1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
129
130 /*
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
133 */
134
135 static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144 #endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
152 };
153
154 /*
155 * The protocol list. Each protocol is registered in here.
156 */
157
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160
161 /*
162 * Statistics counters of the socket lists
163 */
164
165 static DEFINE_PER_CPU(int, sockets_in_use);
166
167 /*
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
171 */
172
173 /**
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
178 *
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 */
183
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
185 {
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
193 }
194
195 /**
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
201 *
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
210 */
211
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)212 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
213 void __user *uaddr, int __user *ulen)
214 {
215 int err;
216 int len;
217
218 BUG_ON(klen > sizeof(struct sockaddr_storage));
219 err = get_user(len, ulen);
220 if (err)
221 return err;
222 if (len > klen)
223 len = klen;
224 if (len < 0)
225 return -EINVAL;
226 if (len) {
227 if (audit_sockaddr(klen, kaddr))
228 return -ENOMEM;
229 if (copy_to_user(uaddr, kaddr, len))
230 return -EFAULT;
231 }
232 /*
233 * "fromlen shall refer to the value before truncation.."
234 * 1003.1g
235 */
236 return __put_user(klen, ulen);
237 }
238
239 static struct kmem_cache *sock_inode_cachep __read_mostly;
240
sock_alloc_inode(struct super_block * sb)241 static struct inode *sock_alloc_inode(struct super_block *sb)
242 {
243 struct socket_alloc *ei;
244 struct socket_wq *wq;
245
246 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
247 if (!ei)
248 return NULL;
249 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
250 if (!wq) {
251 kmem_cache_free(sock_inode_cachep, ei);
252 return NULL;
253 }
254 init_waitqueue_head(&wq->wait);
255 wq->fasync_list = NULL;
256 RCU_INIT_POINTER(ei->socket.wq, wq);
257
258 ei->socket.state = SS_UNCONNECTED;
259 ei->socket.flags = 0;
260 ei->socket.ops = NULL;
261 ei->socket.sk = NULL;
262 ei->socket.file = NULL;
263
264 return &ei->vfs_inode;
265 }
266
sock_destroy_inode(struct inode * inode)267 static void sock_destroy_inode(struct inode *inode)
268 {
269 struct socket_alloc *ei;
270 struct socket_wq *wq;
271
272 ei = container_of(inode, struct socket_alloc, vfs_inode);
273 wq = rcu_dereference_protected(ei->socket.wq, 1);
274 kfree_rcu(wq, rcu);
275 kmem_cache_free(sock_inode_cachep, ei);
276 }
277
init_once(void * foo)278 static void init_once(void *foo)
279 {
280 struct socket_alloc *ei = (struct socket_alloc *)foo;
281
282 inode_init_once(&ei->vfs_inode);
283 }
284
init_inodecache(void)285 static int init_inodecache(void)
286 {
287 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
288 sizeof(struct socket_alloc),
289 0,
290 (SLAB_HWCACHE_ALIGN |
291 SLAB_RECLAIM_ACCOUNT |
292 SLAB_MEM_SPREAD),
293 init_once);
294 if (sock_inode_cachep == NULL)
295 return -ENOMEM;
296 return 0;
297 }
298
299 static const struct super_operations sockfs_ops = {
300 .alloc_inode = sock_alloc_inode,
301 .destroy_inode = sock_destroy_inode,
302 .statfs = simple_statfs,
303 };
304
305 /*
306 * sockfs_dname() is called from d_path().
307 */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)308 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
309 {
310 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
311 dentry->d_inode->i_ino);
312 }
313
314 static const struct dentry_operations sockfs_dentry_operations = {
315 .d_dname = sockfs_dname,
316 };
317
sockfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)318 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
319 int flags, const char *dev_name, void *data)
320 {
321 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
322 &sockfs_dentry_operations, SOCKFS_MAGIC);
323 }
324
325 static struct vfsmount *sock_mnt __read_mostly;
326
327 static struct file_system_type sock_fs_type = {
328 .name = "sockfs",
329 .mount = sockfs_mount,
330 .kill_sb = kill_anon_super,
331 };
332
333 /*
334 * Obtains the first available file descriptor and sets it up for use.
335 *
336 * These functions create file structures and maps them to fd space
337 * of the current process. On success it returns file descriptor
338 * and file struct implicitly stored in sock->file.
339 * Note that another thread may close file descriptor before we return
340 * from this function. We use the fact that now we do not refer
341 * to socket after mapping. If one day we will need it, this
342 * function will increment ref. count on file by 1.
343 *
344 * In any case returned fd MAY BE not valid!
345 * This race condition is unavoidable
346 * with shared fd spaces, we cannot solve it inside kernel,
347 * but we take care of internal coherence yet.
348 */
349
sock_alloc_file(struct socket * sock,struct file ** f,int flags)350 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
351 {
352 struct qstr name = { .name = "" };
353 struct path path;
354 struct file *file;
355 int fd;
356
357 fd = get_unused_fd_flags(flags);
358 if (unlikely(fd < 0))
359 return fd;
360
361 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
362 if (unlikely(!path.dentry)) {
363 put_unused_fd(fd);
364 return -ENOMEM;
365 }
366 path.mnt = mntget(sock_mnt);
367
368 d_instantiate(path.dentry, SOCK_INODE(sock));
369 SOCK_INODE(sock)->i_fop = &socket_file_ops;
370
371 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
372 &socket_file_ops);
373 if (unlikely(!file)) {
374 /* drop dentry, keep inode */
375 ihold(path.dentry->d_inode);
376 path_put(&path);
377 put_unused_fd(fd);
378 return -ENFILE;
379 }
380
381 sock->file = file;
382 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
383 file->f_pos = 0;
384 file->private_data = sock;
385
386 *f = file;
387 return fd;
388 }
389
sock_map_fd(struct socket * sock,int flags)390 int sock_map_fd(struct socket *sock, int flags)
391 {
392 struct file *newfile;
393 int fd = sock_alloc_file(sock, &newfile, flags);
394
395 if (likely(fd >= 0))
396 fd_install(fd, newfile);
397
398 return fd;
399 }
400 EXPORT_SYMBOL(sock_map_fd);
401
sock_from_file(struct file * file,int * err)402 static struct socket *sock_from_file(struct file *file, int *err)
403 {
404 if (file->f_op == &socket_file_ops)
405 return file->private_data; /* set in sock_map_fd */
406
407 *err = -ENOTSOCK;
408 return NULL;
409 }
410
411 /**
412 * sockfd_lookup - Go from a file number to its socket slot
413 * @fd: file handle
414 * @err: pointer to an error code return
415 *
416 * The file handle passed in is locked and the socket it is bound
417 * too is returned. If an error occurs the err pointer is overwritten
418 * with a negative errno code and NULL is returned. The function checks
419 * for both invalid handles and passing a handle which is not a socket.
420 *
421 * On a success the socket object pointer is returned.
422 */
423
sockfd_lookup(int fd,int * err)424 struct socket *sockfd_lookup(int fd, int *err)
425 {
426 struct file *file;
427 struct socket *sock;
428
429 file = fget(fd);
430 if (!file) {
431 *err = -EBADF;
432 return NULL;
433 }
434
435 sock = sock_from_file(file, err);
436 if (!sock)
437 fput(file);
438 return sock;
439 }
440 EXPORT_SYMBOL(sockfd_lookup);
441
sockfd_lookup_light(int fd,int * err,int * fput_needed)442 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
443 {
444 struct file *file;
445 struct socket *sock;
446
447 *err = -EBADF;
448 file = fget_light(fd, fput_needed);
449 if (file) {
450 sock = sock_from_file(file, err);
451 if (sock)
452 return sock;
453 fput_light(file, *fput_needed);
454 }
455 return NULL;
456 }
457
458 /**
459 * sock_alloc - allocate a socket
460 *
461 * Allocate a new inode and socket object. The two are bound together
462 * and initialised. The socket is then returned. If we are out of inodes
463 * NULL is returned.
464 */
465
sock_alloc(void)466 static struct socket *sock_alloc(void)
467 {
468 struct inode *inode;
469 struct socket *sock;
470
471 inode = new_inode_pseudo(sock_mnt->mnt_sb);
472 if (!inode)
473 return NULL;
474
475 sock = SOCKET_I(inode);
476
477 kmemcheck_annotate_bitfield(sock, type);
478 inode->i_ino = get_next_ino();
479 inode->i_mode = S_IFSOCK | S_IRWXUGO;
480 inode->i_uid = current_fsuid();
481 inode->i_gid = current_fsgid();
482
483 percpu_add(sockets_in_use, 1);
484 return sock;
485 }
486
487 /*
488 * In theory you can't get an open on this inode, but /proc provides
489 * a back door. Remember to keep it shut otherwise you'll let the
490 * creepy crawlies in.
491 */
492
sock_no_open(struct inode * irrelevant,struct file * dontcare)493 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
494 {
495 return -ENXIO;
496 }
497
498 const struct file_operations bad_sock_fops = {
499 .owner = THIS_MODULE,
500 .open = sock_no_open,
501 .llseek = noop_llseek,
502 };
503
504 /**
505 * sock_release - close a socket
506 * @sock: socket to close
507 *
508 * The socket is released from the protocol stack if it has a release
509 * callback, and the inode is then released if the socket is bound to
510 * an inode not a file.
