1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 */
85
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 #include <linux/compat.h>
117
118 #include <linux/uaccess.h>
119
120 #include <linux/netdevice.h>
121 #include <net/protocol.h>
122 #include <linux/skbuff.h>
123 #include <net/net_namespace.h>
124 #include <net/request_sock.h>
125 #include <net/sock.h>
126 #include <linux/net_tstamp.h>
127 #include <net/xfrm.h>
128 #include <linux/ipsec.h>
129 #include <net/cls_cgroup.h>
130 #include <net/netprio_cgroup.h>
131 #include <linux/sock_diag.h>
132
133 #include <linux/filter.h>
134 #include <net/sock_reuseport.h>
135 #include <net/bpf_sk_storage.h>
136
137 #include <trace/events/sock.h>
138
139 #include <net/tcp.h>
140 #include <net/busy_poll.h>
141
142 #include <linux/ethtool.h>
143
144 #include "dev.h"
145
146 static DEFINE_MUTEX(proto_list_mutex);
147 static LIST_HEAD(proto_list);
148
149 static void sock_def_write_space_wfree(struct sock *sk);
150 static void sock_def_write_space(struct sock *sk);
151
152 /**
153 * sk_ns_capable - General socket capability test
154 * @sk: Socket to use a capability on or through
155 * @user_ns: The user namespace of the capability to use
156 * @cap: The capability to use
157 *
158 * Test to see if the opener of the socket had when the socket was
159 * created and the current process has the capability @cap in the user
160 * namespace @user_ns.
161 */
sk_ns_capable(const struct sock * sk,struct user_namespace * user_ns,int cap)162 bool sk_ns_capable(const struct sock *sk,
163 struct user_namespace *user_ns, int cap)
164 {
165 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
166 ns_capable(user_ns, cap);
167 }
168 EXPORT_SYMBOL(sk_ns_capable);
169
170 /**
171 * sk_capable - Socket global capability test
172 * @sk: Socket to use a capability on or through
173 * @cap: The global capability to use
174 *
175 * Test to see if the opener of the socket had when the socket was
176 * created and the current process has the capability @cap in all user
177 * namespaces.
178 */
sk_capable(const struct sock * sk,int cap)179 bool sk_capable(const struct sock *sk, int cap)
180 {
181 return sk_ns_capable(sk, &init_user_ns, cap);
182 }
183 EXPORT_SYMBOL(sk_capable);
184
185 /**
186 * sk_net_capable - Network namespace socket capability test
187 * @sk: Socket to use a capability on or through
188 * @cap: The capability to use
189 *
190 * Test to see if the opener of the socket had when the socket was created
191 * and the current process has the capability @cap over the network namespace
192 * the socket is a member of.
193 */
sk_net_capable(const struct sock * sk,int cap)194 bool sk_net_capable(const struct sock *sk, int cap)
195 {
196 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
197 }
198 EXPORT_SYMBOL(sk_net_capable);
199
200 /*
201 * Each address family might have different locking rules, so we have
202 * one slock key per address family and separate keys for internal and
203 * userspace sockets.
204 */
205 static struct lock_class_key af_family_keys[AF_MAX];
206 static struct lock_class_key af_family_kern_keys[AF_MAX];
207 static struct lock_class_key af_family_slock_keys[AF_MAX];
208 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
209
210 /*
211 * Make lock validator output more readable. (we pre-construct these
212 * strings build-time, so that runtime initialization of socket
213 * locks is fast):
214 */
215
216 #define _sock_locks(x) \
217 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
218 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
219 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
220 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
221 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
222 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
223 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
224 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
225 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
226 x "27" , x "28" , x "AF_CAN" , \
227 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
228 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
229 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
230 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
231 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
232 x "AF_MCTP" , \
233 x "AF_MAX"
234
235 static const char *const af_family_key_strings[AF_MAX+1] = {
236 _sock_locks("sk_lock-")
237 };
238 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
239 _sock_locks("slock-")
240 };
241 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
242 _sock_locks("clock-")
243 };
244
245 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
246 _sock_locks("k-sk_lock-")
247 };
248 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
249 _sock_locks("k-slock-")
250 };
251 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
252 _sock_locks("k-clock-")
253 };
254 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
255 _sock_locks("rlock-")
256 };
257 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
258 _sock_locks("wlock-")
259 };
260 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
261 _sock_locks("elock-")
262 };
263
264 /*
265 * sk_callback_lock and sk queues locking rules are per-address-family,
266 * so split the lock classes by using a per-AF key:
267 */
268 static struct lock_class_key af_callback_keys[AF_MAX];
269 static struct lock_class_key af_rlock_keys[AF_MAX];
270 static struct lock_class_key af_wlock_keys[AF_MAX];
271 static struct lock_class_key af_elock_keys[AF_MAX];
272 static struct lock_class_key af_kern_callback_keys[AF_MAX];
273
274 /* Run time adjustable parameters. */
275 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
276 EXPORT_SYMBOL(sysctl_wmem_max);
277 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
278 EXPORT_SYMBOL(sysctl_rmem_max);
279 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
280 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
281
282 /* Maximal space eaten by iovec or ancillary data plus some space */
283 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
284 EXPORT_SYMBOL(sysctl_optmem_max);
285
286 int sysctl_tstamp_allow_data __read_mostly = 1;
287
288 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
289 EXPORT_SYMBOL_GPL(memalloc_socks_key);
290
291 /**
292 * sk_set_memalloc - sets %SOCK_MEMALLOC
293 * @sk: socket to set it on
294 *
295 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
296 * It's the responsibility of the admin to adjust min_free_kbytes
297 * to meet the requirements
298 */
sk_set_memalloc(struct sock * sk)299 void sk_set_memalloc(struct sock *sk)
300 {
301 sock_set_flag(sk, SOCK_MEMALLOC);
302 sk->sk_allocation |= __GFP_MEMALLOC;
303 static_branch_inc(&memalloc_socks_key);
304 }
305 EXPORT_SYMBOL_GPL(sk_set_memalloc);
306
sk_clear_memalloc(struct sock * sk)307 void sk_clear_memalloc(struct sock *sk)
308 {
309 sock_reset_flag(sk, SOCK_MEMALLOC);
310 sk->sk_allocation &= ~__GFP_MEMALLOC;
311 static_branch_dec(&memalloc_socks_key);
312
313 /*
314 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
315 * progress of swapping. SOCK_MEMALLOC may be cleared while
316 * it has rmem allocations due to the last swapfile being deactivated
317 * but there is a risk that the socket is unusable due to exceeding
318 * the rmem limits. Reclaim the reserves and obey rmem limits again.
319 */
320 sk_mem_reclaim(sk);
321 }
322 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
323
__sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)324 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
325 {
326 int ret;
327 unsigned int noreclaim_flag;
328
329 /* these should have been dropped before queueing */
330 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
331
332 noreclaim_flag = memalloc_noreclaim_save();
333 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
334 tcp_v6_do_rcv,
335 tcp_v4_do_rcv,
336 sk, skb);
337 memalloc_noreclaim_restore(noreclaim_flag);
338
339 return ret;
340 }
341 EXPORT_SYMBOL(__sk_backlog_rcv);
342
sk_error_report(struct sock * sk)343 void sk_error_report(struct sock *sk)
344 {
345 sk->sk_error_report(sk);
346
347 switch (sk->sk_family) {
348 case AF_INET:
349 fallthrough;
350 case AF_INET6:
351 trace_inet_sk_error_report(sk);
352 break;
353 default:
354 break;
355 }
356 }
357 EXPORT_SYMBOL(sk_error_report);
358
sock_get_timeout(long timeo,void * optval,bool old_timeval)359 int sock_get_timeout(long timeo, void *optval, bool old_timeval)
360 {
361 struct __kernel_sock_timeval tv;
362
363 if (timeo == MAX_SCHEDULE_TIMEOUT) {
364 tv.tv_sec = 0;
365 tv.tv_usec = 0;
366 } else {
367 tv.tv_sec = timeo / HZ;
368 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
369 }
370
371 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
372 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
373 *(struct old_timeval32 *)optval = tv32;
374 return sizeof(tv32);
375 }
376
377 if (old_timeval) {
378 struct __kernel_old_timeval old_tv;
379 old_tv.tv_sec = tv.tv_sec;
380 old_tv.tv_usec = tv.tv_usec;
381 *(struct __kernel_old_timeval *)optval = old_tv;
382 return sizeof(old_tv);
383 }
384
385 *(struct __kernel_sock_timeval *)optval = tv;
386 return sizeof(tv);
387 }
388 EXPORT_SYMBOL(sock_get_timeout);
389
sock_copy_user_timeval(struct __kernel_sock_timeval * tv,sockptr_t optval,int optlen,bool old_timeval)390 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
391 sockptr_t optval, int optlen, bool old_timeval)
392 {
393 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
394 struct old_timeval32 tv32;
395
396 if (optlen < sizeof(tv32))
397 return -EINVAL;
398
399 if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
400 return -EFAULT;
401 tv->tv_sec = tv32.tv_sec;
402 tv->tv_usec = tv32.tv_usec;
403 } else if (old_timeval) {
404 struct __kernel_old_timeval old_tv;
405
406 if (optlen < sizeof(old_tv))
407 return -EINVAL;
408 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
409 return -EFAULT;
410 tv->tv_sec = old_tv.tv_sec;
411 tv->tv_usec = old_tv.tv_usec;
412 } else {
413 if (optlen < sizeof(*tv))
414 return -EINVAL;
415 if (copy_from_sockptr(tv, optval, sizeof(*tv)))
416 return -EFAULT;
417 }
418
419 return 0;
420 }
421 EXPORT_SYMBOL(sock_copy_user_timeval);
422
sock_set_timeout(long * timeo_p,sockptr_t optval,int optlen,bool old_timeval)423 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
424 bool old_timeval)
425 {
426 struct __kernel_sock_timeval tv;
427 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
428
429 if (err)
430 return err;
431
432 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
433 return -EDOM;
434
435 if (tv.tv_sec < 0) {
436 static int warned __read_mostly;
437
438 *timeo_p = 0;
439 if (warned < 10 && net_ratelimit()) {
440 warned++;
441 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
442 __func__, current->comm, task_pid_nr(current));
443 }
444 return 0;
445 }
446 *timeo_p = MAX_SCHEDULE_TIMEOUT;
447 if (tv.tv_sec == 0 && tv.tv_usec == 0)
448 return 0;
449 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
450 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
451 return 0;
452 }
453
sock_needs_netstamp(const struct sock * sk)454 static bool sock_needs_netstamp(const struct sock *sk)
455 {
456 switch (sk->sk_family) {
457 case AF_UNSPEC:
458 case AF_UNIX:
459 return false;
460 default:
461 return true;
462 }
463 }
464
sock_disable_timestamp(struct sock * sk,unsigned long flags)465 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
466 {
467 if (sk->sk_flags & flags) {
468 sk->sk_flags &= ~flags;
469 if (sock_needs_netstamp(sk) &&
470 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
471 net_disable_timestamp();
472 }
473 }
474
475
__sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)476 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
477 {
478 unsigned long flags;
479 struct sk_buff_head *list = &sk->sk_receive_queue;
480
481 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
482 atomic_inc(&sk->sk_drops);
483 trace_sock_rcvqueue_full(sk, skb);
484 return -ENOMEM;
485 }
486
487 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
488 atomic_inc(&sk->sk_drops);
489 return -ENOBUFS;
490 }
491
492 skb->dev = NULL;
493 skb_set_owner_r(skb, sk);
494
495 /* we escape from rcu protected region, make sure we dont leak
496 * a norefcounted dst
497 */
498 skb_dst_force(skb);
499
500 spin_lock_irqsave(&list->lock, flags);
501 sock_skb_set_dropcount(sk, skb);
502 __skb_queue_tail(list, skb);
503 spin_unlock_irqrestore(&list->lock, flags);
504
505 if (!sock_flag(sk, SOCK_DEAD))
506 sk->sk_data_ready(sk);
507 return 0;
508 }
509 EXPORT_SYMBOL(__sock_queue_rcv_skb);
510
sock_queue_rcv_skb_reason(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason * reason)511 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
512 enum skb_drop_reason *reason)
513 {
514 enum skb_drop_reason drop_reason;
515 int err;
516
517 err = sk_filter(sk, skb);
518 if (err) {
519 drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
520 goto out;
521 }
522 err = __sock_queue_rcv_skb(sk, skb);
523 switch (err) {
524 case -ENOMEM:
525 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
526 break;
527 case -ENOBUFS:
528 drop_reason = SKB_DROP_REASON_PROTO_MEM;
529 break;
530 default:
531 drop_reason = SKB_NOT_DROPPED_YET;
532 break;
533 }
534 out:
535 if (reason)
536 *reason = drop_reason;
537 return err;
538 }
539 EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
540
__sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested,unsigned int trim_cap,bool refcounted)541 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
542 const int nested, unsigned int trim_cap, bool refcounted)
543 {
544 int rc = NET_RX_SUCCESS;
545
546 if (sk_filter_trim_cap(sk, skb, trim_cap))
547 goto discard_and_relse;
548
549 skb->dev = NULL;
550
551 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
552 atomic_inc(&sk->sk_drops);
553 goto discard_and_relse;
554 }
555 if (nested)
556 bh_lock_sock_nested(sk);
557 else
558 bh_lock_sock(sk);
559 if (!sock_owned_by_user(sk)) {
560 /*
561 * trylock + unlock semantics:
562 */
563 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
564
565 rc = sk_backlog_rcv(sk, skb);
566
567 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
568 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
569 bh_unlock_sock(sk);
570 atomic_inc(&sk->sk_drops);
571 goto discard_and_relse;
572 }
573
574 bh_unlock_sock(sk);
575 out:
576 if (refcounted)
577 sock_put(sk);
578 return rc;
579 discard_and_relse:
580 kfree_skb(skb);
581 goto out;
582 }
583 EXPORT_SYMBOL(__sk_receive_skb);
584
585 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
586 u32));
587 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
588 u32));
__sk_dst_check(struct sock * sk,u32 cookie)589 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
590 {
591 struct dst_entry *dst = __sk_dst_get(sk);
592
593 if (dst && dst->obsolete &&
594 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
595 dst, cookie) == NULL) {
596 sk_tx_queue_clear(sk);
597 sk->sk_dst_pending_confirm = 0;
598 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
599 dst_release(dst);
600 return NULL;
601 }
602
603 return dst;
604 }
605 EXPORT_SYMBOL(__sk_dst_check);
606
sk_dst_check(struct sock * sk,u32 cookie)607 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
608 {
609 struct dst_entry *dst = sk_dst_get(sk);
610
611 if (dst && dst->obsolete &&
612 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
613 dst, cookie) == NULL) {
614 sk_dst_reset(sk);
615 dst_release(dst);
616 return NULL;
617 }
618
619 return dst;
620 }
621 EXPORT_SYMBOL(sk_dst_check);
622
sock_bindtoindex_locked(struct sock * sk,int ifindex)623 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
624 {
625 int ret = -ENOPROTOOPT;
626 #ifdef CONFIG_NETDEVICES
627 struct net *net = sock_net(sk);
628
629 /* Sorry... */
630 ret = -EPERM;
631 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
632 goto out;
633
634 ret = -EINVAL;
635 if (ifindex < 0)
636 goto out;
637
638 /* Paired with all READ_ONCE() done locklessly. */
639 WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
640
641 if (sk->sk_prot->rehash)
642 sk->sk_prot->rehash(sk);
643 sk_dst_reset(sk);
644
645 ret = 0;
646
647 out:
648 #endif
649
650 return ret;
651 }
652
sock_bindtoindex(struct sock * sk,int ifindex,bool lock_sk)653 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
654 {
655 int ret;
656
657 if (lock_sk)
658 lock_sock(sk);
659 ret = sock_bindtoindex_locked(sk, ifindex);
660 if (lock_sk)
661 release_sock(sk);
662
663 return ret;
664 }
665 EXPORT_SYMBOL(sock_bindtoindex);
666
sock_setbindtodevice(struct sock * sk,sockptr_t optval,int optlen)667 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
668 {
669 int ret = -ENOPROTOOPT;
670 #ifdef CONFIG_NETDEVICES
671 struct net *net = sock_net(sk);
672 char devname[IFNAMSIZ];
673 int index;
674
675 ret = -EINVAL;
676 if (optlen < 0)
677 goto out;
678
679 /* Bind this socket to a particular device like "eth0",
680 * as specified in the passed interface name. If the
681 * name is "" or the option length is zero the socket
682 * is not bound.
