1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98 
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101 
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 			 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 			  unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114 
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 			      struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 			      unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 			     int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 				struct pipe_inode_info *pipe, size_t len,
128 				unsigned int flags);
129 
130 /*
131  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132  *	in the operation structures but are done directly via the socketcall() multiplexor.
133  */
134 
135 static const struct file_operations socket_file_ops = {
136 	.owner =	THIS_MODULE,
137 	.llseek =	no_llseek,
138 	.aio_read =	sock_aio_read,
139 	.aio_write =	sock_aio_write,
140 	.poll =		sock_poll,
141 	.unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 	.compat_ioctl = compat_sock_ioctl,
144 #endif
145 	.mmap =		sock_mmap,
146 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
147 	.release =	sock_close,
148 	.fasync =	sock_fasync,
149 	.sendpage =	sock_sendpage,
150 	.splice_write = generic_splice_sendpage,
151 	.splice_read =	sock_splice_read,
152 };
153 
154 /*
155  *	The protocol list. Each protocol is registered in here.
156  */
157 
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160 
161 /*
162  *	Statistics counters of the socket lists
163  */
164 
165 static DEFINE_PER_CPU(int, sockets_in_use);
166 
167 /*
168  * Support routines.
169  * Move socket addresses back and forth across the kernel/user
170  * divide and look after the messy bits.
171  */
172 
173 /**
174  *	move_addr_to_kernel	-	copy a socket address into kernel space
175  *	@uaddr: Address in user space
176  *	@kaddr: Address in kernel space
177  *	@ulen: Length in user space
178  *
179  *	The address is copied into kernel space. If the provided address is
180  *	too long an error code of -EINVAL is returned. If the copy gives
181  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
182  */
183 
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr * kaddr)184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
185 {
186 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 		return -EINVAL;
188 	if (ulen == 0)
189 		return 0;
190 	if (copy_from_user(kaddr, uaddr, ulen))
191 		return -EFAULT;
192 	return audit_sockaddr(ulen, kaddr);
193 }
194 
195 /**
196  *	move_addr_to_user	-	copy an address to user space
197  *	@kaddr: kernel space address
198  *	@klen: length of address in kernel
199  *	@uaddr: user space address
200  *	@ulen: pointer to user length field
201  *
202  *	The value pointed to by ulen on entry is the buffer length available.
203  *	This is overwritten with the buffer space used. -EINVAL is returned
204  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
205  *	is returned if either the buffer or the length field are not
206  *	accessible.
207  *	After copying the data up to the limit the user specifies, the true
208  *	length of the data is written over the length limit the user
209  *	specified. Zero is returned for a success.
210  */
211 
move_addr_to_user(struct sockaddr * kaddr,int klen,void __user * uaddr,int __user * ulen)212 static int move_addr_to_user(struct sockaddr *kaddr, int klen,
213 			     void __user *uaddr, int __user *ulen)
214 {
215 	int err;
216 	int len;
217 
218 	err = get_user(len, ulen);
219 	if (err)
220 		return err;
221 	if (len > klen)
222 		len = klen;
223 	if (len < 0 || len > sizeof(struct sockaddr_storage))
224 		return -EINVAL;
225 	if (len) {
226 		if (audit_sockaddr(klen, kaddr))
227 			return -ENOMEM;
228 		if (copy_to_user(uaddr, kaddr, len))
229 			return -EFAULT;
230 	}
231 	/*
232 	 *      "fromlen shall refer to the value before truncation.."
233 	 *                      1003.1g
234 	 */
235 	return __put_user(klen, ulen);
236 }
237 
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239 
sock_alloc_inode(struct super_block * sb)240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 	struct socket_alloc *ei;
243 	struct socket_wq *wq;
244 
245 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 	if (!ei)
247 		return NULL;
248 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
249 	if (!wq) {
250 		kmem_cache_free(sock_inode_cachep, ei);
251 		return NULL;
252 	}
253 	init_waitqueue_head(&wq->wait);
254 	wq->fasync_list = NULL;
255 	RCU_INIT_POINTER(ei->socket.wq, wq);
256 
257 	ei->socket.state = SS_UNCONNECTED;
258 	ei->socket.flags = 0;
259 	ei->socket.ops = NULL;
260 	ei->socket.sk = NULL;
261 	ei->socket.file = NULL;
262 
263 	return &ei->vfs_inode;
264 }
265 
266 
267 
wq_free_rcu(struct rcu_head * head)268 static void wq_free_rcu(struct rcu_head *head)
269 {
270 	struct socket_wq *wq = container_of(head, struct socket_wq, rcu);
271 
272 	kfree(wq);
273 }
274 
sock_destroy_inode(struct inode * inode)275 static void sock_destroy_inode(struct inode *inode)
276 {
277 	struct socket_alloc *ei;
278 	struct socket_wq *wq;
279 
280 	ei = container_of(inode, struct socket_alloc, vfs_inode);
281 	wq = rcu_dereference_protected(ei->socket.wq, 1);
282 	call_rcu(&wq->rcu, wq_free_rcu);
283 	kmem_cache_free(sock_inode_cachep, ei);
284 }
285 
init_once(void * foo)286 static void init_once(void *foo)
287 {
288 	struct socket_alloc *ei = (struct socket_alloc *)foo;
289 
290 	inode_init_once(&ei->vfs_inode);
291 }
292 
init_inodecache(void)293 static int init_inodecache(void)
294 {
295 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
296 					      sizeof(struct socket_alloc),
297 					      0,
298 					      (SLAB_HWCACHE_ALIGN |
299 					       SLAB_RECLAIM_ACCOUNT |
300 					       SLAB_MEM_SPREAD),
301 					      init_once);
302 	if (sock_inode_cachep == NULL)
303 		return -ENOMEM;
304 	return 0;
305 }
306 
307 static const struct super_operations sockfs_ops = {
308 	.alloc_inode	= sock_alloc_inode,
309 	.destroy_inode	= sock_destroy_inode,
310 	.statfs		= simple_statfs,
311 };
312 
313 /*
314  * sockfs_dname() is called from d_path().
315  */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)316 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
317 {
318 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
319 				dentry->d_inode->i_ino);
320 }
321 
322 static const struct dentry_operations sockfs_dentry_operations = {
323 	.d_dname  = sockfs_dname,
324 };
325 
sockfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)326 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
327 			 int flags, const char *dev_name, void *data)
328 {
329 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
330 		&sockfs_dentry_operations, SOCKFS_MAGIC);
331 }
332 
333 static struct vfsmount *sock_mnt __read_mostly;
334 
335 static struct file_system_type sock_fs_type = {
336 	.name =		"sockfs",
337 	.mount =	sockfs_mount,
338 	.kill_sb =	kill_anon_super,
339 };
340 
341 /*
342  *	Obtains the first available file descriptor and sets it up for use.
343  *
344  *	These functions create file structures and maps them to fd space
345  *	of the current process. On success it returns file descriptor
346  *	and file struct implicitly stored in sock->file.
347  *	Note that another thread may close file descriptor before we return
348  *	from this function. We use the fact that now we do not refer
349  *	to socket after mapping. If one day we will need it, this
350  *	function will increment ref. count on file by 1.
351  *
352  *	In any case returned fd MAY BE not valid!
353  *	This race condition is unavoidable
354  *	with shared fd spaces, we cannot solve it inside kernel,
355  *	but we take care of internal coherence yet.
356  */
357 
sock_alloc_file(struct socket * sock,struct file ** f,int flags)358 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
359 {
360 	struct qstr name = { .name = "" };
361 	struct path path;
362 	struct file *file;
363 	int fd;
364 
365 	fd = get_unused_fd_flags(flags);
366 	if (unlikely(fd < 0))
367 		return fd;
368 
369 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
370 	if (unlikely(!path.dentry)) {
371 		put_unused_fd(fd);
372 		return -ENOMEM;
373 	}
374 	path.mnt = mntget(sock_mnt);
375 
376 	d_instantiate(path.dentry, SOCK_INODE(sock));
377 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
378 
379 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
380 		  &socket_file_ops);
381 	if (unlikely(!file)) {
382 		/* drop dentry, keep inode */
383 		ihold(path.dentry->d_inode);
384 		path_put(&path);
385 		put_unused_fd(fd);
386 		return -ENFILE;
387 	}
388 
389 	sock->file = file;
390 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
391 	file->f_pos = 0;
392 	file->private_data = sock;
393 
394 	*f = file;
395 	return fd;
396 }
397 
sock_map_fd(struct socket * sock,int flags)398 int sock_map_fd(struct socket *sock, int flags)
399 {
400 	struct file *newfile;
401 	int fd = sock_alloc_file(sock, &newfile, flags);
402 
403 	if (likely(fd >= 0))
404 		fd_install(fd, newfile);
405 
406 	return fd;
407 }
408 EXPORT_SYMBOL(sock_map_fd);
409 
sock_from_file(struct file * file,int * err)410 static struct socket *sock_from_file(struct file *file, int *err)
411 {
412 	if (file->f_op == &socket_file_ops)
413 		return file->private_data;	/* set in sock_map_fd */
414 
415 	*err = -ENOTSOCK;
416 	return NULL;
417 }
418 
419 /**
420  *	sockfd_lookup - Go from a file number to its socket slot
421  *	@fd: file handle
422  *	@err: pointer to an error code return
423  *
424  *	The file handle passed in is locked and the socket it is bound
425  *	too is returned. If an error occurs the err pointer is overwritten
426  *	with a negative errno code and NULL is returned. The function checks
427  *	for both invalid handles and passing a handle which is not a socket.
428  *
429  *	On a success the socket object pointer is returned.
430  */
431 
sockfd_lookup(int fd,int * err)432 struct socket *sockfd_lookup(int fd, int *err)
433 {
434 	struct file *file;
435 	struct socket *sock;
436 
437 	file = fget(fd);
438 	if (!file) {
439 		*err = -EBADF;
440 		return NULL;
441 	}
442 
443 	sock = sock_from_file(file, err);
444 	if (!sock)
445 		fput(file);
446 	return sock;
447 }
448 EXPORT_SYMBOL(sockfd_lookup);
449 
sockfd_lookup_light(int fd,int * err,int * fput_needed)450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
451 {
452 	struct file *file;
453 	struct socket *sock;
454 
455 	*err = -EBADF;
456 	file = fget_light(fd, fput_needed);
457 	if (file) {
458 		sock = sock_from_file(file, err);
459 		if (sock)
460 			return sock;
461 		fput_light(file, *fput_needed);
462 	}
463 	return NULL;
464 }
465 
466 /**
467  *	sock_alloc	-	allocate a socket
468  *
469  *	Allocate a new inode and socket object. The two are bound together
470  *	and initialised. The socket is then returned. If we are out of inodes
471  *	NULL is returned.
472  */
473 
sock_alloc(void)474 static struct socket *sock_alloc(void)
475 {
476 	struct inode *inode;
477 	struct socket *sock;
478 
479 	inode = new_inode(sock_mnt->mnt_sb);
480 	if (!inode)
481 		return NULL;
482 
483 	sock = SOCKET_I(inode);
484 
485 	kmemcheck_annotate_bitfield(sock, type);
486 	inode->i_ino = get_next_ino();
487 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
488 	inode->i_uid = current_fsuid();
489 	inode->i_gid = current_fsgid();
490 
491 	percpu_add(sockets_in_use, 1);
492 	return sock;
493 }
494 
495 /*
496  *	In theory you can't get an open on this inode, but /proc provides
497  *	a back door. Remember to keep it shut otherwise you'll let the
498  *	creepy crawlies in.
499  */
500 
sock_no_open(struct inode * irrelevant,struct file * dontcare)501 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
502 {
503 	return -ENXIO;
504 }
505 
506 const struct file_operations bad_sock_fops = {
507 	.owner = THIS_MODULE,
508 	.open = sock_no_open,
509 	.llseek = noop_llseek,
510 };
511 
512 /**
513  *	sock_release	-	close a socket
514  *	@sock: socket to close
515  *
516  *	The socket is released from the protocol stack if it has a release
517  *	callback, and the inode is then released if the socket is bound to
518  *	an inode not a file.