511 */
512
sock_release(struct socket * sock)513 void sock_release(struct socket *sock)
514 {
515 if (sock->ops) {
516 struct module *owner = sock->ops->owner;
517
518 sock->ops->release(sock);
519 sock->ops = NULL;
520 module_put(owner);
521 }
522
523 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
524 printk(KERN_ERR "sock_release: fasync list not empty!\n");
525
526 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
527 return;
528
529 percpu_sub(sockets_in_use, 1);
530 if (!sock->file) {
531 iput(SOCK_INODE(sock));
532 return;
533 }
534 sock->file = NULL;
535 }
536 EXPORT_SYMBOL(sock_release);
537
sock_tx_timestamp(struct sock * sk,__u8 * tx_flags)538 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
539 {
540 *tx_flags = 0;
541 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
542 *tx_flags |= SKBTX_HW_TSTAMP;
543 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
544 *tx_flags |= SKBTX_SW_TSTAMP;
545 if (sock_flag(sk, SOCK_WIFI_STATUS))
546 *tx_flags |= SKBTX_WIFI_STATUS;
547 return 0;
548 }
549 EXPORT_SYMBOL(sock_tx_timestamp);
550
__sock_sendmsg_nosec(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t size)551 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
552 struct msghdr *msg, size_t size)
553 {
554 struct sock_iocb *si = kiocb_to_siocb(iocb);
555
556 sock_update_classid(sock->sk);
557
558 sock_update_netprioidx(sock->sk);
559
560 si->sock = sock;
561 si->scm = NULL;
562 si->msg = msg;
563 si->size = size;
564
565 return sock->ops->sendmsg(iocb, sock, msg, size);
566 }
567
__sock_sendmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t size)568 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
569 struct msghdr *msg, size_t size)
570 {
571 int err = security_socket_sendmsg(sock, msg, size);
572
573 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
574 }
575
sock_sendmsg(struct socket * sock,struct msghdr * msg,size_t size)576 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
577 {
578 struct kiocb iocb;
579 struct sock_iocb siocb;
580 int ret;
581
582 init_sync_kiocb(&iocb, NULL);
583 iocb.private = &siocb;
584 ret = __sock_sendmsg(&iocb, sock, msg, size);
585 if (-EIOCBQUEUED == ret)
586 ret = wait_on_sync_kiocb(&iocb);
587 return ret;
588 }
589 EXPORT_SYMBOL(sock_sendmsg);
590
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg,size_t size)591 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
592 {
593 struct kiocb iocb;
594 struct sock_iocb siocb;
595 int ret;
596
597 init_sync_kiocb(&iocb, NULL);
598 iocb.private = &siocb;
599 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
600 if (-EIOCBQUEUED == ret)
601 ret = wait_on_sync_kiocb(&iocb);
602 return ret;
603 }
604
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)605 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
606 struct kvec *vec, size_t num, size_t size)
607 {
608 mm_segment_t oldfs = get_fs();
609 int result;
610
611 set_fs(KERNEL_DS);
612 /*
613 * the following is safe, since for compiler definitions of kvec and
614 * iovec are identical, yielding the same in-core layout and alignment
615 */
616 msg->msg_iov = (struct iovec *)vec;
617 msg->msg_iovlen = num;
618 result = sock_sendmsg(sock, msg, size);
619 set_fs(oldfs);
620 return result;
621 }
622 EXPORT_SYMBOL(kernel_sendmsg);
623
ktime2ts(ktime_t kt,struct timespec * ts)624 static int ktime2ts(ktime_t kt, struct timespec *ts)
625 {
626 if (kt.tv64) {
627 *ts = ktime_to_timespec(kt);
628 return 1;
629 } else {
630 return 0;
631 }
632 }
633
634 /*
635 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
636 */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)637 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
638 struct sk_buff *skb)
639 {
640 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
641 struct timespec ts[3];
642 int empty = 1;
643 struct skb_shared_hwtstamps *shhwtstamps =
644 skb_hwtstamps(skb);
645
646 /* Race occurred between timestamp enabling and packet
647 receiving. Fill in the current time for now. */
648 if (need_software_tstamp && skb->tstamp.tv64 == 0)
649 __net_timestamp(skb);
650
651 if (need_software_tstamp) {
652 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
653 struct timeval tv;
654 skb_get_timestamp(skb, &tv);
655 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
656 sizeof(tv), &tv);
657 } else {
658 skb_get_timestampns(skb, &ts[0]);
659 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
660 sizeof(ts[0]), &ts[0]);
661 }
662 }
663
664
665 memset(ts, 0, sizeof(ts));
666 if (skb->tstamp.tv64 &&
667 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
668 skb_get_timestampns(skb, ts + 0);
669 empty = 0;
670 }
671 if (shhwtstamps) {
672 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
673 ktime2ts(shhwtstamps->syststamp, ts + 1))
674 empty = 0;
675 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
676 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
677 empty = 0;
678 }
679 if (!empty)
680 put_cmsg(msg, SOL_SOCKET,
681 SCM_TIMESTAMPING, sizeof(ts), &ts);
682 }
683 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
684
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)685 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
686 struct sk_buff *skb)
687 {
688 int ack;
689
690 if (!sock_flag(sk, SOCK_WIFI_STATUS))
691 return;
692 if (!skb->wifi_acked_valid)
693 return;
694
695 ack = skb->wifi_acked;
696
697 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
698 }
699 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
700
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)701 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
702 struct sk_buff *skb)
703 {
704 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
705 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
706 sizeof(__u32), &skb->dropcount);
707 }
708
__sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)709 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
710 struct sk_buff *skb)
711 {
712 sock_recv_timestamp(msg, sk, skb);
713 sock_recv_drops(msg, sk, skb);
714 }
715 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
716
__sock_recvmsg_nosec(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t size,int flags)717 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
718 struct msghdr *msg, size_t size, int flags)
719 {
720 struct sock_iocb *si = kiocb_to_siocb(iocb);
721
722 sock_update_classid(sock->sk);
723
724 si->sock = sock;
725 si->scm = NULL;
726 si->msg = msg;
727 si->size = size;
728 si->flags = flags;
729
730 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
731 }
732
__sock_recvmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t size,int flags)733 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
734 struct msghdr *msg, size_t size, int flags)
735 {
736 int err = security_socket_recvmsg(sock, msg, size, flags);
737
738 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
739 }
740
sock_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)741 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
742 size_t size, int flags)
743 {
744 struct kiocb iocb;
745 struct sock_iocb siocb;
746 int ret;
747
748 init_sync_kiocb(&iocb, NULL);
749 iocb.private = &siocb;
750 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
751 if (-EIOCBQUEUED == ret)
752 ret = wait_on_sync_kiocb(&iocb);
753 return ret;
754 }
755 EXPORT_SYMBOL(sock_recvmsg);
756
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,size_t size,int flags)757 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
758 size_t size, int flags)
759 {
760 struct kiocb iocb;
761 struct sock_iocb siocb;
762 int ret;
763
764 init_sync_kiocb(&iocb, NULL);
765 iocb.private = &siocb;
766 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
767 if (-EIOCBQUEUED == ret)
768 ret = wait_on_sync_kiocb(&iocb);
769 return ret;
770 }
771
772 /**
773 * kernel_recvmsg - Receive a message from a socket (kernel space)
774 * @sock: The socket to receive the message from
775 * @msg: Received message
776 * @vec: Input s/g array for message data
777 * @num: Size of input s/g array
778 * @size: Number of bytes to read
779 * @flags: Message flags (MSG_DONTWAIT, etc...)
780 *
781 * On return the msg structure contains the scatter/gather array passed in the
782 * vec argument. The array is modified so that it consists of the unfilled
783 * portion of the original array.
784 *
785 * The returned value is the total number of bytes received, or an error.
786 */
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)787 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
788 struct kvec *vec, size_t num, size_t size, int flags)
789 {
790 mm_segment_t oldfs = get_fs();
791 int result;
792
793 set_fs(KERNEL_DS);
794 /*
795 * the following is safe, since for compiler definitions of kvec and
796 * iovec are identical, yielding the same in-core layout and alignment
797 */
798 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
799 result = sock_recvmsg(sock, msg, size, flags);
800 set_fs(oldfs);
801 return result;
802 }
803 EXPORT_SYMBOL(kernel_recvmsg);
804
sock_aio_dtor(struct kiocb * iocb)805 static void sock_aio_dtor(struct kiocb *iocb)
806 {
807 kfree(iocb->private);
808 }
809
sock_sendpage(struct file * file,struct page * page,int offset,size_t size,loff_t * ppos,int more)810 static ssize_t sock_sendpage(struct file *file, struct page *page,
811 int offset, size_t size, loff_t *ppos, int more)
812 {
813 struct socket *sock;
814 int flags;
815
816 sock = file->private_data;
817
818 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
819 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
820 flags |= more;
821
822 return kernel_sendpage(sock, page, offset, size, flags);
823 }
824
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)825 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
826 struct pipe_inode_info *pipe, size_t len,
827 unsigned int flags)
828 {
829 struct socket *sock = file->private_data;
830
831 if (unlikely(!sock->ops->splice_read))
832 return -EINVAL;
833
834 sock_update_classid(sock->sk);
835
836 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
837 }
838
alloc_sock_iocb(struct kiocb * iocb,struct sock_iocb * siocb)839 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
840 struct sock_iocb *siocb)
841 {
842 if (!is_sync_kiocb(iocb)) {
843 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
844 if (!siocb)
845 return NULL;
846 iocb->ki_dtor = sock_aio_dtor;
847 }
848
849 siocb->kiocb = iocb;
850 iocb->private = siocb;
851 return siocb;
852 }
853
do_sock_read(struct msghdr * msg,struct kiocb * iocb,struct file * file,const struct iovec * iov,unsigned long nr_segs)854 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
855 struct file *file, const struct iovec *iov,
856 unsigned long nr_segs)
857 {
858 struct socket *sock = file->private_data;
859 size_t size = 0;
860 int i;
861
862 for (i = 0; i < nr_segs; i++)
863 size += iov[i].iov_len;
864
865 msg->msg_name = NULL;
866 msg->msg_namelen = 0;
867 msg->msg_control = NULL;
868 msg->msg_controllen = 0;
869 msg->msg_iov = (struct iovec *)iov;
870 msg->msg_iovlen = nr_segs;
871 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
872
873 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
874 }
875
sock_aio_read(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)876 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
877 unsigned long nr_segs, loff_t pos)
878 {
879 struct sock_iocb siocb, *x;
880
881 if (pos != 0)
882 return -ESPIPE;
883
884 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
885 return 0;
886
887
888 x = alloc_sock_iocb(iocb, &siocb);
889 if (!x)
890 return -ENOMEM;
891 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
892 }
893
do_sock_write(struct msghdr * msg,struct kiocb * iocb,struct file * file,const struct iovec * iov,unsigned long nr_segs)894 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
895 struct file *file, const struct iovec *iov,
896 unsigned long nr_segs)
897 {
898 struct socket *sock = file->private_data;
899 size_t size = 0;
900 int i;
901
902 for (i = 0; i < nr_segs; i++)
903 size += iov[i].iov_len;
904
905 msg->msg_name = NULL;
906 msg->msg_namelen = 0;
907 msg->msg_control = NULL;
908 msg->msg_controllen = 0;
909 msg->msg_iov = (struct iovec *)iov;
910 msg->msg_iovlen = nr_segs;
911 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
912 if (sock->type == SOCK_SEQPACKET)
913 msg->msg_flags |= MSG_EOR;
914
915 return __sock_sendmsg(iocb, sock, msg, size);
916 }
917
sock_aio_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)918 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
919 unsigned long nr_segs, loff_t pos)
920 {
921 struct sock_iocb siocb, *x;
922
923 if (pos != 0)
924 return -ESPIPE;
925
926 x = alloc_sock_iocb(iocb, &siocb);
927 if (!x)
928 return -ENOMEM;
929
930 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
931 }
932
933 /*
934 * Atomic setting of ioctl hooks to avoid race
935 * with module unload.
936 */
937
938 static DEFINE_MUTEX(br_ioctl_mutex);
939 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
940
brioctl_set(int (* hook)(struct net *,unsigned int,void __user *))941 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
942 {
943 mutex_lock(&br_ioctl_mutex);
944 br_ioctl_hook = hook;
945 mutex_unlock(&br_ioctl_mutex);
946 }
947 EXPORT_SYMBOL(brioctl_set);
948
949 static DEFINE_MUTEX(vlan_ioctl_mutex);
950 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
951
vlan_ioctl_set(int (* hook)(struct net *,void __user *))952 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
953 {
954 mutex_lock(&vlan_ioctl_mutex);
955 vlan_ioctl_hook = hook;
956 mutex_unlock(&vlan_ioctl_mutex);
957 }
958 EXPORT_SYMBOL(vlan_ioctl_set);
959
960 static DEFINE_MUTEX(dlci_ioctl_mutex);
961 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
962
dlci_ioctl_set(int (* hook)(unsigned int,void __user *))963 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
964 {
965 mutex_lock(&dlci_ioctl_mutex);
966 dlci_ioctl_hook = hook;
967 mutex_unlock(&dlci_ioctl_mutex);
968 }
969 EXPORT_SYMBOL(dlci_ioctl_set);
970
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)971 static long sock_do_ioctl(struct net *net, struct socket *sock,
972 unsigned int cmd, unsigned long arg)
973 {
974 int err;
975 void __user *argp = (void __user *)arg;
976
977 err = sock->ops->ioctl(sock, cmd, arg);
978
979 /*
980 * If this ioctl is unknown try to hand it down
981 * to the NIC driver.
982 */
983 if (err == -ENOIOCTLCMD)
984 err = dev_ioctl(net, cmd, argp);
985
986 return err;
987 }
988
989 /*
990 * With an ioctl, arg may well be a user mode pointer, but we don't know
991 * what to do with it - that's up to the protocol still.