683 */
684 if (optlen > IFNAMSIZ - 1)
685 optlen = IFNAMSIZ - 1;
686 memset(devname, 0, sizeof(devname));
687
688 ret = -EFAULT;
689 if (copy_from_sockptr(devname, optval, optlen))
690 goto out;
691
692 index = 0;
693 if (devname[0] != '\0') {
694 struct net_device *dev;
695
696 rcu_read_lock();
697 dev = dev_get_by_name_rcu(net, devname);
698 if (dev)
699 index = dev->ifindex;
700 rcu_read_unlock();
701 ret = -ENODEV;
702 if (!dev)
703 goto out;
704 }
705
706 return sock_bindtoindex(sk, index, true);
707 out:
708 #endif
709
710 return ret;
711 }
712
sock_getbindtodevice(struct sock * sk,char __user * optval,int __user * optlen,int len)713 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
714 int __user *optlen, int len)
715 {
716 int ret = -ENOPROTOOPT;
717 #ifdef CONFIG_NETDEVICES
718 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
719 struct net *net = sock_net(sk);
720 char devname[IFNAMSIZ];
721
722 if (bound_dev_if == 0) {
723 len = 0;
724 goto zero;
725 }
726
727 ret = -EINVAL;
728 if (len < IFNAMSIZ)
729 goto out;
730
731 ret = netdev_get_name(net, devname, bound_dev_if);
732 if (ret)
733 goto out;
734
735 len = strlen(devname) + 1;
736
737 ret = -EFAULT;
738 if (copy_to_user(optval, devname, len))
739 goto out;
740
741 zero:
742 ret = -EFAULT;
743 if (put_user(len, optlen))
744 goto out;
745
746 ret = 0;
747
748 out:
749 #endif
750
751 return ret;
752 }
753
sk_mc_loop(struct sock * sk)754 bool sk_mc_loop(struct sock *sk)
755 {
756 if (dev_recursion_level())
757 return false;
758 if (!sk)
759 return true;
760 switch (sk->sk_family) {
761 case AF_INET:
762 return inet_sk(sk)->mc_loop;
763 #if IS_ENABLED(CONFIG_IPV6)
764 case AF_INET6:
765 return inet6_sk(sk)->mc_loop;
766 #endif
767 }
768 WARN_ON_ONCE(1);
769 return true;
770 }
771 EXPORT_SYMBOL(sk_mc_loop);
772
sock_set_reuseaddr(struct sock * sk)773 void sock_set_reuseaddr(struct sock *sk)
774 {
775 lock_sock(sk);
776 sk->sk_reuse = SK_CAN_REUSE;
777 release_sock(sk);
778 }
779 EXPORT_SYMBOL(sock_set_reuseaddr);
780
sock_set_reuseport(struct sock * sk)781 void sock_set_reuseport(struct sock *sk)
782 {
783 lock_sock(sk);
784 sk->sk_reuseport = true;
785 release_sock(sk);
786 }
787 EXPORT_SYMBOL(sock_set_reuseport);
788
sock_no_linger(struct sock * sk)789 void sock_no_linger(struct sock *sk)
790 {
791 lock_sock(sk);
792 sk->sk_lingertime = 0;
793 sock_set_flag(sk, SOCK_LINGER);
794 release_sock(sk);
795 }
796 EXPORT_SYMBOL(sock_no_linger);
797
sock_set_priority(struct sock * sk,u32 priority)798 void sock_set_priority(struct sock *sk, u32 priority)
799 {
800 lock_sock(sk);
801 sk->sk_priority = priority;
802 release_sock(sk);
803 }
804 EXPORT_SYMBOL(sock_set_priority);
805
sock_set_sndtimeo(struct sock * sk,s64 secs)806 void sock_set_sndtimeo(struct sock *sk, s64 secs)
807 {
808 lock_sock(sk);
809 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
810 sk->sk_sndtimeo = secs * HZ;
811 else
812 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
813 release_sock(sk);
814 }
815 EXPORT_SYMBOL(sock_set_sndtimeo);
816
__sock_set_timestamps(struct sock * sk,bool val,bool new,bool ns)817 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
818 {
819 if (val) {
820 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
821 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
822 sock_set_flag(sk, SOCK_RCVTSTAMP);
823 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
824 } else {
825 sock_reset_flag(sk, SOCK_RCVTSTAMP);
826 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
827 }
828 }
829
sock_enable_timestamps(struct sock * sk)830 void sock_enable_timestamps(struct sock *sk)
831 {
832 lock_sock(sk);
833 __sock_set_timestamps(sk, true, false, true);
834 release_sock(sk);
835 }
836 EXPORT_SYMBOL(sock_enable_timestamps);
837
sock_set_timestamp(struct sock * sk,int optname,bool valbool)838 void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
839 {
840 switch (optname) {
841 case SO_TIMESTAMP_OLD:
842 __sock_set_timestamps(sk, valbool, false, false);
843 break;
844 case SO_TIMESTAMP_NEW:
845 __sock_set_timestamps(sk, valbool, true, false);
846 break;
847 case SO_TIMESTAMPNS_OLD:
848 __sock_set_timestamps(sk, valbool, false, true);
849 break;
850 case SO_TIMESTAMPNS_NEW:
851 __sock_set_timestamps(sk, valbool, true, true);
852 break;
853 }
854 }
855
sock_timestamping_bind_phc(struct sock * sk,int phc_index)856 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
857 {
858 struct net *net = sock_net(sk);
859 struct net_device *dev = NULL;
860 bool match = false;
861 int *vclock_index;
862 int i, num;
863
864 if (sk->sk_bound_dev_if)
865 dev = dev_get_by_index(net, sk->sk_bound_dev_if);
866
867 if (!dev) {
868 pr_err("%s: sock not bind to device\n", __func__);
869 return -EOPNOTSUPP;
870 }
871
872 num = ethtool_get_phc_vclocks(dev, &vclock_index);
873 dev_put(dev);
874
875 for (i = 0; i < num; i++) {
876 if (*(vclock_index + i) == phc_index) {
877 match = true;
878 break;
879 }
880 }
881
882 if (num > 0)
883 kfree(vclock_index);
884
885 if (!match)
886 return -EINVAL;
887
888 sk->sk_bind_phc = phc_index;
889
890 return 0;
891 }
892
sock_set_timestamping(struct sock * sk,int optname,struct so_timestamping timestamping)893 int sock_set_timestamping(struct sock *sk, int optname,
894 struct so_timestamping timestamping)
895 {
896 int val = timestamping.flags;
897 int ret;
898
899 if (val & ~SOF_TIMESTAMPING_MASK)
900 return -EINVAL;
901
902 if (val & SOF_TIMESTAMPING_OPT_ID &&
903 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
904 if (sk_is_tcp(sk)) {
905 if ((1 << sk->sk_state) &
906 (TCPF_CLOSE | TCPF_LISTEN))
907 return -EINVAL;
908 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
909 } else {
910 atomic_set(&sk->sk_tskey, 0);
911 }
912 }
913
914 if (val & SOF_TIMESTAMPING_OPT_STATS &&
915 !(val & SOF_TIMESTAMPING_OPT_TSONLY))
916 return -EINVAL;
917
918 if (val & SOF_TIMESTAMPING_BIND_PHC) {
919 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
920 if (ret)
921 return ret;
922 }
923
924 sk->sk_tsflags = val;
925 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
926
927 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
928 sock_enable_timestamp(sk,
929 SOCK_TIMESTAMPING_RX_SOFTWARE);
930 else
931 sock_disable_timestamp(sk,
932 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
933 return 0;
934 }
935
sock_set_keepalive(struct sock * sk)936 void sock_set_keepalive(struct sock *sk)
937 {
938 lock_sock(sk);
939 if (sk->sk_prot->keepalive)
940 sk->sk_prot->keepalive(sk, true);
941 sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
942 release_sock(sk);
943 }
944 EXPORT_SYMBOL(sock_set_keepalive);
945
__sock_set_rcvbuf(struct sock * sk,int val)946 static void __sock_set_rcvbuf(struct sock *sk, int val)
947 {
948 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
949 * as a negative value.
950 */
951 val = min_t(int, val, INT_MAX / 2);
952 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
953
954 /* We double it on the way in to account for "struct sk_buff" etc.
955 * overhead. Applications assume that the SO_RCVBUF setting they make
956 * will allow that much actual data to be received on that socket.
957 *
958 * Applications are unaware that "struct sk_buff" and other overheads
959 * allocate from the receive buffer during socket buffer allocation.
960 *
961 * And after considering the possible alternatives, returning the value
962 * we actually used in getsockopt is the most desirable behavior.
963 */
964 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
965 }
966
sock_set_rcvbuf(struct sock * sk,int val)967 void sock_set_rcvbuf(struct sock *sk, int val)
968 {
969 lock_sock(sk);
970 __sock_set_rcvbuf(sk, val);
971 release_sock(sk);
972 }
973 EXPORT_SYMBOL(sock_set_rcvbuf);
974
__sock_set_mark(struct sock * sk,u32 val)975 static void __sock_set_mark(struct sock *sk, u32 val)
976 {
977 if (val != sk->sk_mark) {
978 sk->sk_mark = val;
979 sk_dst_reset(sk);
980 }
981 }
982
sock_set_mark(struct sock * sk,u32 val)983 void sock_set_mark(struct sock *sk, u32 val)
984 {
985 lock_sock(sk);
986 __sock_set_mark(sk, val);
987 release_sock(sk);
988 }
989 EXPORT_SYMBOL(sock_set_mark);
990
sock_release_reserved_memory(struct sock * sk,int bytes)991 static void sock_release_reserved_memory(struct sock *sk, int bytes)
992 {
993 /* Round down bytes to multiple of pages */
994 bytes &= ~(SK_MEM_QUANTUM - 1);
995
996 WARN_ON(bytes > sk->sk_reserved_mem);
997 sk->sk_reserved_mem -= bytes;
998 sk_mem_reclaim(sk);
999 }
1000
sock_reserve_memory(struct sock * sk,int bytes)1001 static int sock_reserve_memory(struct sock *sk, int bytes)
1002 {
1003 long allocated;
1004 bool charged;
1005 int pages;
1006
1007 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1008 return -EOPNOTSUPP;
1009
1010 if (!bytes)
1011 return 0;
1012
1013 pages = sk_mem_pages(bytes);
1014
1015 /* pre-charge to memcg */
1016 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1017 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1018 if (!charged)
1019 return -ENOMEM;
1020
1021 /* pre-charge to forward_alloc */
1022 allocated = sk_memory_allocated_add(sk, pages);
1023 /* If the system goes into memory pressure with this
1024 * precharge, give up and return error.
1025 */
1026 if (allocated > sk_prot_mem_limits(sk, 1)) {
1027 sk_memory_allocated_sub(sk, pages);
1028 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1029 return -ENOMEM;
1030 }
1031 sk->sk_forward_alloc += pages << SK_MEM_QUANTUM_SHIFT;
1032
1033 sk->sk_reserved_mem += pages << SK_MEM_QUANTUM_SHIFT;
1034
1035 return 0;
1036 }
1037
1038 /*
1039 * This is meant for all protocols to use and covers goings on
1040 * at the socket level. Everything here is generic.
1041 */
1042
sock_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1043 int sock_setsockopt(struct socket *sock, int level, int optname,
1044 sockptr_t optval, unsigned int optlen)
1045 {
1046 struct so_timestamping timestamping;
1047 struct sock_txtime sk_txtime;
1048 struct sock *sk = sock->sk;
1049 int val;
1050 int valbool;
1051 struct linger ling;
1052 int ret = 0;
1053
1054 /*
1055 * Options without arguments
1056 */
1057
1058 if (optname == SO_BINDTODEVICE)
1059 return sock_setbindtodevice(sk, optval, optlen);
1060
1061 if (optlen < sizeof(int))
1062 return -EINVAL;
1063
1064 if (copy_from_sockptr(&val, optval, sizeof(val)))
1065 return -EFAULT;
1066
1067 valbool = val ? 1 : 0;
1068
1069 lock_sock(sk);
1070
1071 switch (optname) {
1072 case SO_DEBUG:
1073 if (val && !capable(CAP_NET_ADMIN))
1074 ret = -EACCES;
1075 else
1076 sock_valbool_flag(sk, SOCK_DBG, valbool);
1077 break;
1078 case SO_REUSEADDR:
1079 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1080 break;
1081 case SO_REUSEPORT:
1082 sk->sk_reuseport = valbool;
1083 break;
1084 case SO_TYPE:
1085 case SO_PROTOCOL:
1086 case SO_DOMAIN:
1087 case SO_ERROR:
1088 ret = -ENOPROTOOPT;
1089 break;
1090 case SO_DONTROUTE:
1091 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1092 sk_dst_reset(sk);
1093 break;
1094 case SO_BROADCAST:
1095 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1096 break;
1097 case SO_SNDBUF:
1098 /* Don't error on this BSD doesn't and if you think
1099 * about it this is right. Otherwise apps have to
1100 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1101 * are treated in BSD as hints
1102 */
1103 val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1104 set_sndbuf:
1105 /* Ensure val * 2 fits into an int, to prevent max_t()
1106 * from treating it as a negative value.
1107 */
1108 val = min_t(int, val, INT_MAX / 2);
1109 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1110 WRITE_ONCE(sk->sk_sndbuf,
1111 max_t(int, val * 2, SOCK_MIN_SNDBUF));
1112 /* Wake up sending tasks if we upped the value. */
1113 sk->sk_write_space(sk);
1114 break;
1115
1116 case SO_SNDBUFFORCE:
1117 if (!capable(CAP_NET_ADMIN)) {
1118 ret = -EPERM;
1119 break;
1120 }
1121
1122 /* No negative values (to prevent underflow, as val will be
1123 * multiplied by 2).
1124 */
1125 if (val < 0)
1126 val = 0;
1127 goto set_sndbuf;
1128
1129 case SO_RCVBUF:
1130 /* Don't error on this BSD doesn't and if you think
1131 * about it this is right. Otherwise apps have to
1132 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1133 * are treated in BSD as hints
1134 */
1135 __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
1136 break;
1137
1138 case SO_RCVBUFFORCE:
1139 if (!capable(CAP_NET_ADMIN)) {
1140 ret = -EPERM;
1141 break;
1142 }
1143
1144 /* No negative values (to prevent underflow, as val will be
1145 * multiplied by 2).