519  */
520 
sock_release(struct socket * sock)521 void sock_release(struct socket *sock)
522 {
523 	if (sock->ops) {
524 		struct module *owner = sock->ops->owner;
525 
526 		sock->ops->release(sock);
527 		sock->ops = NULL;
528 		module_put(owner);
529 	}
530 
531 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
532 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
533 
534 	percpu_sub(sockets_in_use, 1);
535 	if (!sock->file) {
536 		iput(SOCK_INODE(sock));
537 		return;
538 	}
539 	sock->file = NULL;
540 }
541 EXPORT_SYMBOL(sock_release);
542 
sock_tx_timestamp(struct sock * sk,__u8 * tx_flags)543 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
544 {
545 	*tx_flags = 0;
546 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
547 		*tx_flags |= SKBTX_HW_TSTAMP;
548 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
549 		*tx_flags |= SKBTX_SW_TSTAMP;
550 	return 0;
551 }
552 EXPORT_SYMBOL(sock_tx_timestamp);
553 
__sock_sendmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t size)554 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
555 				 struct msghdr *msg, size_t size)
556 {
557 	struct sock_iocb *si = kiocb_to_siocb(iocb);
558 	int err;
559 
560 	sock_update_classid(sock->sk);
561 
562 	si->sock = sock;
563 	si->scm = NULL;
564 	si->msg = msg;
565 	si->size = size;
566 
567 	err = security_socket_sendmsg(sock, msg, size);
568 	if (err)
569 		return err;
570 
571 	return sock->ops->sendmsg(iocb, sock, msg, size);
572 }
573 
sock_sendmsg(struct socket * sock,struct msghdr * msg,size_t size)574 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
575 {
576 	struct kiocb iocb;
577 	struct sock_iocb siocb;
578 	int ret;
579 
580 	init_sync_kiocb(&iocb, NULL);
581 	iocb.private = &siocb;
582 	ret = __sock_sendmsg(&iocb, sock, msg, size);
583 	if (-EIOCBQUEUED == ret)
584 		ret = wait_on_sync_kiocb(&iocb);
585 	return ret;
586 }
587 EXPORT_SYMBOL(sock_sendmsg);
588 
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)589 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
590 		   struct kvec *vec, size_t num, size_t size)
591 {
592 	mm_segment_t oldfs = get_fs();
593 	int result;
594 
595 	set_fs(KERNEL_DS);
596 	/*
597 	 * the following is safe, since for compiler definitions of kvec and
598 	 * iovec are identical, yielding the same in-core layout and alignment
599 	 */
600 	msg->msg_iov = (struct iovec *)vec;
601 	msg->msg_iovlen = num;
602 	result = sock_sendmsg(sock, msg, size);
603 	set_fs(oldfs);
604 	return result;
605 }
606 EXPORT_SYMBOL(kernel_sendmsg);
607 
ktime2ts(ktime_t kt,struct timespec * ts)608 static int ktime2ts(ktime_t kt, struct timespec *ts)
609 {
610 	if (kt.tv64) {
611 		*ts = ktime_to_timespec(kt);
612 		return 1;
613 	} else {
614 		return 0;
615 	}
616 }
617 
618 /*
619  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
620  */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)621 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
622 	struct sk_buff *skb)
623 {
624 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
625 	struct timespec ts[3];
626 	int empty = 1;
627 	struct skb_shared_hwtstamps *shhwtstamps =
628 		skb_hwtstamps(skb);
629 
630 	/* Race occurred between timestamp enabling and packet
631 	   receiving.  Fill in the current time for now. */
632 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
633 		__net_timestamp(skb);
634 
635 	if (need_software_tstamp) {
636 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
637 			struct timeval tv;
638 			skb_get_timestamp(skb, &tv);
639 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
640 				 sizeof(tv), &tv);
641 		} else {
642 			skb_get_timestampns(skb, &ts[0]);
643 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
644 				 sizeof(ts[0]), &ts[0]);
645 		}
646 	}
647 
648 
649 	memset(ts, 0, sizeof(ts));
650 	if (skb->tstamp.tv64 &&
651 	    sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
652 		skb_get_timestampns(skb, ts + 0);
653 		empty = 0;
654 	}
655 	if (shhwtstamps) {
656 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
657 		    ktime2ts(shhwtstamps->syststamp, ts + 1))
658 			empty = 0;
659 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
660 		    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
661 			empty = 0;
662 	}
663 	if (!empty)
664 		put_cmsg(msg, SOL_SOCKET,
665 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
666 }
667 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
668 
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)669 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
670 				   struct sk_buff *skb)
671 {
672 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
673 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
674 			sizeof(__u32), &skb->dropcount);
675 }
676 
__sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)677 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
678 	struct sk_buff *skb)
679 {
680 	sock_recv_timestamp(msg, sk, skb);
681 	sock_recv_drops(msg, sk, skb);
682 }
683 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
684 
__sock_recvmsg_nosec(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t size,int flags)685 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
686 				       struct msghdr *msg, size_t size, int flags)
687 {
688 	struct sock_iocb *si = kiocb_to_siocb(iocb);
689 
690 	sock_update_classid(sock->sk);
691 
692 	si->sock = sock;
693 	si->scm = NULL;
694 	si->msg = msg;
695 	si->size = size;
696 	si->flags = flags;
697 
698 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
699 }
700 
__sock_recvmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t size,int flags)701 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
702 				 struct msghdr *msg, size_t size, int flags)
703 {
704 	int err = security_socket_recvmsg(sock, msg, size, flags);
705 
706 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
707 }
708 
sock_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)709 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
710 		 size_t size, int flags)
711 {
712 	struct kiocb iocb;
713 	struct sock_iocb siocb;
714 	int ret;
715 
716 	init_sync_kiocb(&iocb, NULL);
717 	iocb.private = &siocb;
718 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
719 	if (-EIOCBQUEUED == ret)
720 		ret = wait_on_sync_kiocb(&iocb);
721 	return ret;
722 }
723 EXPORT_SYMBOL(sock_recvmsg);
724 
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,size_t size,int flags)725 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
726 			      size_t size, int flags)
727 {
728 	struct kiocb iocb;
729 	struct sock_iocb siocb;
730 	int ret;
731 
732 	init_sync_kiocb(&iocb, NULL);
733 	iocb.private = &siocb;
734 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
735 	if (-EIOCBQUEUED == ret)
736 		ret = wait_on_sync_kiocb(&iocb);
737 	return ret;
738 }
739 
740 /**
741  * kernel_recvmsg - Receive a message from a socket (kernel space)
742  * @sock:       The socket to receive the message from
743  * @msg:        Received message
744  * @vec:        Input s/g array for message data
745  * @num:        Size of input s/g array
746  * @size:       Number of bytes to read
747  * @flags:      Message flags (MSG_DONTWAIT, etc...)
748  *
749  * On return the msg structure contains the scatter/gather array passed in the
750  * vec argument. The array is modified so that it consists of the unfilled
751  * portion of the original array.
752  *
753  * The returned value is the total number of bytes received, or an error.
754  */
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)755 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
756 		   struct kvec *vec, size_t num, size_t size, int flags)
757 {
758 	mm_segment_t oldfs = get_fs();
759 	int result;
760 
761 	set_fs(KERNEL_DS);
762 	/*
763 	 * the following is safe, since for compiler definitions of kvec and
764 	 * iovec are identical, yielding the same in-core layout and alignment
765 	 */
766 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
767 	result = sock_recvmsg(sock, msg, size, flags);
768 	set_fs(oldfs);
769 	return result;
770 }
771 EXPORT_SYMBOL(kernel_recvmsg);
772 
sock_aio_dtor(struct kiocb * iocb)773 static void sock_aio_dtor(struct kiocb *iocb)
774 {
775 	kfree(iocb->private);
776 }
777 
sock_sendpage(struct file * file,struct page * page,int offset,size_t size,loff_t * ppos,int more)778 static ssize_t sock_sendpage(struct file *file, struct page *page,
779 			     int offset, size_t size, loff_t *ppos, int more)
780 {
781 	struct socket *sock;
782 	int flags;
783 
784 	sock = file->private_data;
785 
786 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
787 	if (more)
788 		flags |= MSG_MORE;
789 
790 	return kernel_sendpage(sock, page, offset, size, flags);
791 }
792 
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)793 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
794 				struct pipe_inode_info *pipe, size_t len,
795 				unsigned int flags)
796 {
797 	struct socket *sock = file->private_data;
798 
799 	if (unlikely(!sock->ops->splice_read))
800 		return -EINVAL;
801 
802 	sock_update_classid(sock->sk);
803 
804 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
805 }
806 
alloc_sock_iocb(struct kiocb * iocb,struct sock_iocb * siocb)807 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
808 					 struct sock_iocb *siocb)
809 {
810 	if (!is_sync_kiocb(iocb)) {
811 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
812 		if (!siocb)
813 			return NULL;
814 		iocb->ki_dtor = sock_aio_dtor;
815 	}
816 
817 	siocb->kiocb = iocb;
818 	iocb->private = siocb;
819 	return siocb;
820 }
821 
do_sock_read(struct msghdr * msg,struct kiocb * iocb,struct file * file,const struct iovec * iov,unsigned long nr_segs)822 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
823 		struct file *file, const struct iovec *iov,
824 		unsigned long nr_segs)
825 {
826 	struct socket *sock = file->private_data;
827 	size_t size = 0;
828 	int i;
829 
830 	for (i = 0; i < nr_segs; i++)
831 		size += iov[i].iov_len;
832 
833 	msg->msg_name = NULL;
834 	msg->msg_namelen = 0;
835 	msg->msg_control = NULL;
836 	msg->msg_controllen = 0;
837 	msg->msg_iov = (struct iovec *)iov;
838 	msg->msg_iovlen = nr_segs;
839 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
840 
841 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
842 }
843 
sock_aio_read(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)844 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
845 				unsigned long nr_segs, loff_t pos)
846 {
847 	struct sock_iocb siocb, *x;
848 
849 	if (pos != 0)
850 		return -ESPIPE;
851 
852 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
853 		return 0;
854 
855 
856 	x = alloc_sock_iocb(iocb, &siocb);
857 	if (!x)
858 		return -ENOMEM;
859 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
860 }
861 
do_sock_write(struct msghdr * msg,struct kiocb * iocb,struct file * file,const struct iovec * iov,unsigned long nr_segs)862 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
863 			struct file *file, const struct iovec *iov,
864 			unsigned long nr_segs)
865 {
866 	struct socket *sock = file->private_data;
867 	size_t size = 0;
868 	int i;
869 
870 	for (i = 0; i < nr_segs; i++)
871 		size += iov[i].iov_len;
872 
873 	msg->msg_name = NULL;
874 	msg->msg_namelen = 0;
875 	msg->msg_control = NULL;
876 	msg->msg_controllen = 0;
877 	msg->msg_iov = (struct iovec *)iov;
878 	msg->msg_iovlen = nr_segs;
879 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
880 	if (sock->type == SOCK_SEQPACKET)
881 		msg->msg_flags |= MSG_EOR;
882 
883 	return __sock_sendmsg(iocb, sock, msg, size);
884 }
885 
sock_aio_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)886 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
887 			  unsigned long nr_segs, loff_t pos)
888 {
889 	struct sock_iocb siocb, *x;
890 
891 	if (pos != 0)
892 		return -ESPIPE;
893 
894 	x = alloc_sock_iocb(iocb, &siocb);
895 	if (!x)
896 		return -ENOMEM;
897 
898 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
899 }
900 
901 /*
902  * Atomic setting of ioctl hooks to avoid race
903  * with module unload.
