int fd, size_t n, bool increase) {
747         int r, value;
748         socklen_t l = sizeof(value);
749 
750         if (n > INT_MAX)
751                 return -ERANGE;
752 
753         r = getsockopt(fd, SOL_SOCKET, SO_RCVBUF, &value, &l);
754         if (r >= 0 && l == sizeof(value) && increase ? (size_t) value >= n*2 : (size_t) value == n*2)
755                 return 0;
756 
757         /* First, try to set the buffer size with SO_RCVBUF. */
758         r = setsockopt_int(fd, SOL_SOCKET, SO_RCVBUF, n);
759         if (r < 0)
760                 return r;
761 
762         /* SO_RCVBUF above may set to the kernel limit, instead of the requested size.
763          * So, we need to check the actual buffer size here. */
764         l = sizeof(value);
765         r = getsockopt(fd, SOL_SOCKET, SO_RCVBUF, &value, &l);
766         if (r >= 0 && l == sizeof(value) && increase ? (size_t) value >= n*2 : (size_t) value == n*2)
767                 return 1;
768 
769         /* If we have the privileges we will ignore the kernel limit. */
770         r = setsockopt_int(fd, SOL_SOCKET, SO_RCVBUFFORCE, n);
771         if (r < 0)
772                 return r;
773 
774         return 1;
775 }
776 
777 static const char* const ip_tos_table[] = {
778         [IPTOS_LOWDELAY] = "low-delay",
779         [IPTOS_THROUGHPUT] = "throughput",
780         [IPTOS_RELIABILITY] = "reliability",
781         [IPTOS_LOWCOST] = "low-cost",
782 };
783 
784 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(ip_tos, int, 0xff);
785 
ifname_valid_char(char a)786 bool ifname_valid_char(char a) {
787         if ((unsigned char) a >= 127U)
788                 return false;
789 
790         if ((unsigned char) a <= 32U)
791                 return false;
792 
793         if (IN_SET(a,
794                    ':',  /* colons are used by the legacy "alias" interface logic */
795                    '/',  /* slashes cannot work, since we need to use network interfaces in sysfs paths, and in paths slashes are separators */
796                    '%')) /* %d is used in the kernel's weird foo%d format string naming feature which we really really don't want to ever run into by accident */
797                 return false;
798 
799         return true;
800 }
801 
ifname_valid_full(const char * p,IfnameValidFlags flags)802 bool ifname_valid_full(const char *p, IfnameValidFlags flags) {
803         bool numeric = true;
804 
805         /* Checks whether a network interface name is valid. This is inspired by dev_valid_name() in the kernel sources
806          * but slightly stricter, as we only allow non-control, non-space ASCII characters in the interface name. We
807          * also don't permit names that only container numbers, to avoid confusion with numeric interface indexes. */
808 
809         assert(!(flags & ~_IFNAME_VALID_ALL));
810 
811         if (isempty(p))
812                 return false;
813 
814         /* A valid ifindex? If so, it's valid iff IFNAME_VALID_NUMERIC is set */
815         if (parse_ifindex(p) >= 0)
816                 return flags & IFNAME_VALID_NUMERIC;
817 
818         if (flags & IFNAME_VALID_ALTERNATIVE) {
819                 if (strlen(p) >= ALTIFNAMSIZ)
820                         return false;
821         } else {
822                 if (strlen(p) >= IFNAMSIZ)
823                         return false;
824         }
825 
826         if (dot_or_dot_dot(p))
827                 return false;
828 
829         /* Let's refuse "all" and "default" as interface name, to avoid collisions with the special sysctl
830          * directories /proc/sys/net/{ipv4,ipv6}/conf/{all,default} */
831         if (!FLAGS_SET(flags, IFNAME_VALID_SPECIAL) && STR_IN_SET(p, "all", "default"))
832                 return false;
833 
834         for (const char *t = p; *t; t++) {
835                 if (!ifname_valid_char(*t))
836                         return false;
837 
838                 numeric = numeric && (*t >= '0' && *t <= '9');
839         }
840 
841         /* It's fully numeric but didn't parse as valid ifindex above? if so, it must be too large or zero or
