1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // soc-ops.c -- Generic ASoC operations
4 //
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
9 //
10 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
11 // with code, comments and ideas from :-
12 // Richard Purdie <richard@openedhand.com>
13
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/delay.h>
18 #include <linux/pm.h>
19 #include <linux/bitops.h>
20 #include <linux/ctype.h>
21 #include <linux/slab.h>
22 #include <sound/core.h>
23 #include <sound/jack.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 #include <sound/soc-dpcm.h>
28 #include <sound/initval.h>
29
30 /**
31 * snd_soc_info_enum_double - enumerated double mixer info callback
32 * @kcontrol: mixer control
33 * @uinfo: control element information
34 *
35 * Callback to provide information about a double enumerated
36 * mixer control.
37 *
38 * Returns 0 for success.
39 */
snd_soc_info_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)40 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
41 struct snd_ctl_elem_info *uinfo)
42 {
43 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
44
45 return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
46 e->items, e->texts);
47 }
48 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
49
50 /**
51 * snd_soc_get_enum_double - enumerated double mixer get callback
52 * @kcontrol: mixer control
53 * @ucontrol: control element information
54 *
55 * Callback to get the value of a double enumerated mixer.
56 *
57 * Returns 0 for success.
58 */
snd_soc_get_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)59 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
60 struct snd_ctl_elem_value *ucontrol)
61 {
62 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
63 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
64 unsigned int val, item;
65 unsigned int reg_val;
66
67 reg_val = snd_soc_component_read(component, e->reg);
68 val = (reg_val >> e->shift_l) & e->mask;
69 item = snd_soc_enum_val_to_item(e, val);
70 ucontrol->value.enumerated.item[0] = item;
71 if (e->shift_l != e->shift_r) {
72 val = (reg_val >> e->shift_r) & e->mask;
73 item = snd_soc_enum_val_to_item(e, val);
74 ucontrol->value.enumerated.item[1] = item;
75 }
76
77 return 0;
78 }
79 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
80
81 /**
82 * snd_soc_put_enum_double - enumerated double mixer put callback
83 * @kcontrol: mixer control
84 * @ucontrol: control element information
85 *
86 * Callback to set the value of a double enumerated mixer.
87 *
88 * Returns 0 for success.
89 */
snd_soc_put_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)90 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
91 struct snd_ctl_elem_value *ucontrol)
92 {
93 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
94 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
95 unsigned int *item = ucontrol->value.enumerated.item;
96 unsigned int val;
97 unsigned int mask;
98
99 if (item[0] >= e->items)
100 return -EINVAL;
101 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
102 mask = e->mask << e->shift_l;
103 if (e->shift_l != e->shift_r) {
104 if (item[1] >= e->items)
105 return -EINVAL;
106 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
107 mask |= e->mask << e->shift_r;
108 }
109
110 return snd_soc_component_update_bits(component, e->reg, mask, val);
111 }
112 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
113
114 /**
115 * snd_soc_read_signed - Read a codec register and interpret as signed value
116 * @component: component
117 * @reg: Register to read
118 * @mask: Mask to use after shifting the register value
119 * @shift: Right shift of register value
120 * @sign_bit: Bit that describes if a number is negative or not.
121 * @signed_val: Pointer to where the read value should be stored
122 *
123 * This functions reads a codec register. The register value is shifted right
124 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
125 * the given registervalue into a signed integer if sign_bit is non-zero.
126 *
127 * Returns 0 on sucess, otherwise an error value
128 */
snd_soc_read_signed(struct snd_soc_component * component,unsigned int reg,unsigned int mask,unsigned int shift,unsigned int sign_bit,int * signed_val)129 static int snd_soc_read_signed(struct snd_soc_component *component,
130 unsigned int reg, unsigned int mask, unsigned int shift,
131 unsigned int sign_bit, int *signed_val)
132 {
133 int ret;
134 unsigned int val;
135
136 val = snd_soc_component_read(component, reg);
137 val = (val >> shift) & mask;
138
139 if (!sign_bit) {
140 *signed_val = val;
141 return 0;
142 }
143
144 /* non-negative number */
145 if (!(val & BIT(sign_bit))) {
146 *signed_val = val;
147 return 0;
148 }
149
150 ret = val;
151
152 /*
153 * The register most probably does not contain a full-sized int.
154 * Instead we have an arbitrary number of bits in a signed
155 * representation which has to be translated into a full-sized int.
156 * This is done by filling up all bits above the sign-bit.