1146 */
1147 __sock_set_rcvbuf(sk, max(val, 0));
1148 break;
1149
1150 case SO_KEEPALIVE:
1151 if (sk->sk_prot->keepalive)
1152 sk->sk_prot->keepalive(sk, valbool);
1153 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1154 break;
1155
1156 case SO_OOBINLINE:
1157 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1158 break;
1159
1160 case SO_NO_CHECK:
1161 sk->sk_no_check_tx = valbool;
1162 break;
1163
1164 case SO_PRIORITY:
1165 if ((val >= 0 && val <= 6) ||
1166 ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1167 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1168 sk->sk_priority = val;
1169 else
1170 ret = -EPERM;
1171 break;
1172
1173 case SO_LINGER:
1174 if (optlen < sizeof(ling)) {
1175 ret = -EINVAL; /* 1003.1g */
1176 break;
1177 }
1178 if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1179 ret = -EFAULT;
1180 break;
1181 }
1182 if (!ling.l_onoff)
1183 sock_reset_flag(sk, SOCK_LINGER);
1184 else {
1185 #if (BITS_PER_LONG == 32)
1186 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1187 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
1188 else
1189 #endif
1190 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1191 sock_set_flag(sk, SOCK_LINGER);
1192 }
1193 break;
1194
1195 case SO_BSDCOMPAT:
1196 break;
1197
1198 case SO_PASSCRED:
1199 if (valbool)
1200 set_bit(SOCK_PASSCRED, &sock->flags);
1201 else
1202 clear_bit(SOCK_PASSCRED, &sock->flags);
1203 break;
1204
1205 case SO_TIMESTAMP_OLD:
1206 case SO_TIMESTAMP_NEW:
1207 case SO_TIMESTAMPNS_OLD:
1208 case SO_TIMESTAMPNS_NEW:
1209 sock_set_timestamp(sk, optname, valbool);
1210 break;
1211
1212 case SO_TIMESTAMPING_NEW:
1213 case SO_TIMESTAMPING_OLD:
1214 if (optlen == sizeof(timestamping)) {
1215 if (copy_from_sockptr(×tamping, optval,
1216 sizeof(timestamping))) {
1217 ret = -EFAULT;
1218 break;
1219 }
1220 } else {
1221 memset(×tamping, 0, sizeof(timestamping));
1222 timestamping.flags = val;
1223 }
1224 ret = sock_set_timestamping(sk, optname, timestamping);
1225 break;
1226
1227 case SO_RCVLOWAT:
1228 if (val < 0)
1229 val = INT_MAX;
1230 if (sock->ops->set_rcvlowat)
1231 ret = sock->ops->set_rcvlowat(sk, val);
1232 else
1233 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1234 break;
1235
1236 case SO_RCVTIMEO_OLD:
1237 case SO_RCVTIMEO_NEW:
1238 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1239 optlen, optname == SO_RCVTIMEO_OLD);
1240 break;
1241
1242 case SO_SNDTIMEO_OLD:
1243 case SO_SNDTIMEO_NEW:
1244 ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1245 optlen, optname == SO_SNDTIMEO_OLD);
1246 break;
1247
1248 case SO_ATTACH_FILTER: {
1249 struct sock_fprog fprog;
1250
1251 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1252 if (!ret)
1253 ret = sk_attach_filter(&fprog, sk);
1254 break;
1255 }
1256 case SO_ATTACH_BPF:
1257 ret = -EINVAL;
1258 if (optlen == sizeof(u32)) {
1259 u32 ufd;
1260
1261 ret = -EFAULT;
1262 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1263 break;
1264
1265 ret = sk_attach_bpf(ufd, sk);
1266 }
1267 break;
1268
1269 case SO_ATTACH_REUSEPORT_CBPF: {
1270 struct sock_fprog fprog;
1271
1272 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1273 if (!ret)
1274 ret = sk_reuseport_attach_filter(&fprog, sk);
1275 break;
1276 }
1277 case SO_ATTACH_REUSEPORT_EBPF:
1278 ret = -EINVAL;
1279 if (optlen == sizeof(u32)) {
1280 u32 ufd;
1281
1282 ret = -EFAULT;
1283 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1284 break;
1285
1286 ret = sk_reuseport_attach_bpf(ufd, sk);
1287 }
1288 break;
1289
1290 case SO_DETACH_REUSEPORT_BPF:
1291 ret = reuseport_detach_prog(sk);
1292 break;
1293
1294 case SO_DETACH_FILTER:
1295 ret = sk_detach_filter(sk);
1296 break;
1297
1298 case SO_LOCK_FILTER:
1299 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1300 ret = -EPERM;
1301 else
1302 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1303 break;
1304
1305 case SO_PASSSEC:
1306 if (valbool)
1307 set_bit(SOCK_PASSSEC, &sock->flags);
1308 else
1309 clear_bit(SOCK_PASSSEC, &sock->flags);
1310 break;
1311 case SO_MARK:
1312 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1313 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1314 ret = -EPERM;
1315 break;
1316 }
1317
1318 __sock_set_mark(sk, val);
1319 break;
1320 case SO_RCVMARK:
1321 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1322 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1323 ret = -EPERM;
1324 break;
1325 }
1326
1327 sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1328 break;
1329
1330 case SO_RXQ_OVFL:
1331 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1332 break;
1333
1334 case SO_WIFI_STATUS:
1335 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1336 break;
1337
1338 case SO_PEEK_OFF:
1339 if (sock->ops->set_peek_off)
1340 ret = sock->ops->set_peek_off(sk, val);
1341 else
1342 ret = -EOPNOTSUPP;
1343 break;
1344
1345 case SO_NOFCS:
1346 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1347 break;
1348
1349 case SO_SELECT_ERR_QUEUE:
1350 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1351 break;
1352
1353 #ifdef CONFIG_NET_RX_BUSY_POLL
1354 case SO_BUSY_POLL:
1355 /* allow unprivileged users to decrease the value */
1356 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1357 ret = -EPERM;
1358 else {
1359 if (val < 0)
1360 ret = -EINVAL;
1361 else
1362 WRITE_ONCE(sk->sk_ll_usec, val);
1363 }
1364 break;
1365 case SO_PREFER_BUSY_POLL:
1366 if (valbool && !capable(CAP_NET_ADMIN))
1367 ret = -EPERM;
1368 else
1369 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1370 break;
1371 case SO_BUSY_POLL_BUDGET:
1372 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) {
1373 ret = -EPERM;
1374 } else {
1375 if (val < 0 || val > U16_MAX)
1376 ret = -EINVAL;
1377 else
1378 WRITE_ONCE(sk->sk_busy_poll_budget, val);
1379 }
1380 break;
1381 #endif
1382
1383 case SO_MAX_PACING_RATE:
1384 {
1385 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1386
1387 if (sizeof(ulval) != sizeof(val) &&
1388 optlen >= sizeof(ulval) &&
1389 copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1390 ret = -EFAULT;
1391 break;
1392 }
1393 if (ulval != ~0UL)
1394 cmpxchg(&sk->sk_pacing_status,
1395 SK_PACING_NONE,
1396 SK_PACING_NEEDED);
1397 sk->sk_max_pacing_rate = ulval;
1398 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1399 break;
1400 }
1401 case SO_INCOMING_CPU:
1402 WRITE_ONCE(sk->sk_incoming_cpu, val);
1403 break;
1404
1405 case SO_CNX_ADVICE:
1406 if (val == 1)
1407 dst_negative_advice(sk);
1408 break;
1409
1410 case SO_ZEROCOPY:
1411 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1412 if (!(sk_is_tcp(sk) ||
1413 (sk->sk_type == SOCK_DGRAM &&
1414 sk->sk_protocol == IPPROTO_UDP)))
1415 ret = -EOPNOTSUPP;
1416 } else if (sk->sk_family != PF_RDS) {
1417 ret = -EOPNOTSUPP;
1418 }
1419 if (!ret) {
1420 if (val < 0 || val > 1)
1421 ret = -EINVAL;
1422 else
1423 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1424 }
1425 break;
1426
1427 case SO_TXTIME:
1428 if (optlen != sizeof(struct sock_txtime)) {
1429 ret = -EINVAL;
1430 break;
1431 } else if (copy_from_sockptr(&sk_txtime, optval,
1432 sizeof(struct sock_txtime))) {
1433 ret = -EFAULT;
1434 break;
1435 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1436 ret = -EINVAL;
1437 break;
1438 }
1439 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1440 * scheduler has enough safe guards.
1441 */
1442 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1443 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1444 ret = -EPERM;
1445 break;
1446 }
1447 sock_valbool_flag(sk, SOCK_TXTIME, true);
1448 sk->sk_clockid = sk_txtime.clockid;
1449 sk->sk_txtime_deadline_mode =
1450 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1451 sk->sk_txtime_report_errors =
1452 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1453 break;
1454
1455 case SO_BINDTOIFINDEX:
1456 ret = sock_bindtoindex_locked(sk, val);
1457 break;
1458
1459 case SO_BUF_LOCK:
1460 if (val & ~SOCK_BUF_LOCK_MASK) {
1461 ret = -EINVAL;
1462 break;
1463 }
1464 sk->sk_userlocks = val | (sk->sk_userlocks &
1465 ~SOCK_BUF_LOCK_MASK);
1466 break;
1467
1468 case SO_RESERVE_MEM:
1469 {
1470 int delta;
1471
1472 if (val < 0) {
1473 ret = -EINVAL;
1474 break;
1475 }
1476
1477 delta = val - sk->sk_reserved_mem;
1478 if (delta < 0)
1479 sock_release_reserved_memory(sk, -delta);
1480 else
1481 ret = sock_reserve_memory(sk, delta);
1482 break;
1483 }
1484
1485 case SO_TXREHASH:
1486 if (val < -1 || val > 1) {
1487 ret = -EINVAL;
1488 break;
1489 }
1490 /* Paired with READ_ONCE() in tcp_rtx_synack() */
1491 WRITE_ONCE(sk->sk_txrehash, (u8)val);
1492 break;
1493
1494 default:
1495 ret = -ENOPROTOOPT;
1496 break;
1497 }
1498 release_sock(sk);
1499 return ret;
1500 }
1501 EXPORT_SYMBOL(sock_setsockopt);
1502
sk_get_peer_cred(struct sock * sk)1503 static const struct cred *sk_get_peer_cred(struct sock *sk)
1504 {
1505 const struct cred *cred;
1506
1507 spin_lock(&sk->sk_peer_lock);
1508 cred = get_cred(sk->sk_peer_cred);
1509 spin_unlock(&sk->sk_peer_lock);
1510
1511 return cred;
1512 }
1513
cred_to_ucred(struct pid * pid,const struct cred * cred,struct ucred * ucred)1514 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1515 struct ucred *ucred)
1516 {
1517 ucred->pid = pid_vnr(pid);
1518 ucred->uid = ucred->gid = -1;
1519 if (cred) {
1520 struct user_namespace *current_ns = current_user_ns();
1521
1522 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1523 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1524 }
1525 }
1526
groups_to_user(gid_t __user * dst,const struct group_info * src)1527 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1528 {
1529 struct user_namespace *user_ns = current_user_ns();
1530 int i;
1531
1532 for (i = 0; i < src->ngroups; i++)
1533 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1534 return -EFAULT;
1535
1536 return 0;
1537 }
1538
sock_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1539 int sock_getsockopt(struct socket *sock, int level, int optname,
1540 char __user *optval, int __user *optlen)
1541 {
1542 struct sock *sk = sock->sk;
1543
1544 union {
1545 int val;
1546 u64 val64;
1547 unsigned long ulval;
1548 struct linger ling;
1549 struct old_timeval32 tm32;
1550 struct __kernel_old_timeval tm;
1551 struct __kernel_sock_timeval stm;
1552 struct sock_txtime txtime;
1553 struct so_timestamping timestamping;
1554 } v;
1555
1556 int lv = sizeof(int);
1557 int len;
1558
1559 if (get_user(len, optlen))
1560 return -EFAULT;
1561 if (len < 0)
1562 return -EINVAL;
1563
1564 memset(&v, 0, sizeof(v));
1565
1566 switch (optname) {
1567 case SO_DEBUG:
1568 v.val = sock_flag(sk, SOCK_DBG);
1569 break;
1570
1571 case SO_DONTROUTE:
1572 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1573 break;
1574
1575 case SO_BROADCAST:
1576 v.val = sock_flag(sk, SOCK_BROADCAST);
1577 break;
1578
1579 case SO_SNDBUF:
1580 v.val = sk->sk_sndbuf;
1581 break;
1582
1583 case SO_RCVBUF:
1584 v.val = sk->sk_rcvbuf;
1585 break;
1586
1587 case SO_REUSEADDR:
1588 v.val = sk->sk_reuse;
1589 break;
1590
1591 case SO_REUSEPORT:
1592 v.val = sk->sk_reuseport;
1593 break;
1594
1595 case SO_KEEPALIVE:
1596 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1597 break;
1598
1599 case SO_TYPE:
1600 v.val = sk->sk_type;
1601 break;
1602
1603 case SO_PROTOCOL:
1604 v.val = sk->sk_protocol;
1605 break;
1606
1607 case SO_DOMAIN:
1608 v.val = sk->sk_family;
1609 break;
1610
1611 case SO_ERROR:
1612 v.val = -sock_error(sk);
1613 if (v.val == 0)
1614 v.val = xchg(&sk->sk_err_soft, 0);
1615 break;
1616
1617 case SO_OOBINLINE:
1618 v.val = sock_flag(sk, SOCK_URGINLINE);
1619 break;
1620
1621 case SO_NO_CHECK:
1622 v.val = sk->sk_no_check_tx;
1623 break;
1624
1625 case SO_PRIORITY:
1626 v.val = sk->sk_priority;
1627 break;
1628
1629 case SO_LINGER:
1630 lv = sizeof(v.ling);
1631 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1632 v.ling.l_linger = sk->sk_lingertime / HZ;
1633 break;
1634
1635 case SO_BSDCOMPAT:
1636 break;
1637
1638 case SO_TIMESTAMP_OLD:
1639 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1640 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1641 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1642 break;
1643
1644 case SO_TIMESTAMPNS_OLD:
1645 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1646 break;
1647
1648 case SO_TIMESTAMP_NEW:
1649 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1650 break;
1651
1652 case SO_TIMESTAMPNS_NEW:
1653 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1654 break;