842          * so, let's refuse that. */
843         if (numeric)
844                 return false;
845 
846         return true;
847 }
848 
address_label_valid(const char * p)849 bool address_label_valid(const char *p) {
850 
851         if (isempty(p))
852                 return false;
853 
854         if (strlen(p) >= IFNAMSIZ)
855                 return false;
856 
857         while (*p) {
858                 if ((uint8_t) *p >= 127U)
859                         return false;
860 
861                 if ((uint8_t) *p <= 31U)
862                         return false;
863                 p++;
864         }
865 
866         return true;
867 }
868 
getpeercred(int fd,struct ucred * ucred)869 int getpeercred(int fd, struct ucred *ucred) {
870         socklen_t n = sizeof(struct ucred);
871         struct ucred u;
872         int r;
873 
874         assert(fd >= 0);
875         assert(ucred);
876 
877         r = getsockopt(fd, SOL_SOCKET, SO_PEERCRED, &u, &n);
878         if (r < 0)
879                 return -errno;
880 
881         if (n != sizeof(struct ucred))
882                 return -EIO;
883 
884         /* Check if the data is actually useful and not suppressed due to namespacing issues */
885         if (!pid_is_valid(u.pid))
886                 return -ENODATA;
887 
888         /* Note that we don't check UID/GID here, as namespace translation works differently there: instead of
889          * receiving in "invalid" user/group we get the overflow UID/GID. */
890 
891         *ucred = u;
892         return 0;
893 }
894 
getpeersec(int fd,char ** ret)895 int getpeersec(int fd, char **ret) {
896         _cleanup_free_ char *s = NULL;
897         socklen_t n = 64;
898 
899         assert(fd >= 0);
900         assert(ret);
901 
902         for (;;) {
903                 s = new0(char, n+1);
904                 if (!s)
905                         return -ENOMEM;
906 
907                 if (getsockopt(fd, SOL_SOCKET, SO_PEERSEC, s, &n) >= 0)
908                         break;
909 
910                 if (errno != ERANGE)
911                         return -errno;
912 
913                 s = mfree(s);
914         }
915 
916         if (isempty(s))
917                 return -EOPNOTSUPP;
918 
919         *ret = TAKE_PTR(s);
920 
921         return 0;
922 }
923 
getpeergroups(int fd,gid_t ** ret)924 int getpeergroups(int fd, gid_t **ret) {
925         socklen_t n = sizeof(gid_t) * 64;
926         _cleanup_free_ gid_t *d = NULL;
927 
928         assert(fd >= 0);
929         assert(ret);
930 
931         for (;;) {
932                 d = malloc(n);
933                 if (!d)
934                         return -ENOMEM;
935 
936                 if (getsockopt(fd, SOL_SOCKET, SO_PEERGROUPS, d, &n) >= 0)
937                         break;
938 
939                 if (errno != ERANGE)
940                         return -errno;
941 
942                 d = mfree(d);
943         }
944 
945         assert_se(n % sizeof(gid_t) == 0);
946         n /= sizeof(gid_t);
947 
948         if ((socklen_t) (int) n != n)
949                 return -E2BIG;
950 
951         *ret = TAKE_PTR(d);
952 
953         return (int) n;
954 }
955 
send_one_fd_iov_sa(int transport_fd,int fd,const struct iovec * iov,size_t iovlen,const struct sockaddr * sa,socklen_t len,int flags)956 ssize_t send_one_fd_iov_sa(
957                 int transport_fd,
958                 int fd,
959                 const struct iovec *iov, size_t iovlen,
960                 const struct sockaddr *sa, socklen_t len,
961                 int flags) {
962 
963         CMSG_BUFFER_TYPE(CMSG_SPACE(sizeof(int))) control = {};
964         struct msghdr mh = {
965                 .msg_name = (struct sockaddr*) sa,
966                 .msg_namelen = len,
967                 .msg_iov = (struct iovec *)iov,
968                 .msg_iovlen = iovlen,
969         };
970         ssize_t k;
971 
972         assert(transport_fd >= 0);
973 
974         /*
975          * We need either an FD or data to send.
976          * If there's nothing, return an error.