157 */
158 ret |= ~((int)(BIT(sign_bit) - 1));
159
160 *signed_val = ret;
161
162 return 0;
163 }
164
165 /**
166 * snd_soc_info_volsw - single mixer info callback
167 * @kcontrol: mixer control
168 * @uinfo: control element information
169 *
170 * Callback to provide information about a single mixer control, or a double
171 * mixer control that spans 2 registers.
172 *
173 * Returns 0 for success.
174 */
snd_soc_info_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)175 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
176 struct snd_ctl_elem_info *uinfo)
177 {
178 struct soc_mixer_control *mc =
179 (struct soc_mixer_control *)kcontrol->private_value;
180 int platform_max;
181
182 if (!mc->platform_max)
183 mc->platform_max = mc->max;
184 platform_max = mc->platform_max;
185
186 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
187 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
188 else
189 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
190
191 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
192 uinfo->value.integer.min = 0;
193 uinfo->value.integer.max = platform_max - mc->min;
194 return 0;
195 }
196 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
197
198 /**
199 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
200 * @kcontrol: mixer control
201 * @uinfo: control element information
202 *
203 * Callback to provide information about a single mixer control, or a double
204 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
205 * have a range that represents both positive and negative values either side
206 * of zero but without a sign bit.
207 *
208 * Returns 0 for success.
209 */
snd_soc_info_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)210 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
211 struct snd_ctl_elem_info *uinfo)
212 {
213 struct soc_mixer_control *mc =
214 (struct soc_mixer_control *)kcontrol->private_value;
215
216 snd_soc_info_volsw(kcontrol, uinfo);
217 /* Max represents the number of levels in an SX control not the
218 * maximum value, so add the minimum value back on
219 */
220 uinfo->value.integer.max += mc->min;
221
222 return 0;
223 }
224 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
225
226 /**
227 * snd_soc_get_volsw - single mixer get callback
228 * @kcontrol: mixer control
229 * @ucontrol: control element information
230 *
231 * Callback to get the value of a single mixer control, or a double mixer
232 * control that spans 2 registers.
233 *
234 * Returns 0 for success.
235 */
snd_soc_get_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)236 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
237 struct snd_ctl_elem_value *ucontrol)
238 {
239 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
240 struct soc_mixer_control *mc =
241 (struct soc_mixer_control *)kcontrol->private_value;
242 unsigned int reg = mc->reg;
243 unsigned int reg2 = mc->rreg;
244 unsigned int shift = mc->shift;
245 unsigned int rshift = mc->rshift;
246 int max = mc->max;
247 int min = mc->min;
248 int sign_bit = mc->sign_bit;
249 unsigned int mask = (1 << fls(max)) - 1;
250 unsigned int invert = mc->invert;
251 int val;
252 int ret;
253
254 if (sign_bit)
255 mask = BIT(sign_bit + 1) - 1;
256
257 ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
258 if (ret)
259 return ret;
260
261 ucontrol->value.integer.value[0] = val - min;
262 if (invert)
263 ucontrol->value.integer.value[0] =
264 max - ucontrol->value.integer.value[0];
265
266 if (snd_soc_volsw_is_stereo(mc)) {
267 if (reg == reg2)
268 ret = snd_soc_read_signed(component, reg, mask, rshift,
269 sign_bit, &val);
270 else
271 ret = snd_soc_read_signed(component, reg2, mask, shift,
272 sign_bit, &val);
273 if (ret)
274 return ret;
275
276 ucontrol->value.integer.value[1] = val - min;
277 if (invert)
278 ucontrol->value.integer.value[1] =
279 max - ucontrol->value.integer.value[1];
280 }
281
282 return 0;
283 }
284 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
285
286 /**
287 * snd_soc_put_volsw - single mixer put callback
288 * @kcontrol: mixer control
289 * @ucontrol: control element information
290 *
291 * Callback to set the value of a single mixer control, or a double mixer
292 * control that spans 2 registers.
293 *
294 * Returns 0 for success.