904  */
905 
906 static DEFINE_MUTEX(br_ioctl_mutex);
907 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
908 
brioctl_set(int (* hook)(struct net *,unsigned int,void __user *))909 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
910 {
911 	mutex_lock(&br_ioctl_mutex);
912 	br_ioctl_hook = hook;
913 	mutex_unlock(&br_ioctl_mutex);
914 }
915 EXPORT_SYMBOL(brioctl_set);
916 
917 static DEFINE_MUTEX(vlan_ioctl_mutex);
918 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
919 
vlan_ioctl_set(int (* hook)(struct net *,void __user *))920 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
921 {
922 	mutex_lock(&vlan_ioctl_mutex);
923 	vlan_ioctl_hook = hook;
924 	mutex_unlock(&vlan_ioctl_mutex);
925 }
926 EXPORT_SYMBOL(vlan_ioctl_set);
927 
928 static DEFINE_MUTEX(dlci_ioctl_mutex);
929 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
930 
dlci_ioctl_set(int (* hook)(unsigned int,void __user *))931 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
932 {
933 	mutex_lock(&dlci_ioctl_mutex);
934 	dlci_ioctl_hook = hook;
935 	mutex_unlock(&dlci_ioctl_mutex);
936 }
937 EXPORT_SYMBOL(dlci_ioctl_set);
938 
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)939 static long sock_do_ioctl(struct net *net, struct socket *sock,
940 				 unsigned int cmd, unsigned long arg)
941 {
942 	int err;
943 	void __user *argp = (void __user *)arg;
944 
945 	err = sock->ops->ioctl(sock, cmd, arg);
946 
947 	/*
948 	 * If this ioctl is unknown try to hand it down
949 	 * to the NIC driver.
950 	 */
951 	if (err == -ENOIOCTLCMD)
952 		err = dev_ioctl(net, cmd, argp);
953 
954 	return err;
955 }
956 
957 /*
958  *	With an ioctl, arg may well be a user mode pointer, but we don't know
959  *	what to do with it - that's up to the protocol still.
960  */
961 
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)962 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
963 {
964 	struct socket *sock;
965 	struct sock *sk;
966 	void __user *argp = (void __user *)arg;
967 	int pid, err;
968 	struct net *net;
969 
970 	sock = file->private_data;
971 	sk = sock->sk;
972 	net = sock_net(sk);
973 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
974 		err = dev_ioctl(net, cmd, argp);
975 	} else
976 #ifdef CONFIG_WEXT_CORE
977 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
978 		err = dev_ioctl(net, cmd, argp);
979 	} else
980 #endif
981 		switch (cmd) {
982 		case FIOSETOWN:
983 		case SIOCSPGRP:
984 			err = -EFAULT;
985 			if (get_user(pid, (int __user *)argp))
986 				break;
987 			err = f_setown(sock->file, pid, 1);
988 			break;
989 		case FIOGETOWN:
990 		case SIOCGPGRP:
991 			err = put_user(f_getown(sock->file),
992 				       (int __user *)argp);
993 			break;
994 		case SIOCGIFBR:
995 		case SIOCSIFBR:
996 		case SIOCBRADDBR:
997 		case SIOCBRDELBR:
998 			err = -ENOPKG;
999 			if (!br_ioctl_hook)
1000 				request_module("bridge");
1001 
1002 			mutex_lock(&br_ioctl_mutex);
1003 			if (br_ioctl_hook)
1004 				err = br_ioctl_hook(net, cmd, argp);
1005 			mutex_unlock(&br_ioctl_mutex);
1006 			break;
1007 		case SIOCGIFVLAN:
1008 		case SIOCSIFVLAN:
1009 			err = -ENOPKG;
1010 			if (!vlan_ioctl_hook)
1011 				request_module("8021q");
1012 
1013 			mutex_lock(&vlan_ioctl_mutex);
1014 			if (vlan_ioctl_hook)
1015 				err = vlan_ioctl_hook(net, argp);
1016 			mutex_unlock(&vlan_ioctl_mutex);
1017 			break;
1018 		case SIOCADDDLCI:
1019 		case SIOCDELDLCI:
1020 			err = -ENOPKG;
1021 			if (!dlci_ioctl_hook)
1022 				request_module("dlci");
1023 
1024 			mutex_lock(&dlci_ioctl_mutex);
1025 			if (dlci_ioctl_hook)
1026 				err = dlci_ioctl_hook(cmd, argp);
1027 			mutex_unlock(&dlci_ioctl_mutex);
1028 			break;
1029 		default:
1030 			err = sock_do_ioctl(net, sock, cmd, arg);
1031 			break;
1032 		}
1033 	return err;
1034 }
1035 
sock_create_lite(int family,int type,int protocol,struct socket ** res)1036 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1037 {
1038 	int err;
1039 	struct socket *sock = NULL;
1040 
1041 	err = security_socket_create(family, type, protocol, 1);
1042 	if (err)
1043 		goto out;
1044 
1045 	sock = sock_alloc();
1046 	if (!sock) {
1047 		err = -ENOMEM;
1048 		goto out;
1049 	}
1050 
1051 	sock->type = type;
1052 	err = security_socket_post_create(sock, family, type, protocol, 1);
1053 	if (err)
1054 		goto out_release;
1055 
1056 out:
1057 	*res = sock;
1058 	return err;
1059 out_release:
1060 	sock_release(sock);
1061 	sock = NULL;
1062 	goto out;
1063 }
1064 EXPORT_SYMBOL(sock_create_lite);
1065 
1066 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1067 static unsigned int sock_poll(struct file *file, poll_table *wait)
1068 {
1069 	struct socket *sock;
1070 
1071 	/*
1072 	 *      We can't return errors to poll, so it's either yes or no.
1073 	 */
1074 	sock = file->private_data;
1075 	return sock->ops->poll(file, sock, wait);
1076 }
1077 
sock_mmap(struct file * file,struct vm_area_struct * vma)1078 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1079 {
1080 	struct socket *sock = file->private_data;
1081 
1082 	return sock->ops->mmap(file, sock, vma);
1083 }
1084 
sock_close(struct inode * inode,struct file * filp)1085 static int sock_close(struct inode *inode, struct file *filp)
1086 {
1087 	/*
1088 	 *      It was possible the inode is NULL we were
1089 	 *      closing an unfinished socket.
1090 	 */
1091 
1092 	if (!inode) {
1093 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1094 		return 0;
1095 	}
1096 	sock_release(SOCKET_I(inode));
1097 	return 0;
1098 }
1099 
1100 /*
1101  *	Update the socket async list
1102  *
1103  *	Fasync_list locking strategy.
1104  *
1105  *	1. fasync_list is modified only under process context socket lock
1106  *	   i.e. under semaphore.
1107  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1108  *	   or under socket lock
1109  */
1110 
sock_fasync(int fd,struct file * filp,int on)1111 static int sock_fasync(int fd, struct file *filp, int on)
1112 {
1113 	struct socket *sock = filp->private_data;
1114 	struct sock *sk = sock->sk;
1115 	struct socket_wq *wq;
1116 
1117 	if (sk == NULL)
1118 		return -EINVAL;
1119 
1120 	lock_sock(sk);
1121 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1122 	fasync_helper(fd, filp, on, &wq->fasync_list);
1123 
1124 	if (!wq->fasync_list)
1125 		sock_reset_flag(sk, SOCK_FASYNC);
1126 	else
1127 		sock_set_flag(sk, SOCK_FASYNC);
1128 
1129 	release_sock(sk);
1130 	return 0;
1131 }
1132 
1133 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1134 
sock_wake_async(struct socket * sock,int how,int band)1135 int sock_wake_async(struct socket *sock, int how, int band)
1136 {
1137 	struct socket_wq *wq;
1138 
1139 	if (!sock)
1140 		return -1;
1141 	rcu_read_lock();
1142 	wq = rcu_dereference(sock->wq);
1143 	if (!wq || !wq->fasync_list) {
1144 		rcu_read_unlock();
1145 		return -1;
1146 	}
1147 	switch (how) {
1148 	case SOCK_WAKE_WAITD:
1149 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1150 			break;
1151 		goto call_kill;
1152 	case SOCK_WAKE_SPACE:
1153 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1154 			break;
1155 		/* fall through */
1156 	case SOCK_WAKE_IO:
1157 call_kill:
1158 		kill_fasync(&wq->fasync_list, SIGIO, band);
1159 		break;
1160 	case SOCK_WAKE_URG:
1161 		kill_fasync(&wq->fasync_list, SIGURG, band);
1162 	}
1163 	rcu_read_unlock();
1164 	return 0;
1165 }
1166 EXPORT_SYMBOL(sock_wake_async);
1167 
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1168 int __sock_create(struct net *net, int family, int type, int protocol,
1169 			 struct socket **res, int kern)
1170 {
1171 	int err;
1172 	struct socket *sock;
1173 	const struct net_proto_family *pf;
1174 
1175 	/*
1176 	 *      Check protocol is in range
1177 	 */
1178 	if (family < 0 || family >= NPROTO)
1179 		return -EAFNOSUPPORT;
1180 	if (type < 0 || type >= SOCK_MAX)
1181 		return -EINVAL;
1182 
1183 	/* Compatibility.
1184 
1185 	   This uglymoron is moved from INET layer to here to avoid
1186 	   deadlock in module load.
1187 	 */
1188 	if (family == PF_INET && type == SOCK_PACKET) {
1189 		static int warned;
1190 		if (!warned) {
1191 			warned = 1;
1192 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1193 			       current->comm);
1194 		}
1195 		family = PF_PACKET;
1196 	}
1197 
1198 	err = security_socket_create(family, type, protocol, kern);
1199 	if (err)
1200 		return err;
1201 
1202 	/*
1203 	 *	Allocate the socket and allow the family to set things up. if
1204 	 *	the protocol is 0, the family is instructed to select an appropriate
1205 	 *	default.
1206 	 */
1207 	sock = sock_alloc();
1208 	if (!sock) {
1209 		if (net_ratelimit())
1210 			printk(KERN_WARNING "socket: no more sockets\n");
1211 		return -ENFILE;	/* Not exactly a match, but its the
1212 				   closest posix thing */
1213 	}
1214 
1215 	sock->type = type;
1216 
1217 #ifdef CONFIG_MODULES
1218 	/* Attempt to load a protocol module if the find failed.
1219 	 *
1220 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1221 	 * requested real, full-featured networking support upon configuration.
1222 	 * Otherwise module support will break!
1223 	 */
1224 	if (rcu_access_pointer(net_families[family]) == NULL)
1225 		request_module("net-pf-%d", family);
1226 #endif
1227 
1228 	rcu_read_lock();
1229 	pf = rcu_dereference(net_families[family]);
1230 	err = -EAFNOSUPPORT;
1231 	if (!pf)
1232 		goto out_release;
1233 
1234 	/*
1235 	 * We will call the ->create function, that possibly is in a loadable
1236 	 * module, so we have to bump that loadable module refcnt first.
1237 	 */
1238 	if (!try_module_get(pf->owner))
1239 		goto out_release;
1240 
1241 	/* Now protected by module ref count */
1242 	rcu_read_unlock();
1243 
1244 	err = pf->create(net, sock, protocol, kern);
1245 	if (err < 0)
1246 		goto out_module_put;
1247 
1248 	/*
1249 	 * Now to bump the refcnt of the [loadable] module that owns this
1250 	 * socket at sock_release time we decrement its refcnt.
1251 	 */
1252 	if (!try_module_get(sock->ops->owner))
1253 		goto out_module_busy;
1254 
1255 	/*
1256 	 * Now that we're done with the ->create function, the [loadable]
1257 	 * module can have its refcnt decremented
1258 	 */
1259 	module_put(pf->owner);
1260 	err = security_socket_post_create(sock, family, type, protocol, kern);
1261 	if (err)
1262 		goto out_sock_release;
1263 	*res = sock;
1264 
1265 	return 0;
1266 
1267 out_module_busy:
1268 	err = -EAFNOSUPPORT;
1269 out_module_put:
1270 	sock->ops = NULL;
1271 	module_put(pf->owner);
1272 out_sock_release:
1273 	sock_release(sock);
1274 	return err;
1275 
1276 out_release:
1277 	rcu_read_unlock();
1278 	goto out_sock_release;
1279 }
1280 EXPORT_SYMBOL(__sock_create);
1281 
sock_create(int family,int type,int protocol,struct socket ** res)1282 int sock_create(int family, int type, int protocol, struct socket **res)
1283 {
1284 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1285 }
1286 EXPORT_SYMBOL(sock_create);
1287 
sock_create_kern(int family,int type,int protocol,struct socket ** res)1288 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1289 {
1290 	return __sock_create(&init_net, family, type, protocol, res, 1);
1291 }
1292 EXPORT_SYMBOL(sock_create_kern);
1293 
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1294 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1295 {
1296 	int retval;
1297 	struct socket *sock;
1298 	int flags;
1299 
1300 	/* Check the SOCK_* constants for consistency.  */
1301 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1302 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1303 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1304 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1305 
1306 	flags = type & ~SOCK_TYPE_MASK;
1307 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1308 		return -EINVAL;
1309 	type &= SOCK_TYPE_MASK;
1310 
1311 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1312 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1313 
1314 	retval = sock_create(family, type, protocol, &sock);
1315 	if (retval < 0)
1316 		goto out;
1317 
1318 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1319 	if (retval < 0)
1320 		goto out_release;
1321 
1322 out:
1323 	/* It may be already another descriptor 8) Not kernel problem. */
1324 	return retval;
1325 
1326 out_release:
1327 	sock_release(sock);
1328 	return retval;
1329 }
1330 
1331 /*
1332  *	Create a pair of connected sockets.