977          */
978         if (fd < 0 && !iov)
979                 return -EINVAL;
980 
981         if (fd >= 0) {
982                 struct cmsghdr *cmsg;
983 
984                 mh.msg_control = &control;
985                 mh.msg_controllen = sizeof(control);
986 
987                 cmsg = CMSG_FIRSTHDR(&mh);
988                 cmsg->cmsg_level = SOL_SOCKET;
989                 cmsg->cmsg_type = SCM_RIGHTS;
990                 cmsg->cmsg_len = CMSG_LEN(sizeof(int));
991                 memcpy(CMSG_DATA(cmsg), &fd, sizeof(int));
992         }
993         k = sendmsg(transport_fd, &mh, MSG_NOSIGNAL | flags);
994         if (k < 0)
995                 return (ssize_t) -errno;
996 
997         return k;
998 }
999 
send_one_fd_sa(int transport_fd,int fd,const struct sockaddr * sa,socklen_t len,int flags)1000 int send_one_fd_sa(
1001                 int transport_fd,
1002                 int fd,
1003                 const struct sockaddr *sa, socklen_t len,
1004                 int flags) {
1005 
1006         assert(fd >= 0);
1007 
1008         return (int) send_one_fd_iov_sa(transport_fd, fd, NULL, 0, sa, len, flags);
1009 }
1010 
receive_one_fd_iov(int transport_fd,struct iovec * iov,size_t iovlen,int flags,int * ret_fd)1011 ssize_t receive_one_fd_iov(
1012                 int transport_fd,
1013                 struct iovec *iov, size_t iovlen,
1014                 int flags,
1015                 int *ret_fd) {
1016 
1017         CMSG_BUFFER_TYPE(CMSG_SPACE(sizeof(int))) control;
1018         struct msghdr mh = {
1019                 .msg_control = &control,
1020                 .msg_controllen = sizeof(control),
1021                 .msg_iov = iov,
1022                 .msg_iovlen = iovlen,
1023         };
1024         struct cmsghdr *found;
1025         ssize_t k;
1026 
1027         assert(transport_fd >= 0);
1028         assert(ret_fd);
1029 
1030         /*
1031          * Receive a single FD via @transport_fd. We don't care for
1032          * the transport-type. We retrieve a single FD at most, so for
1033          * packet-based transports, the caller must ensure to send
1034          * only a single FD per packet.  This is best used in
1035          * combination with send_one_fd().
1036          */
1037 
1038         k = recvmsg_safe(transport_fd, &mh, MSG_CMSG_CLOEXEC | flags);
1039         if (k < 0)
1040                 return k;
1041 
1042         found = cmsg_find(&mh, SOL_SOCKET, SCM_RIGHTS, CMSG_LEN(sizeof(int)));
1043         if (!found) {
1044                 cmsg_close_all(&mh);
1045 
1046                 /* If didn't receive an FD or any data, return an error. */
1047                 if (k == 0)
1048                         return -EIO;
1049         }
1050 
1051         if (found)
1052                 *ret_fd = *(int*) CMSG_DATA(found);
1053         else
1054                 *ret_fd = -1;
1055 
1056         return k;
1057 }
1058 
receive_one_fd(int transport_fd,int flags)1059 int receive_one_fd(int transport_fd, int flags) {
1060         int fd;
1061         ssize_t k;
1062 
1063         k = receive_one_fd_iov(transport_fd, NULL, 0, flags, &fd);
1064         if (k == 0)
1065                 return fd;
1066 
1067         /* k must be negative, since receive_one_fd_iov() only returns
1068          * a positive value if data was received through the iov. */
1069         assert(k < 0);
1070         return (int) k;
1071 }
1072 
next_datagram_size_fd(int fd)1073 ssize_t next_datagram_size_fd(int fd) {
1074         ssize_t l;
1075         int k;
1076 
1077         /* This is a bit like FIONREAD/SIOCINQ, however a bit more powerful. The difference being: recv(MSG_PEEK) will
1078          * actually cause the next datagram in the queue to be validated regarding checksums, which FIONREAD doesn't
1079          * do. This difference is actually of major importance as we need to be sure that the size returned here
1080          * actually matches what we will read with recvmsg() next, as otherwise we might end up allocating a buffer of
1081          * the wrong size. */
1082 
1083         l = recv(fd, NULL, 0, MSG_PEEK|MSG_TRUNC);
1084         if (l < 0) {
1085                 if (IN_SET(errno, EOPNOTSUPP, EFAULT))
1086                         goto fallback;
1087 
1088                 return -errno;
1089         }
1090         if (l == 0)
1091                 goto fallback;
1092 
1093         return l;
1094 
1095 fallback:
1096         k = 0;
1097 