992 */
993
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)994 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
995 {
996 struct socket *sock;
997 struct sock *sk;
998 void __user *argp = (void __user *)arg;
999 int pid, err;
1000 struct net *net;
1001
1002 sock = file->private_data;
1003 sk = sock->sk;
1004 net = sock_net(sk);
1005 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1006 err = dev_ioctl(net, cmd, argp);
1007 } else
1008 #ifdef CONFIG_WEXT_CORE
1009 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1010 err = dev_ioctl(net, cmd, argp);
1011 } else
1012 #endif
1013 switch (cmd) {
1014 case FIOSETOWN:
1015 case SIOCSPGRP:
1016 err = -EFAULT;
1017 if (get_user(pid, (int __user *)argp))
1018 break;
1019 err = f_setown(sock->file, pid, 1);
1020 break;
1021 case FIOGETOWN:
1022 case SIOCGPGRP:
1023 err = put_user(f_getown(sock->file),
1024 (int __user *)argp);
1025 break;
1026 case SIOCGIFBR:
1027 case SIOCSIFBR:
1028 case SIOCBRADDBR:
1029 case SIOCBRDELBR:
1030 err = -ENOPKG;
1031 if (!br_ioctl_hook)
1032 request_module("bridge");
1033
1034 mutex_lock(&br_ioctl_mutex);
1035 if (br_ioctl_hook)
1036 err = br_ioctl_hook(net, cmd, argp);
1037 mutex_unlock(&br_ioctl_mutex);
1038 break;
1039 case SIOCGIFVLAN:
1040 case SIOCSIFVLAN:
1041 err = -ENOPKG;
1042 if (!vlan_ioctl_hook)
1043 request_module("8021q");
1044
1045 mutex_lock(&vlan_ioctl_mutex);
1046 if (vlan_ioctl_hook)
1047 err = vlan_ioctl_hook(net, argp);
1048 mutex_unlock(&vlan_ioctl_mutex);
1049 break;
1050 case SIOCADDDLCI:
1051 case SIOCDELDLCI:
1052 err = -ENOPKG;
1053 if (!dlci_ioctl_hook)
1054 request_module("dlci");
1055
1056 mutex_lock(&dlci_ioctl_mutex);
1057 if (dlci_ioctl_hook)
1058 err = dlci_ioctl_hook(cmd, argp);
1059 mutex_unlock(&dlci_ioctl_mutex);
1060 break;
1061 default:
1062 err = sock_do_ioctl(net, sock, cmd, arg);
1063 break;
1064 }
1065 return err;
1066 }
1067
sock_create_lite(int family,int type,int protocol,struct socket ** res)1068 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1069 {
1070 int err;
1071 struct socket *sock = NULL;
1072
1073 err = security_socket_create(family, type, protocol, 1);
1074 if (err)
1075 goto out;
1076
1077 sock = sock_alloc();
1078 if (!sock) {
1079 err = -ENOMEM;
1080 goto out;
1081 }
1082
1083 sock->type = type;
1084 err = security_socket_post_create(sock, family, type, protocol, 1);
1085 if (err)
1086 goto out_release;
1087
1088 out:
1089 *res = sock;
1090 return err;
1091 out_release:
1092 sock_release(sock);
1093 sock = NULL;
1094 goto out;
1095 }
1096 EXPORT_SYMBOL(sock_create_lite);
1097
1098 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1099 static unsigned int sock_poll(struct file *file, poll_table *wait)
1100 {
1101 struct socket *sock;
1102
1103 /*
1104 * We can't return errors to poll, so it's either yes or no.
1105 */
1106 sock = file->private_data;
1107 return sock->ops->poll(file, sock, wait);
1108 }
1109
sock_mmap(struct file * file,struct vm_area_struct * vma)1110 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1111 {
1112 struct socket *sock = file->private_data;
1113
1114 return sock->ops->mmap(file, sock, vma);
1115 }
1116
sock_close(struct inode * inode,struct file * filp)1117 static int sock_close(struct inode *inode, struct file *filp)
1118 {
1119 /*
1120 * It was possible the inode is NULL we were
1121 * closing an unfinished socket.
1122 */
1123
1124 if (!inode) {
1125 printk(KERN_DEBUG "sock_close: NULL inode\n");
1126 return 0;
1127 }
1128 sock_release(SOCKET_I(inode));
1129 return 0;
1130 }
1131
1132 /*
1133 * Update the socket async list
1134 *
1135 * Fasync_list locking strategy.
1136 *
1137 * 1. fasync_list is modified only under process context socket lock
1138 * i.e. under semaphore.
1139 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1140 * or under socket lock
1141 */
1142
sock_fasync(int fd,struct file * filp,int on)1143 static int sock_fasync(int fd, struct file *filp, int on)
1144 {
1145 struct socket *sock = filp->private_data;
1146 struct sock *sk = sock->sk;
1147 struct socket_wq *wq;
1148
1149 if (sk == NULL)
1150 return -EINVAL;
1151
1152 lock_sock(sk);
1153 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1154 fasync_helper(fd, filp, on, &wq->fasync_list);
1155
1156 if (!wq->fasync_list)
1157 sock_reset_flag(sk, SOCK_FASYNC);
1158 else
1159 sock_set_flag(sk, SOCK_FASYNC);
1160
1161 release_sock(sk);
1162 return 0;
1163 }
1164
1165 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1166
sock_wake_async(struct socket * sock,int how,int band)1167 int sock_wake_async(struct socket *sock, int how, int band)
1168 {
1169 struct socket_wq *wq;
1170
1171 if (!sock)
1172 return -1;
1173 rcu_read_lock();
1174 wq = rcu_dereference(sock->wq);
1175 if (!wq || !wq->fasync_list) {
1176 rcu_read_unlock();
1177 return -1;
1178 }
1179 switch (how) {
1180 case SOCK_WAKE_WAITD:
1181 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1182 break;
1183 goto call_kill;
1184 case SOCK_WAKE_SPACE:
1185 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1186 break;
1187 /* fall through */
1188 case SOCK_WAKE_IO:
1189 call_kill:
1190 kill_fasync(&wq->fasync_list, SIGIO, band);
1191 break;
1192 case SOCK_WAKE_URG:
1193 kill_fasync(&wq->fasync_list, SIGURG, band);
1194 }
1195 rcu_read_unlock();
1196 return 0;
1197 }
1198 EXPORT_SYMBOL(sock_wake_async);
1199
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1200 int __sock_create(struct net *net, int family, int type, int protocol,
1201 struct socket **res, int kern)
1202 {
1203 int err;
1204 struct socket *sock;
1205 const struct net_proto_family *pf;
1206
1207 /*
1208 * Check protocol is in range
1209 */
1210 if (family < 0 || family >= NPROTO)
1211 return -EAFNOSUPPORT;
1212 if (type < 0 || type >= SOCK_MAX)
1213 return -EINVAL;
1214
1215 /* Compatibility.
1216
1217 This uglymoron is moved from INET layer to here to avoid
1218 deadlock in module load.
1219 */
1220 if (family == PF_INET && type == SOCK_PACKET) {
1221 static int warned;
1222 if (!warned) {
1223 warned = 1;
1224 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1225 current->comm);
1226 }
1227 family = PF_PACKET;
1228 }
1229
1230 err = security_socket_create(family, type, protocol, kern);
1231 if (err)
1232 return err;
1233
1234 /*
1235 * Allocate the socket and allow the family to set things up. if
1236 * the protocol is 0, the family is instructed to select an appropriate
1237 * default.
1238 */
1239 sock = sock_alloc();
1240 if (!sock) {
1241 if (net_ratelimit())
1242 printk(KERN_WARNING "socket: no more sockets\n");
1243 return -ENFILE; /* Not exactly a match, but its the
1244 closest posix thing */
1245 }
1246
1247 sock->type = type;
1248
1249 #ifdef CONFIG_MODULES
1250 /* Attempt to load a protocol module if the find failed.
1251 *
1252 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1253 * requested real, full-featured networking support upon configuration.
1254 * Otherwise module support will break!
1255 */
1256 if (rcu_access_pointer(net_families[family]) == NULL)
1257 request_module("net-pf-%d", family);
1258 #endif
1259
1260 rcu_read_lock();
1261 pf = rcu_dereference(net_families[family]);
1262 err = -EAFNOSUPPORT;
1263 if (!pf)
1264 goto out_release;
1265
1266 /*
1267 * We will call the ->create function, that possibly is in a loadable
1268 * module, so we have to bump that loadable module refcnt first.
1269 */
1270 if (!try_module_get(pf->owner))
1271 goto out_release;
1272
1273 /* Now protected by module ref count */
1274 rcu_read_unlock();
1275
1276 err = pf->create(net, sock, protocol, kern);
1277 if (err < 0)
1278 goto out_module_put;
1279
1280 /*
1281 * Now to bump the refcnt of the [loadable] module that owns this
1282 * socket at sock_release time we decrement its refcnt.
1283 */
1284 if (!try_module_get(sock->ops->owner))
1285 goto out_module_busy;
1286
1287 /*
1288 * Now that we're done with the ->create function, the [loadable]
1289 * module can have its refcnt decremented
1290 */
1291 module_put(pf->owner);
1292 err = security_socket_post_create(sock, family, type, protocol, kern);
1293 if (err)
1294 goto out_sock_release;
1295 *res = sock;
1296
1297 return 0;
1298
1299 out_module_busy:
1300 err = -EAFNOSUPPORT;
1301 out_module_put:
1302 sock->ops = NULL;
1303 module_put(pf->owner);
1304 out_sock_release:
1305 sock_release(sock);
1306 return err;
1307
1308 out_release:
1309 rcu_read_unlock();
1310 goto out_sock_release;
1311 }
1312 EXPORT_SYMBOL(__sock_create);
1313
sock_create(int family,int type,int protocol,struct socket ** res)1314 int sock_create(int family, int type, int protocol, struct socket **res)
1315 {
1316 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1317 }
1318 EXPORT_SYMBOL(sock_create);
1319
sock_create_kern(int family,int type,int protocol,struct socket ** res)1320 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1321 {
1322 return __sock_create(&init_net, family, type, protocol, res, 1);
1323 }
1324 EXPORT_SYMBOL(sock_create_kern);
1325
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1326 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1327 {
1328 int retval;
1329 struct socket *sock;
1330 int flags;
1331
1332 /* Check the SOCK_* constants for consistency. */
1333 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1334 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1335 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1336 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1337
1338 flags = type & ~SOCK_TYPE_MASK;
1339 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1340 return -EINVAL;
1341 type &= SOCK_TYPE_MASK;
1342
1343 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1344 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1345
1346 retval = sock_create(family, type, protocol, &sock);
1347 if (retval < 0)
1348 goto out;
1349
1350 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1351 if (retval < 0)
1352 goto out_release;
1353
1354 out:
1355 /* It may be already another descriptor 8) Not kernel problem. */
1356 return retval;
1357
1358 out_release:
1359 sock_release(sock);
1360 return retval;
1361 }
1362
1363 /*
1364 * Create a pair of connected sockets.
1365 */
1366
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1367 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1368 int __user *, usockvec)
1369 {
1370 struct socket *sock1, *sock2;
1371 int fd1, fd2, err;
1372 struct file *newfile1, *newfile2;
1373 int flags;
1374
1375 flags = type & ~SOCK_TYPE_MASK;
1376 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1377 return -EINVAL;
1378 type &= SOCK_TYPE_MASK;
1379
1380 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1381 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1382
1383 /*
1384 * Obtain the first socket and check if the underlying protocol
1385 * supports the socketpair call.
1386 */
1387
1388 err = sock_create(family, type, protocol, &sock1);
1389 if (err < 0)
1390 goto out;
1391
1392 err = sock_create(family, type, protocol, &sock2);
1393 if (err < 0)
1394 goto out_release_1;
1395
1396 err = sock1->ops->socketpair(sock1, sock2);
1397 if (err < 0)
1398 goto out_release_both;
1399
1400 fd1 = sock_alloc_file(sock1, &newfile1, flags);
1401 if (unlikely(fd1 < 0)) {
1402 err = fd1;
1403 goto out_release_both;
1404 }
1405
1406 fd2 = sock_alloc_file(sock2, &newfile2, flags);
1407 if (unlikely(fd2 < 0)) {
1408 err = fd2;
1409 fput(newfile1);
1410 put_unused_fd(fd1);
1411 sock_release(sock2);
1412 goto out;
1413 }
1414
1415 audit_fd_pair(fd1, fd2);
1416 fd_install(fd1, newfile1);
1417 fd_install(fd2, newfile2);
1418 /* fd1 and fd2 may be already another descriptors.