1333  */
1334 
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1335 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1336 		int __user *, usockvec)
1337 {
1338 	struct socket *sock1, *sock2;
1339 	int fd1, fd2, err;
1340 	struct file *newfile1, *newfile2;
1341 	int flags;
1342 
1343 	flags = type & ~SOCK_TYPE_MASK;
1344 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1345 		return -EINVAL;
1346 	type &= SOCK_TYPE_MASK;
1347 
1348 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1349 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1350 
1351 	/*
1352 	 * Obtain the first socket and check if the underlying protocol
1353 	 * supports the socketpair call.
1354 	 */
1355 
1356 	err = sock_create(family, type, protocol, &sock1);
1357 	if (err < 0)
1358 		goto out;
1359 
1360 	err = sock_create(family, type, protocol, &sock2);
1361 	if (err < 0)
1362 		goto out_release_1;
1363 
1364 	err = sock1->ops->socketpair(sock1, sock2);
1365 	if (err < 0)
1366 		goto out_release_both;
1367 
1368 	fd1 = sock_alloc_file(sock1, &newfile1, flags);
1369 	if (unlikely(fd1 < 0)) {
1370 		err = fd1;
1371 		goto out_release_both;
1372 	}
1373 
1374 	fd2 = sock_alloc_file(sock2, &newfile2, flags);
1375 	if (unlikely(fd2 < 0)) {
1376 		err = fd2;
1377 		fput(newfile1);
1378 		put_unused_fd(fd1);
1379 		sock_release(sock2);
1380 		goto out;
1381 	}
1382 
1383 	audit_fd_pair(fd1, fd2);
1384 	fd_install(fd1, newfile1);
1385 	fd_install(fd2, newfile2);
1386 	/* fd1 and fd2 may be already another descriptors.
1387 	 * Not kernel problem.
1388 	 */
1389 
1390 	err = put_user(fd1, &usockvec[0]);
1391 	if (!err)
1392 		err = put_user(fd2, &usockvec[1]);
1393 	if (!err)
1394 		return 0;
1395 
1396 	sys_close(fd2);
1397 	sys_close(fd1);
1398 	return err;
1399 
1400 out_release_both:
1401 	sock_release(sock2);
1402 out_release_1:
1403 	sock_release(sock1);
1404 out:
1405 	return err;
1406 }
1407 
1408 /*
1409  *	Bind a name to a socket. Nothing much to do here since it's
1410  *	the protocol's responsibility to handle the local address.
1411  *
1412  *	We move the socket address to kernel space before we call
1413  *	the protocol layer (having also checked the address is ok).
1414  */
1415 
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1416 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1417 {
1418 	struct socket *sock;
1419 	struct sockaddr_storage address;
1420 	int err, fput_needed;
1421 
1422 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1423 	if (sock) {
1424 		err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1425 		if (err >= 0) {
1426 			err = security_socket_bind(sock,
1427 						   (struct sockaddr *)&address,
1428 						   addrlen);
1429 			if (!err)
1430 				err = sock->ops->bind(sock,
1431 						      (struct sockaddr *)
1432 						      &address, addrlen);
1433 		}
1434 		fput_light(sock->file, fput_needed);
1435 	}
1436 	return err;
1437 }
1438 
1439 /*
1440  *	Perform a listen. Basically, we allow the protocol to do anything
1441  *	necessary for a listen, and if that works, we mark the socket as
1442  *	ready for listening.
1443  */
1444 
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1445 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1446 {
1447 	struct socket *sock;
1448 	int err, fput_needed;
1449 	int somaxconn;
1450 
1451 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1452 	if (sock) {
1453 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1454 		if ((unsigned)backlog > somaxconn)
1455 			backlog = somaxconn;
1456 
1457 		err = security_socket_listen(sock, backlog);
1458 		if (!err)
1459 			err = sock->ops->listen(sock, backlog);
1460 
1461 		fput_light(sock->file, fput_needed);
1462 	}
1463 	return err;
1464 }
1465 
1466 /*
1467  *	For accept, we attempt to create a new socket, set up the link
1468  *	with the client, wake up the client, then return the new
1469  *	connected fd. We collect the address of the connector in kernel
1470  *	space and move it to user at the very end. This is unclean because
1471  *	we open the socket then return an error.
1472  *
1473  *	1003.1g adds the ability to recvmsg() to query connection pending
1474  *	status to recvmsg. We need to add that support in a way thats
1475  *	clean when we restucture accept also.
1476  */
1477 
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1478 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1479 		int __user *, upeer_addrlen, int, flags)
1480 {
1481 	struct socket *sock, *newsock;
1482 	struct file *newfile;
1483 	int err, len, newfd, fput_needed;
1484 	struct sockaddr_storage address;
1485 
1486 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1487 		return -EINVAL;
1488 
1489 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1490 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1491 
1492 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1493 	if (!sock)
1494 		goto out;
1495 
1496 	err = -ENFILE;
1497 	newsock = sock_alloc();
1498 	if (!newsock)
1499 		goto out_put;
1500 
1501 	newsock->type = sock->type;
1502 	newsock->ops = sock->ops;
1503 
1504 	/*
1505 	 * We don't need try_module_get here, as the listening socket (sock)
1506 	 * has the protocol module (sock->ops->owner) held.
1507 	 */
1508 	__module_get(newsock->ops->owner);
1509 
1510 	newfd = sock_alloc_file(newsock, &newfile, flags);
1511 	if (unlikely(newfd < 0)) {
1512 		err = newfd;
1513 		sock_release(newsock);
1514 		goto out_put;
1515 	}
1516 
1517 	err = security_socket_accept(sock, newsock);
1518 	if (err)
1519 		goto out_fd;
1520 
1521 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1522 	if (err < 0)
1523 		goto out_fd;
1524 
1525 	if (upeer_sockaddr) {
1526 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1527 					  &len, 2) < 0) {
1528 			err = -ECONNABORTED;
1529 			goto out_fd;
1530 		}
1531 		err = move_addr_to_user((struct sockaddr *)&address,
1532 					len, upeer_sockaddr, upeer_addrlen);
1533 		if (err < 0)
1534 			goto out_fd;
1535 	}
1536 
1537 	/* File flags are not inherited via accept() unlike another OSes. */
1538 
1539 	fd_install(newfd, newfile);
1540 	err = newfd;
1541 
1542 out_put:
1543 	fput_light(sock->file, fput_needed);
1544 out:
1545 	return err;
1546 out_fd:
1547 	fput(newfile);
1548 	put_unused_fd(newfd);
1549 	goto out_put;
1550 }
1551 
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)1552 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1553 		int __user *, upeer_addrlen)
1554 {
1555 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1556 }
1557 
1558 /*
1559  *	Attempt to connect to a socket with the server address.  The address
1560  *	is in user space so we verify it is OK and move it to kernel space.
1561  *
1562  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1563  *	break bindings
1564  *
1565  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1566  *	other SEQPACKET protocols that take time to connect() as it doesn't
1567  *	include the -EINPROGRESS status for such sockets.
1568  */
1569 
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)1570 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1571 		int, addrlen)
1572 {
1573 	struct socket *sock;
1574 	struct sockaddr_storage address;
1575 	int err, fput_needed;
1576 
1577 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1578 	if (!sock)
1579 		goto out;
1580 	err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1581 	if (err < 0)
1582 		goto out_put;
1583 
1584 	err =
1585 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1586 	if (err)
1587 		goto out_put;
1588 
1589 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1590 				 sock->file->f_flags);
1591 out_put:
1592 	fput_light(sock->file, fput_needed);
1593 out:
1594 	return err;
1595 }
1596 
1597 /*
1598  *	Get the local address ('name') of a socket object. Move the obtained
1599  *	name to user space.
1600  */
1601 
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1602 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1603 		int __user *, usockaddr_len)
1604 {
1605 	struct socket *sock;
1606 	struct sockaddr_storage address;
1607 	int len, err, fput_needed;
1608 
1609 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1610 	if (!sock)
1611 		goto out;
1612 
1613 	err = security_socket_getsockname(sock);
1614 	if (err)
1615 		goto out_put;
1616 
1617 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1618 	if (err)
1619 		goto out_put;
1620 	err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1621 
1622 out_put:
1623 	fput_light(sock->file, fput_needed);
1624 out:
1625 	return err;
1626 }
1627 
1628 /*
1629  *	Get the remote address ('name') of a socket object. Move the obtained
1630  *	name to user space.
1631  */
1632 
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1633 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1634 		int __user *, usockaddr_len)
1635 {
1636 	struct socket *sock;
1637 	struct sockaddr_storage address;
1638 	int len, err, fput_needed;
1639 
1640 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1641 	if (sock != NULL) {
1642 		err = security_socket_getpeername(sock);
1643 		if (err) {
1644 			fput_light(sock->file, fput_needed);
1645 			return err;
1646 		}
1647 
1648 		err =
1649 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1650 				       1);
1651 		if (!err)
1652 			err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1653 						usockaddr_len);
1654 		fput_light(sock->file, fput_needed);
1655 	}
1656 	return err;
1657 }
1658 
1659 /*
1660  *	Send a datagram to a given address. We move the address into kernel
1661  *	space and check the user space data area is readable before invoking
1662  *	the protocol.
1663  */
1664 
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned,flags,struct sockaddr __user *,addr,int,addr_len)1665 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1666 		unsigned, flags, struct sockaddr __user *, addr,
1667 		int, addr_len)
1668 {
1669 	struct socket *sock;
1670 	struct sockaddr_storage address;
1671 	int err;
1672 	struct msghdr msg;
1673 	struct iovec iov;
1674 	int fput_needed;
1675 
1676 	if (len > INT_MAX)
1677 		len = INT_MAX;
1678 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1679 	if (!sock)
1680 		goto out;
1681 
1682 	iov.iov_base = buff;
1683 	iov.iov_len = len;
1684 	msg.msg_name = NULL;
1685 	msg.msg_iov = &iov;
1686 	msg.msg_iovlen = 1;
1687 	msg.msg_control = NULL;
1688 	msg.msg_controllen = 0;
1689 	msg.msg_namelen = 0;
1690 	if (addr) {
1691 		err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1692 		if (err < 0)
1693 			goto out_put;
1694 		msg.msg_name = (struct sockaddr *)&address;
1695 		msg.msg_namelen = addr_len;
1696 	}
1697 	if (sock->file->f_flags & O_NONBLOCK)
1698 		flags |= MSG_DONTWAIT;
1699 	msg.msg_flags = flags;
1700 	err = sock_sendmsg(sock, &msg, len);
1701 
1702 out_put:
1703 	fput_light(sock->file, fput_needed);
1704 out:
1705 	return err;
1706 }
1707 
1708 /*
1709  *	Send a datagram down a socket.
1710  */
1711 
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned,flags)1712 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1713 		unsigned, flags)
1714 {
1715 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1716 }
1717 
1718 /*
1719  *	Receive a frame from the socket and optionally record the address of the
1720  *	sender. We verify the buffers are writable and if needed move the
1721  *	sender address from kernel to user space.