1655
1656 case SO_TIMESTAMPING_OLD:
1657 lv = sizeof(v.timestamping);
1658 v.timestamping.flags = sk->sk_tsflags;
1659 v.timestamping.bind_phc = sk->sk_bind_phc;
1660 break;
1661
1662 case SO_RCVTIMEO_OLD:
1663 case SO_RCVTIMEO_NEW:
1664 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1665 break;
1666
1667 case SO_SNDTIMEO_OLD:
1668 case SO_SNDTIMEO_NEW:
1669 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1670 break;
1671
1672 case SO_RCVLOWAT:
1673 v.val = sk->sk_rcvlowat;
1674 break;
1675
1676 case SO_SNDLOWAT:
1677 v.val = 1;
1678 break;
1679
1680 case SO_PASSCRED:
1681 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1682 break;
1683
1684 case SO_PEERCRED:
1685 {
1686 struct ucred peercred;
1687 if (len > sizeof(peercred))
1688 len = sizeof(peercred);
1689
1690 spin_lock(&sk->sk_peer_lock);
1691 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1692 spin_unlock(&sk->sk_peer_lock);
1693
1694 if (copy_to_user(optval, &peercred, len))
1695 return -EFAULT;
1696 goto lenout;
1697 }
1698
1699 case SO_PEERGROUPS:
1700 {
1701 const struct cred *cred;
1702 int ret, n;
1703
1704 cred = sk_get_peer_cred(sk);
1705 if (!cred)
1706 return -ENODATA;
1707
1708 n = cred->group_info->ngroups;
1709 if (len < n * sizeof(gid_t)) {
1710 len = n * sizeof(gid_t);
1711 put_cred(cred);
1712 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1713 }
1714 len = n * sizeof(gid_t);
1715
1716 ret = groups_to_user((gid_t __user *)optval, cred->group_info);
1717 put_cred(cred);
1718 if (ret)
1719 return ret;
1720 goto lenout;
1721 }
1722
1723 case SO_PEERNAME:
1724 {
1725 char address[128];
1726
1727 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1728 if (lv < 0)
1729 return -ENOTCONN;
1730 if (lv < len)
1731 return -EINVAL;
1732 if (copy_to_user(optval, address, len))
1733 return -EFAULT;
1734 goto lenout;
1735 }
1736
1737 /* Dubious BSD thing... Probably nobody even uses it, but
1738 * the UNIX standard wants it for whatever reason... -DaveM
1739 */
1740 case SO_ACCEPTCONN:
1741 v.val = sk->sk_state == TCP_LISTEN;
1742 break;
1743
1744 case SO_PASSSEC:
1745 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1746 break;
1747
1748 case SO_PEERSEC:
1749 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1750
1751 case SO_MARK:
1752 v.val = sk->sk_mark;
1753 break;
1754
1755 case SO_RCVMARK:
1756 v.val = sock_flag(sk, SOCK_RCVMARK);
1757 break;
1758
1759 case SO_RXQ_OVFL:
1760 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1761 break;
1762
1763 case SO_WIFI_STATUS:
1764 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1765 break;
1766
1767 case SO_PEEK_OFF:
1768 if (!sock->ops->set_peek_off)
1769 return -EOPNOTSUPP;
1770
1771 v.val = sk->sk_peek_off;
1772 break;
1773 case SO_NOFCS:
1774 v.val = sock_flag(sk, SOCK_NOFCS);
1775 break;
1776
1777 case SO_BINDTODEVICE:
1778 return sock_getbindtodevice(sk, optval, optlen, len);
1779
1780 case SO_GET_FILTER:
1781 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1782 if (len < 0)
1783 return len;
1784
1785 goto lenout;
1786
1787 case SO_LOCK_FILTER:
1788 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1789 break;
1790
1791 case SO_BPF_EXTENSIONS:
1792 v.val = bpf_tell_extensions();
1793 break;
1794
1795 case SO_SELECT_ERR_QUEUE:
1796 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1797 break;
1798
1799 #ifdef CONFIG_NET_RX_BUSY_POLL
1800 case SO_BUSY_POLL:
1801 v.val = sk->sk_ll_usec;
1802 break;
1803 case SO_PREFER_BUSY_POLL:
1804 v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1805 break;
1806 #endif
1807
1808 case SO_MAX_PACING_RATE:
1809 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1810 lv = sizeof(v.ulval);
1811 v.ulval = sk->sk_max_pacing_rate;
1812 } else {
1813 /* 32bit version */
1814 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1815 }
1816 break;
1817
1818 case SO_INCOMING_CPU:
1819 v.val = READ_ONCE(sk->sk_incoming_cpu);
1820 break;
1821
1822 case SO_MEMINFO:
1823 {
1824 u32 meminfo[SK_MEMINFO_VARS];
1825
1826 sk_get_meminfo(sk, meminfo);
1827
1828 len = min_t(unsigned int, len, sizeof(meminfo));
1829 if (copy_to_user(optval, &meminfo, len))
1830 return -EFAULT;
1831
1832 goto lenout;
1833 }
1834
1835 #ifdef CONFIG_NET_RX_BUSY_POLL
1836 case SO_INCOMING_NAPI_ID:
1837 v.val = READ_ONCE(sk->sk_napi_id);
1838
1839 /* aggregate non-NAPI IDs down to 0 */
1840 if (v.val < MIN_NAPI_ID)
1841 v.val = 0;
1842
1843 break;
1844 #endif
1845
1846 case SO_COOKIE:
1847 lv = sizeof(u64);
1848 if (len < lv)
1849 return -EINVAL;
1850 v.val64 = sock_gen_cookie(sk);
1851 break;
1852
1853 case SO_ZEROCOPY:
1854 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1855 break;
1856
1857 case SO_TXTIME:
1858 lv = sizeof(v.txtime);
1859 v.txtime.clockid = sk->sk_clockid;
1860 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1861 SOF_TXTIME_DEADLINE_MODE : 0;
1862 v.txtime.flags |= sk->sk_txtime_report_errors ?
1863 SOF_TXTIME_REPORT_ERRORS : 0;
1864 break;
1865
1866 case SO_BINDTOIFINDEX:
1867 v.val = READ_ONCE(sk->sk_bound_dev_if);
1868 break;
1869
1870 case SO_NETNS_COOKIE:
1871 lv = sizeof(u64);
1872 if (len != lv)
1873 return -EINVAL;
1874 v.val64 = sock_net(sk)->net_cookie;
1875 break;
1876
1877 case SO_BUF_LOCK:
1878 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
1879 break;
1880
1881 case SO_RESERVE_MEM:
1882 v.val = sk->sk_reserved_mem;
1883 break;
1884
1885 case SO_TXREHASH:
1886 v.val = sk->sk_txrehash;
1887 break;
1888
1889 default:
1890 /* We implement the SO_SNDLOWAT etc to not be settable
1891 * (1003.1g 7).
1892 */
1893 return -ENOPROTOOPT;
1894 }
1895
1896 if (len > lv)
1897 len = lv;
1898 if (copy_to_user(optval, &v, len))
1899 return -EFAULT;
1900 lenout:
1901 if (put_user(len, optlen))
1902 return -EFAULT;
1903 return 0;
1904 }
1905
1906 /*
1907 * Initialize an sk_lock.
1908 *
1909 * (We also register the sk_lock with the lock validator.)
1910 */
sock_lock_init(struct sock * sk)1911 static inline void sock_lock_init(struct sock *sk)
1912 {
1913 if (sk->sk_kern_sock)
1914 sock_lock_init_class_and_name(
1915 sk,
1916 af_family_kern_slock_key_strings[sk->sk_family],
1917 af_family_kern_slock_keys + sk->sk_family,
1918 af_family_kern_key_strings[sk->sk_family],
1919 af_family_kern_keys + sk->sk_family);
1920 else
1921 sock_lock_init_class_and_name(
1922 sk,
1923 af_family_slock_key_strings[sk->sk_family],
1924 af_family_slock_keys + sk->sk_family,
1925 af_family_key_strings[sk->sk_family],
1926 af_family_keys + sk->sk_family);
1927 }
1928
1929 /*
1930 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1931 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1932 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1933 */
sock_copy(struct sock * nsk,const struct sock * osk)1934 static void sock_copy(struct sock *nsk, const struct sock *osk)
1935 {
1936 const struct proto *prot = READ_ONCE(osk->sk_prot);
1937 #ifdef CONFIG_SECURITY_NETWORK
1938 void *sptr = nsk->sk_security;
1939 #endif
1940
1941 /* If we move sk_tx_queue_mapping out of the private section,
1942 * we must check if sk_tx_queue_clear() is called after
1943 * sock_copy() in sk_clone_lock().
1944 */
1945 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
1946 offsetof(struct sock, sk_dontcopy_begin) ||
1947 offsetof(struct sock, sk_tx_queue_mapping) >=
1948 offsetof(struct sock, sk_dontcopy_end));
1949
1950 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1951
1952 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1953 prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1954
1955 #ifdef CONFIG_SECURITY_NETWORK
1956 nsk->sk_security = sptr;
1957 security_sk_clone(osk, nsk);
1958 #endif
1959 }
1960
sk_prot_alloc(struct proto * prot,gfp_t priority,int family)1961 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1962 int family)
1963 {
1964 struct sock *sk;
1965 struct kmem_cache *slab;
1966
1967 slab = prot->slab;
1968 if (slab != NULL) {
1969 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1970 if (!sk)
1971 return sk;
1972 if (want_init_on_alloc(priority))
1973 sk_prot_clear_nulls(sk, prot->obj_size);
1974 } else
1975 sk = kmalloc(prot->obj_size, priority);
1976
1977 if (sk != NULL) {
1978 if (security_sk_alloc(sk, family, priority))
1979 goto out_free;
1980
1981 if (!try_module_get(prot->owner))
1982 goto out_free_sec;
1983 }
1984
1985 return sk;
1986
1987 out_free_sec:
1988 security_sk_free(sk);
1989 out_free:
1990 if (slab != NULL)
1991 kmem_cache_free(slab, sk);
1992 else
1993 kfree(sk);
1994 return NULL;
1995 }
1996
sk_prot_free(struct proto * prot,struct sock * sk)1997 static void sk_prot_free(struct proto *prot, struct sock *sk)
1998 {
1999 struct kmem_cache *slab;
2000 struct module *owner;
2001
2002 owner = prot->owner;
2003 slab = prot->slab;
2004
2005 cgroup_sk_free(&sk->sk_cgrp_data);
2006 mem_cgroup_sk_free(sk);
2007 security_sk_free(sk);
2008 if (slab != NULL)
2009 kmem_cache_free(slab, sk);
2010 else
2011 kfree(sk);
2012 module_put(owner);
2013 }
2014
2015 /**
2016 * sk_alloc - All socket objects are allocated here
2017 * @net: the applicable net namespace
2018 * @family: protocol family
2019 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2020 * @prot: struct proto associated with this new sock instance
2021 * @kern: is this to be a kernel socket?
2022 */
sk_alloc(struct net * net,int family,gfp_t priority,struct proto * prot,int kern)2023 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2024 struct proto *prot, int kern)
2025 {
2026 struct sock *sk;
2027
2028 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2029 if (sk) {
2030 sk->sk_family = family;
2031 /*
2032 * See comment in struct sock definition to understand
2033 * why we need sk_prot_creator -acme
2034 */
2035 sk->sk_prot = sk->sk_prot_creator = prot;
2036 sk->sk_kern_sock = kern;
2037 sock_lock_init(sk);
2038 sk->sk_net_refcnt = kern ? 0 : 1;
2039 if (likely(sk->sk_net_refcnt)) {
2040 get_net_track(net, &sk->ns_tracker, priority);
2041 sock_inuse_add(net, 1);
2042 }
2043
2044 sock_net_set(sk, net);
2045 refcount_set(&sk->sk_wmem_alloc, 1);
2046
2047 mem_cgroup_sk_alloc(sk);
2048 cgroup_sk_alloc(&sk->sk_cgrp_data);
2049 sock_update_classid(&sk->sk_cgrp_data);
2050 sock_update_netprioidx(&sk->sk_cgrp_data);
2051 sk_tx_queue_clear(sk);
2052 }
2053
2054 return sk;
2055 }
2056 EXPORT_SYMBOL(sk_alloc);
2057
2058 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
2059 * grace period. This is the case for UDP sockets and TCP listeners.
2060 */
__sk_destruct(struct rcu_head * head)2061 static void __sk_destruct(struct rcu_head *head)
2062 {
2063 struct sock *sk = container_of(head, struct sock, sk_rcu);
2064 struct sk_filter *filter;
2065
2066 if (sk->sk_destruct)
2067 sk->sk_destruct(sk);
2068
2069 filter = rcu_dereference_check(sk->sk_filter,
2070 refcount_read(&sk->sk_wmem_alloc) == 0);
2071 if (filter) {
2072 sk_filter_uncharge(sk, filter);
2073 RCU_INIT_POINTER(sk->sk_filter, NULL);
2074 }
2075
2076 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2077
2078 #ifdef CONFIG_BPF_SYSCALL
2079 bpf_sk_storage_free(sk);
2080 #endif
2081
2082 if (atomic_read(&sk->sk_omem_alloc))
2083 pr_debug("%s: optmem leakage (%d bytes) detected\n",
2084 __func__, atomic_read(&sk->sk_omem_alloc));
2085
2086 if (sk->sk_frag.page) {
2087 put_page(sk->sk_frag.page);
2088 sk->sk_frag.page = NULL;
2089 }
2090
2091 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2092 put_cred(sk->sk_peer_cred);
2093 put_pid(sk->sk_peer_pid);
2094
2095 if (likely(sk->sk_net_refcnt))
2096 put_net_track(sock_net(sk), &sk->ns_tracker);
2097 sk_prot_free(sk->sk_prot_creator, sk);
2098 }
2099
sk_destruct(struct sock * sk)2100 void sk_destruct(struct sock *sk)
2101 {
2102 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2103
2104 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2105 reuseport_detach_sock(sk);
2106 use_call_rcu = true;
2107 }
2108
2109 if (use_call_rcu)
2110 call_rcu(&sk->sk_rcu, __sk_destruct);
2111 else
2112 __sk_destruct(&sk->sk_rcu);
2113 }
2114
__sk_free(struct sock * sk)2115 static void __sk_free(struct sock *sk)
2116 {
2117 if (likely(sk->sk_net_refcnt))
2118 sock_inuse_add(sock_net(sk), -1);
2119
2120 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2121 sock_diag_broadcast_destroy(sk);
2122 else
2123 sk_destruct(sk);
2124 }
2125
sk_free(struct sock * sk)2126 void sk_free(struct sock *sk)
2127 {
2128 /*
2129 * We subtract one from sk_wmem_alloc and can know if
2130 * some packets are still in some tx queue.