1098         /* Some sockets (AF_PACKET) do not support null-sized recv() with MSG_TRUNC set, let's fall back to FIONREAD
1099          * for them. Checksums don't matter for raw sockets anyway, hence this should be fine. */
1100 
1101         if (ioctl(fd, FIONREAD, &k) < 0)
1102                 return -errno;
1103 
1104         return (ssize_t) k;
1105 }
1106 
1107 /* Put a limit on how many times will attempt to call accept4(). We loop
1108  * only on "transient" errors, but let's make sure we don't loop forever. */
1109 #define MAX_FLUSH_ITERATIONS 1024
1110 
flush_accept(int fd)1111 int flush_accept(int fd) {
1112 
1113         int r, b;
1114         socklen_t l = sizeof(b);
1115 
1116         /* Similar to flush_fd() but flushes all incoming connections by accepting and immediately closing
1117          * them. */
1118 
1119         if (getsockopt(fd, SOL_SOCKET, SO_ACCEPTCONN, &b, &l) < 0)
1120                 return -errno;
1121 
1122         assert(l == sizeof(b));
1123         if (!b) /* Let's check if this socket accepts connections before calling accept(). accept4() can
1124                  * return EOPNOTSUPP if the fd is not a listening socket, which we should treat as a fatal
1125                  * error, or in case the incoming TCP connection triggered a network issue, which we want to
1126                  * treat as a transient error. Thus, let's rule out the first reason for EOPNOTSUPP early, so
1127                  * we can loop safely on transient errors below. */
1128                 return -ENOTTY;
1129 
1130         for (unsigned iteration = 0;; iteration++) {
1131                 int cfd;
1132 
1133                 r = fd_wait_for_event(fd, POLLIN, 0);
1134                 if (r < 0) {
1135                         if (r == -EINTR)
1136                                 continue;
1137 
1138                         return r;
1139                 }
1140                 if (r == 0)
1141                         return 0;
1142 
1143                 if (iteration >= MAX_FLUSH_ITERATIONS)
1144                         return log_debug_errno(SYNTHETIC_ERRNO(EBUSY),
1145                                                "Failed to flush connections within " STRINGIFY(MAX_FLUSH_ITERATIONS) " iterations.");
1146 
1147                 cfd = accept4(fd, NULL, NULL, SOCK_NONBLOCK|SOCK_CLOEXEC);
1148                 if (cfd < 0) {
1149                         if (errno == EAGAIN)
1150                                 return 0;
1151 
1152                         if (ERRNO_IS_ACCEPT_AGAIN(errno))
1153                                 continue;
1154 
1155                         return -errno;
1156                 }
1157 
1158                 safe_close(cfd);
1159         }
1160 }
1161 
cmsg_find(struct msghdr * mh,int level,int type,socklen_t length)1162 struct cmsghdr* cmsg_find(struct msghdr *mh, int level, int type, socklen_t length) {
1163         struct cmsghdr *cmsg;
1164 
1165         assert(mh);
1166 
1167         CMSG_FOREACH(cmsg, mh)
1168                 if (cmsg->cmsg_level == level &&
1169                     cmsg->cmsg_type == type &&
1170                     (length == (socklen_t) -1 || length == cmsg->cmsg_len))
1171                         return cmsg;
1172 
1173         return NULL;
1174 }
1175 
socket_ioctl_fd(void)1176 int socket_ioctl_fd(void) {
1177         int fd;
1178 
1179         /* Create a socket to invoke the various network interface ioctl()s on. Traditionally only AF_INET was good for
1180          * that. Since kernel 4.6 AF_NETLINK works for this too. We first try to use AF_INET hence, but if that's not
1181          * available (for example, because it is made unavailable via SECCOMP or such), we'll fall back to the more
1182          * generic AF_NETLINK. */
1183 
1184         fd = socket(AF_INET, SOCK_DGRAM|SOCK_CLOEXEC, 0);
1185         if (fd < 0)
1186                 fd = socket(AF_NETLINK, SOCK_RAW|SOCK_CLOEXEC, NETLINK_GENERIC);
1187         if (fd < 0)
1188                 return -errno;
1189 
1190         return fd;
1191 }
1192 
sockaddr_un_unlink(const struct sockaddr_un * sa)1193 int sockaddr_un_unlink(const struct sockaddr_un *sa) {
1194         const char *p, * nul;
1195 
1196         assert(sa);
1197 
1198         if (sa->sun_family != AF_UNIX)
1199                 return -EPROTOTYPE;
1200 
1201         if (sa->sun_path[0] == 0) /* Nothing to do for abstract sockets */
1202                 return 0;
1203 