1722  */
1723 
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned,flags,struct sockaddr __user *,addr,int __user *,addr_len)1724 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1725 		unsigned, flags, struct sockaddr __user *, addr,
1726 		int __user *, addr_len)
1727 {
1728 	struct socket *sock;
1729 	struct iovec iov;
1730 	struct msghdr msg;
1731 	struct sockaddr_storage address;
1732 	int err, err2;
1733 	int fput_needed;
1734 
1735 	if (size > INT_MAX)
1736 		size = INT_MAX;
1737 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1738 	if (!sock)
1739 		goto out;
1740 
1741 	msg.msg_control = NULL;
1742 	msg.msg_controllen = 0;
1743 	msg.msg_iovlen = 1;
1744 	msg.msg_iov = &iov;
1745 	iov.iov_len = size;
1746 	iov.iov_base = ubuf;
1747 	msg.msg_name = (struct sockaddr *)&address;
1748 	msg.msg_namelen = sizeof(address);
1749 	if (sock->file->f_flags & O_NONBLOCK)
1750 		flags |= MSG_DONTWAIT;
1751 	err = sock_recvmsg(sock, &msg, size, flags);
1752 
1753 	if (err >= 0 && addr != NULL) {
1754 		err2 = move_addr_to_user((struct sockaddr *)&address,
1755 					 msg.msg_namelen, addr, addr_len);
1756 		if (err2 < 0)
1757 			err = err2;
1758 	}
1759 
1760 	fput_light(sock->file, fput_needed);
1761 out:
1762 	return err;
1763 }
1764 
1765 /*
1766  *	Receive a datagram from a socket.
1767  */
1768 
sys_recv(int fd,void __user * ubuf,size_t size,unsigned flags)1769 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1770 			 unsigned flags)
1771 {
1772 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1773 }
1774 
1775 /*
1776  *	Set a socket option. Because we don't know the option lengths we have
1777  *	to pass the user mode parameter for the protocols to sort out.
1778  */
1779 
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)1780 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1781 		char __user *, optval, int, optlen)
1782 {
1783 	int err, fput_needed;
1784 	struct socket *sock;
1785 
1786 	if (optlen < 0)
1787 		return -EINVAL;
1788 
1789 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1790 	if (sock != NULL) {
1791 		err = security_socket_setsockopt(sock, level, optname);
1792 		if (err)
1793 			goto out_put;
1794 
1795 		if (level == SOL_SOCKET)
1796 			err =
1797 			    sock_setsockopt(sock, level, optname, optval,
1798 					    optlen);
1799 		else
1800 			err =
1801 			    sock->ops->setsockopt(sock, level, optname, optval,
1802 						  optlen);
1803 out_put:
1804 		fput_light(sock->file, fput_needed);
1805 	}
1806 	return err;
1807 }
1808 
1809 /*
1810  *	Get a socket option. Because we don't know the option lengths we have
1811  *	to pass a user mode parameter for the protocols to sort out.
1812  */
1813 
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)1814 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1815 		char __user *, optval, int __user *, optlen)
1816 {
1817 	int err, fput_needed;
1818 	struct socket *sock;
1819 
1820 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1821 	if (sock != NULL) {
1822 		err = security_socket_getsockopt(sock, level, optname);
1823 		if (err)
1824 			goto out_put;
1825 
1826 		if (level == SOL_SOCKET)
1827 			err =
1828 			    sock_getsockopt(sock, level, optname, optval,
1829 					    optlen);
1830 		else
1831 			err =
1832 			    sock->ops->getsockopt(sock, level, optname, optval,
1833 						  optlen);
1834 out_put:
1835 		fput_light(sock->file, fput_needed);
1836 	}
1837 	return err;
1838 }
1839 
1840 /*
1841  *	Shutdown a socket.
1842  */
1843 
SYSCALL_DEFINE2(shutdown,int,fd,int,how)1844 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1845 {
1846 	int err, fput_needed;
1847 	struct socket *sock;
1848 
1849 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1850 	if (sock != NULL) {
1851 		err = security_socket_shutdown(sock, how);
1852 		if (!err)
1853 			err = sock->ops->shutdown(sock, how);
1854 		fput_light(sock->file, fput_needed);
1855 	}
1856 	return err;
1857 }
1858 
1859 /* A couple of helpful macros for getting the address of the 32/64 bit
1860  * fields which are the same type (int / unsigned) on our platforms.
1861  */
1862 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1863 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1864 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1865 
1866 /*
1867  *	BSD sendmsg interface
1868  */
1869 
SYSCALL_DEFINE3(sendmsg,int,fd,struct msghdr __user *,msg,unsigned,flags)1870 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1871 {
1872 	struct compat_msghdr __user *msg_compat =
1873 	    (struct compat_msghdr __user *)msg;
1874 	struct socket *sock;
1875 	struct sockaddr_storage address;
1876 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1877 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1878 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1879 	/* 20 is size of ipv6_pktinfo */
1880 	unsigned char *ctl_buf = ctl;
1881 	struct msghdr msg_sys;
1882 	int err, ctl_len, iov_size, total_len;
1883 	int fput_needed;
1884 
1885 	err = -EFAULT;
1886 	if (MSG_CMSG_COMPAT & flags) {
1887 		if (get_compat_msghdr(&msg_sys, msg_compat))
1888 			return -EFAULT;
1889 	} else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1890 		return -EFAULT;
1891 
1892 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1893 	if (!sock)
1894 		goto out;
1895 
1896 	/* do not move before msg_sys is valid */
1897 	err = -EMSGSIZE;
1898 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1899 		goto out_put;
1900 
1901 	/* Check whether to allocate the iovec area */
1902 	err = -ENOMEM;
1903 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1904 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1905 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1906 		if (!iov)
1907 			goto out_put;
1908 	}
1909 
1910 	/* This will also move the address data into kernel space */
1911 	if (MSG_CMSG_COMPAT & flags) {
1912 		err = verify_compat_iovec(&msg_sys, iov,
1913 					  (struct sockaddr *)&address,
1914 					  VERIFY_READ);
1915 	} else
1916 		err = verify_iovec(&msg_sys, iov,
1917 				   (struct sockaddr *)&address,
1918 				   VERIFY_READ);
1919 	if (err < 0)
1920 		goto out_freeiov;
1921 	total_len = err;
1922 
1923 	err = -ENOBUFS;
1924 
1925 	if (msg_sys.msg_controllen > INT_MAX)
1926 		goto out_freeiov;
1927 	ctl_len = msg_sys.msg_controllen;
1928 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1929 		err =
1930 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1931 						     sizeof(ctl));
1932 		if (err)
1933 			goto out_freeiov;
1934 		ctl_buf = msg_sys.msg_control;
1935 		ctl_len = msg_sys.msg_controllen;
1936 	} else if (ctl_len) {
1937 		if (ctl_len > sizeof(ctl)) {
1938 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1939 			if (ctl_buf == NULL)
1940 				goto out_freeiov;
1941 		}
1942 		err = -EFAULT;
1943 		/*
1944 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1945 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1946 		 * checking falls down on this.
1947 		 */
1948 		if (copy_from_user(ctl_buf,
1949 				   (void __user __force *)msg_sys.msg_control,
1950 				   ctl_len))
1951 			goto out_freectl;
1952 		msg_sys.msg_control = ctl_buf;
1953 	}
1954 	msg_sys.msg_flags = flags;
1955 
1956 	if (sock->file->f_flags & O_NONBLOCK)
1957 		msg_sys.msg_flags |= MSG_DONTWAIT;
1958 	err = sock_sendmsg(sock, &msg_sys, total_len);
1959 
1960 out_freectl:
1961 	if (ctl_buf != ctl)
1962 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1963 out_freeiov:
1964 	if (iov != iovstack)
1965 		sock_kfree_s(sock->sk, iov, iov_size);
1966 out_put:
1967 	fput_light(sock->file, fput_needed);
1968 out:
1969 	return err;
1970 }
1971 
__sys_recvmsg(struct socket * sock,struct msghdr __user * msg,struct msghdr * msg_sys,unsigned flags,int nosec)1972 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1973 			 struct msghdr *msg_sys, unsigned flags, int nosec)
1974 {
1975 	struct compat_msghdr __user *msg_compat =
1976 	    (struct compat_msghdr __user *)msg;
1977 	struct iovec iovstack[UIO_FASTIOV];
1978 	struct iovec *iov = iovstack;
1979 	unsigned long cmsg_ptr;
1980 	int err, iov_size, total_len, len;
1981 
1982 	/* kernel mode address */
1983 	struct sockaddr_storage addr;
1984 
1985 	/* user mode address pointers */
1986 	struct sockaddr __user *uaddr;
1987 	int __user *uaddr_len;
1988 
1989 	if (MSG_CMSG_COMPAT & flags) {
1990 		if (get_compat_msghdr(msg_sys, msg_compat))
1991 			return -EFAULT;
1992 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1993 		return -EFAULT;
1994 
1995 	err = -EMSGSIZE;
1996 	if (msg_sys->msg_iovlen > UIO_MAXIOV)
1997 		goto out;
1998 
1999 	/* Check whether to allocate the iovec area */
2000 	err = -ENOMEM;
2001 	iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
2002 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2003 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2004 		if (!iov)
2005 			goto out;
2006 	}
2007 
2008 	/*
2009 	 *      Save the user-mode address (verify_iovec will change the
2010 	 *      kernel msghdr to use the kernel address space)
2011 	 */
2012 
2013 	uaddr = (__force void __user *)msg_sys->msg_name;
2014 	uaddr_len = COMPAT_NAMELEN(msg);
2015 	if (MSG_CMSG_COMPAT & flags) {
2016 		err = verify_compat_iovec(msg_sys, iov,
2017 					  (struct sockaddr *)&addr,
2018 					  VERIFY_WRITE);
2019 	} else
2020 		err = verify_iovec(msg_sys, iov,
2021 				   (struct sockaddr *)&addr,
2022 				   VERIFY_WRITE);
2023 	if (err < 0)
2024 		goto out_freeiov;
2025 	total_len = err;
2026 
2027 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2028 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2029 
2030 	if (sock->file->f_flags & O_NONBLOCK)
2031 		flags |= MSG_DONTWAIT;
2032 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2033 							  total_len, flags);
2034 	if (err < 0)
2035 		goto out_freeiov;
2036 	len = err;
2037 
2038 	if (uaddr != NULL) {
2039 		err = move_addr_to_user((struct sockaddr *)&addr,
2040 					msg_sys->msg_namelen, uaddr,
2041 					uaddr_len);
2042 		if (err < 0)
2043 			goto out_freeiov;
2044 	}
2045 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2046 			 COMPAT_FLAGS(msg));
2047 	if (err)
2048 		goto out_freeiov;
2049 	if (MSG_CMSG_COMPAT & flags)
2050 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2051 				 &msg_compat->msg_controllen);
2052 	else
2053 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2054 				 &msg->msg_controllen);
2055 	if (err)
2056 		goto out_freeiov;
2057 	err = len;
2058 
2059 out_freeiov:
2060 	if (iov != iovstack)
2061 		sock_kfree_s(sock->sk, iov, iov_size);
2062 out:
2063 	return err;
2064 }
2065 
2066 /*
2067  *	BSD recvmsg interface
2068  */
2069 
SYSCALL_DEFINE3(recvmsg,int,fd,struct msghdr __user *,msg,unsigned int,flags)2070 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2071 		unsigned int, flags)
2072 {
2073 	int fput_needed, err;
2074 	struct msghdr msg_sys;
2075 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2076 
2077 	if (!sock)
2078 		goto out;
2079 
2080 	err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2081 
2082 	fput_light(sock->file, fput_needed);
2083 out:
2084 	return err;
2085 }
2086 
2087 /*
2088  *     Linux recvmmsg interface
2089  */
2090 
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec * timeout)2091 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2092 		   unsigned int flags, struct timespec *timeout)
2093 {
2094 	int fput_needed, err, datagrams;
2095 	struct socket *sock;
2096 	struct mmsghdr __user *entry;
2097 	struct compat_mmsghdr __user *compat_entry;
2098 	struct msghdr msg_sys;
2099 	struct timespec end_time;
2100 
2101 	if (timeout &&
2102 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2103 				    timeout->tv_nsec))
2104 		return -EINVAL;
2105 
2106 	datagrams = 0;
2107 
2108 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2109 	if (!sock)
2110 		return err;
2111 
2112 	err = sock_error(sock->sk);
2113 	if (err)
2114 		goto out_put;
2115 
2116 	entry = mmsg;
2117 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2118 
2119 	while (datagrams < vlen) {
2120 		/*
2121 		 * No need to ask LSM for more than the first datagram.