2131 * If not null, sock_wfree() will call __sk_free(sk) later
2132 */
2133 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2134 __sk_free(sk);
2135 }
2136 EXPORT_SYMBOL(sk_free);
2137
sk_init_common(struct sock * sk)2138 static void sk_init_common(struct sock *sk)
2139 {
2140 skb_queue_head_init(&sk->sk_receive_queue);
2141 skb_queue_head_init(&sk->sk_write_queue);
2142 skb_queue_head_init(&sk->sk_error_queue);
2143
2144 rwlock_init(&sk->sk_callback_lock);
2145 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2146 af_rlock_keys + sk->sk_family,
2147 af_family_rlock_key_strings[sk->sk_family]);
2148 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2149 af_wlock_keys + sk->sk_family,
2150 af_family_wlock_key_strings[sk->sk_family]);
2151 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2152 af_elock_keys + sk->sk_family,
2153 af_family_elock_key_strings[sk->sk_family]);
2154 lockdep_set_class_and_name(&sk->sk_callback_lock,
2155 af_callback_keys + sk->sk_family,
2156 af_family_clock_key_strings[sk->sk_family]);
2157 }
2158
2159 /**
2160 * sk_clone_lock - clone a socket, and lock its clone
2161 * @sk: the socket to clone
2162 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2163 *
2164 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2165 */
sk_clone_lock(const struct sock * sk,const gfp_t priority)2166 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2167 {
2168 struct proto *prot = READ_ONCE(sk->sk_prot);
2169 struct sk_filter *filter;
2170 bool is_charged = true;
2171 struct sock *newsk;
2172
2173 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2174 if (!newsk)
2175 goto out;
2176
2177 sock_copy(newsk, sk);
2178
2179 newsk->sk_prot_creator = prot;
2180
2181 /* SANITY */
2182 if (likely(newsk->sk_net_refcnt)) {
2183 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2184 sock_inuse_add(sock_net(newsk), 1);
2185 }
2186 sk_node_init(&newsk->sk_node);
2187 sock_lock_init(newsk);
2188 bh_lock_sock(newsk);
2189 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
2190 newsk->sk_backlog.len = 0;
2191
2192 atomic_set(&newsk->sk_rmem_alloc, 0);
2193
2194 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2195 refcount_set(&newsk->sk_wmem_alloc, 1);
2196
2197 atomic_set(&newsk->sk_omem_alloc, 0);
2198 sk_init_common(newsk);
2199
2200 newsk->sk_dst_cache = NULL;
2201 newsk->sk_dst_pending_confirm = 0;
2202 newsk->sk_wmem_queued = 0;
2203 newsk->sk_forward_alloc = 0;
2204 newsk->sk_reserved_mem = 0;
2205 atomic_set(&newsk->sk_drops, 0);
2206 newsk->sk_send_head = NULL;
2207 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2208 atomic_set(&newsk->sk_zckey, 0);
2209
2210 sock_reset_flag(newsk, SOCK_DONE);
2211
2212 /* sk->sk_memcg will be populated at accept() time */
2213 newsk->sk_memcg = NULL;
2214
2215 cgroup_sk_clone(&newsk->sk_cgrp_data);
2216
2217 rcu_read_lock();
2218 filter = rcu_dereference(sk->sk_filter);
2219 if (filter != NULL)
2220 /* though it's an empty new sock, the charging may fail
2221 * if sysctl_optmem_max was changed between creation of
2222 * original socket and cloning
2223 */
2224 is_charged = sk_filter_charge(newsk, filter);
2225 RCU_INIT_POINTER(newsk->sk_filter, filter);
2226 rcu_read_unlock();
2227
2228 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2229 /* We need to make sure that we don't uncharge the new
2230 * socket if we couldn't charge it in the first place
2231 * as otherwise we uncharge the parent's filter.
2232 */
2233 if (!is_charged)
2234 RCU_INIT_POINTER(newsk->sk_filter, NULL);
2235 sk_free_unlock_clone(newsk);
2236 newsk = NULL;
2237 goto out;
2238 }
2239 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2240
2241 if (bpf_sk_storage_clone(sk, newsk)) {
2242 sk_free_unlock_clone(newsk);
2243 newsk = NULL;
2244 goto out;
2245 }
2246
2247 /* Clear sk_user_data if parent had the pointer tagged
2248 * as not suitable for copying when cloning.
2249 */
2250 if (sk_user_data_is_nocopy(newsk))
2251 newsk->sk_user_data = NULL;
2252
2253 newsk->sk_err = 0;
2254 newsk->sk_err_soft = 0;
2255 newsk->sk_priority = 0;
2256 newsk->sk_incoming_cpu = raw_smp_processor_id();
2257
2258 /* Before updating sk_refcnt, we must commit prior changes to memory
2259 * (Documentation/RCU/rculist_nulls.rst for details)
2260 */
2261 smp_wmb();
2262 refcount_set(&newsk->sk_refcnt, 2);
2263
2264 /* Increment the counter in the same struct proto as the master
2265 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
2266 * is the same as sk->sk_prot->socks, as this field was copied
2267 * with memcpy).
2268 *
2269 * This _changes_ the previous behaviour, where
2270 * tcp_create_openreq_child always was incrementing the
2271 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
2272 * to be taken into account in all callers. -acme
2273 */
2274 sk_refcnt_debug_inc(newsk);
2275 sk_set_socket(newsk, NULL);
2276 sk_tx_queue_clear(newsk);
2277 RCU_INIT_POINTER(newsk->sk_wq, NULL);
2278
2279 if (newsk->sk_prot->sockets_allocated)
2280 sk_sockets_allocated_inc(newsk);
2281
2282 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2283 net_enable_timestamp();
2284 out:
2285 return newsk;
2286 }
2287 EXPORT_SYMBOL_GPL(sk_clone_lock);
2288
sk_free_unlock_clone(struct sock * sk)2289 void sk_free_unlock_clone(struct sock *sk)
2290 {
2291 /* It is still raw copy of parent, so invalidate
2292 * destructor and make plain sk_free() */
2293 sk->sk_destruct = NULL;
2294 bh_unlock_sock(sk);
2295 sk_free(sk);
2296 }
2297 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2298
sk_trim_gso_size(struct sock * sk)2299 static void sk_trim_gso_size(struct sock *sk)
2300 {
2301 if (sk->sk_gso_max_size <= GSO_LEGACY_MAX_SIZE)
2302 return;
2303 #if IS_ENABLED(CONFIG_IPV6)
2304 if (sk->sk_family == AF_INET6 &&
2305 sk_is_tcp(sk) &&
2306 !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
2307 return;
2308 #endif
2309 sk->sk_gso_max_size = GSO_LEGACY_MAX_SIZE;
2310 }
2311
sk_setup_caps(struct sock * sk,struct dst_entry * dst)2312 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2313 {
2314 u32 max_segs = 1;
2315
2316 sk_dst_set(sk, dst);
2317 sk->sk_route_caps = dst->dev->features;
2318 if (sk_is_tcp(sk))
2319 sk->sk_route_caps |= NETIF_F_GSO;
2320 if (sk->sk_route_caps & NETIF_F_GSO)
2321 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2322 if (unlikely(sk->sk_gso_disabled))
2323 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2324 if (sk_can_gso(sk)) {
2325 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2326 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2327 } else {
2328 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2329 /* pairs with the WRITE_ONCE() in netif_set_gso_max_size() */
2330 sk->sk_gso_max_size = READ_ONCE(dst->dev->gso_max_size);
2331 sk_trim_gso_size(sk);
2332 sk->sk_gso_max_size -= (MAX_TCP_HEADER + 1);
2333 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2334 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2335 }
2336 }
2337 sk->sk_gso_max_segs = max_segs;
2338 }
2339 EXPORT_SYMBOL_GPL(sk_setup_caps);
2340
2341 /*
2342 * Simple resource managers for sockets.
2343 */
2344
2345
2346 /*
2347 * Write buffer destructor automatically called from kfree_skb.
2348 */
sock_wfree(struct sk_buff * skb)2349 void sock_wfree(struct sk_buff *skb)
2350 {
2351 struct sock *sk = skb->sk;
2352 unsigned int len = skb->truesize;
2353 bool free;
2354
2355 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2356 if (sock_flag(sk, SOCK_RCU_FREE) &&
2357 sk->sk_write_space == sock_def_write_space) {
2358 rcu_read_lock();
2359 free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2360 sock_def_write_space_wfree(sk);
2361 rcu_read_unlock();
2362 if (unlikely(free))
2363 __sk_free(sk);
2364 return;
2365 }
2366
2367 /*
2368 * Keep a reference on sk_wmem_alloc, this will be released
2369 * after sk_write_space() call
2370 */
2371 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2372 sk->sk_write_space(sk);
2373 len = 1;
2374 }
2375 /*
2376 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2377 * could not do because of in-flight packets
2378 */
2379 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2380 __sk_free(sk);
2381 }
2382 EXPORT_SYMBOL(sock_wfree);
2383
2384 /* This variant of sock_wfree() is used by TCP,
2385 * since it sets SOCK_USE_WRITE_QUEUE.
2386 */
__sock_wfree(struct sk_buff * skb)2387 void __sock_wfree(struct sk_buff *skb)
2388 {
2389 struct sock *sk = skb->sk;
2390
2391 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2392 __sk_free(sk);
2393 }
2394
skb_set_owner_w(struct sk_buff * skb,struct sock * sk)2395 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2396 {
2397 skb_orphan(skb);
2398 skb->sk = sk;
2399 #ifdef CONFIG_INET
2400 if (unlikely(!sk_fullsock(sk))) {
2401 skb->destructor = sock_edemux;
2402 sock_hold(sk);
2403 return;
2404 }
2405 #endif
2406 skb->destructor = sock_wfree;
2407 skb_set_hash_from_sk(skb, sk);
2408 /*
2409 * We used to take a refcount on sk, but following operation
2410 * is enough to guarantee sk_free() wont free this sock until
2411 * all in-flight packets are completed
2412 */
2413 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2414 }
2415 EXPORT_SYMBOL(skb_set_owner_w);
2416
can_skb_orphan_partial(const struct sk_buff * skb)2417 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2418 {
2419 #ifdef CONFIG_TLS_DEVICE
2420 /* Drivers depend on in-order delivery for crypto offload,
2421 * partial orphan breaks out-of-order-OK logic.
2422 */
2423 if (skb->decrypted)
2424 return false;
2425 #endif
2426 return (skb->destructor == sock_wfree ||
2427 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2428 }
2429
2430 /* This helper is used by netem, as it can hold packets in its
2431 * delay queue. We want to allow the owner socket to send more
2432 * packets, as if they were already TX completed by a typical driver.
2433 * But we also want to keep skb->sk set because some packet schedulers
2434 * rely on it (sch_fq for example).
2435 */
skb_orphan_partial(struct sk_buff * skb)2436 void skb_orphan_partial(struct sk_buff *skb)
2437 {
2438 if (skb_is_tcp_pure_ack(skb))
2439 return;
2440
2441 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2442 return;
2443
2444 skb_orphan(skb);
2445 }
2446 EXPORT_SYMBOL(skb_orphan_partial);
2447
2448 /*
2449 * Read buffer destructor automatically called from kfree_skb.
2450 */
sock_rfree(struct sk_buff * skb)2451 void sock_rfree(struct sk_buff *skb)
2452 {
2453 struct sock *sk = skb->sk;
2454 unsigned int len = skb->truesize;
2455
2456 atomic_sub(len, &sk->sk_rmem_alloc);
2457 sk_mem_uncharge(sk, len);
2458 }
2459 EXPORT_SYMBOL(sock_rfree);
2460
2461 /*
2462 * Buffer destructor for skbs that are not used directly in read or write
2463 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2464 */
sock_efree(struct sk_buff * skb)2465 void sock_efree(struct sk_buff *skb)
2466 {
2467 sock_put(skb->sk);
2468 }
2469 EXPORT_SYMBOL(sock_efree);
2470
2471 /* Buffer destructor for prefetch/receive path where reference count may
2472 * not be held, e.g. for listen sockets.
2473 */
2474 #ifdef CONFIG_INET
sock_pfree(struct sk_buff * skb)2475 void sock_pfree(struct sk_buff *skb)
2476 {
2477 if (sk_is_refcounted(skb->sk))
2478 sock_gen_put(skb->sk);
2479 }
2480 EXPORT_SYMBOL(sock_pfree);
2481 #endif /* CONFIG_INET */
2482
sock_i_uid(struct sock * sk)2483 kuid_t sock_i_uid(struct sock *sk)
2484 {
2485 kuid_t uid;
2486
2487 read_lock_bh(&sk->sk_callback_lock);
2488 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2489 read_unlock_bh(&sk->sk_callback_lock);
2490 return uid;
2491 }
2492 EXPORT_SYMBOL(sock_i_uid);
2493
sock_i_ino(struct sock * sk)2494 unsigned long sock_i_ino(struct sock *sk)
2495 {
2496 unsigned long ino;
2497
2498 read_lock_bh(&sk->sk_callback_lock);
2499 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2500 read_unlock_bh(&sk->sk_callback_lock);
2501 return ino;
2502 }
2503 EXPORT_SYMBOL(sock_i_ino);
2504
2505 /*
2506 * Allocate a skb from the socket's send buffer.
2507 */
sock_wmalloc(struct sock * sk,unsigned long size,int force,gfp_t priority)2508 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2509 gfp_t priority)
2510 {
2511 if (force ||
2512 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2513 struct sk_buff *skb = alloc_skb(size, priority);
2514
2515 if (skb) {
2516 skb_set_owner_w(skb, sk);
2517 return skb;
2518 }
2519 }
2520 return NULL;
2521 }
2522 EXPORT_SYMBOL(sock_wmalloc);
2523
sock_ofree(struct sk_buff * skb)2524 static void sock_ofree(struct sk_buff *skb)
2525 {
2526 struct sock *sk = skb->sk;
2527
2528 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2529 }
2530
sock_omalloc(struct sock * sk,unsigned long size,gfp_t priority)2531 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2532 gfp_t priority)
2533 {
2534 struct sk_buff *skb;
2535
2536 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2537 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2538 READ_ONCE(sysctl_optmem_max))
2539 return NULL;
2540
2541 skb = alloc_skb(size, priority);
2542 if (!skb)
2543 return NULL;
2544
2545 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2546 skb->sk = sk;
2547 skb->destructor = sock_ofree;
2548 return skb;
2549 }
2550
2551 /*
2552 * Allocate a memory block from the socket's option memory buffer.
2553 */
sock_kmalloc(struct sock * sk,int size,gfp_t priority)2554 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2555 {
2556 int optmem_max = READ_ONCE(sysctl_optmem_max);
2557
2558 if ((unsigned int)size <= optmem_max &&
2559 atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2560 void *mem;
2561 /* First do the add, to avoid the race if kmalloc
2562 * might sleep.
2563 */
2564 atomic_add(size, &sk->sk_omem_alloc);
2565 mem = kmalloc(size, priority);
2566 if (mem)
2567 return mem;
2568 atomic_sub(size, &sk->sk_omem_alloc);
2569 }
2570 return NULL;
2571 }
2572 EXPORT_SYMBOL(sock_kmalloc);
2573
2574 /* Free an option memory block. Note, we actually want the inline
2575 * here as this allows gcc to detect the nullify and fold away the
2576 * condition entirely.
2577 */
__sock_kfree_s(struct sock * sk,void * mem,int size,const bool nullify)2578 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2579 const bool nullify)
2580 {
2581 if (WARN_ON_ONCE(!mem))
2582 return;
2583 if (nullify)
2584 kfree_sensitive(mem);
2585 else
2586 kfree(mem);
2587 atomic_sub(size, &sk->sk_omem_alloc);
2588 }
2589
sock_kfree_s(struct sock * sk,void * mem,int size)2590 void sock_kfree_s(struct sock *sk, void *mem, int size)
2591 {
2592 __sock_kfree_s(sk, mem, size, false);
2593 }
2594 EXPORT_SYMBOL(sock_kfree_s);
2595
sock_kzfree_s(struct sock * sk,void * mem,int size)2596 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2597 {
2598 __sock_kfree_s(sk, mem, size, true);
2599 }
2600 EXPORT_SYMBOL(sock_kzfree_s);
2601
2602 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2603 I think, these locks should be removed for datagram sockets.