1419 * Not kernel problem.
1420 */
1421
1422 err = put_user(fd1, &usockvec[0]);
1423 if (!err)
1424 err = put_user(fd2, &usockvec[1]);
1425 if (!err)
1426 return 0;
1427
1428 sys_close(fd2);
1429 sys_close(fd1);
1430 return err;
1431
1432 out_release_both:
1433 sock_release(sock2);
1434 out_release_1:
1435 sock_release(sock1);
1436 out:
1437 return err;
1438 }
1439
1440 /*
1441 * Bind a name to a socket. Nothing much to do here since it's
1442 * the protocol's responsibility to handle the local address.
1443 *
1444 * We move the socket address to kernel space before we call
1445 * the protocol layer (having also checked the address is ok).
1446 */
1447
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1448 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1449 {
1450 struct socket *sock;
1451 struct sockaddr_storage address;
1452 int err, fput_needed;
1453
1454 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1455 if (sock) {
1456 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1457 if (err >= 0) {
1458 err = security_socket_bind(sock,
1459 (struct sockaddr *)&address,
1460 addrlen);
1461 if (!err)
1462 err = sock->ops->bind(sock,
1463 (struct sockaddr *)
1464 &address, addrlen);
1465 }
1466 fput_light(sock->file, fput_needed);
1467 }
1468 return err;
1469 }
1470
1471 /*
1472 * Perform a listen. Basically, we allow the protocol to do anything
1473 * necessary for a listen, and if that works, we mark the socket as
1474 * ready for listening.
1475 */
1476
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1477 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1478 {
1479 struct socket *sock;
1480 int err, fput_needed;
1481 int somaxconn;
1482
1483 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1484 if (sock) {
1485 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1486 if ((unsigned)backlog > somaxconn)
1487 backlog = somaxconn;
1488
1489 err = security_socket_listen(sock, backlog);
1490 if (!err)
1491 err = sock->ops->listen(sock, backlog);
1492
1493 fput_light(sock->file, fput_needed);
1494 }
1495 return err;
1496 }
1497
1498 /*
1499 * For accept, we attempt to create a new socket, set up the link
1500 * with the client, wake up the client, then return the new
1501 * connected fd. We collect the address of the connector in kernel
1502 * space and move it to user at the very end. This is unclean because
1503 * we open the socket then return an error.
1504 *
1505 * 1003.1g adds the ability to recvmsg() to query connection pending
1506 * status to recvmsg. We need to add that support in a way thats
1507 * clean when we restucture accept also.
1508 */
1509
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1510 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1511 int __user *, upeer_addrlen, int, flags)
1512 {
1513 struct socket *sock, *newsock;
1514 struct file *newfile;
1515 int err, len, newfd, fput_needed;
1516 struct sockaddr_storage address;
1517
1518 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1519 return -EINVAL;
1520
1521 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1522 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1523
1524 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1525 if (!sock)
1526 goto out;
1527
1528 err = -ENFILE;
1529 newsock = sock_alloc();
1530 if (!newsock)
1531 goto out_put;
1532
1533 newsock->type = sock->type;
1534 newsock->ops = sock->ops;
1535
1536 /*
1537 * We don't need try_module_get here, as the listening socket (sock)
1538 * has the protocol module (sock->ops->owner) held.
1539 */
1540 __module_get(newsock->ops->owner);
1541
1542 newfd = sock_alloc_file(newsock, &newfile, flags);
1543 if (unlikely(newfd < 0)) {
1544 err = newfd;
1545 sock_release(newsock);
1546 goto out_put;
1547 }
1548
1549 err = security_socket_accept(sock, newsock);
1550 if (err)
1551 goto out_fd;
1552
1553 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1554 if (err < 0)
1555 goto out_fd;
1556
1557 if (upeer_sockaddr) {
1558 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1559 &len, 2) < 0) {
1560 err = -ECONNABORTED;
1561 goto out_fd;
1562 }
1563 err = move_addr_to_user(&address,
1564 len, upeer_sockaddr, upeer_addrlen);
1565 if (err < 0)
1566 goto out_fd;
1567 }
1568
1569 /* File flags are not inherited via accept() unlike another OSes. */
1570
1571 fd_install(newfd, newfile);
1572 err = newfd;
1573
1574 out_put:
1575 fput_light(sock->file, fput_needed);
1576 out:
1577 return err;
1578 out_fd:
1579 fput(newfile);
1580 put_unused_fd(newfd);
1581 goto out_put;
1582 }
1583
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)1584 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1585 int __user *, upeer_addrlen)
1586 {
1587 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1588 }
1589
1590 /*
1591 * Attempt to connect to a socket with the server address. The address
1592 * is in user space so we verify it is OK and move it to kernel space.
1593 *
1594 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1595 * break bindings
1596 *
1597 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1598 * other SEQPACKET protocols that take time to connect() as it doesn't
1599 * include the -EINPROGRESS status for such sockets.
1600 */
1601
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)1602 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1603 int, addrlen)
1604 {
1605 struct socket *sock;
1606 struct sockaddr_storage address;
1607 int err, fput_needed;
1608
1609 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1610 if (!sock)
1611 goto out;
1612 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1613 if (err < 0)
1614 goto out_put;
1615
1616 err =
1617 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1618 if (err)
1619 goto out_put;
1620
1621 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1622 sock->file->f_flags);
1623 out_put:
1624 fput_light(sock->file, fput_needed);
1625 out:
1626 return err;
1627 }
1628
1629 /*
1630 * Get the local address ('name') of a socket object. Move the obtained
1631 * name to user space.
1632 */
1633
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1634 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1635 int __user *, usockaddr_len)
1636 {
1637 struct socket *sock;
1638 struct sockaddr_storage address;
1639 int len, err, fput_needed;
1640
1641 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1642 if (!sock)
1643 goto out;
1644
1645 err = security_socket_getsockname(sock);
1646 if (err)
1647 goto out_put;
1648
1649 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1650 if (err)
1651 goto out_put;
1652 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1653
1654 out_put:
1655 fput_light(sock->file, fput_needed);
1656 out:
1657 return err;
1658 }
1659
1660 /*
1661 * Get the remote address ('name') of a socket object. Move the obtained
1662 * name to user space.
1663 */
1664
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1665 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1666 int __user *, usockaddr_len)
1667 {
1668 struct socket *sock;
1669 struct sockaddr_storage address;
1670 int len, err, fput_needed;
1671
1672 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1673 if (sock != NULL) {
1674 err = security_socket_getpeername(sock);
1675 if (err) {
1676 fput_light(sock->file, fput_needed);
1677 return err;
1678 }
1679
1680 err =
1681 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1682 1);
1683 if (!err)
1684 err = move_addr_to_user(&address, len, usockaddr,
1685 usockaddr_len);
1686 fput_light(sock->file, fput_needed);
1687 }
1688 return err;
1689 }
1690
1691 /*
1692 * Send a datagram to a given address. We move the address into kernel
1693 * space and check the user space data area is readable before invoking
1694 * the protocol.
1695 */
1696
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned,flags,struct sockaddr __user *,addr,int,addr_len)1697 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1698 unsigned, flags, struct sockaddr __user *, addr,
1699 int, addr_len)
1700 {
1701 struct socket *sock;
1702 struct sockaddr_storage address;
1703 int err;
1704 struct msghdr msg;
1705 struct iovec iov;
1706 int fput_needed;
1707
1708 if (len > INT_MAX)
1709 len = INT_MAX;
1710 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1711 if (!sock)
1712 goto out;
1713
1714 iov.iov_base = buff;
1715 iov.iov_len = len;
1716 msg.msg_name = NULL;
1717 msg.msg_iov = &iov;
1718 msg.msg_iovlen = 1;
1719 msg.msg_control = NULL;
1720 msg.msg_controllen = 0;
1721 msg.msg_namelen = 0;
1722 if (addr) {
1723 err = move_addr_to_kernel(addr, addr_len, &address);
1724 if (err < 0)
1725 goto out_put;
1726 msg.msg_name = (struct sockaddr *)&address;
1727 msg.msg_namelen = addr_len;
1728 }
1729 if (sock->file->f_flags & O_NONBLOCK)
1730 flags |= MSG_DONTWAIT;
1731 msg.msg_flags = flags;
1732 err = sock_sendmsg(sock, &msg, len);
1733
1734 out_put:
1735 fput_light(sock->file, fput_needed);
1736 out:
1737 return err;
1738 }
1739
1740 /*
1741 * Send a datagram down a socket.
1742 */
1743
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned,flags)1744 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1745 unsigned, flags)
1746 {
1747 return sys_sendto(fd, buff, len, flags, NULL, 0);
1748 }
1749
1750 /*
1751 * Receive a frame from the socket and optionally record the address of the
1752 * sender. We verify the buffers are writable and if needed move the
1753 * sender address from kernel to user space.
1754 */
1755
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned,flags,struct sockaddr __user *,addr,int __user *,addr_len)1756 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1757 unsigned, flags, struct sockaddr __user *, addr,
1758 int __user *, addr_len)
1759 {
1760 struct socket *sock;
1761 struct iovec iov;
1762 struct msghdr msg;
1763 struct sockaddr_storage address;
1764 int err, err2;
1765 int fput_needed;
1766
1767 if (size > INT_MAX)
1768 size = INT_MAX;
1769 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1770 if (!sock)
1771 goto out;
1772
1773 msg.msg_control = NULL;
1774 msg.msg_controllen = 0;
1775 msg.msg_iovlen = 1;
1776 msg.msg_iov = &iov;
1777 iov.iov_len = size;
1778 iov.iov_base = ubuf;
1779 /* Save some cycles and don't copy the address if not needed */
1780 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1781 /* We assume all kernel code knows the size of sockaddr_storage */
1782 msg.msg_namelen = 0;
1783 if (sock->file->f_flags & O_NONBLOCK)
1784 flags |= MSG_DONTWAIT;
1785 err = sock_recvmsg(sock, &msg, size, flags);
1786
1787 if (err >= 0 && addr != NULL) {
1788 err2 = move_addr_to_user(&address,
1789 msg.msg_namelen, addr, addr_len);
1790 if (err2 < 0)
1791 err = err2;
1792 }
1793
1794 fput_light(sock->file, fput_needed);
1795 out:
1796 return err;
1797 }
1798
1799 /*
1800 * Receive a datagram from a socket.
1801 */
1802
sys_recv(int fd,void __user * ubuf,size_t size,unsigned flags)1803 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1804 unsigned flags)
1805 {
1806 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1807 }
1808
1809 /*
1810 * Set a socket option. Because we don't know the option lengths we have
1811 * to pass the user mode parameter for the protocols to sort out.
1812 */
1813
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)1814 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1815 char __user *, optval, int, optlen)
1816 {
1817 int err, fput_needed;
1818 struct socket *sock;
1819
1820 if (optlen < 0)
1821 return -EINVAL;
1822
1823 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1824 if (sock != NULL) {
1825 err = security_socket_setsockopt(sock, level, optname);
1826 if (err)
1827 goto out_put;
1828
1829 if (level == SOL_SOCKET)
1830 err =
1831 sock_setsockopt(sock, level, optname, optval,
1832 optlen);
1833 else
1834 err =
1835 sock->ops->setsockopt(sock, level, optname, optval,
1836 optlen);
1837 out_put:
1838 fput_light(sock->file, fput_needed);
1839 }
1840 return err;
1841 }
1842
1843 /*
1844 * Get a socket option. Because we don't know the option lengths we have
1845 * to pass a user mode parameter for the protocols to sort out.