295 */
snd_soc_put_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)296 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
297 struct snd_ctl_elem_value *ucontrol)
298 {
299 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
300 struct soc_mixer_control *mc =
301 (struct soc_mixer_control *)kcontrol->private_value;
302 unsigned int reg = mc->reg;
303 unsigned int reg2 = mc->rreg;
304 unsigned int shift = mc->shift;
305 unsigned int rshift = mc->rshift;
306 int max = mc->max;
307 int min = mc->min;
308 unsigned int sign_bit = mc->sign_bit;
309 unsigned int mask = (1 << fls(max)) - 1;
310 unsigned int invert = mc->invert;
311 int err, ret;
312 bool type_2r = false;
313 unsigned int val2 = 0;
314 unsigned int val, val_mask;
315
316 if (sign_bit)
317 mask = BIT(sign_bit + 1) - 1;
318
319 if (ucontrol->value.integer.value[0] < 0)
320 return -EINVAL;
321 val = ucontrol->value.integer.value[0];
322 if (mc->platform_max && ((int)val + min) > mc->platform_max)
323 return -EINVAL;
324 if (val > max - min)
325 return -EINVAL;
326 val = (val + min) & mask;
327 if (invert)
328 val = max - val;
329 val_mask = mask << shift;
330 val = val << shift;
331 if (snd_soc_volsw_is_stereo(mc)) {
332 if (ucontrol->value.integer.value[1] < 0)
333 return -EINVAL;
334 val2 = ucontrol->value.integer.value[1];
335 if (mc->platform_max && ((int)val2 + min) > mc->platform_max)
336 return -EINVAL;
337 if (val2 > max - min)
338 return -EINVAL;
339 val2 = (val2 + min) & mask;
340 if (invert)
341 val2 = max - val2;
342 if (reg == reg2) {
343 val_mask |= mask << rshift;
344 val |= val2 << rshift;
345 } else {
346 val2 = val2 << shift;
347 type_2r = true;
348 }
349 }
350 err = snd_soc_component_update_bits(component, reg, val_mask, val);
351 if (err < 0)
352 return err;
353 ret = err;
354
355 if (type_2r) {
356 err = snd_soc_component_update_bits(component, reg2, val_mask,
357 val2);
358 /* Don't discard any error code or drop change flag */
359 if (ret == 0 || err < 0) {
360 ret = err;
361 }
362 }
363
364 return ret;
365 }
366 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
367
368 /**
369 * snd_soc_get_volsw_sx - single mixer get callback
370 * @kcontrol: mixer control
371 * @ucontrol: control element information
372 *
373 * Callback to get the value of a single mixer control, or a double mixer
374 * control that spans 2 registers.
375 *
376 * Returns 0 for success.
377 */
snd_soc_get_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)378 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
379 struct snd_ctl_elem_value *ucontrol)
380 {
381 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
382 struct soc_mixer_control *mc =
383 (struct soc_mixer_control *)kcontrol->private_value;
384 unsigned int reg = mc->reg;
385 unsigned int reg2 = mc->rreg;
386 unsigned int shift = mc->shift;
387 unsigned int rshift = mc->rshift;
388 int max = mc->max;
389 int min = mc->min;
390 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
391 unsigned int val;
392
393 val = snd_soc_component_read(component, reg);
394 ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
395
396 if (snd_soc_volsw_is_stereo(mc)) {
397 val = snd_soc_component_read(component, reg2);
398 val = ((val >> rshift) - min) & mask;
399 ucontrol->value.integer.value[1] = val;
400 }
401
402 return 0;
403 }
404 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
405
406 /**
407 * snd_soc_put_volsw_sx - double mixer set callback
408 * @kcontrol: mixer control
409 * @ucontrol: control element information
410 *
411 * Callback to set the value of a double mixer control that spans 2 registers.
412 *
413 * Returns 0 for success.
414 */
snd_soc_put_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)415 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
416 struct snd_ctl_elem_value *ucontrol)
417 {
418 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
419 struct soc_mixer_control *mc =
420 (struct soc_mixer_control *)kcontrol->private_value;
421
422 unsigned int reg = mc->reg;
423 unsigned int reg2 = mc->rreg;
424 unsigned int shift = mc->shift;
425 unsigned int rshift = mc->rshift;
426 int max = mc->max;
427 int min = mc->min;
428 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
429 int err = 0;
430 int ret;
431 unsigned int val, val_mask;
432
433 if (ucontrol->value.integer.value[0] < 0)
434 return -EINVAL;
435 val = ucontrol->value.integer.value[0];
436 if (mc->platform_max && val > mc->platform_max)
437 return -EINVAL;
438 if (val > max - min)
439 return -EINVAL;
440 val_mask = mask << shift;
441 val = (val + min) & mask;
442 val = val << shift;
443
444 err = snd_soc_component_update_bits(component, reg, val_mask, val);
445 if (err < 0)
446 return err;
447 ret = err;
448
449 if (snd_soc_volsw_is_stereo(mc)) {
450 unsigned int val2;
451
452 val_mask = mask << rshift;
453 val2 = (ucontrol->value.integer.value[1] + min) & mask;
454 val2 = val2 << rshift;
455
456 err = snd_soc_component_update_bits(component, reg2, val_mask,
457 val2);
458
459 /* Don't discard any error code or drop change flag */
460 if (ret == 0 || err < 0) {
461 ret = err;
462 }
463 }
464 return ret;
465 }
466 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
467
468 /**
469 * snd_soc_info_volsw_range - single mixer info callback with range.