2604 */
sock_wait_for_wmem(struct sock * sk,long timeo)2605 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2606 {
2607 DEFINE_WAIT(wait);
2608
2609 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2610 for (;;) {
2611 if (!timeo)
2612 break;
2613 if (signal_pending(current))
2614 break;
2615 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2616 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2617 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2618 break;
2619 if (sk->sk_shutdown & SEND_SHUTDOWN)
2620 break;
2621 if (sk->sk_err)
2622 break;
2623 timeo = schedule_timeout(timeo);
2624 }
2625 finish_wait(sk_sleep(sk), &wait);
2626 return timeo;
2627 }
2628
2629
2630 /*
2631 * Generic send/receive buffer handlers
2632 */
2633
sock_alloc_send_pskb(struct sock * sk,unsigned long header_len,unsigned long data_len,int noblock,int * errcode,int max_page_order)2634 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2635 unsigned long data_len, int noblock,
2636 int *errcode, int max_page_order)
2637 {
2638 struct sk_buff *skb;
2639 long timeo;
2640 int err;
2641
2642 timeo = sock_sndtimeo(sk, noblock);
2643 for (;;) {
2644 err = sock_error(sk);
2645 if (err != 0)
2646 goto failure;
2647
2648 err = -EPIPE;
2649 if (sk->sk_shutdown & SEND_SHUTDOWN)
2650 goto failure;
2651
2652 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2653 break;
2654
2655 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2656 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2657 err = -EAGAIN;
2658 if (!timeo)
2659 goto failure;
2660 if (signal_pending(current))
2661 goto interrupted;
2662 timeo = sock_wait_for_wmem(sk, timeo);
2663 }
2664 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2665 errcode, sk->sk_allocation);
2666 if (skb)
2667 skb_set_owner_w(skb, sk);
2668 return skb;
2669
2670 interrupted:
2671 err = sock_intr_errno(timeo);
2672 failure:
2673 *errcode = err;
2674 return NULL;
2675 }
2676 EXPORT_SYMBOL(sock_alloc_send_pskb);
2677
__sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct cmsghdr * cmsg,struct sockcm_cookie * sockc)2678 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2679 struct sockcm_cookie *sockc)
2680 {
2681 u32 tsflags;
2682
2683 switch (cmsg->cmsg_type) {
2684 case SO_MARK:
2685 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2686 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2687 return -EPERM;
2688 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2689 return -EINVAL;
2690 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2691 break;
2692 case SO_TIMESTAMPING_OLD:
2693 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2694 return -EINVAL;
2695
2696 tsflags = *(u32 *)CMSG_DATA(cmsg);
2697 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2698 return -EINVAL;
2699
2700 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2701 sockc->tsflags |= tsflags;
2702 break;
2703 case SCM_TXTIME:
2704 if (!sock_flag(sk, SOCK_TXTIME))
2705 return -EINVAL;
2706 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2707 return -EINVAL;
2708 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2709 break;
2710 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2711 case SCM_RIGHTS:
2712 case SCM_CREDENTIALS:
2713 break;
2714 default:
2715 return -EINVAL;
2716 }
2717 return 0;
2718 }
2719 EXPORT_SYMBOL(__sock_cmsg_send);
2720
sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct sockcm_cookie * sockc)2721 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2722 struct sockcm_cookie *sockc)
2723 {
2724 struct cmsghdr *cmsg;
2725 int ret;
2726
2727 for_each_cmsghdr(cmsg, msg) {
2728 if (!CMSG_OK(msg, cmsg))
2729 return -EINVAL;
2730 if (cmsg->cmsg_level != SOL_SOCKET)
2731 continue;
2732 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2733 if (ret)
2734 return ret;
2735 }
2736 return 0;
2737 }
2738 EXPORT_SYMBOL(sock_cmsg_send);
2739
sk_enter_memory_pressure(struct sock * sk)2740 static void sk_enter_memory_pressure(struct sock *sk)
2741 {
2742 if (!sk->sk_prot->enter_memory_pressure)
2743 return;
2744
2745 sk->sk_prot->enter_memory_pressure(sk);
2746 }
2747
sk_leave_memory_pressure(struct sock * sk)2748 static void sk_leave_memory_pressure(struct sock *sk)
2749 {
2750 if (sk->sk_prot->leave_memory_pressure) {
2751 sk->sk_prot->leave_memory_pressure(sk);
2752 } else {
2753 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2754
2755 if (memory_pressure && READ_ONCE(*memory_pressure))
2756 WRITE_ONCE(*memory_pressure, 0);
2757 }
2758 }
2759
2760 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2761
2762 /**
2763 * skb_page_frag_refill - check that a page_frag contains enough room
2764 * @sz: minimum size of the fragment we want to get
2765 * @pfrag: pointer to page_frag
2766 * @gfp: priority for memory allocation
2767 *
2768 * Note: While this allocator tries to use high order pages, there is
2769 * no guarantee that allocations succeed. Therefore, @sz MUST be
2770 * less or equal than PAGE_SIZE.
2771 */
skb_page_frag_refill(unsigned int sz,struct page_frag * pfrag,gfp_t gfp)2772 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2773 {
2774 if (pfrag->page) {
2775 if (page_ref_count(pfrag->page) == 1) {
2776 pfrag->offset = 0;
2777 return true;
2778 }
2779 if (pfrag->offset + sz <= pfrag->size)
2780 return true;
2781 put_page(pfrag->page);
2782 }
2783
2784 pfrag->offset = 0;
2785 if (SKB_FRAG_PAGE_ORDER &&
2786 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2787 /* Avoid direct reclaim but allow kswapd to wake */
2788 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2789 __GFP_COMP | __GFP_NOWARN |
2790 __GFP_NORETRY,
2791 SKB_FRAG_PAGE_ORDER);
2792 if (likely(pfrag->page)) {
2793 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2794 return true;
2795 }
2796 }
2797 pfrag->page = alloc_page(gfp);
2798 if (likely(pfrag->page)) {
2799 pfrag->size = PAGE_SIZE;
2800 return true;
2801 }
2802 return false;
2803 }
2804 EXPORT_SYMBOL(skb_page_frag_refill);
2805
sk_page_frag_refill(struct sock * sk,struct page_frag * pfrag)2806 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2807 {
2808 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2809 return true;
2810
2811 sk_enter_memory_pressure(sk);
2812 sk_stream_moderate_sndbuf(sk);
2813 return false;
2814 }
2815 EXPORT_SYMBOL(sk_page_frag_refill);
2816
__lock_sock(struct sock * sk)2817 void __lock_sock(struct sock *sk)
2818 __releases(&sk->sk_lock.slock)
2819 __acquires(&sk->sk_lock.slock)
2820 {
2821 DEFINE_WAIT(wait);
2822
2823 for (;;) {
2824 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2825 TASK_UNINTERRUPTIBLE);
2826 spin_unlock_bh(&sk->sk_lock.slock);
2827 schedule();
2828 spin_lock_bh(&sk->sk_lock.slock);
2829 if (!sock_owned_by_user(sk))
2830 break;
2831 }
2832 finish_wait(&sk->sk_lock.wq, &wait);
2833 }
2834
__release_sock(struct sock * sk)2835 void __release_sock(struct sock *sk)
2836 __releases(&sk->sk_lock.slock)
2837 __acquires(&sk->sk_lock.slock)
2838 {
2839 struct sk_buff *skb, *next;
2840
2841 while ((skb = sk->sk_backlog.head) != NULL) {
2842 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2843
2844 spin_unlock_bh(&sk->sk_lock.slock);
2845
2846 do {
2847 next = skb->next;
2848 prefetch(next);
2849 WARN_ON_ONCE(skb_dst_is_noref(skb));
2850 skb_mark_not_on_list(skb);
2851 sk_backlog_rcv(sk, skb);
2852
2853 cond_resched();
2854
2855 skb = next;
2856 } while (skb != NULL);
2857
2858 spin_lock_bh(&sk->sk_lock.slock);
2859 }
2860
2861 /*
2862 * Doing the zeroing here guarantee we can not loop forever
2863 * while a wild producer attempts to flood us.
2864 */
2865 sk->sk_backlog.len = 0;
2866 }
2867
__sk_flush_backlog(struct sock * sk)2868 void __sk_flush_backlog(struct sock *sk)
2869 {
2870 spin_lock_bh(&sk->sk_lock.slock);
2871 __release_sock(sk);
2872 spin_unlock_bh(&sk->sk_lock.slock);
2873 }
2874
2875 /**
2876 * sk_wait_data - wait for data to arrive at sk_receive_queue
2877 * @sk: sock to wait on
2878 * @timeo: for how long
2879 * @skb: last skb seen on sk_receive_queue
2880 *
2881 * Now socket state including sk->sk_err is changed only under lock,
2882 * hence we may omit checks after joining wait queue.
2883 * We check receive queue before schedule() only as optimization;
2884 * it is very likely that release_sock() added new data.
2885 */
sk_wait_data(struct sock * sk,long * timeo,const struct sk_buff * skb)2886 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2887 {
2888 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2889 int rc;
2890
2891 add_wait_queue(sk_sleep(sk), &wait);
2892 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2893 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2894 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2895 remove_wait_queue(sk_sleep(sk), &wait);
2896 return rc;
2897 }
2898 EXPORT_SYMBOL(sk_wait_data);
2899
2900 /**
2901 * __sk_mem_raise_allocated - increase memory_allocated
2902 * @sk: socket
2903 * @size: memory size to allocate
2904 * @amt: pages to allocate
2905 * @kind: allocation type
2906 *
2907 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2908 */
__sk_mem_raise_allocated(struct sock * sk,int size,int amt,int kind)2909 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2910 {
2911 struct proto *prot = sk->sk_prot;
2912 long allocated = sk_memory_allocated_add(sk, amt);
2913 bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg;
2914 bool charged = true;
2915
2916 if (memcg_charge &&
2917 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt,
2918 gfp_memcg_charge())))
2919 goto suppress_allocation;
2920
2921 /* Under limit. */
2922 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2923 sk_leave_memory_pressure(sk);
2924 return 1;
2925 }
2926
2927 /* Under pressure. */
2928 if (allocated > sk_prot_mem_limits(sk, 1))
2929 sk_enter_memory_pressure(sk);
2930
2931 /* Over hard limit. */
2932 if (allocated > sk_prot_mem_limits(sk, 2))
2933 goto suppress_allocation;
2934
2935 /* guarantee minimum buffer size under pressure */
2936 if (kind == SK_MEM_RECV) {
2937 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2938 return 1;
2939
2940 } else { /* SK_MEM_SEND */
2941 int wmem0 = sk_get_wmem0(sk, prot);
2942
2943 if (sk->sk_type == SOCK_STREAM) {
2944 if (sk->sk_wmem_queued < wmem0)
2945 return 1;
2946 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2947 return 1;
2948 }
2949 }
2950
2951 if (sk_has_memory_pressure(sk)) {
2952 u64 alloc;
2953
2954 if (!sk_under_memory_pressure(sk))
2955 return 1;
2956 alloc = sk_sockets_allocated_read_positive(sk);
2957 if (sk_prot_mem_limits(sk, 2) > alloc *
2958 sk_mem_pages(sk->sk_wmem_queued +
2959 atomic_read(&sk->sk_rmem_alloc) +
2960 sk->sk_forward_alloc))
2961 return 1;
2962 }
2963
2964 suppress_allocation:
2965
2966 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2967 sk_stream_moderate_sndbuf(sk);
2968
2969 /* Fail only if socket is _under_ its sndbuf.
2970 * In this case we cannot block, so that we have to fail.
2971 */
2972 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
2973 /* Force charge with __GFP_NOFAIL */
2974 if (memcg_charge && !charged) {
2975 mem_cgroup_charge_skmem(sk->sk_memcg, amt,
2976 gfp_memcg_charge() | __GFP_NOFAIL);
2977 }
2978 return 1;
2979 }
2980 }
2981
2982 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2983 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2984
2985 sk_memory_allocated_sub(sk, amt);
2986
2987 if (memcg_charge && charged)
2988 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2989
2990 return 0;
2991 }
2992 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2993
2994 /**
2995 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2996 * @sk: socket
2997 * @size: memory size to allocate
2998 * @kind: allocation type
2999 *
3000 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3001 * rmem allocation. This function assumes that protocols which have
3002 * memory_pressure use sk_wmem_queued as write buffer accounting.
3003 */
__sk_mem_schedule(struct sock * sk,int size,int kind)3004 int __sk_mem_schedule(struct sock *sk, int size, int kind)
3005 {
3006 int ret, amt = sk_mem_pages(size);
3007
3008 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
3009 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3010 if (!ret)
3011 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
3012 return ret;
3013 }
3014 EXPORT_SYMBOL(__sk_mem_schedule);
3015
3016 /**
3017 * __sk_mem_reduce_allocated - reclaim memory_allocated
3018 * @sk: socket
3019 * @amount: number of quanta
3020 *
3021 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3022 */
__sk_mem_reduce_allocated(struct sock * sk,int amount)3023 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3024 {
3025 sk_memory_allocated_sub(sk, amount);
3026
3027 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3028 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3029
3030 if (sk_under_memory_pressure(sk) &&
3031 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3032 sk_leave_memory_pressure(sk);
3033 }
3034 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
3035
3036 /**
3037 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3038 * @sk: socket
3039 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
3040 */
__sk_mem_reclaim(struct sock * sk,int amount)3041 void __sk_mem_reclaim(struct sock *sk, int amount)
3042 {
3043 amount >>= SK_MEM_QUANTUM_SHIFT;
3044 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
3045 __sk_mem_reduce_allocated(sk, amount);
3046 }
3047 EXPORT_SYMBOL(__sk_mem_reclaim);
3048
sk_set_peek_off(struct sock * sk,int val)3049 int sk_set_peek_off(struct sock *sk, int val)
3050 {
3051 sk->sk_peek_off = val;
3052 return 0;
3053 }
3054 EXPORT_SYMBOL_GPL(sk_set_peek_off);
3055
3056 /*
3057 * Set of default routines for initialising struct proto_ops when
3058 * the protocol does not support a particular function. In certain
3059 * cases where it makes no sense for a protocol to have a "do nothing"
3060 * function, some default processing is provided.
3061 */
3062
sock_no_bind(struct socket * sock,struct sockaddr * saddr,int len)3063 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3064 {
3065 return -EOPNOTSUPP;
3066 }
3067 EXPORT_SYMBOL(sock_no_bind);
3068
sock_no_connect(struct socket * sock,struct sockaddr * saddr,int len,int flags)3069 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3070 int len, int flags)
3071 {
3072 return -EOPNOTSUPP;
3073 }
3074 EXPORT_SYMBOL(sock_no_connect);
3075
sock_no_socketpair(struct socket * sock1,struct socket * sock2)3076 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3077 {
3078 return -EOPNOTSUPP;
3079 }
3080 EXPORT_SYMBOL(sock_no_socketpair);
3081
sock_no_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)3082 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
3083 bool kern)
3084 {
3085 return -EOPNOTSUPP;
3086 }
3087 EXPORT_SYMBOL(sock_no_accept);
3088
sock_no_getname(struct socket * sock,struct sockaddr * saddr,int peer)3089 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3090 int peer)
3091 {
3092 return -EOPNOTSUPP;
3093 }
3094 EXPORT_SYMBOL(sock_no_getname);
3095
sock_no_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)3096 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3097 {
3098 return -EOPNOTSUPP;
3099 }
3100 EXPORT_SYMBOL(sock_no_ioctl);
3101
sock_no_listen(struct socket * sock,int backlog)3102 int sock_no_listen(struct socket *sock, int backlog)
3103 {
3104 return -EOPNOTSUPP;
3105 }
3106 EXPORT_SYMBOL(sock_no_listen);
3107
sock_no_shutdown(struct socket * sock,int how)3108 int sock_no_shutdown(struct socket *sock, int how)
3109 {
3110 return -EOPNOTSUPP;
3111 }
3112 EXPORT_SYMBOL(sock_no_shutdown);
3113
sock_no_sendmsg(struct socket * sock,struct msghdr * m,size_t len)3114 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3115 {
3116 return -EOPNOTSUPP;
3117 }
3118 EXPORT_SYMBOL(sock_no_sendmsg);
3119
sock_no_sendmsg_locked(struct sock * sk,struct msghdr * m,size_t len)3120 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3121 {
3122 return -EOPNOTSUPP;
3123 }
3124 EXPORT_SYMBOL(sock_no_sendmsg_locked);
3125
sock_no_recvmsg(struct socket * sock,struct msghdr * m,size_t len,int flags)3126 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3127 int flags)
3128 {
3129 return -EOPNOTSUPP;
3130 }
3131 EXPORT_SYMBOL(sock_no_recvmsg);
3132
sock_no_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)3133 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3134 {
3135 /* Mirror missing mmap method error code */
3136 return -ENODEV;
3137 }
3138 EXPORT_SYMBOL(sock_no_mmap);
3139
3140 /*
3141 * When a file is received (via SCM_RIGHTS, etc), we must bump the
3142 * various sock-based usage counts.