1204         /* The path in .sun_path is not necessarily NUL terminated. Let's fix that. */
1205         nul = memchr(sa->sun_path, 0, sizeof(sa->sun_path));
1206         if (nul)
1207                 p = sa->sun_path;
1208         else
1209                 p = memdupa_suffix0(sa->sun_path, sizeof(sa->sun_path));
1210 
1211         if (unlink(p) < 0)
1212                 return -errno;
1213 
1214         return 1;
1215 }
1216 
sockaddr_un_set_path(struct sockaddr_un * ret,const char * path)1217 int sockaddr_un_set_path(struct sockaddr_un *ret, const char *path) {
1218         size_t l;
1219 
1220         assert(ret);
1221         assert(path);
1222 
1223         /* Initialize ret->sun_path from the specified argument. This will interpret paths starting with '@' as
1224          * abstract namespace sockets, and those starting with '/' as regular filesystem sockets. It won't accept
1225          * anything else (i.e. no relative paths), to avoid ambiguities. Note that this function cannot be used to
1226          * reference paths in the abstract namespace that include NUL bytes in the name. */
1227 
1228         l = strlen(path);
1229         if (l < 2)
1230                 return -EINVAL;
1231         if (!IN_SET(path[0], '/', '@'))
1232                 return -EINVAL;
1233 
1234         /* Don't allow paths larger than the space in sockaddr_un. Note that we are a tiny bit more restrictive than
1235          * the kernel is: we insist on NUL termination (both for abstract namespace and regular file system socket
1236          * addresses!), which the kernel doesn't. We do this to reduce chance of incompatibility with other apps that
1237          * do not expect non-NUL terminated file system path. */
1238         if (l+1 > sizeof(ret->sun_path))
1239                 return path[0] == '@' ? -EINVAL : -ENAMETOOLONG; /* return a recognizable error if this is
1240                                                                   * too long to fit into a sockaddr_un, but
1241                                                                   * is a file system path, and thus might be
1242                                                                   * connectible via O_PATH indirection. */
1243 
1244         *ret = (struct sockaddr_un) {
1245                 .sun_family = AF_UNIX,
1246         };
1247 
1248         if (path[0] == '@') {
1249                 /* Abstract namespace socket */
1250                 memcpy(ret->sun_path + 1, path + 1, l); /* copy *with* trailing NUL byte */
1251                 return (int) (offsetof(struct sockaddr_un, sun_path) + l); /* �� *don't* �� include trailing NUL in size */
1252 
1253         } else {
1254                 assert(path[0] == '/');
1255 
1256                 /* File system socket */
1257                 memcpy(ret->sun_path, path, l + 1); /* copy *with* trailing NUL byte */
1258                 return (int) (offsetof(struct sockaddr_un, sun_path) + l + 1); /* include trailing NUL in size */
1259         }
1260 }
1261 
socket_bind_to_ifname(int fd,const char * ifname)1262 int socket_bind_to_ifname(int fd, const char *ifname) {
1263         assert(fd >= 0);
1264 
1265         /* Call with NULL to drop binding */
1266 
1267         return RET_NERRNO(setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, ifname, strlen_ptr(ifname)));
1268 }
1269 
socket_bind_to_ifindex(int fd,int ifindex)1270 int socket_bind_to_ifindex(int fd, int ifindex) {
1271         char ifname[IF_NAMESIZE];
1272         int r;
1273 
1274         assert(fd >= 0);
1275 
1276         if (ifindex <= 0)
1277                 /* Drop binding */
1278                 return RET_NERRNO(setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, NULL, 0));
1279 
1280         r = setsockopt_int(fd, SOL_SOCKET, SO_BINDTOIFINDEX, ifindex);
1281         if (r != -ENOPROTOOPT)
1282                 return r;
1283 
1284         /* Fall back to SO_BINDTODEVICE on kernels < 5.0 which didn't have SO_BINDTOIFINDEX */
1285         r = format_ifname(ifindex, ifname);
1286         if (r < 0)
1287                 return r;
1288 
1289         return socket_bind_to_ifname(fd, ifname);
1290 }
1291 
recvmsg_safe(int sockfd,struct msghdr * msg,int flags)1292 ssize_t recvmsg_safe(int sockfd, struct msghdr *msg, int flags) {
1293         ssize_t n;
1294 
1295         /* A wrapper around recvmsg() that checks for MSG_CTRUNC, and turns it into an error, in a reasonably
1296          * safe way, closing any SCM_RIGHTS fds in the error path.