1846 */
1847
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)1848 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1849 char __user *, optval, int __user *, optlen)
1850 {
1851 int err, fput_needed;
1852 struct socket *sock;
1853
1854 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1855 if (sock != NULL) {
1856 err = security_socket_getsockopt(sock, level, optname);
1857 if (err)
1858 goto out_put;
1859
1860 if (level == SOL_SOCKET)
1861 err =
1862 sock_getsockopt(sock, level, optname, optval,
1863 optlen);
1864 else
1865 err =
1866 sock->ops->getsockopt(sock, level, optname, optval,
1867 optlen);
1868 out_put:
1869 fput_light(sock->file, fput_needed);
1870 }
1871 return err;
1872 }
1873
1874 /*
1875 * Shutdown a socket.
1876 */
1877
SYSCALL_DEFINE2(shutdown,int,fd,int,how)1878 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1879 {
1880 int err, fput_needed;
1881 struct socket *sock;
1882
1883 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1884 if (sock != NULL) {
1885 err = security_socket_shutdown(sock, how);
1886 if (!err)
1887 err = sock->ops->shutdown(sock, how);
1888 fput_light(sock->file, fput_needed);
1889 }
1890 return err;
1891 }
1892
1893 /* A couple of helpful macros for getting the address of the 32/64 bit
1894 * fields which are the same type (int / unsigned) on our platforms.
1895 */
1896 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1897 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1898 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1899
1900 struct used_address {
1901 struct sockaddr_storage name;
1902 unsigned int name_len;
1903 };
1904
copy_msghdr_from_user(struct msghdr * kmsg,struct msghdr __user * umsg)1905 static int copy_msghdr_from_user(struct msghdr *kmsg,
1906 struct msghdr __user *umsg)
1907 {
1908 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1909 return -EFAULT;
1910
1911 if (kmsg->msg_namelen < 0)
1912 return -EINVAL;
1913
1914 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1915 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1916 return 0;
1917 }
1918
___sys_sendmsg(struct socket * sock,struct msghdr __user * msg,struct msghdr * msg_sys,unsigned flags,struct used_address * used_address)1919 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1920 struct msghdr *msg_sys, unsigned flags,
1921 struct used_address *used_address)
1922 {
1923 struct compat_msghdr __user *msg_compat =
1924 (struct compat_msghdr __user *)msg;
1925 struct sockaddr_storage address;
1926 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1927 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1928 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1929 /* 20 is size of ipv6_pktinfo */
1930 unsigned char *ctl_buf = ctl;
1931 int err, ctl_len, iov_size, total_len;
1932
1933 err = -EFAULT;
1934 if (MSG_CMSG_COMPAT & flags) {
1935 if (get_compat_msghdr(msg_sys, msg_compat))
1936 return -EFAULT;
1937 } else {
1938 err = copy_msghdr_from_user(msg_sys, msg);
1939 if (err)
1940 return err;
1941 }
1942
1943 /* do not move before msg_sys is valid */
1944 err = -EMSGSIZE;
1945 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1946 goto out;
1947
1948 /* Check whether to allocate the iovec area */
1949 err = -ENOMEM;
1950 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1951 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1952 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1953 if (!iov)
1954 goto out;
1955 }
1956
1957 /* This will also move the address data into kernel space */
1958 if (MSG_CMSG_COMPAT & flags) {
1959 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
1960 } else
1961 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
1962 if (err < 0)
1963 goto out_freeiov;
1964 total_len = err;
1965
1966 err = -ENOBUFS;
1967
1968 if (msg_sys->msg_controllen > INT_MAX)
1969 goto out_freeiov;
1970 ctl_len = msg_sys->msg_controllen;
1971 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1972 err =
1973 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1974 sizeof(ctl));
1975 if (err)
1976 goto out_freeiov;
1977 ctl_buf = msg_sys->msg_control;
1978 ctl_len = msg_sys->msg_controllen;
1979 } else if (ctl_len) {
1980 if (ctl_len > sizeof(ctl)) {
1981 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1982 if (ctl_buf == NULL)
1983 goto out_freeiov;
1984 }
1985 err = -EFAULT;
1986 /*
1987 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1988 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1989 * checking falls down on this.
1990 */
1991 if (copy_from_user(ctl_buf,
1992 (void __user __force *)msg_sys->msg_control,
1993 ctl_len))
1994 goto out_freectl;
1995 msg_sys->msg_control = ctl_buf;
1996 }
1997 msg_sys->msg_flags = flags;
1998
1999 if (sock->file->f_flags & O_NONBLOCK)
2000 msg_sys->msg_flags |= MSG_DONTWAIT;
2001 /*
2002 * If this is sendmmsg() and current destination address is same as
2003 * previously succeeded address, omit asking LSM's decision.
2004 * used_address->name_len is initialized to UINT_MAX so that the first
2005 * destination address never matches.
2006 */
2007 if (used_address && msg_sys->msg_name &&
2008 used_address->name_len == msg_sys->msg_namelen &&
2009 !memcmp(&used_address->name, msg_sys->msg_name,
2010 used_address->name_len)) {
2011 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2012 goto out_freectl;
2013 }
2014 err = sock_sendmsg(sock, msg_sys, total_len);
2015 /*
2016 * If this is sendmmsg() and sending to current destination address was
2017 * successful, remember it.
2018 */
2019 if (used_address && err >= 0) {
2020 used_address->name_len = msg_sys->msg_namelen;
2021 if (msg_sys->msg_name)
2022 memcpy(&used_address->name, msg_sys->msg_name,
2023 used_address->name_len);
2024 }
2025
2026 out_freectl:
2027 if (ctl_buf != ctl)
2028 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2029 out_freeiov:
2030 if (iov != iovstack)
2031 sock_kfree_s(sock->sk, iov, iov_size);
2032 out:
2033 return err;
2034 }
2035
2036 /*
2037 * BSD sendmsg interface
2038 */
2039
__sys_sendmsg(int fd,struct msghdr __user * msg,unsigned flags)2040 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2041 {
2042 int fput_needed, err;
2043 struct msghdr msg_sys;
2044 struct socket *sock;
2045
2046 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2047 if (!sock)
2048 goto out;
2049
2050 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2051
2052 fput_light(sock->file, fput_needed);
2053 out:
2054 return err;
2055 }
2056
SYSCALL_DEFINE3(sendmsg,int,fd,struct msghdr __user *,msg,unsigned int,flags)2057 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2058 {
2059 if (flags & MSG_CMSG_COMPAT)
2060 return -EINVAL;
2061 return __sys_sendmsg(fd, msg, flags);
2062 }
2063
2064 /*
2065 * Linux sendmmsg interface
2066 */
2067
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags)2068 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2069 unsigned int flags)
2070 {
2071 int fput_needed, err, datagrams;
2072 struct socket *sock;
2073 struct mmsghdr __user *entry;
2074 struct compat_mmsghdr __user *compat_entry;
2075 struct msghdr msg_sys;
2076 struct used_address used_address;
2077
2078 if (vlen > UIO_MAXIOV)
2079 vlen = UIO_MAXIOV;
2080
2081 datagrams = 0;
2082
2083 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2084 if (!sock)
2085 return err;
2086
2087 used_address.name_len = UINT_MAX;
2088 entry = mmsg;
2089 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2090 err = 0;
2091
2092 while (datagrams < vlen) {
2093 if (MSG_CMSG_COMPAT & flags) {
2094 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2095 &msg_sys, flags, &used_address);
2096 if (err < 0)
2097 break;
2098 err = __put_user(err, &compat_entry->msg_len);
2099 ++compat_entry;
2100 } else {
2101 err = ___sys_sendmsg(sock,
2102 (struct msghdr __user *)entry,
2103 &msg_sys, flags, &used_address);
2104 if (err < 0)
2105 break;
2106 err = put_user(err, &entry->msg_len);
2107 ++entry;
2108 }
2109
2110 if (err)
2111 break;
2112 ++datagrams;
2113 }
2114
2115 fput_light(sock->file, fput_needed);
2116
2117 /* We only return an error if no datagrams were able to be sent */
2118 if (datagrams != 0)
2119 return datagrams;
2120
2121 return err;
2122 }
2123
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2124 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2125 unsigned int, vlen, unsigned int, flags)
2126 {
2127 if (flags & MSG_CMSG_COMPAT)
2128 return -EINVAL;
2129 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2130 }
2131
___sys_recvmsg(struct socket * sock,struct msghdr __user * msg,struct msghdr * msg_sys,unsigned flags,int nosec)2132 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2133 struct msghdr *msg_sys, unsigned flags, int nosec)
2134 {
2135 struct compat_msghdr __user *msg_compat =
2136 (struct compat_msghdr __user *)msg;
2137 struct iovec iovstack[UIO_FASTIOV];
2138 struct iovec *iov = iovstack;
2139 unsigned long cmsg_ptr;
2140 int err, iov_size, total_len, len;
2141
2142 /* kernel mode address */
2143 struct sockaddr_storage addr;
2144
2145 /* user mode address pointers */
2146 struct sockaddr __user *uaddr;
2147 int __user *uaddr_len;
2148
2149 if (MSG_CMSG_COMPAT & flags) {
2150 if (get_compat_msghdr(msg_sys, msg_compat))
2151 return -EFAULT;
2152 } else {
2153 err = copy_msghdr_from_user(msg_sys, msg);
2154 if (err)
2155 return err;
2156 }
2157
2158 err = -EMSGSIZE;
2159 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2160 goto out;
2161
2162 /* Check whether to allocate the iovec area */
2163 err = -ENOMEM;
2164 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
2165 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2166 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2167 if (!iov)
2168 goto out;
2169 }
2170
2171 /* Save the user-mode address (verify_iovec will change the
2172 * kernel msghdr to use the kernel address space)
2173 */
2174 uaddr = (__force void __user *)msg_sys->msg_name;
2175 uaddr_len = COMPAT_NAMELEN(msg);
2176 if (MSG_CMSG_COMPAT & flags)
2177 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2178 else
2179 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2180 if (err < 0)
2181 goto out_freeiov;
2182 total_len = err;
2183
2184 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2185 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2186
2187 /* We assume all kernel code knows the size of sockaddr_storage */
2188 msg_sys->msg_namelen = 0;
2189
2190 if (sock->file->f_flags & O_NONBLOCK)
2191 flags |= MSG_DONTWAIT;
2192 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2193 total_len, flags);
2194 if (err < 0)
2195 goto out_freeiov;
2196 len = err;
2197
2198 if (uaddr != NULL) {
2199 err = move_addr_to_user(&addr,
2200 msg_sys->msg_namelen, uaddr,
2201 uaddr_len);
2202 if (err < 0)
2203 goto out_freeiov;
2204 }
2205 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2206 COMPAT_FLAGS(msg));
2207 if (err)
2208 goto out_freeiov;
2209 if (MSG_CMSG_COMPAT & flags)
2210 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2211 &msg_compat->msg_controllen);
2212 else
2213 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2214 &msg->msg_controllen);
2215 if (err)
2216 goto out_freeiov;
2217 err = len;
2218
2219 out_freeiov:
2220 if (iov != iovstack)
2221 sock_kfree_s(sock->sk, iov, iov_size);
2222 out:
2223 return err;
2224 }
2225
2226 /*
2227 * BSD recvmsg interface
2228 */
2229
__sys_recvmsg(int fd,struct msghdr __user * msg,unsigned flags)2230 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2231 {
2232 int fput_needed, err;
2233 struct msghdr msg_sys;
2234 struct socket *sock;
2235
2236 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2237 if (!sock)
2238 goto out;
2239
2240 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2241
2242 fput_light(sock->file, fput_needed);
2243 out:
2244 return err;
2245 }
2246
SYSCALL_DEFINE3(recvmsg,int,fd,struct msghdr __user *,msg,unsigned int,flags)2247 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2248 unsigned int, flags)
2249 {
2250 if (flags & MSG_CMSG_COMPAT)
2251 return -EINVAL;
2252 return __sys_recvmsg(fd, msg, flags);
2253 }
2254
2255 /*
2256 * Linux recvmmsg interface
2257 */
2258
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec * timeout)2259 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2260 unsigned int flags, struct timespec *timeout)
2261 {
2262 int fput_needed, err, datagrams;
2263 struct socket *sock;
2264 struct mmsghdr __user *entry;
2265 struct compat_mmsghdr __user *compat_entry;
2266 struct msghdr msg_sys;
2267 struct timespec end_time;
2268
2269 if (timeout &&
2270 poll_select_set_timeout(&end_time, timeout->tv_sec,
2271 timeout->tv_nsec))
2272 return -EINVAL;
2273
2274 datagrams = 0;
2275
2276 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2277 if (!sock)
2278 return err;
2279
2280 err = sock_error(sock->sk);
2281 if (err)
2282 goto out_put;
2283
2284 entry = mmsg;
2285 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2286
2287 while (datagrams < vlen) {
2288 /*
2289 * No need to ask LSM for more than the first datagram.