3143 */
__receive_sock(struct file * file)3144 void __receive_sock(struct file *file)
3145 {
3146 struct socket *sock;
3147
3148 sock = sock_from_file(file);
3149 if (sock) {
3150 sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3151 sock_update_classid(&sock->sk->sk_cgrp_data);
3152 }
3153 }
3154
sock_no_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)3155 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
3156 {
3157 ssize_t res;
3158 struct msghdr msg = {.msg_flags = flags};
3159 struct kvec iov;
3160 char *kaddr = kmap(page);
3161 iov.iov_base = kaddr + offset;
3162 iov.iov_len = size;
3163 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
3164 kunmap(page);
3165 return res;
3166 }
3167 EXPORT_SYMBOL(sock_no_sendpage);
3168
sock_no_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)3169 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
3170 int offset, size_t size, int flags)
3171 {
3172 ssize_t res;
3173 struct msghdr msg = {.msg_flags = flags};
3174 struct kvec iov;
3175 char *kaddr = kmap(page);
3176
3177 iov.iov_base = kaddr + offset;
3178 iov.iov_len = size;
3179 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
3180 kunmap(page);
3181 return res;
3182 }
3183 EXPORT_SYMBOL(sock_no_sendpage_locked);
3184
3185 /*
3186 * Default Socket Callbacks
3187 */
3188
sock_def_wakeup(struct sock * sk)3189 static void sock_def_wakeup(struct sock *sk)
3190 {
3191 struct socket_wq *wq;
3192
3193 rcu_read_lock();
3194 wq = rcu_dereference(sk->sk_wq);
3195 if (skwq_has_sleeper(wq))
3196 wake_up_interruptible_all(&wq->wait);
3197 rcu_read_unlock();
3198 }
3199
sock_def_error_report(struct sock * sk)3200 static void sock_def_error_report(struct sock *sk)
3201 {
3202 struct socket_wq *wq;
3203
3204 rcu_read_lock();
3205 wq = rcu_dereference(sk->sk_wq);
3206 if (skwq_has_sleeper(wq))
3207 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3208 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3209 rcu_read_unlock();
3210 }
3211
sock_def_readable(struct sock * sk)3212 void sock_def_readable(struct sock *sk)
3213 {
3214 struct socket_wq *wq;
3215
3216 rcu_read_lock();
3217 wq = rcu_dereference(sk->sk_wq);
3218 if (skwq_has_sleeper(wq))
3219 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3220 EPOLLRDNORM | EPOLLRDBAND);
3221 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3222 rcu_read_unlock();
3223 }
3224
sock_def_write_space(struct sock * sk)3225 static void sock_def_write_space(struct sock *sk)
3226 {
3227 struct socket_wq *wq;
3228
3229 rcu_read_lock();
3230
3231 /* Do not wake up a writer until he can make "significant"
3232 * progress. --DaveM
3233 */
3234 if (sock_writeable(sk)) {
3235 wq = rcu_dereference(sk->sk_wq);
3236 if (skwq_has_sleeper(wq))
3237 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3238 EPOLLWRNORM | EPOLLWRBAND);
3239
3240 /* Should agree with poll, otherwise some programs break */
3241 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3242 }
3243
3244 rcu_read_unlock();
3245 }
3246
3247 /* An optimised version of sock_def_write_space(), should only be called
3248 * for SOCK_RCU_FREE sockets under RCU read section and after putting
3249 * ->sk_wmem_alloc.
3250 */
sock_def_write_space_wfree(struct sock * sk)3251 static void sock_def_write_space_wfree(struct sock *sk)
3252 {
3253 /* Do not wake up a writer until he can make "significant"
3254 * progress. --DaveM
3255 */
3256 if (sock_writeable(sk)) {
3257 struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3258
3259 /* rely on refcount_sub from sock_wfree() */
3260 smp_mb__after_atomic();
3261 if (wq && waitqueue_active(&wq->wait))
3262 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3263 EPOLLWRNORM | EPOLLWRBAND);
3264
3265 /* Should agree with poll, otherwise some programs break */
3266 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3267 }
3268 }
3269
sock_def_destruct(struct sock * sk)3270 static void sock_def_destruct(struct sock *sk)
3271 {
3272 }
3273
sk_send_sigurg(struct sock * sk)3274 void sk_send_sigurg(struct sock *sk)
3275 {
3276 if (sk->sk_socket && sk->sk_socket->file)
3277 if (send_sigurg(&sk->sk_socket->file->f_owner))
3278 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3279 }
3280 EXPORT_SYMBOL(sk_send_sigurg);
3281
sk_reset_timer(struct sock * sk,struct timer_list * timer,unsigned long expires)3282 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3283 unsigned long expires)
3284 {
3285 if (!mod_timer(timer, expires))
3286 sock_hold(sk);
3287 }
3288 EXPORT_SYMBOL(sk_reset_timer);
3289
sk_stop_timer(struct sock * sk,struct timer_list * timer)3290 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3291 {
3292 if (del_timer(timer))
3293 __sock_put(sk);
3294 }
3295 EXPORT_SYMBOL(sk_stop_timer);
3296
sk_stop_timer_sync(struct sock * sk,struct timer_list * timer)3297 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3298 {
3299 if (del_timer_sync(timer))
3300 __sock_put(sk);
3301 }
3302 EXPORT_SYMBOL(sk_stop_timer_sync);
3303
sock_init_data(struct socket * sock,struct sock * sk)3304 void sock_init_data(struct socket *sock, struct sock *sk)
3305 {
3306 sk_init_common(sk);
3307 sk->sk_send_head = NULL;
3308
3309 timer_setup(&sk->sk_timer, NULL, 0);
3310
3311 sk->sk_allocation = GFP_KERNEL;
3312 sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default);
3313 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default);
3314 sk->sk_state = TCP_CLOSE;
3315 sk_set_socket(sk, sock);
3316
3317 sock_set_flag(sk, SOCK_ZAPPED);
3318
3319 if (sock) {
3320 sk->sk_type = sock->type;
3321 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3322 sock->sk = sk;
3323 sk->sk_uid = SOCK_INODE(sock)->i_uid;
3324 } else {
3325 RCU_INIT_POINTER(sk->sk_wq, NULL);
3326 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
3327 }
3328
3329 rwlock_init(&sk->sk_callback_lock);
3330 if (sk->sk_kern_sock)
3331 lockdep_set_class_and_name(
3332 &sk->sk_callback_lock,
3333 af_kern_callback_keys + sk->sk_family,
3334 af_family_kern_clock_key_strings[sk->sk_family]);
3335 else
3336 lockdep_set_class_and_name(
3337 &sk->sk_callback_lock,
3338 af_callback_keys + sk->sk_family,
3339 af_family_clock_key_strings[sk->sk_family]);
3340
3341 sk->sk_state_change = sock_def_wakeup;
3342 sk->sk_data_ready = sock_def_readable;
3343 sk->sk_write_space = sock_def_write_space;
3344 sk->sk_error_report = sock_def_error_report;
3345 sk->sk_destruct = sock_def_destruct;
3346
3347 sk->sk_frag.page = NULL;
3348 sk->sk_frag.offset = 0;
3349 sk->sk_peek_off = -1;
3350
3351 sk->sk_peer_pid = NULL;
3352 sk->sk_peer_cred = NULL;
3353 spin_lock_init(&sk->sk_peer_lock);
3354
3355 sk->sk_write_pending = 0;
3356 sk->sk_rcvlowat = 1;
3357 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3358 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3359
3360 sk->sk_stamp = SK_DEFAULT_STAMP;
3361 #if BITS_PER_LONG==32
3362 seqlock_init(&sk->sk_stamp_seq);
3363 #endif
3364 atomic_set(&sk->sk_zckey, 0);
3365
3366 #ifdef CONFIG_NET_RX_BUSY_POLL
3367 sk->sk_napi_id = 0;
3368 sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read);
3369 #endif
3370
3371 sk->sk_max_pacing_rate = ~0UL;
3372 sk->sk_pacing_rate = ~0UL;
3373 WRITE_ONCE(sk->sk_pacing_shift, 10);
3374 sk->sk_incoming_cpu = -1;
3375 sk->sk_txrehash = SOCK_TXREHASH_DEFAULT;
3376
3377 sk_rx_queue_clear(sk);
3378 /*
3379 * Before updating sk_refcnt, we must commit prior changes to memory
3380 * (Documentation/RCU/rculist_nulls.rst for details)
3381 */
3382 smp_wmb();
3383 refcount_set(&sk->sk_refcnt, 1);
3384 atomic_set(&sk->sk_drops, 0);
3385 }
3386 EXPORT_SYMBOL(sock_init_data);
3387
lock_sock_nested(struct sock * sk,int subclass)3388 void lock_sock_nested(struct sock *sk, int subclass)
3389 {
3390 /* The sk_lock has mutex_lock() semantics here. */
3391 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3392
3393 might_sleep();
3394 spin_lock_bh(&sk->sk_lock.slock);
3395 if (sock_owned_by_user_nocheck(sk))
3396 __lock_sock(sk);
3397 sk->sk_lock.owned = 1;
3398 spin_unlock_bh(&sk->sk_lock.slock);
3399 }
3400 EXPORT_SYMBOL(lock_sock_nested);
3401
release_sock(struct sock * sk)3402 void release_sock(struct sock *sk)
3403 {
3404 spin_lock_bh(&sk->sk_lock.slock);
3405 if (sk->sk_backlog.tail)
3406 __release_sock(sk);
3407
3408 /* Warning : release_cb() might need to release sk ownership,
3409 * ie call sock_release_ownership(sk) before us.
3410 */
3411 if (sk->sk_prot->release_cb)
3412 sk->sk_prot->release_cb(sk);
3413
3414 sock_release_ownership(sk);
3415 if (waitqueue_active(&sk->sk_lock.wq))
3416 wake_up(&sk->sk_lock.wq);
3417 spin_unlock_bh(&sk->sk_lock.slock);
3418 }
3419 EXPORT_SYMBOL(release_sock);
3420
__lock_sock_fast(struct sock * sk)3421 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3422 {
3423 might_sleep();
3424 spin_lock_bh(&sk->sk_lock.slock);
3425
3426 if (!sock_owned_by_user_nocheck(sk)) {
3427 /*
3428 * Fast path return with bottom halves disabled and
3429 * sock::sk_lock.slock held.
3430 *
3431 * The 'mutex' is not contended and holding
3432 * sock::sk_lock.slock prevents all other lockers to
3433 * proceed so the corresponding unlock_sock_fast() can
3434 * avoid the slow path of release_sock() completely and
3435 * just release slock.
3436 *
3437 * From a semantical POV this is equivalent to 'acquiring'
3438 * the 'mutex', hence the corresponding lockdep
3439 * mutex_release() has to happen in the fast path of
3440 * unlock_sock_fast().
3441 */
3442 return false;
3443 }
3444
3445 __lock_sock(sk);
3446 sk->sk_lock.owned = 1;
3447 __acquire(&sk->sk_lock.slock);
3448 spin_unlock_bh(&sk->sk_lock.slock);
3449 return true;
3450 }
3451 EXPORT_SYMBOL(__lock_sock_fast);
3452
sock_gettstamp(struct socket * sock,void __user * userstamp,bool timeval,bool time32)3453 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3454 bool timeval, bool time32)
3455 {
3456 struct sock *sk = sock->sk;
3457 struct timespec64 ts;
3458
3459 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3460 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3461 if (ts.tv_sec == -1)
3462 return -ENOENT;
3463 if (ts.tv_sec == 0) {
3464 ktime_t kt = ktime_get_real();
3465 sock_write_timestamp(sk, kt);
3466 ts = ktime_to_timespec64(kt);
3467 }
3468
3469 if (timeval)
3470 ts.tv_nsec /= 1000;
3471
3472 #ifdef CONFIG_COMPAT_32BIT_TIME
3473 if (time32)
3474 return put_old_timespec32(&ts, userstamp);
3475 #endif
3476 #ifdef CONFIG_SPARC64
3477 /* beware of padding in sparc64 timeval */
3478 if (timeval && !in_compat_syscall()) {
3479 struct __kernel_old_timeval __user tv = {
3480 .tv_sec = ts.tv_sec,
3481 .tv_usec = ts.tv_nsec,
3482 };
3483 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3484 return -EFAULT;
3485 return 0;
3486 }
3487 #endif
3488 return put_timespec64(&ts, userstamp);
3489 }
3490 EXPORT_SYMBOL(sock_gettstamp);
3491
sock_enable_timestamp(struct sock * sk,enum sock_flags flag)3492 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3493 {
3494 if (!sock_flag(sk, flag)) {
3495 unsigned long previous_flags = sk->sk_flags;
3496
3497 sock_set_flag(sk, flag);
3498 /*
3499 * we just set one of the two flags which require net
3500 * time stamping, but time stamping might have been on
3501 * already because of the other one
3502 */
3503 if (sock_needs_netstamp(sk) &&
3504 !(previous_flags & SK_FLAGS_TIMESTAMP))
3505 net_enable_timestamp();
3506 }
3507 }
3508
sock_recv_errqueue(struct sock * sk,struct msghdr * msg,int len,int level,int type)3509 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3510 int level, int type)
3511 {
3512 struct sock_exterr_skb *serr;
3513 struct sk_buff *skb;
3514 int copied, err;
3515
3516 err = -EAGAIN;
3517 skb = sock_dequeue_err_skb(sk);
3518 if (skb == NULL)
3519 goto out;
3520
3521 copied = skb->len;
3522 if (copied > len) {
3523 msg->msg_flags |= MSG_TRUNC;
3524 copied = len;
3525 }
3526 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3527 if (err)
3528 goto out_free_skb;
3529
3530 sock_recv_timestamp(msg, sk, skb);
3531
3532 serr = SKB_EXT_ERR(skb);
3533 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3534
3535 msg->msg_flags |= MSG_ERRQUEUE;
3536 err = copied;
3537
3538 out_free_skb:
3539 kfree_skb(skb);
3540 out:
3541 return err;
3542 }
3543 EXPORT_SYMBOL(sock_recv_errqueue);
3544
3545 /*
3546 * Get a socket option on an socket.
3547 *
3548 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3549 * asynchronous errors should be reported by getsockopt. We assume
3550 * this means if you specify SO_ERROR (otherwise whats the point of it).