2122 		 */
2123 		if (MSG_CMSG_COMPAT & flags) {
2124 			err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2125 					    &msg_sys, flags, datagrams);
2126 			if (err < 0)
2127 				break;
2128 			err = __put_user(err, &compat_entry->msg_len);
2129 			++compat_entry;
2130 		} else {
2131 			err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2132 					    &msg_sys, flags, datagrams);
2133 			if (err < 0)
2134 				break;
2135 			err = put_user(err, &entry->msg_len);
2136 			++entry;
2137 		}
2138 
2139 		if (err)
2140 			break;
2141 		++datagrams;
2142 
2143 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2144 		if (flags & MSG_WAITFORONE)
2145 			flags |= MSG_DONTWAIT;
2146 
2147 		if (timeout) {
2148 			ktime_get_ts(timeout);
2149 			*timeout = timespec_sub(end_time, *timeout);
2150 			if (timeout->tv_sec < 0) {
2151 				timeout->tv_sec = timeout->tv_nsec = 0;
2152 				break;
2153 			}
2154 
2155 			/* Timeout, return less than vlen datagrams */
2156 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2157 				break;
2158 		}
2159 
2160 		/* Out of band data, return right away */
2161 		if (msg_sys.msg_flags & MSG_OOB)
2162 			break;
2163 	}
2164 
2165 out_put:
2166 	fput_light(sock->file, fput_needed);
2167 
2168 	if (err == 0)
2169 		return datagrams;
2170 
2171 	if (datagrams != 0) {
2172 		/*
2173 		 * We may return less entries than requested (vlen) if the
2174 		 * sock is non block and there aren't enough datagrams...
2175 		 */
2176 		if (err != -EAGAIN) {
2177 			/*
2178 			 * ... or  if recvmsg returns an error after we
2179 			 * received some datagrams, where we record the
2180 			 * error to return on the next call or if the
2181 			 * app asks about it using getsockopt(SO_ERROR).
2182 			 */
2183 			sock->sk->sk_err = -err;
2184 		}
2185 
2186 		return datagrams;
2187 	}
2188 
2189 	return err;
2190 }
2191 
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct timespec __user *,timeout)2192 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2193 		unsigned int, vlen, unsigned int, flags,
2194 		struct timespec __user *, timeout)
2195 {
2196 	int datagrams;
2197 	struct timespec timeout_sys;
2198 
2199 	if (!timeout)
2200 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2201 
2202 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2203 		return -EFAULT;
2204 
2205 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2206 
2207 	if (datagrams > 0 &&
2208 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2209 		datagrams = -EFAULT;
2210 
2211 	return datagrams;
2212 }
2213 
2214 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2215 /* Argument list sizes for sys_socketcall */
2216 #define AL(x) ((x) * sizeof(unsigned long))
2217 static const unsigned char nargs[20] = {
2218 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2219 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2220 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2221 	AL(4), AL(5)
2222 };
2223 
2224 #undef AL
2225 
2226 /*
2227  *	System call vectors.
2228  *
2229  *	Argument checking cleaned up. Saved 20% in size.
2230  *  This function doesn't need to set the kernel lock because
2231  *  it is set by the callees.
2232  */
2233 
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)2234 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2235 {
2236 	unsigned long a[6];
2237 	unsigned long a0, a1;
2238 	int err;
2239 	unsigned int len;
2240 
2241 	if (call < 1 || call > SYS_RECVMMSG)
2242 		return -EINVAL;
2243 
2244 	len = nargs[call];
2245 	if (len > sizeof(a))
2246 		return -EINVAL;
2247 
2248 	/* copy_from_user should be SMP safe. */
2249 	if (copy_from_user(a, args, len))
2250 		return -EFAULT;
2251 
2252 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2253 
2254 	a0 = a[0];
2255 	a1 = a[1];
2256 
2257 	switch (call) {
2258 	case SYS_SOCKET:
2259 		err = sys_socket(a0, a1, a[2]);
2260 		break;
2261 	case SYS_BIND:
2262 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2263 		break;
2264 	case SYS_CONNECT:
2265 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2266 		break;
2267 	case SYS_LISTEN:
2268 		err = sys_listen(a0, a1);
2269 		break;
2270 	case SYS_ACCEPT:
2271 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2272 				  (int __user *)a[2], 0);
2273 		break;
2274 	case SYS_GETSOCKNAME:
2275 		err =
2276 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2277 				    (int __user *)a[2]);
2278 		break;
2279 	case SYS_GETPEERNAME:
2280 		err =
2281 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2282 				    (int __user *)a[2]);
2283 		break;
2284 	case SYS_SOCKETPAIR:
2285 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2286 		break;
2287 	case SYS_SEND:
2288 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2289 		break;
2290 	case SYS_SENDTO:
2291 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2292 				 (struct sockaddr __user *)a[4], a[5]);
2293 		break;
2294 	case SYS_RECV:
2295 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2296 		break;
2297 	case SYS_RECVFROM:
2298 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2299 				   (struct sockaddr __user *)a[4],
2300 				   (int __user *)a[5]);
2301 		break;
2302 	case SYS_SHUTDOWN:
2303 		err = sys_shutdown(a0, a1);
2304 		break;
2305 	case SYS_SETSOCKOPT:
2306 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2307 		break;
2308 	case SYS_GETSOCKOPT:
2309 		err =
2310 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2311 				   (int __user *)a[4]);
2312 		break;
2313 	case SYS_SENDMSG:
2314 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2315 		break;
2316 	case SYS_RECVMSG:
2317 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2318 		break;
2319 	case SYS_RECVMMSG:
2320 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2321 				   (struct timespec __user *)a[4]);
2322 		break;
2323 	case SYS_ACCEPT4:
2324 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2325 				  (int __user *)a[2], a[3]);
2326 		break;
2327 	default:
2328 		err = -EINVAL;
2329 		break;
2330 	}
2331 	return err;
2332 }
2333 
2334 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2335 
2336 /**
2337  *	sock_register - add a socket protocol handler
2338  *	@ops: description of protocol
2339  *
2340  *	This function is called by a protocol handler that wants to
2341  *	advertise its address family, and have it linked into the
2342  *	socket interface. The value ops->family coresponds to the
2343  *	socket system call protocol family.
2344  */
sock_register(const struct net_proto_family * ops)2345 int sock_register(const struct net_proto_family *ops)
2346 {
2347 	int err;
2348 
2349 	if (ops->family >= NPROTO) {
2350 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2351 		       NPROTO);
2352 		return -ENOBUFS;
2353 	}
2354 
2355 	spin_lock(&net_family_lock);
2356 	if (rcu_dereference_protected(net_families[ops->family],
2357 				      lockdep_is_held(&net_family_lock)))
2358 		err = -EEXIST;
2359 	else {
2360 		rcu_assign_pointer(net_families[ops->family], ops);
2361 		err = 0;
2362 	}
2363 	spin_unlock(&net_family_lock);
2364 
2365 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2366 	return err;
2367 }
2368 EXPORT_SYMBOL(sock_register);
2369 
2370 /**
2371  *	sock_unregister - remove a protocol handler
2372  *	@family: protocol family to remove
2373  *
2374  *	This function is called by a protocol handler that wants to
2375  *	remove its address family, and have it unlinked from the
2376  *	new socket creation.
2377  *
2378  *	If protocol handler is a module, then it can use module reference
2379  *	counts to protect against new references. If protocol handler is not
2380  *	a module then it needs to provide its own protection in
2381  *	the ops->create routine.
2382  */
sock_unregister(int family)2383 void sock_unregister(int family)
2384 {
2385 	BUG_ON(family < 0 || family >= NPROTO);
2386 
2387 	spin_lock(&net_family_lock);
2388 	rcu_assign_pointer(net_families[family], NULL);
2389 	spin_unlock(&net_family_lock);
2390 
2391 	synchronize_rcu();
2392 
2393 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2394 }
2395 EXPORT_SYMBOL(sock_unregister);
2396 
sock_init(void)2397 static int __init sock_init(void)
2398 {
2399 	int err;
2400 
2401 	/*
2402 	 *      Initialize sock SLAB cache.
2403 	 */
2404 
2405 	sk_init();
2406 
2407 	/*
2408 	 *      Initialize skbuff SLAB cache
2409 	 */
2410 	skb_init();
2411 
2412 	/*
2413 	 *      Initialize the protocols module.
2414 	 */
2415 
2416 	init_inodecache();
2417 
2418 	err = register_filesystem(&sock_fs_type);
2419 	if (err)
2420 		goto out_fs;
2421 	sock_mnt = kern_mount(&sock_fs_type);
2422 	if (IS_ERR(sock_mnt)) {
2423 		err = PTR_ERR(sock_mnt);
2424 		goto out_mount;
2425 	}
2426 
2427 	/* The real protocol initialization is performed in later initcalls.
2428 	 */
2429 
2430 #ifdef CONFIG_NETFILTER
2431 	netfilter_init();
2432 #endif
2433 
2434 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2435 	skb_timestamping_init();
2436 #endif
2437 
2438 out:
2439 	return err;
2440 
2441 out_mount:
2442 	unregister_filesystem(&sock_fs_type);
2443 out_fs:
2444 	goto out;
2445 }
2446 
2447 core_initcall(sock_init);	/* early initcall */
2448 
2449 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)2450 void socket_seq_show(struct seq_file *seq)
2451 {
2452 	int cpu;
2453 	int counter = 0;
2454 
2455 	for_each_possible_cpu(cpu)
2456 	    counter += per_cpu(sockets_in_use, cpu);
2457 
2458 	/* It can be negative, by the way. 8) */
2459 	if (counter < 0)
2460 		counter = 0;
2461 
2462 	seq_printf(seq, "sockets: used %d\n", counter);
2463 }
2464 #endif				/* CONFIG_PROC_FS */
2465 
2466 #ifdef CONFIG_COMPAT
do_siocgstamp(struct net * net,struct socket * sock,unsigned int cmd,struct compat_timeval __user * up)2467 static int do_siocgstamp(struct net *net, struct socket *sock,
2468 			 unsigned int cmd, struct compat_timeval __user *up)
2469 {
2470 	mm_segment_t old_fs = get_fs();
2471 	struct timeval ktv;
2472 	int err;
2473 
2474 	set_fs(KERNEL_DS);
2475 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2476 	set_fs(old_fs);
2477 	if (!err) {
2478 		err = put_user(ktv.tv_sec, &up->tv_sec);
2479 		err |= __put_user(ktv.tv_usec, &up->tv_usec);
2480 	}
2481 	return err;
2482 }
2483 
do_siocgstampns(struct net * net,struct socket * sock,unsigned int cmd,struct compat_timespec __user * up)2484 static int do_siocgstampns(struct net *net, struct socket *sock,
2485 			 unsigned int cmd, struct compat_timespec __user *up)
2486 {
2487 	mm_segment_t old_fs = get_fs();
2488 	struct timespec kts;
2489 	int err;
2490 
2491 	set_fs(KERNEL_DS);
2492 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2493 	set_fs(old_fs);
2494 	if (!err) {
2495 		err = put_user(kts.tv_sec, &up->tv_sec);
2496 		err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2497 	}
2498 	return err;
2499 }
2500 
dev_ifname32(struct net * net,struct compat_ifreq __user * uifr32)2501 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2502 {
2503 	struct ifreq __user *uifr;
2504 	int err;
2505 
2506 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2507 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2508 		return -EFAULT;
2509 
2510 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2511 	if (err)
2512 		return err;
2513 
2514 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2515 		return -EFAULT;
2516 
2517 	return 0;
2518 }
2519 
dev_ifconf(struct net * net,struct compat_ifconf __user * uifc32)2520 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2521 {
2522 	struct compat_ifconf ifc32;
2523 	struct ifconf ifc;
2524 	struct ifconf __user *uifc;
2525 	struct compat_ifreq __user *ifr32;
2526 	struct ifreq __user *ifr;
2527 	unsigned int i, j;
2528 	int err;
2529 
2530 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2531 		return -EFAULT;
2532 
2533 	if (ifc32.ifcbuf == 0) {
2534 		ifc32.ifc_len = 0;
2535 		ifc.ifc_len = 0;
2536 		ifc.ifc_req = NULL;
2537 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2538 	} else {
2539 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2540 			sizeof(struct ifreq);
2541 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2542 		ifc.ifc_len = len;
2543 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2544 		ifr32 = compat_ptr(ifc32.ifcbuf);
2545 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2546 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2547 				return -EFAULT;
2548 			ifr++;
2549 			ifr32++;
2550 		}
2551 	}
2552 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2553 		return -EFAULT;
2554 
2555 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2556 	if (err)
2557 		return err;
2558 
2559 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2560 		return -EFAULT;
2561 
2562 	ifr = ifc.ifc_req;
2563 	ifr32 = compat_ptr(ifc32.ifcbuf);
2564 	for (i = 0, j = 0;
2565 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2566 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2567 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2568 			return -EFAULT;
2569 		ifr32++;
2570 		ifr++;
2571 	}
2572 
2573 	if (ifc32.ifcbuf == 0) {
2574 		/* Translate from 64-bit structure multiple to
2575 		 * a 32-bit one.