2290 */
2291 if (MSG_CMSG_COMPAT & flags) {
2292 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2293 &msg_sys, flags & ~MSG_WAITFORONE,
2294 datagrams);
2295 if (err < 0)
2296 break;
2297 err = __put_user(err, &compat_entry->msg_len);
2298 ++compat_entry;
2299 } else {
2300 err = ___sys_recvmsg(sock,
2301 (struct msghdr __user *)entry,
2302 &msg_sys, flags & ~MSG_WAITFORONE,
2303 datagrams);
2304 if (err < 0)
2305 break;
2306 err = put_user(err, &entry->msg_len);
2307 ++entry;
2308 }
2309
2310 if (err)
2311 break;
2312 ++datagrams;
2313
2314 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2315 if (flags & MSG_WAITFORONE)
2316 flags |= MSG_DONTWAIT;
2317
2318 if (timeout) {
2319 ktime_get_ts(timeout);
2320 *timeout = timespec_sub(end_time, *timeout);
2321 if (timeout->tv_sec < 0) {
2322 timeout->tv_sec = timeout->tv_nsec = 0;
2323 break;
2324 }
2325
2326 /* Timeout, return less than vlen datagrams */
2327 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2328 break;
2329 }
2330
2331 /* Out of band data, return right away */
2332 if (msg_sys.msg_flags & MSG_OOB)
2333 break;
2334 }
2335
2336 out_put:
2337 fput_light(sock->file, fput_needed);
2338
2339 if (err == 0)
2340 return datagrams;
2341
2342 if (datagrams != 0) {
2343 /*
2344 * We may return less entries than requested (vlen) if the
2345 * sock is non block and there aren't enough datagrams...
2346 */
2347 if (err != -EAGAIN) {
2348 /*
2349 * ... or if recvmsg returns an error after we
2350 * received some datagrams, where we record the
2351 * error to return on the next call or if the
2352 * app asks about it using getsockopt(SO_ERROR).
2353 */
2354 sock->sk->sk_err = -err;
2355 }
2356
2357 return datagrams;
2358 }
2359
2360 return err;
2361 }
2362
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct timespec __user *,timeout)2363 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2364 unsigned int, vlen, unsigned int, flags,
2365 struct timespec __user *, timeout)
2366 {
2367 int datagrams;
2368 struct timespec timeout_sys;
2369
2370 if (flags & MSG_CMSG_COMPAT)
2371 return -EINVAL;
2372
2373 if (!timeout)
2374 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2375
2376 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2377 return -EFAULT;
2378
2379 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2380
2381 if (datagrams > 0 &&
2382 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2383 datagrams = -EFAULT;
2384
2385 return datagrams;
2386 }
2387
2388 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2389 /* Argument list sizes for sys_socketcall */
2390 #define AL(x) ((x) * sizeof(unsigned long))
2391 static const unsigned char nargs[21] = {
2392 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2393 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2394 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2395 AL(4), AL(5), AL(4)
2396 };
2397
2398 #undef AL
2399
2400 /*
2401 * System call vectors.
2402 *
2403 * Argument checking cleaned up. Saved 20% in size.
2404 * This function doesn't need to set the kernel lock because
2405 * it is set by the callees.
2406 */
2407
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)2408 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2409 {
2410 unsigned long a[6];
2411 unsigned long a0, a1;
2412 int err;
2413 unsigned int len;
2414
2415 if (call < 1 || call > SYS_SENDMMSG)
2416 return -EINVAL;
2417
2418 len = nargs[call];
2419 if (len > sizeof(a))
2420 return -EINVAL;
2421
2422 /* copy_from_user should be SMP safe. */
2423 if (copy_from_user(a, args, len))
2424 return -EFAULT;
2425
2426 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2427
2428 a0 = a[0];
2429 a1 = a[1];
2430
2431 switch (call) {
2432 case SYS_SOCKET:
2433 err = sys_socket(a0, a1, a[2]);
2434 break;
2435 case SYS_BIND:
2436 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2437 break;
2438 case SYS_CONNECT:
2439 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2440 break;
2441 case SYS_LISTEN:
2442 err = sys_listen(a0, a1);
2443 break;
2444 case SYS_ACCEPT:
2445 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2446 (int __user *)a[2], 0);
2447 break;
2448 case SYS_GETSOCKNAME:
2449 err =
2450 sys_getsockname(a0, (struct sockaddr __user *)a1,
2451 (int __user *)a[2]);
2452 break;
2453 case SYS_GETPEERNAME:
2454 err =
2455 sys_getpeername(a0, (struct sockaddr __user *)a1,
2456 (int __user *)a[2]);
2457 break;
2458 case SYS_SOCKETPAIR:
2459 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2460 break;
2461 case SYS_SEND:
2462 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2463 break;
2464 case SYS_SENDTO:
2465 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2466 (struct sockaddr __user *)a[4], a[5]);
2467 break;
2468 case SYS_RECV:
2469 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2470 break;
2471 case SYS_RECVFROM:
2472 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2473 (struct sockaddr __user *)a[4],
2474 (int __user *)a[5]);
2475 break;
2476 case SYS_SHUTDOWN:
2477 err = sys_shutdown(a0, a1);
2478 break;
2479 case SYS_SETSOCKOPT:
2480 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2481 break;
2482 case SYS_GETSOCKOPT:
2483 err =
2484 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2485 (int __user *)a[4]);
2486 break;
2487 case SYS_SENDMSG:
2488 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2489 break;
2490 case SYS_SENDMMSG:
2491 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2492 break;
2493 case SYS_RECVMSG:
2494 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2495 break;
2496 case SYS_RECVMMSG:
2497 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2498 (struct timespec __user *)a[4]);
2499 break;
2500 case SYS_ACCEPT4:
2501 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2502 (int __user *)a[2], a[3]);
2503 break;
2504 default:
2505 err = -EINVAL;
2506 break;
2507 }
2508 return err;
2509 }
2510
2511 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2512
2513 /**
2514 * sock_register - add a socket protocol handler
2515 * @ops: description of protocol
2516 *
2517 * This function is called by a protocol handler that wants to
2518 * advertise its address family, and have it linked into the
2519 * socket interface. The value ops->family coresponds to the
2520 * socket system call protocol family.
2521 */
sock_register(const struct net_proto_family * ops)2522 int sock_register(const struct net_proto_family *ops)
2523 {
2524 int err;
2525
2526 if (ops->family >= NPROTO) {
2527 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2528 NPROTO);
2529 return -ENOBUFS;
2530 }
2531
2532 spin_lock(&net_family_lock);
2533 if (rcu_dereference_protected(net_families[ops->family],
2534 lockdep_is_held(&net_family_lock)))
2535 err = -EEXIST;
2536 else {
2537 rcu_assign_pointer(net_families[ops->family], ops);
2538 err = 0;
2539 }
2540 spin_unlock(&net_family_lock);
2541
2542 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2543 return err;
2544 }
2545 EXPORT_SYMBOL(sock_register);
2546
2547 /**
2548 * sock_unregister - remove a protocol handler
2549 * @family: protocol family to remove
2550 *
2551 * This function is called by a protocol handler that wants to
2552 * remove its address family, and have it unlinked from the
2553 * new socket creation.
2554 *
2555 * If protocol handler is a module, then it can use module reference
2556 * counts to protect against new references. If protocol handler is not
2557 * a module then it needs to provide its own protection in
2558 * the ops->create routine.
2559 */
sock_unregister(int family)2560 void sock_unregister(int family)
2561 {
2562 BUG_ON(family < 0 || family >= NPROTO);
2563
2564 spin_lock(&net_family_lock);
2565 RCU_INIT_POINTER(net_families[family], NULL);
2566 spin_unlock(&net_family_lock);
2567
2568 synchronize_rcu();
2569
2570 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2571 }
2572 EXPORT_SYMBOL(sock_unregister);
2573
sock_init(void)2574 static int __init sock_init(void)
2575 {
2576 int err;
2577
2578 /*
2579 * Initialize sock SLAB cache.
2580 */
2581
2582 sk_init();
2583
2584 /*
2585 * Initialize skbuff SLAB cache
2586 */
2587 skb_init();
2588
2589 /*
2590 * Initialize the protocols module.
2591 */
2592
2593 init_inodecache();
2594
2595 err = register_filesystem(&sock_fs_type);
2596 if (err)
2597 goto out_fs;
2598 sock_mnt = kern_mount(&sock_fs_type);
2599 if (IS_ERR(sock_mnt)) {
2600 err = PTR_ERR(sock_mnt);
2601 goto out_mount;
2602 }
2603
2604 /* The real protocol initialization is performed in later initcalls.
2605 */
2606
2607 #ifdef CONFIG_NETFILTER
2608 netfilter_init();
2609 #endif
2610
2611 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2612 skb_timestamping_init();
2613 #endif
2614
2615 out:
2616 return err;
2617
2618 out_mount:
2619 unregister_filesystem(&sock_fs_type);
2620 out_fs:
2621 goto out;
2622 }
2623
2624 core_initcall(sock_init); /* early initcall */
2625
2626 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)2627 void socket_seq_show(struct seq_file *seq)
2628 {
2629 int cpu;
2630 int counter = 0;
2631
2632 for_each_possible_cpu(cpu)
2633 counter += per_cpu(sockets_in_use, cpu);
2634
2635 /* It can be negative, by the way. 8) */
2636 if (counter < 0)
2637 counter = 0;
2638
2639 seq_printf(seq, "sockets: used %d\n", counter);
2640 }
2641 #endif /* CONFIG_PROC_FS */
2642
2643 #ifdef CONFIG_COMPAT
do_siocgstamp(struct net * net,struct socket * sock,unsigned int cmd,void __user * up)2644 static int do_siocgstamp(struct net *net, struct socket *sock,
2645 unsigned int cmd, void __user *up)
2646 {
2647 mm_segment_t old_fs = get_fs();
2648 struct timeval ktv;
2649 int err;
2650
2651 set_fs(KERNEL_DS);
2652 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2653 set_fs(old_fs);
2654 if (!err)
2655 err = compat_put_timeval(&ktv, up);
2656
2657 return err;
2658 }
2659
do_siocgstampns(struct net * net,struct socket * sock,unsigned int cmd,void __user * up)2660 static int do_siocgstampns(struct net *net, struct socket *sock,
2661 unsigned int cmd, void __user *up)
2662 {
2663 mm_segment_t old_fs = get_fs();
2664 struct timespec kts;
2665 int err;
2666
2667 set_fs(KERNEL_DS);
2668 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2669 set_fs(old_fs);
2670 if (!err)
2671 err = compat_put_timespec(&kts, up);
2672
2673 return err;
2674 }
2675
dev_ifname32(struct net * net,struct compat_ifreq __user * uifr32)2676 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2677 {
2678 struct ifreq __user *uifr;
2679 int err;
2680
2681 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2682 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2683 return -EFAULT;
2684
2685 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2686 if (err)
2687 return err;
2688
2689 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2690 return -EFAULT;
2691
2692 return 0;
2693 }
2694
dev_ifconf(struct net * net,struct compat_ifconf __user * uifc32)2695 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2696 {
2697 struct compat_ifconf ifc32;
2698 struct ifconf ifc;
2699 struct ifconf __user *uifc;
2700 struct compat_ifreq __user *ifr32;
2701 struct ifreq __user *ifr;
2702 unsigned int i, j;
2703 int err;
2704
2705 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2706 return -EFAULT;
2707
2708 memset(&ifc, 0, sizeof(ifc));
2709 if (ifc32.ifcbuf == 0) {
2710 ifc32.ifc_len = 0;
2711 ifc.ifc_len = 0;
2712 ifc.ifc_req = NULL;
2713 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2714 } else {
2715 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2716 sizeof(struct ifreq);
2717 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2718 ifc.ifc_len = len;
2719 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2720 ifr32 = compat_ptr(ifc32.ifcbuf);
2721 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2722 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2723 return -EFAULT;
2724 ifr++;
2725 ifr32++;
2726 }
2727 }
2728 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2729 return -EFAULT;
2730
2731 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2732 if (err)
2733 return err;
2734
2735 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2736 return -EFAULT;
2737
2738 ifr = ifc.ifc_req;
2739 ifr32 = compat_ptr(ifc32.ifcbuf);
2740 for (i = 0, j = 0;
2741 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2742 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2743 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2744 return -EFAULT;
2745 ifr32++;
2746 ifr++;
2747 }
2748
2749 if (ifc32.ifcbuf == 0) {
2750 /* Translate from 64-bit structure multiple to
2751 * a 32-bit one.