3551 */
sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)3552 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3553 char __user *optval, int __user *optlen)
3554 {
3555 struct sock *sk = sock->sk;
3556
3557 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3558 }
3559 EXPORT_SYMBOL(sock_common_getsockopt);
3560
sock_common_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)3561 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3562 int flags)
3563 {
3564 struct sock *sk = sock->sk;
3565 int addr_len = 0;
3566 int err;
3567
3568 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
3569 if (err >= 0)
3570 msg->msg_namelen = addr_len;
3571 return err;
3572 }
3573 EXPORT_SYMBOL(sock_common_recvmsg);
3574
3575 /*
3576 * Set socket options on an inet socket.
3577 */
sock_common_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)3578 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3579 sockptr_t optval, unsigned int optlen)
3580 {
3581 struct sock *sk = sock->sk;
3582
3583 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3584 }
3585 EXPORT_SYMBOL(sock_common_setsockopt);
3586
sk_common_release(struct sock * sk)3587 void sk_common_release(struct sock *sk)
3588 {
3589 if (sk->sk_prot->destroy)
3590 sk->sk_prot->destroy(sk);
3591
3592 /*
3593 * Observation: when sk_common_release is called, processes have
3594 * no access to socket. But net still has.
3595 * Step one, detach it from networking:
3596 *
3597 * A. Remove from hash tables.
3598 */
3599
3600 sk->sk_prot->unhash(sk);
3601
3602 /*
3603 * In this point socket cannot receive new packets, but it is possible
3604 * that some packets are in flight because some CPU runs receiver and
3605 * did hash table lookup before we unhashed socket. They will achieve
3606 * receive queue and will be purged by socket destructor.
3607 *
3608 * Also we still have packets pending on receive queue and probably,
3609 * our own packets waiting in device queues. sock_destroy will drain
3610 * receive queue, but transmitted packets will delay socket destruction
3611 * until the last reference will be released.
3612 */
3613
3614 sock_orphan(sk);
3615
3616 xfrm_sk_free_policy(sk);
3617
3618 sk_refcnt_debug_release(sk);
3619
3620 sock_put(sk);
3621 }
3622 EXPORT_SYMBOL(sk_common_release);
3623
sk_get_meminfo(const struct sock * sk,u32 * mem)3624 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3625 {
3626 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3627
3628 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3629 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3630 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3631 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3632 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3633 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3634 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3635 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3636 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3637 }
3638
3639 #ifdef CONFIG_PROC_FS
3640 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3641
sock_prot_inuse_get(struct net * net,struct proto * prot)3642 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3643 {
3644 int cpu, idx = prot->inuse_idx;
3645 int res = 0;
3646
3647 for_each_possible_cpu(cpu)
3648 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3649
3650 return res >= 0 ? res : 0;
3651 }
3652 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3653
sock_inuse_get(struct net * net)3654 int sock_inuse_get(struct net *net)
3655 {
3656 int cpu, res = 0;
3657
3658 for_each_possible_cpu(cpu)
3659 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3660
3661 return res;
3662 }
3663
3664 EXPORT_SYMBOL_GPL(sock_inuse_get);
3665
sock_inuse_init_net(struct net * net)3666 static int __net_init sock_inuse_init_net(struct net *net)
3667 {
3668 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3669 if (net->core.prot_inuse == NULL)
3670 return -ENOMEM;
3671 return 0;
3672 }
3673
sock_inuse_exit_net(struct net * net)3674 static void __net_exit sock_inuse_exit_net(struct net *net)
3675 {
3676 free_percpu(net->core.prot_inuse);
3677 }
3678
3679 static struct pernet_operations net_inuse_ops = {
3680 .init = sock_inuse_init_net,
3681 .exit = sock_inuse_exit_net,
3682 };
3683
net_inuse_init(void)3684 static __init int net_inuse_init(void)
3685 {
3686 if (register_pernet_subsys(&net_inuse_ops))
3687 panic("Cannot initialize net inuse counters");
3688
3689 return 0;
3690 }
3691
3692 core_initcall(net_inuse_init);
3693
assign_proto_idx(struct proto * prot)3694 static int assign_proto_idx(struct proto *prot)
3695 {
3696 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3697
3698 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3699 pr_err("PROTO_INUSE_NR exhausted\n");
3700 return -ENOSPC;
3701 }
3702
3703 set_bit(prot->inuse_idx, proto_inuse_idx);
3704 return 0;
3705 }
3706
release_proto_idx(struct proto * prot)3707 static void release_proto_idx(struct proto *prot)
3708 {
3709 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3710 clear_bit(prot->inuse_idx, proto_inuse_idx);
3711 }
3712 #else
assign_proto_idx(struct proto * prot)3713 static inline int assign_proto_idx(struct proto *prot)
3714 {
3715 return 0;
3716 }
3717
release_proto_idx(struct proto * prot)3718 static inline void release_proto_idx(struct proto *prot)
3719 {
3720 }
3721
3722 #endif
3723
tw_prot_cleanup(struct timewait_sock_ops * twsk_prot)3724 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3725 {
3726 if (!twsk_prot)
3727 return;
3728 kfree(twsk_prot->twsk_slab_name);
3729 twsk_prot->twsk_slab_name = NULL;
3730 kmem_cache_destroy(twsk_prot->twsk_slab);
3731 twsk_prot->twsk_slab = NULL;
3732 }
3733
tw_prot_init(const struct proto * prot)3734 static int tw_prot_init(const struct proto *prot)
3735 {
3736 struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3737
3738 if (!twsk_prot)
3739 return 0;
3740
3741 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3742 prot->name);
3743 if (!twsk_prot->twsk_slab_name)
3744 return -ENOMEM;
3745
3746 twsk_prot->twsk_slab =
3747 kmem_cache_create(twsk_prot->twsk_slab_name,
3748 twsk_prot->twsk_obj_size, 0,
3749 SLAB_ACCOUNT | prot->slab_flags,
3750 NULL);
3751 if (!twsk_prot->twsk_slab) {
3752 pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3753 prot->name);
3754 return -ENOMEM;
3755 }
3756
3757 return 0;
3758 }
3759
req_prot_cleanup(struct request_sock_ops * rsk_prot)3760 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3761 {
3762 if (!rsk_prot)
3763 return;
3764 kfree(rsk_prot->slab_name);
3765 rsk_prot->slab_name = NULL;
3766 kmem_cache_destroy(rsk_prot->slab);
3767 rsk_prot->slab = NULL;
3768 }
3769
req_prot_init(const struct proto * prot)3770 static int req_prot_init(const struct proto *prot)
3771 {
3772 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3773
3774 if (!rsk_prot)
3775 return 0;
3776
3777 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3778 prot->name);
3779 if (!rsk_prot->slab_name)
3780 return -ENOMEM;
3781
3782 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3783 rsk_prot->obj_size, 0,
3784 SLAB_ACCOUNT | prot->slab_flags,
3785 NULL);
3786
3787 if (!rsk_prot->slab) {
3788 pr_crit("%s: Can't create request sock SLAB cache!\n",
3789 prot->name);
3790 return -ENOMEM;
3791 }
3792 return 0;
3793 }
3794
proto_register(struct proto * prot,int alloc_slab)3795 int proto_register(struct proto *prot, int alloc_slab)
3796 {
3797 int ret = -ENOBUFS;
3798
3799 if (prot->memory_allocated && !prot->sysctl_mem) {
3800 pr_err("%s: missing sysctl_mem\n", prot->name);
3801 return -EINVAL;
3802 }
3803 if (alloc_slab) {
3804 prot->slab = kmem_cache_create_usercopy(prot->name,
3805 prot->obj_size, 0,
3806 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3807 prot->slab_flags,
3808 prot->useroffset, prot->usersize,
3809 NULL);
3810
3811 if (prot->slab == NULL) {
3812 pr_crit("%s: Can't create sock SLAB cache!\n",
3813 prot->name);
3814 goto out;
3815 }
3816
3817 if (req_prot_init(prot))
3818 goto out_free_request_sock_slab;
3819
3820 if (tw_prot_init(prot))
3821 goto out_free_timewait_sock_slab;
3822 }
3823
3824 mutex_lock(&proto_list_mutex);
3825 ret = assign_proto_idx(prot);
3826 if (ret) {
3827 mutex_unlock(&proto_list_mutex);
3828 goto out_free_timewait_sock_slab;
3829 }
3830 list_add(&prot->node, &proto_list);
3831 mutex_unlock(&proto_list_mutex);
3832 return ret;
3833
3834 out_free_timewait_sock_slab:
3835 if (alloc_slab)
3836 tw_prot_cleanup(prot->twsk_prot);
3837 out_free_request_sock_slab:
3838 if (alloc_slab) {
3839 req_prot_cleanup(prot->rsk_prot);
3840
3841 kmem_cache_destroy(prot->slab);
3842 prot->slab = NULL;
3843 }
3844 out:
3845 return ret;
3846 }
3847 EXPORT_SYMBOL(proto_register);
3848
proto_unregister(struct proto * prot)3849 void proto_unregister(struct proto *prot)
3850 {
3851 mutex_lock(&proto_list_mutex);
3852 release_proto_idx(prot);
3853 list_del(&prot->node);
3854 mutex_unlock(&proto_list_mutex);
3855
3856 kmem_cache_destroy(prot->slab);
3857 prot->slab = NULL;
3858
3859 req_prot_cleanup(prot->rsk_prot);
3860 tw_prot_cleanup(prot->twsk_prot);
3861 }
3862 EXPORT_SYMBOL(proto_unregister);
3863
sock_load_diag_module(int family,int protocol)3864 int sock_load_diag_module(int family, int protocol)
3865 {
3866 if (!protocol) {
3867 if (!sock_is_registered(family))
3868 return -ENOENT;
3869
3870 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3871 NETLINK_SOCK_DIAG, family);
3872 }
3873
3874 #ifdef CONFIG_INET
3875 if (family == AF_INET &&
3876 protocol != IPPROTO_RAW &&
3877 protocol < MAX_INET_PROTOS &&
3878 !rcu_access_pointer(inet_protos[protocol]))
3879 return -ENOENT;
3880 #endif
3881
3882 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3883 NETLINK_SOCK_DIAG, family, protocol);
3884 }
3885 EXPORT_SYMBOL(sock_load_diag_module);
3886
3887 #ifdef CONFIG_PROC_FS
proto_seq_start(struct seq_file * seq,loff_t * pos)3888 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3889 __acquires(proto_list_mutex)
3890 {
3891 mutex_lock(&proto_list_mutex);
3892 return seq_list_start_head(&proto_list, *pos);
3893 }
3894
proto_seq_next(struct seq_file * seq,void * v,loff_t * pos)3895 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3896 {
3897 return seq_list_next(v, &proto_list, pos);
3898 }
3899
proto_seq_stop(struct seq_file * seq,void * v)3900 static void proto_seq_stop(struct seq_file *seq, void *v)
3901 __releases(proto_list_mutex)
3902 {
3903 mutex_unlock(&proto_list_mutex);
3904 }
3905
proto_method_implemented(const void * method)3906 static char proto_method_implemented(const void *method)
3907 {
3908 return method == NULL ? 'n' : 'y';
3909 }
sock_prot_memory_allocated(struct proto * proto)3910 static long sock_prot_memory_allocated(struct proto *proto)
3911 {
3912 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3913 }
3914
sock_prot_memory_pressure(struct proto * proto)3915 static const char *sock_prot_memory_pressure(struct proto *proto)
3916 {
3917 return proto->memory_pressure != NULL ?
3918 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3919 }
3920
proto_seq_printf(struct seq_file * seq,struct proto * proto)3921 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3922 {
3923
3924 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3925 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3926 proto->name,
3927 proto->obj_size,
3928 sock_prot_inuse_get(seq_file_net(seq), proto),
3929 sock_prot_memory_allocated(proto),
3930 sock_prot_memory_pressure(proto),
3931 proto->max_header,
3932 proto->slab == NULL ? "no" : "yes",
3933 module_name(proto->owner),
3934 proto_method_implemented(proto->close),
3935 proto_method_implemented(proto->connect),
3936 proto_method_implemented(proto->disconnect),
3937 proto_method_implemented(proto->accept),
3938 proto_method_implemented(proto->ioctl),
3939 proto_method_implemented(proto->init),
3940 proto_method_implemented(proto->destroy),
3941 proto_method_implemented(proto->shutdown),
3942 proto_method_implemented(proto->setsockopt),
3943 proto_method_implemented(proto->getsockopt),
3944 proto_method_implemented(proto->sendmsg),
3945 proto_method_implemented(proto->recvmsg),
3946 proto_method_implemented(proto->sendpage),
3947 proto_method_implemented(proto->bind),
3948 proto_method_implemented(proto->backlog_rcv),
3949 proto_method_implemented(proto->hash),
3950 proto_method_implemented(proto->unhash),
3951 proto_method_implemented(proto->get_port),
3952 proto_method_implemented(proto->enter_memory_pressure));
3953 }
3954
proto_seq_show(struct seq_file * seq,void * v)3955 static int proto_seq_show(struct seq_file *seq, void *v)
3956 {
3957 if (v == &proto_list)
3958 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3959 "protocol",
3960 "size",
3961 "sockets",
3962 "memory",
3963 "press",
3964 "maxhdr",
3965 "slab",
3966 "module",
3967 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3968 else
3969 proto_seq_printf(seq, list_entry(v, struct proto, node));
3970 return 0;
3971 }
3972
3973 static const struct seq_operations proto_seq_ops = {
3974 .start = proto_seq_start,
3975 .next = proto_seq_next,
3976 .stop = proto_seq_stop,
3977 .show = proto_seq_show,
3978 };
3979
proto_init_net(struct net * net)3980 static __net_init int proto_init_net(struct net *net)
3981 {
3982 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3983 sizeof(struct seq_net_private)))
3984 return -ENOMEM;
3985
3986 return 0;
3987 }
3988
proto_exit_net(struct net * net)3989 static __net_exit void proto_exit_net(struct net *net)
3990 {
3991 remove_proc_entry("protocols", net->proc_net);
3992 }
3993
3994
3995 static __net_initdata struct pernet_operations proto_net_ops = {
3996 .init = proto_init_net,
3997 .exit = proto_exit_net,
3998 };
3999
proto_init(void)4000 static int __init proto_init(void)
4001 {
4002 return register_pernet_subsys(&proto_net_ops);
4003 }
4004
4005 subsys_initcall(proto_init);
4006
4007 #endif /* PROC_FS */
4008
4009 #ifdef CONFIG_NET_RX_BUSY_POLL
sk_busy_loop_end(void * p,unsigned long start_time)4010 bool sk_busy_loop_end(void *p, unsigned long start_time)
4011 {
4012 struct sock *sk = p;
4013
4014 return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
4015 sk_busy_loop_timeout(sk, start_time);
4016 }
4017 EXPORT_SYMBOL(sk_busy_loop_end);
4018 #endif /* CONFIG_NET_RX_BUSY_POLL */
4019
sock_bind_add(struct sock * sk,struct sockaddr * addr,int addr_len)4020 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4021 {
4022 if (!sk->sk_prot->bind_add)
4023 return -EOPNOTSUPP;
4024 return sk->sk_prot->bind_add(sk, addr, addr_len);
4025 }
4026 EXPORT_SYMBOL(sock_bind_add);
4027