2576 		 */
2577 		i = ifc.ifc_len;
2578 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2579 		ifc32.ifc_len = i;
2580 	} else {
2581 		ifc32.ifc_len = i;
2582 	}
2583 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2584 		return -EFAULT;
2585 
2586 	return 0;
2587 }
2588 
ethtool_ioctl(struct net * net,struct compat_ifreq __user * ifr32)2589 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2590 {
2591 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2592 	bool convert_in = false, convert_out = false;
2593 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2594 	struct ethtool_rxnfc __user *rxnfc;
2595 	struct ifreq __user *ifr;
2596 	u32 rule_cnt = 0, actual_rule_cnt;
2597 	u32 ethcmd;
2598 	u32 data;
2599 	int ret;
2600 
2601 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2602 		return -EFAULT;
2603 
2604 	compat_rxnfc = compat_ptr(data);
2605 
2606 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2607 		return -EFAULT;
2608 
2609 	/* Most ethtool structures are defined without padding.
2610 	 * Unfortunately struct ethtool_rxnfc is an exception.
2611 	 */
2612 	switch (ethcmd) {
2613 	default:
2614 		break;
2615 	case ETHTOOL_GRXCLSRLALL:
2616 		/* Buffer size is variable */
2617 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2618 			return -EFAULT;
2619 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2620 			return -ENOMEM;
2621 		buf_size += rule_cnt * sizeof(u32);
2622 		/* fall through */
2623 	case ETHTOOL_GRXRINGS:
2624 	case ETHTOOL_GRXCLSRLCNT:
2625 	case ETHTOOL_GRXCLSRULE:
2626 		convert_out = true;
2627 		/* fall through */
2628 	case ETHTOOL_SRXCLSRLDEL:
2629 	case ETHTOOL_SRXCLSRLINS:
2630 		buf_size += sizeof(struct ethtool_rxnfc);
2631 		convert_in = true;
2632 		break;
2633 	}
2634 
2635 	ifr = compat_alloc_user_space(buf_size);
2636 	rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2637 
2638 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2639 		return -EFAULT;
2640 
2641 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2642 		     &ifr->ifr_ifru.ifru_data))
2643 		return -EFAULT;
2644 
2645 	if (convert_in) {
2646 		/* We expect there to be holes between fs.m_u and
2647 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2648 		 */
2649 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_u) +
2650 			     sizeof(compat_rxnfc->fs.m_u) !=
2651 			     offsetof(struct ethtool_rxnfc, fs.m_u) +
2652 			     sizeof(rxnfc->fs.m_u));
2653 		BUILD_BUG_ON(
2654 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2655 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2656 			offsetof(struct ethtool_rxnfc, fs.location) -
2657 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2658 
2659 		if (copy_in_user(rxnfc, compat_rxnfc,
2660 				 (void *)(&rxnfc->fs.m_u + 1) -
2661 				 (void *)rxnfc) ||
2662 		    copy_in_user(&rxnfc->fs.ring_cookie,
2663 				 &compat_rxnfc->fs.ring_cookie,
2664 				 (void *)(&rxnfc->fs.location + 1) -
2665 				 (void *)&rxnfc->fs.ring_cookie) ||
2666 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2667 				 sizeof(rxnfc->rule_cnt)))
2668 			return -EFAULT;
2669 	}
2670 
2671 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2672 	if (ret)
2673 		return ret;
2674 
2675 	if (convert_out) {
2676 		if (copy_in_user(compat_rxnfc, rxnfc,
2677 				 (const void *)(&rxnfc->fs.m_u + 1) -
2678 				 (const void *)rxnfc) ||
2679 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2680 				 &rxnfc->fs.ring_cookie,
2681 				 (const void *)(&rxnfc->fs.location + 1) -
2682 				 (const void *)&rxnfc->fs.ring_cookie) ||
2683 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2684 				 sizeof(rxnfc->rule_cnt)))
2685 			return -EFAULT;
2686 
2687 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2688 			/* As an optimisation, we only copy the actual
2689 			 * number of rules that the underlying
2690 			 * function returned.  Since Mallory might
2691 			 * change the rule count in user memory, we
2692 			 * check that it is less than the rule count
2693 			 * originally given (as the user buffer size),
2694 			 * which has been range-checked.
2695 			 */
2696 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2697 				return -EFAULT;
2698 			if (actual_rule_cnt < rule_cnt)
2699 				rule_cnt = actual_rule_cnt;
2700 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2701 					 &rxnfc->rule_locs[0],
2702 					 rule_cnt * sizeof(u32)))
2703 				return -EFAULT;
2704 		}
2705 	}
2706 
2707 	return 0;
2708 }
2709 
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)2710 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2711 {
2712 	void __user *uptr;
2713 	compat_uptr_t uptr32;
2714 	struct ifreq __user *uifr;
2715 
2716 	uifr = compat_alloc_user_space(sizeof(*uifr));
2717 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2718 		return -EFAULT;
2719 
2720 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2721 		return -EFAULT;
2722 
2723 	uptr = compat_ptr(uptr32);
2724 
2725 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2726 		return -EFAULT;
2727 
2728 	return dev_ioctl(net, SIOCWANDEV, uifr);
2729 }
2730 
bond_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * ifr32)2731 static int bond_ioctl(struct net *net, unsigned int cmd,
2732 			 struct compat_ifreq __user *ifr32)
2733 {
2734 	struct ifreq kifr;
2735 	struct ifreq __user *uifr;
2736 	mm_segment_t old_fs;
2737 	int err;
2738 	u32 data;
2739 	void __user *datap;
2740 
2741 	switch (cmd) {
2742 	case SIOCBONDENSLAVE:
2743 	case SIOCBONDRELEASE:
2744 	case SIOCBONDSETHWADDR:
2745 	case SIOCBONDCHANGEACTIVE:
2746 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2747 			return -EFAULT;
2748 
2749 		old_fs = get_fs();
2750 		set_fs(KERNEL_DS);
2751 		err = dev_ioctl(net, cmd,
2752 				(struct ifreq __user __force *) &kifr);
2753 		set_fs(old_fs);
2754 
2755 		return err;
2756 	case SIOCBONDSLAVEINFOQUERY:
2757 	case SIOCBONDINFOQUERY:
2758 		uifr = compat_alloc_user_space(sizeof(*uifr));
2759 		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2760 			return -EFAULT;
2761 
2762 		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2763 			return -EFAULT;
2764 
2765 		datap = compat_ptr(data);
2766 		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2767 			return -EFAULT;
2768 
2769 		return dev_ioctl(net, cmd, uifr);
2770 	default:
2771 		return -EINVAL;
2772 	}
2773 }
2774 
siocdevprivate_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)2775 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2776 				 struct compat_ifreq __user *u_ifreq32)
2777 {
2778 	struct ifreq __user *u_ifreq64;
2779 	char tmp_buf[IFNAMSIZ];
2780 	void __user *data64;
2781 	u32 data32;
2782 
2783 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2784 			   IFNAMSIZ))
2785 		return -EFAULT;
2786 	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2787 		return -EFAULT;
2788 	data64 = compat_ptr(data32);
2789 
2790 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2791 
2792 	/* Don't check these user accesses, just let that get trapped
2793 	 * in the ioctl handler instead.
2794 	 */
2795 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2796 			 IFNAMSIZ))
2797 		return -EFAULT;
2798 	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2799 		return -EFAULT;
2800 
2801 	return dev_ioctl(net, cmd, u_ifreq64);
2802 }
2803 
dev_ifsioc(struct net * net,struct socket * sock,unsigned int cmd,struct compat_ifreq __user * uifr32)2804 static int dev_ifsioc(struct net *net, struct socket *sock,
2805 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2806 {
2807 	struct ifreq __user *uifr;
2808 	int err;
2809 
2810 	uifr = compat_alloc_user_space(sizeof(*uifr));
2811 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2812 		return -EFAULT;
2813 
2814 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2815 
2816 	if (!err) {
2817 		switch (cmd) {
2818 		case SIOCGIFFLAGS:
2819 		case SIOCGIFMETRIC:
2820 		case SIOCGIFMTU:
2821 		case SIOCGIFMEM:
2822 		case SIOCGIFHWADDR:
2823 		case SIOCGIFINDEX:
2824 		case SIOCGIFADDR:
2825 		case SIOCGIFBRDADDR:
2826 		case SIOCGIFDSTADDR:
2827 		case SIOCGIFNETMASK:
2828 		case SIOCGIFPFLAGS:
2829 		case SIOCGIFTXQLEN:
2830 		case SIOCGMIIPHY:
2831 		case SIOCGMIIREG:
2832 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2833 				err = -EFAULT;
2834 			break;
2835 		}
2836 	}
2837 	return err;
2838 }
2839 
compat_sioc_ifmap(struct net * net,unsigned int cmd,struct compat_ifreq __user * uifr32)2840 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2841 			struct compat_ifreq __user *uifr32)
2842 {
2843 	struct ifreq ifr;
2844 	struct compat_ifmap __user *uifmap32;
2845 	mm_segment_t old_fs;
2846 	int err;
2847 
2848 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2849 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2850 	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2851 	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2852 	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2853 	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2854 	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2855 	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2856 	if (err)
2857 		return -EFAULT;
2858 
2859 	old_fs = get_fs();
2860 	set_fs(KERNEL_DS);
2861 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2862 	set_fs(old_fs);
2863 
2864 	if (cmd == SIOCGIFMAP && !err) {
2865 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2866 		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2867 		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2868 		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2869 		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2870 		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2871 		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2872 		if (err)
2873 			err = -EFAULT;
2874 	}
2875 	return err;
2876 }
2877 
compat_siocshwtstamp(struct net * net,struct compat_ifreq __user * uifr32)2878 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2879 {
2880 	void __user *uptr;
2881 	compat_uptr_t uptr32;
2882 	struct ifreq __user *uifr;
2883 
2884 	uifr = compat_alloc_user_space(sizeof(*uifr));
2885 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2886 		return -EFAULT;
2887 
2888 	if (get_user(uptr32, &uifr32->ifr_data))
2889 		return -EFAULT;
2890 
2891 	uptr = compat_ptr(uptr32);
2892 
2893 	if (put_user(uptr, &uifr->ifr_data))
2894 		return -EFAULT;
2895 
2896 	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2897 }
2898 
2899 struct rtentry32 {
2900 	u32		rt_pad1;
2901 	struct sockaddr rt_dst;         /* target address               */
2902 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2903 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2904 	unsigned short	rt_flags;
2905 	short		rt_pad2;
2906 	u32		rt_pad3;
2907 	unsigned char	rt_tos;
2908 	unsigned char	rt_class;
2909 	short		rt_pad4;
2910 	short		rt_metric;      /* +1 for binary compatibility! */
2911 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2912 	u32		rt_mtu;         /* per route MTU/Window         */