2752 */
2753 i = ifc.ifc_len;
2754 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2755 ifc32.ifc_len = i;
2756 } else {
2757 ifc32.ifc_len = i;
2758 }
2759 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2760 return -EFAULT;
2761
2762 return 0;
2763 }
2764
ethtool_ioctl(struct net * net,struct compat_ifreq __user * ifr32)2765 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2766 {
2767 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2768 bool convert_in = false, convert_out = false;
2769 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2770 struct ethtool_rxnfc __user *rxnfc;
2771 struct ifreq __user *ifr;
2772 u32 rule_cnt = 0, actual_rule_cnt;
2773 u32 ethcmd;
2774 u32 data;
2775 int ret;
2776
2777 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2778 return -EFAULT;
2779
2780 compat_rxnfc = compat_ptr(data);
2781
2782 if (get_user(ethcmd, &compat_rxnfc->cmd))
2783 return -EFAULT;
2784
2785 /* Most ethtool structures are defined without padding.
2786 * Unfortunately struct ethtool_rxnfc is an exception.
2787 */
2788 switch (ethcmd) {
2789 default:
2790 break;
2791 case ETHTOOL_GRXCLSRLALL:
2792 /* Buffer size is variable */
2793 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2794 return -EFAULT;
2795 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2796 return -ENOMEM;
2797 buf_size += rule_cnt * sizeof(u32);
2798 /* fall through */
2799 case ETHTOOL_GRXRINGS:
2800 case ETHTOOL_GRXCLSRLCNT:
2801 case ETHTOOL_GRXCLSRULE:
2802 case ETHTOOL_SRXCLSRLINS:
2803 convert_out = true;
2804 /* fall through */
2805 case ETHTOOL_SRXCLSRLDEL:
2806 buf_size += sizeof(struct ethtool_rxnfc);
2807 convert_in = true;
2808 break;
2809 }
2810
2811 ifr = compat_alloc_user_space(buf_size);
2812 rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2813
2814 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2815 return -EFAULT;
2816
2817 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2818 &ifr->ifr_ifru.ifru_data))
2819 return -EFAULT;
2820
2821 if (convert_in) {
2822 /* We expect there to be holes between fs.m_ext and
2823 * fs.ring_cookie and at the end of fs, but nowhere else.
2824 */
2825 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2826 sizeof(compat_rxnfc->fs.m_ext) !=
2827 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2828 sizeof(rxnfc->fs.m_ext));
2829 BUILD_BUG_ON(
2830 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2831 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2832 offsetof(struct ethtool_rxnfc, fs.location) -
2833 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2834
2835 if (copy_in_user(rxnfc, compat_rxnfc,
2836 (void *)(&rxnfc->fs.m_ext + 1) -
2837 (void *)rxnfc) ||
2838 copy_in_user(&rxnfc->fs.ring_cookie,
2839 &compat_rxnfc->fs.ring_cookie,
2840 (void *)(&rxnfc->fs.location + 1) -
2841 (void *)&rxnfc->fs.ring_cookie) ||
2842 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2843 sizeof(rxnfc->rule_cnt)))
2844 return -EFAULT;
2845 }
2846
2847 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2848 if (ret)
2849 return ret;
2850
2851 if (convert_out) {
2852 if (copy_in_user(compat_rxnfc, rxnfc,
2853 (const void *)(&rxnfc->fs.m_ext + 1) -
2854 (const void *)rxnfc) ||
2855 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2856 &rxnfc->fs.ring_cookie,
2857 (const void *)(&rxnfc->fs.location + 1) -
2858 (const void *)&rxnfc->fs.ring_cookie) ||
2859 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2860 sizeof(rxnfc->rule_cnt)))
2861 return -EFAULT;
2862
2863 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2864 /* As an optimisation, we only copy the actual
2865 * number of rules that the underlying
2866 * function returned. Since Mallory might
2867 * change the rule count in user memory, we
2868 * check that it is less than the rule count
2869 * originally given (as the user buffer size),
2870 * which has been range-checked.
2871 */
2872 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2873 return -EFAULT;
2874 if (actual_rule_cnt < rule_cnt)
2875 rule_cnt = actual_rule_cnt;
2876 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2877 &rxnfc->rule_locs[0],
2878 rule_cnt * sizeof(u32)))
2879 return -EFAULT;
2880 }
2881 }
2882
2883 return 0;
2884 }
2885
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)2886 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2887 {
2888 void __user *uptr;
2889 compat_uptr_t uptr32;
2890 struct ifreq __user *uifr;
2891
2892 uifr = compat_alloc_user_space(sizeof(*uifr));
2893 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2894 return -EFAULT;
2895
2896 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2897 return -EFAULT;
2898
2899 uptr = compat_ptr(uptr32);
2900
2901 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2902 return -EFAULT;
2903
2904 return dev_ioctl(net, SIOCWANDEV, uifr);
2905 }
2906
bond_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * ifr32)2907 static int bond_ioctl(struct net *net, unsigned int cmd,
2908 struct compat_ifreq __user *ifr32)
2909 {
2910 struct ifreq kifr;
2911 struct ifreq __user *uifr;
2912 mm_segment_t old_fs;
2913 int err;
2914 u32 data;
2915 void __user *datap;
2916
2917 switch (cmd) {
2918 case SIOCBONDENSLAVE:
2919 case SIOCBONDRELEASE:
2920 case SIOCBONDSETHWADDR:
2921 case SIOCBONDCHANGEACTIVE:
2922 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2923 return -EFAULT;
2924
2925 old_fs = get_fs();
2926 set_fs(KERNEL_DS);
2927 err = dev_ioctl(net, cmd,
2928 (struct ifreq __user __force *) &kifr);
2929 set_fs(old_fs);
2930
2931 return err;
2932 case SIOCBONDSLAVEINFOQUERY:
2933 case SIOCBONDINFOQUERY:
2934 uifr = compat_alloc_user_space(sizeof(*uifr));
2935 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2936 return -EFAULT;
2937
2938 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2939 return -EFAULT;
2940
2941 datap = compat_ptr(data);
2942 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2943 return -EFAULT;
2944
2945 return dev_ioctl(net, cmd, uifr);
2946 default:
2947 return -ENOIOCTLCMD;
2948 }
2949 }
2950
siocdevprivate_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)2951 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2952 struct compat_ifreq __user *u_ifreq32)
2953 {
2954 struct ifreq __user *u_ifreq64;
2955 char tmp_buf[IFNAMSIZ];
2956 void __user *data64;
2957 u32 data32;
2958
2959 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2960 IFNAMSIZ))
2961 return -EFAULT;
2962 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2963 return -EFAULT;
2964 data64 = compat_ptr(data32);
2965
2966 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2967
2968 /* Don't check these user accesses, just let that get trapped
2969 * in the ioctl handler instead.