1297          *
1298          * Note that unlike our usual coding style this might modify *msg on failure. */
1299 
1300         n = recvmsg(sockfd, msg, flags);
1301         if (n < 0)
1302                 return -errno;
1303 
1304         if (FLAGS_SET(msg->msg_flags, MSG_CTRUNC)) {
1305                 cmsg_close_all(msg);
1306                 return -EXFULL; /* a recognizable error code */
1307         }
1308 
1309         return n;
1310 }
1311 
socket_get_family(int fd,int * ret)1312 int socket_get_family(int fd, int *ret) {
1313         int af;
1314         socklen_t sl = sizeof(af);
1315 
1316         if (getsockopt(fd, SOL_SOCKET, SO_DOMAIN, &af, &sl) < 0)
1317                 return -errno;
1318 
1319         if (sl != sizeof(af))
1320                 return -EINVAL;
1321 
1322         return af;
1323 }
1324 
socket_set_recvpktinfo(int fd,int af,bool b)1325 int socket_set_recvpktinfo(int fd, int af, bool b) {
1326         int r;
1327 
1328         if (af == AF_UNSPEC) {
1329                 r = socket_get_family(fd, &af);
1330                 if (r < 0)
1331                         return r;
1332         }
1333 
1334         switch (af) {
1335 
1336         case AF_INET:
1337                 return setsockopt_int(fd, IPPROTO_IP, IP_PKTINFO, b);
1338 
1339         case AF_INET6:
1340                 return setsockopt_int(fd, IPPROTO_IPV6, IPV6_RECVPKTINFO, b);
1341 
1342         case AF_NETLINK:
1343                 return setsockopt_int(fd, SOL_NETLINK, NETLINK_PKTINFO, b);
1344 
1345         case AF_PACKET:
1346                 return setsockopt_int(fd, SOL_PACKET, PACKET_AUXDATA, b);
1347 
1348         default:
1349                 return -EAFNOSUPPORT;
1350         }
1351 }
1352 
socket_set_unicast_if(int fd,int af,int ifi)1353 int socket_set_unicast_if(int fd, int af, int ifi) {
1354         be32_t ifindex_be = htobe32(ifi);
1355         int r;
1356 
1357         if (af == AF_UNSPEC) {
1358                 r = socket_get_family(fd, &af);
1359                 if (r < 0)
1360                         return r;
1361         }
1362 
1363         switch (af) {
1364 
1365         case AF_INET:
1366                 return RET_NERRNO(setsockopt(fd, IPPROTO_IP, IP_UNICAST_IF, &ifindex_be, sizeof(ifindex_be)));
1367 
1368         case AF_INET6:
1369                 return RET_NERRNO(setsockopt(fd, IPPROTO_IPV6, IPV6_UNICAST_IF, &ifindex_be, sizeof(ifindex_be)));
1370 
1371         default:
1372                 return -EAFNOSUPPORT;
1373         }
1374 }
1375 
socket_set_option(int fd,int af,int opt_ipv4,int opt_ipv6,int val)1376 int socket_set_option(int fd, int af, int opt_ipv4, int opt_ipv6, int val) {
1377         int r;
1378 
1379         if (af == AF_UNSPEC) {
1380                 r = socket_get_family(fd, &af);
1381                 if (r < 0)
1382                         return r;
1383         }
1384 
1385         switch (af) {
1386 
1387         case AF_INET:
1388                 return setsockopt_int(fd, IPPROTO_IP, opt_ipv4, val);
1389 
1390         case AF_INET6:
1391                 return setsockopt_int(fd, IPPROTO_IPV6, opt_ipv6, val);
1392 
1393         default:
1394                 return -EAFNOSUPPORT;
1395         }
1396 }
1397 
socket_get_mtu(int fd,int af,size_t * ret)1398 int socket_get_mtu(int fd, int af, size_t *ret) {
1399         int mtu, r;
1400 
1401         if (af == AF_UNSPEC) {
1402                 r = socket_get_family(fd, &af);
1403                 if (r < 0)
1404                         return r;
1405         }
1406 
1407         switch (af) {
1408 
1409         case AF_INET:
1410                 r = getsockopt_int(fd, IPPROTO_IP, IP_MTU, &mtu);
1411                 break;
1412 
1413         case AF_INET6:
1414                 r = getsockopt_int(fd, IPPROTO_IPV6, IPV6_MTU, &mtu);
1415                 break;
1416 
1417         default:
1418                 return -EAFNOSUPPORT;
1419         }
1420 
1421         if (r < 0)
1422                 return r;
1423         if (mtu <= 0)
1424                 return -EINVAL;
1425 
1426         *ret = (size_t) mtu;
1427         return 0;
1428 }
1429