2913 	u32		rt_window;      /* Window clamping              */
2914 	unsigned short  rt_irtt;        /* Initial RTT                  */
2915 };
2916 
2917 struct in6_rtmsg32 {
2918 	struct in6_addr		rtmsg_dst;
2919 	struct in6_addr		rtmsg_src;
2920 	struct in6_addr		rtmsg_gateway;
2921 	u32			rtmsg_type;
2922 	u16			rtmsg_dst_len;
2923 	u16			rtmsg_src_len;
2924 	u32			rtmsg_metric;
2925 	u32			rtmsg_info;
2926 	u32			rtmsg_flags;
2927 	s32			rtmsg_ifindex;
2928 };
2929 
routing_ioctl(struct net * net,struct socket * sock,unsigned int cmd,void __user * argp)2930 static int routing_ioctl(struct net *net, struct socket *sock,
2931 			 unsigned int cmd, void __user *argp)
2932 {
2933 	int ret;
2934 	void *r = NULL;
2935 	struct in6_rtmsg r6;
2936 	struct rtentry r4;
2937 	char devname[16];
2938 	u32 rtdev;
2939 	mm_segment_t old_fs = get_fs();
2940 
2941 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2942 		struct in6_rtmsg32 __user *ur6 = argp;
2943 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2944 			3 * sizeof(struct in6_addr));
2945 		ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2946 		ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2947 		ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2948 		ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2949 		ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2950 		ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2951 		ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2952 
2953 		r = (void *) &r6;
2954 	} else { /* ipv4 */
2955 		struct rtentry32 __user *ur4 = argp;
2956 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
2957 					3 * sizeof(struct sockaddr));
2958 		ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
2959 		ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
2960 		ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
2961 		ret |= __get_user(r4.rt_window, &(ur4->rt_window));
2962 		ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
2963 		ret |= __get_user(rtdev, &(ur4->rt_dev));
2964 		if (rtdev) {
2965 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
2966 			r4.rt_dev = (char __user __force *)devname;
2967 			devname[15] = 0;
2968 		} else
2969 			r4.rt_dev = NULL;
2970 
2971 		r = (void *) &r4;
2972 	}
2973 
2974 	if (ret) {
2975 		ret = -EFAULT;
2976 		goto out;
2977 	}
2978 
2979 	set_fs(KERNEL_DS);
2980 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2981 	set_fs(old_fs);
2982 
2983 out:
2984 	return ret;
2985 }
2986 
2987 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2988  * for some operations; this forces use of the newer bridge-utils that
2989  * use compatible ioctls
2990  */
old_bridge_ioctl(compat_ulong_t __user * argp)2991 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2992 {
2993 	compat_ulong_t tmp;
2994 
2995 	if (get_user(tmp, argp))
2996 		return -EFAULT;
2997 	if (tmp == BRCTL_GET_VERSION)
2998 		return BRCTL_VERSION + 1;
2999 	return -EINVAL;
3000 }
3001 
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3002 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3003 			 unsigned int cmd, unsigned long arg)
3004 {
3005 	void __user *argp = compat_ptr(arg);
3006 	struct sock *sk = sock->sk;
3007 	struct net *net = sock_net(sk);
3008 
3009 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3010 		return siocdevprivate_ioctl(net, cmd, argp);
3011 
3012 	switch (cmd) {
3013 	case SIOCSIFBR:
3014 	case SIOCGIFBR:
3015 		return old_bridge_ioctl(argp);
3016 	case SIOCGIFNAME:
3017 		return dev_ifname32(net, argp);
3018 	case SIOCGIFCONF:
3019 		return dev_ifconf(net, argp);
3020 	case SIOCETHTOOL:
3021 		return ethtool_ioctl(net, argp);
3022 	case SIOCWANDEV:
3023 		return compat_siocwandev(net, argp);
3024 	case SIOCGIFMAP:
3025 	case SIOCSIFMAP:
3026 		return compat_sioc_ifmap(net, cmd, argp);
3027 	case SIOCBONDENSLAVE:
3028 	case SIOCBONDRELEASE:
3029 	case SIOCBONDSETHWADDR:
3030 	case SIOCBONDSLAVEINFOQUERY:
3031 	case SIOCBONDINFOQUERY:
3032 	case SIOCBONDCHANGEACTIVE:
3033 		return bond_ioctl(net, cmd, argp);
3034 	case SIOCADDRT:
3035 	case SIOCDELRT:
3036 		return routing_ioctl(net, sock, cmd, argp);
3037 	case SIOCGSTAMP:
3038 		return do_siocgstamp(net, sock, cmd, argp);
3039 	case SIOCGSTAMPNS:
3040 		return do_siocgstampns(net, sock, cmd, argp);
3041 	case SIOCSHWTSTAMP:
3042 		return compat_siocshwtstamp(net, argp);
3043 
3044 	case FIOSETOWN:
3045 	case SIOCSPGRP:
3046 	case FIOGETOWN:
3047 	case SIOCGPGRP:
3048 	case SIOCBRADDBR:
3049 	case SIOCBRDELBR:
3050 	case SIOCGIFVLAN:
3051 	case SIOCSIFVLAN:
3052 	case SIOCADDDLCI:
3053 	case SIOCDELDLCI:
3054 		return sock_ioctl(file, cmd, arg);
3055 
3056 	case SIOCGIFFLAGS:
3057 	case SIOCSIFFLAGS:
3058 	case SIOCGIFMETRIC:
3059 	case SIOCSIFMETRIC:
3060 	case SIOCGIFMTU:
3061 	case SIOCSIFMTU:
3062 	case SIOCGIFMEM:
3063 	case SIOCSIFMEM:
3064 	case SIOCGIFHWADDR:
3065 	case SIOCSIFHWADDR:
3066 	case SIOCADDMULTI:
3067 	case SIOCDELMULTI:
3068 	case SIOCGIFINDEX:
3069 	case SIOCGIFADDR:
3070 	case SIOCSIFADDR:
3071 	case SIOCSIFHWBROADCAST:
3072 	case SIOCDIFADDR:
3073 	case SIOCGIFBRDADDR:
3074 	case SIOCSIFBRDADDR:
3075 	case SIOCGIFDSTADDR:
3076 	case SIOCSIFDSTADDR:
3077 	case SIOCGIFNETMASK:
3078 	case SIOCSIFNETMASK:
3079 	case SIOCSIFPFLAGS:
3080 	case SIOCGIFPFLAGS:
3081 	case SIOCGIFTXQLEN:
3082 	case SIOCSIFTXQLEN:
3083 	case SIOCBRADDIF:
3084 	case SIOCBRDELIF:
3085 	case SIOCSIFNAME:
3086 	case SIOCGMIIPHY:
3087 	case SIOCGMIIREG:
3088 	case SIOCSMIIREG:
3089 		return dev_ifsioc(net, sock, cmd, argp);
3090 
3091 	case SIOCSARP:
3092 	case SIOCGARP:
3093 	case SIOCDARP:
3094 	case SIOCATMARK:
3095 		return sock_do_ioctl(net, sock, cmd, arg);
3096 	}
3097 
3098 	/* Prevent warning from compat_sys_ioctl, these always
3099 	 * result in -EINVAL in the native case anyway. */
3100 	switch (cmd) {
3101 	case SIOCRTMSG:
3102 	case SIOCGIFCOUNT:
3103 	case SIOCSRARP:
3104 	case SIOCGRARP:
3105 	case SIOCDRARP:
3106 	case SIOCSIFLINK:
3107 	case SIOCGIFSLAVE:
3108 	case SIOCSIFSLAVE:
3109 		return -EINVAL;
3110 	}
3111 
3112 	return -ENOIOCTLCMD;
3113 }
3114 
compat_sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)3115 static long compat_sock_ioctl(struct file *file, unsigned cmd,
3116 			      unsigned long arg)
3117 {
3118 	struct socket *sock = file->private_data;
3119 	int ret = -ENOIOCTLCMD;
3120 	struct sock *sk;
3121 	struct net *net;
3122 
3123 	sk = sock->sk;
3124 	net = sock_net(sk);
3125 
3126 	if (sock->ops->compat_ioctl)
3127 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3128 
3129 	if (ret == -ENOIOCTLCMD &&
3130 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3131 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3132 
3133 	if (ret == -ENOIOCTLCMD)
3134 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3135 
3136 	return ret;
3137 }
3138 #endif
3139 
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3140 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3141 {
3142 	return sock->ops->bind(sock, addr, addrlen);
3143 }
3144 EXPORT_SYMBOL(kernel_bind);
3145 
kernel_listen(struct socket * sock,int backlog)3146 int kernel_listen(struct socket *sock, int backlog)
3147 {
3148 	return sock->ops->listen(sock, backlog);
3149 }
3150 EXPORT_SYMBOL(kernel_listen);
3151 
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3152 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3153 {
3154 	struct sock *sk = sock->sk;
3155 	int err;
3156 
3157 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3158 			       newsock);
3159 	if (err < 0)
3160 		goto done;
3161 
3162 	err = sock->ops->accept(sock, *newsock, flags);
3163 	if (err < 0) {
3164 		sock_release(*newsock);
3165 		*newsock = NULL;
3166 		goto done;
3167 	}
3168 
3169 	(*newsock)->ops = sock->ops;
3170 	__module_get((*newsock)->ops->owner);
3171 
3172 done:
3173 	return err;
3174 }
3175 EXPORT_SYMBOL(kernel_accept);
3176 
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3177 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3178 		   int flags)
3179 {
3180 	return sock->ops->connect(sock, addr, addrlen, flags);
3181 }
3182 EXPORT_SYMBOL(kernel_connect);
3183 
kernel_getsockname(struct socket * sock,struct sockaddr * addr,int * addrlen)3184 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3185 			 int *addrlen)
3186 {
3187 	return sock->ops->getname(sock, addr, addrlen, 0);
3188 }
3189 EXPORT_SYMBOL(kernel_getsockname);
3190 
kernel_getpeername(struct socket * sock,struct sockaddr * addr,int * addrlen)3191 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3192 			 int *addrlen)
3193 {
3194 	return sock->ops->getname(sock, addr, addrlen, 1);
3195 }
3196 EXPORT_SYMBOL(kernel_getpeername);
3197 
kernel_getsockopt(struct socket * sock,int level,int optname,char * optval,int * optlen)3198 int kernel_getsockopt(struct socket *sock, int level, int optname,
3199 			char *optval, int *optlen)
3200 {
3201 	mm_segment_t oldfs = get_fs();
3202 	char __user *uoptval;
3203 	int __user *uoptlen;
3204 	int err;
3205 
3206 	uoptval = (char __user __force *) optval;
3207 	uoptlen = (int __user __force *) optlen;
3208 
3209 	set_fs(KERNEL_DS);
3210 	if (level == SOL_SOCKET)
3211 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3212 	else
3213 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3214 					    uoptlen);
3215 	set_fs(oldfs);
3216 	return err;
3217 }
3218 EXPORT_SYMBOL(kernel_getsockopt);
3219 
kernel_setsockopt(struct socket * sock,int level,int optname,char * optval,unsigned int optlen)3220 int kernel_setsockopt(struct socket *sock, int level, int optname,
3221 			char *optval, unsigned int optlen)
3222 {
3223 	mm_segment_t oldfs = get_fs();
3224 	char __user *uoptval;
3225 	int err;
3226 
3227 	uoptval = (char __user __force *) optval;
3228 
3229 	set_fs(KERNEL_DS);
3230 	if (level == SOL_SOCKET)
3231 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3232 	else
3233 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3234 					    optlen);
3235 	set_fs(oldfs);
3236 	return err;
3237 }
3238 EXPORT_SYMBOL(kernel_setsockopt);
3239 
kernel_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)3240 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3241 		    size_t size, int flags)
3242 {
3243 	sock_update_classid(sock->sk);
3244 
3245 	if (sock->ops->sendpage)
3246 		return sock->ops->sendpage(sock, page, offset, size, flags);
3247 
3248 	return sock_no_sendpage(sock, page, offset, size, flags);
3249 }
3250 EXPORT_SYMBOL(kernel_sendpage);
3251 
kernel_sock_ioctl(struct socket * sock,int cmd,unsigned long arg)3252 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3253 {
3254 	mm_segment_t oldfs = get_fs();
3255 	int err;
3256 
3257 	set_fs(KERNEL_DS);
3258 	err = sock->ops->ioctl(sock, cmd, arg);
3259 	set_fs(oldfs);
3260 
3261 	return err;
3262 }
3263 EXPORT_SYMBOL(kernel_sock_ioctl);
3264 
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3265 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3266 {
3267 	return sock->ops->shutdown(sock, how);
3268 }
3269 EXPORT_SYMBOL(kernel_sock_shutdown);
3270