2970 */
2971 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2972 IFNAMSIZ))
2973 return -EFAULT;
2974 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2975 return -EFAULT;
2976
2977 return dev_ioctl(net, cmd, u_ifreq64);
2978 }
2979
dev_ifsioc(struct net * net,struct socket * sock,unsigned int cmd,struct compat_ifreq __user * uifr32)2980 static int dev_ifsioc(struct net *net, struct socket *sock,
2981 unsigned int cmd, struct compat_ifreq __user *uifr32)
2982 {
2983 struct ifreq __user *uifr;
2984 int err;
2985
2986 uifr = compat_alloc_user_space(sizeof(*uifr));
2987 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2988 return -EFAULT;
2989
2990 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2991
2992 if (!err) {
2993 switch (cmd) {
2994 case SIOCGIFFLAGS:
2995 case SIOCGIFMETRIC:
2996 case SIOCGIFMTU:
2997 case SIOCGIFMEM:
2998 case SIOCGIFHWADDR:
2999 case SIOCGIFINDEX:
3000 case SIOCGIFADDR:
3001 case SIOCGIFBRDADDR:
3002 case SIOCGIFDSTADDR:
3003 case SIOCGIFNETMASK:
3004 case SIOCGIFPFLAGS:
3005 case SIOCGIFTXQLEN:
3006 case SIOCGMIIPHY:
3007 case SIOCGMIIREG:
3008 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3009 err = -EFAULT;
3010 break;
3011 }
3012 }
3013 return err;
3014 }
3015
compat_sioc_ifmap(struct net * net,unsigned int cmd,struct compat_ifreq __user * uifr32)3016 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3017 struct compat_ifreq __user *uifr32)
3018 {
3019 struct ifreq ifr;
3020 struct compat_ifmap __user *uifmap32;
3021 mm_segment_t old_fs;
3022 int err;
3023
3024 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3025 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3026 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3027 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3028 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3029 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
3030 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
3031 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
3032 if (err)
3033 return -EFAULT;
3034
3035 old_fs = get_fs();
3036 set_fs(KERNEL_DS);
3037 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3038 set_fs(old_fs);
3039
3040 if (cmd == SIOCGIFMAP && !err) {
3041 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3042 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3043 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3044 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3045 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3046 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3047 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3048 if (err)
3049 err = -EFAULT;
3050 }
3051 return err;
3052 }
3053
compat_siocshwtstamp(struct net * net,struct compat_ifreq __user * uifr32)3054 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3055 {
3056 void __user *uptr;
3057 compat_uptr_t uptr32;
3058 struct ifreq __user *uifr;
3059
3060 uifr = compat_alloc_user_space(sizeof(*uifr));
3061 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3062 return -EFAULT;
3063
3064 if (get_user(uptr32, &uifr32->ifr_data))
3065 return -EFAULT;
3066
3067 uptr = compat_ptr(uptr32);
3068
3069 if (put_user(uptr, &uifr->ifr_data))
3070 return -EFAULT;
3071
3072 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3073 }
3074
3075 struct rtentry32 {
3076 u32 rt_pad1;
3077 struct sockaddr rt_dst; /* target address */
3078 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3079 struct sockaddr rt_genmask; /* target network mask (IP) */
3080 unsigned short rt_flags;
3081 short rt_pad2;
3082 u32 rt_pad3;
3083 unsigned char rt_tos;
3084 unsigned char rt_class;
3085 short rt_pad4;
3086 short rt_metric; /* +1 for binary compatibility! */
3087 /* char * */ u32 rt_dev; /* forcing the device at add */
3088 u32 rt_mtu; /* per route MTU/Window */
3089 u32 rt_window; /* Window clamping */
3090 unsigned short rt_irtt; /* Initial RTT */
3091 };
3092
3093 struct in6_rtmsg32 {
3094 struct in6_addr rtmsg_dst;
3095 struct in6_addr rtmsg_src;
3096 struct in6_addr rtmsg_gateway;
3097 u32 rtmsg_type;
3098 u16 rtmsg_dst_len;
3099 u16 rtmsg_src_len;
3100 u32 rtmsg_metric;
3101 u32 rtmsg_info;
3102 u32 rtmsg_flags;
3103 s32 rtmsg_ifindex;
3104 };
3105
routing_ioctl(struct net * net,struct socket * sock,unsigned int cmd,void __user * argp)3106 static int routing_ioctl(struct net *net, struct socket *sock,
3107 unsigned int cmd, void __user *argp)
3108 {
3109 int ret;
3110 void *r = NULL;
3111 struct in6_rtmsg r6;
3112 struct rtentry r4;
3113 char devname[16];
3114 u32 rtdev;
3115 mm_segment_t old_fs = get_fs();
3116
3117 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3118 struct in6_rtmsg32 __user *ur6 = argp;
3119 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3120 3 * sizeof(struct in6_addr));
3121 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3122 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3123 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3124 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3125 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3126 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3127 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3128
3129 r = (void *) &r6;
3130 } else { /* ipv4 */
3131 struct rtentry32 __user *ur4 = argp;
3132 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3133 3 * sizeof(struct sockaddr));
3134 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3135 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3136 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3137 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3138 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3139 ret |= __get_user(rtdev, &(ur4->rt_dev));
3140 if (rtdev) {
3141 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3142 r4.rt_dev = (char __user __force *)devname;
3143 devname[15] = 0;
3144 } else
3145 r4.rt_dev = NULL;
3146
3147 r = (void *) &r4;
3148 }
3149
3150 if (ret) {
3151 ret = -EFAULT;
3152 goto out;
3153 }
3154
3155 set_fs(KERNEL_DS);
3156 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3157 set_fs(old_fs);
3158
3159 out:
3160 return ret;
3161 }
3162
3163 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3164 * for some operations; this forces use of the newer bridge-utils that
3165 * use compatible ioctls
3166 */
old_bridge_ioctl(compat_ulong_t __user * argp)3167 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3168 {
3169 compat_ulong_t tmp;
3170
3171 if (get_user(tmp, argp))
3172 return -EFAULT;
3173 if (tmp == BRCTL_GET_VERSION)
3174 return BRCTL_VERSION + 1;
3175 return -EINVAL;
3176 }
3177
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3178 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3179 unsigned int cmd, unsigned long arg)
3180 {
3181 void __user *argp = compat_ptr(arg);
3182 struct sock *sk = sock->sk;
3183 struct net *net = sock_net(sk);
3184
3185 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3186 return siocdevprivate_ioctl(net, cmd, argp);
3187
3188 switch (cmd) {
3189 case SIOCSIFBR:
3190 case SIOCGIFBR:
3191 return old_bridge_ioctl(argp);
3192 case SIOCGIFNAME:
3193 return dev_ifname32(net, argp);
3194 case SIOCGIFCONF:
3195 return dev_ifconf(net, argp);
3196 case SIOCETHTOOL:
3197 return ethtool_ioctl(net, argp);
3198 case SIOCWANDEV:
3199 return compat_siocwandev(net, argp);
3200 case SIOCGIFMAP:
3201 case SIOCSIFMAP:
3202 return compat_sioc_ifmap(net, cmd, argp);
3203 case SIOCBONDENSLAVE:
3204 case SIOCBONDRELEASE:
3205 case SIOCBONDSETHWADDR:
3206 case SIOCBONDSLAVEINFOQUERY:
3207 case SIOCBONDINFOQUERY:
3208 case SIOCBONDCHANGEACTIVE:
3209 return bond_ioctl(net, cmd, argp);
3210 case SIOCADDRT:
3211 case SIOCDELRT:
3212 return routing_ioctl(net, sock, cmd, argp);
3213 case SIOCGSTAMP:
3214 return do_siocgstamp(net, sock, cmd, argp);
3215 case SIOCGSTAMPNS:
3216 return do_siocgstampns(net, sock, cmd, argp);
3217 case SIOCSHWTSTAMP:
3218 return compat_siocshwtstamp(net, argp);
3219
3220 case FIOSETOWN:
3221 case SIOCSPGRP:
3222 case FIOGETOWN:
3223 case SIOCGPGRP:
3224 case SIOCBRADDBR:
3225 case SIOCBRDELBR:
3226 case SIOCGIFVLAN:
3227 case SIOCSIFVLAN:
3228 case SIOCADDDLCI:
3229 case SIOCDELDLCI:
3230 return sock_ioctl(file, cmd, arg);
3231
3232 case SIOCGIFFLAGS:
3233 case SIOCSIFFLAGS:
3234 case SIOCGIFMETRIC:
3235 case SIOCSIFMETRIC:
3236 case SIOCGIFMTU:
3237 case SIOCSIFMTU:
3238 case SIOCGIFMEM:
3239 case SIOCSIFMEM:
3240 case SIOCGIFHWADDR:
3241 case SIOCSIFHWADDR:
3242 case SIOCADDMULTI:
3243 case SIOCDELMULTI:
3244 case SIOCGIFINDEX:
3245 case SIOCGIFADDR:
3246 case SIOCSIFADDR:
3247 case SIOCSIFHWBROADCAST:
3248 case SIOCDIFADDR:
3249 case SIOCGIFBRDADDR:
3250 case SIOCSIFBRDADDR:
3251 case SIOCGIFDSTADDR:
3252 case SIOCSIFDSTADDR:
3253 case SIOCGIFNETMASK:
3254 case SIOCSIFNETMASK:
3255 case SIOCSIFPFLAGS:
3256 case SIOCGIFPFLAGS:
3257 case SIOCGIFTXQLEN:
3258 case SIOCSIFTXQLEN:
3259 case SIOCBRADDIF:
3260 case SIOCBRDELIF:
3261 case SIOCSIFNAME:
3262 case SIOCGMIIPHY:
3263 case SIOCGMIIREG:
3264 case SIOCSMIIREG:
3265 return dev_ifsioc(net, sock, cmd, argp);
3266
3267 case SIOCSARP:
3268 case SIOCGARP:
3269 case SIOCDARP:
3270 case SIOCATMARK:
3271 return sock_do_ioctl(net, sock, cmd, arg);
3272 }
3273
3274 return -ENOIOCTLCMD;
3275 }
3276
compat_sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)3277 static long compat_sock_ioctl(struct file *file, unsigned cmd,
3278 unsigned long arg)
3279 {
3280 struct socket *sock = file->private_data;
3281 int ret = -ENOIOCTLCMD;
3282 struct sock *sk;
3283 struct net *net;
3284
3285 sk = sock->sk;
3286 net = sock_net(sk);
3287
3288 if (sock->ops->compat_ioctl)
3289 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3290
3291 if (ret == -ENOIOCTLCMD &&
3292 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3293 ret = compat_wext_handle_ioctl(net, cmd, arg);
3294
3295 if (ret == -ENOIOCTLCMD)
3296 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3297
3298 return ret;
3299 }
3300 #endif
3301
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3302 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3303 {
3304 return sock->ops->bind(sock, addr, addrlen);
3305 }
3306 EXPORT_SYMBOL(kernel_bind);
3307
kernel_listen(struct socket * sock,int backlog)3308 int kernel_listen(struct socket *sock, int backlog)
3309 {
3310 return sock->ops->listen(sock, backlog);
3311 }
3312 EXPORT_SYMBOL(kernel_listen);
3313
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3314 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3315 {
3316 struct sock *sk = sock->sk;
3317 int err;
3318
3319 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3320 newsock);
3321 if (err < 0)
3322 goto done;
3323
3324 err = sock->ops->accept(sock, *newsock, flags);
3325 if (err < 0) {
3326 sock_release(*newsock);
3327 *newsock = NULL;
3328 goto done;
3329 }
3330
3331 (*newsock)->ops = sock->ops;
3332 __module_get((*newsock)->ops->owner);
3333
3334 done:
3335 return err;
3336 }
3337 EXPORT_SYMBOL(kernel_accept);
3338
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3339 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3340 int flags)
3341 {
3342 return sock->ops->connect(sock, addr, addrlen, flags);
3343 }
3344 EXPORT_SYMBOL(kernel_connect);
3345
kernel_getsockname(struct socket * sock,struct sockaddr * addr,int * addrlen)3346 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3347 int *addrlen)
3348 {
3349 return sock->ops->getname(sock, addr, addrlen, 0);
3350 }
3351 EXPORT_SYMBOL(kernel_getsockname);
3352
kernel_getpeername(struct socket * sock,struct sockaddr * addr,int * addrlen)3353 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3354 int *addrlen)
3355 {
3356 return sock->ops->getname(sock, addr, addrlen, 1);
3357 }
3358 EXPORT_SYMBOL(kernel_getpeername);
3359
kernel_getsockopt(struct socket * sock,int level,int optname,char * optval,int * optlen)3360 int kernel_getsockopt(struct socket *sock, int level, int optname,
3361 char *optval, int *optlen)
3362 {
3363 mm_segment_t oldfs = get_fs();
3364 char __user *uoptval;
3365 int __user *uoptlen;
3366 int err;
3367
3368 uoptval = (char __user __force *) optval;
3369 uoptlen = (int __user __force *) optlen;
3370
3371 set_fs(KERNEL_DS);
3372 if (level == SOL_SOCKET)
3373 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3374 else
3375 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3376 uoptlen);
3377 set_fs(oldfs);
3378 return err;
3379 }
3380 EXPORT_SYMBOL(kernel_getsockopt);
3381
kernel_setsockopt(struct socket * sock,int level,int optname,char * optval,unsigned int optlen)3382 int kernel_setsockopt(struct socket *sock, int level, int optname,
3383 char *optval, unsigned int optlen)
3384 {
3385 mm_segment_t oldfs = get_fs();
3386 char __user *uoptval;
3387 int err;
3388
3389 uoptval = (char __user __force *) optval;
3390
3391 set_fs(KERNEL_DS);
3392 if (level == SOL_SOCKET)
3393 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3394 else
3395 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3396 optlen);
3397 set_fs(oldfs);
3398 return err;
3399 }
3400 EXPORT_SYMBOL(kernel_setsockopt);
3401
kernel_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)3402 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3403 size_t size, int flags)
3404 {
3405 sock_update_classid(sock->sk);
3406
3407 if (sock->ops->sendpage)
3408 return sock->ops->sendpage(sock, page, offset, size, flags);
3409
3410 return sock_no_sendpage(sock, page, offset, size, flags);
3411 }
3412 EXPORT_SYMBOL(kernel_sendpage);
3413
kernel_sock_ioctl(struct socket * sock,int cmd,unsigned long arg)3414 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3415 {
3416 mm_segment_t oldfs = get_fs();
3417 int err;
3418
3419 set_fs(KERNEL_DS);
3420 err = sock->ops->ioctl(sock, cmd, arg);
3421 set_fs(oldfs);
3422
3423 return err;
3424 }
3425 EXPORT_SYMBOL(kernel_sock_ioctl);
3426
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3427 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3428 {
3429 return sock->ops->shutdown(sock, how);
3430 }
3431 EXPORT_SYMBOL(kernel_sock_shutdown);
3432