470 * @kcontrol: mixer control
471 * @uinfo: control element information
472 *
473 * Callback to provide information, within a range, about a single
474 * mixer control.
475 *
476 * returns 0 for success.
477 */
snd_soc_info_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)478 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
479 struct snd_ctl_elem_info *uinfo)
480 {
481 struct soc_mixer_control *mc =
482 (struct soc_mixer_control *)kcontrol->private_value;
483 int platform_max;
484 int min = mc->min;
485
486 if (!mc->platform_max)
487 mc->platform_max = mc->max;
488 platform_max = mc->platform_max;
489
490 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
491 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
492 uinfo->value.integer.min = 0;
493 uinfo->value.integer.max = platform_max - min;
494
495 return 0;
496 }
497 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
498
499 /**
500 * snd_soc_put_volsw_range - single mixer put value callback with range.
501 * @kcontrol: mixer control
502 * @ucontrol: control element information
503 *
504 * Callback to set the value, within a range, for a single mixer control.
505 *
506 * Returns 0 for success.
507 */
snd_soc_put_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)508 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
509 struct snd_ctl_elem_value *ucontrol)
510 {
511 struct soc_mixer_control *mc =
512 (struct soc_mixer_control *)kcontrol->private_value;
513 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
514 unsigned int reg = mc->reg;
515 unsigned int rreg = mc->rreg;
516 unsigned int shift = mc->shift;
517 int min = mc->min;
518 int max = mc->max;
519 unsigned int mask = (1 << fls(max)) - 1;
520 unsigned int invert = mc->invert;
521 unsigned int val, val_mask;
522 int err, ret, tmp;
523
524 tmp = ucontrol->value.integer.value[0];
525 if (tmp < 0)
526 return -EINVAL;
527 if (mc->platform_max && tmp > mc->platform_max)
528 return -EINVAL;
529 if (tmp > mc->max - mc->min)
530 return -EINVAL;
531
532 if (invert)
533 val = (max - ucontrol->value.integer.value[0]) & mask;
534 else
535 val = ((ucontrol->value.integer.value[0] + min) & mask);
536 val_mask = mask << shift;
537 val = val << shift;
538
539 err = snd_soc_component_update_bits(component, reg, val_mask, val);
540 if (err < 0)
541 return err;
542 ret = err;
543
544 if (snd_soc_volsw_is_stereo(mc)) {
545 tmp = ucontrol->value.integer.value[1];
546 if (tmp < 0)
547 return -EINVAL;
548 if (mc->platform_max && tmp > mc->platform_max)
549 return -EINVAL;
550 if (tmp > mc->max - mc->min)
551 return -EINVAL;
552
553 if (invert)
554 val = (max - ucontrol->value.integer.value[1]) & mask;
555 else
556 val = ((ucontrol->value.integer.value[1] + min) & mask);
557 val_mask = mask << shift;
558 val = val << shift;
559
560 err = snd_soc_component_update_bits(component, rreg, val_mask,
561 val);
562 /* Don't discard any error code or drop change flag */
563 if (ret == 0 || err < 0) {
564 ret = err;
565 }
566 }
567
568 return ret;
569 }
570 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
571
572 /**
573 * snd_soc_get_volsw_range - single mixer get callback with range
574 * @kcontrol: mixer control
575 * @ucontrol: control element information
576 *
577 * Callback to get the value, within a range, of a single mixer control.
578 *
579 * Returns 0 for success.
580 */
snd_soc_get_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)581 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
582 struct snd_ctl_elem_value *ucontrol)
583 {
584 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
585 struct soc_mixer_control *mc =
586 (struct soc_mixer_control *)kcontrol->private_value;
587 unsigned int reg = mc->reg;
588 unsigned int rreg = mc->rreg;
589 unsigned int shift = mc->shift;
590 int min = mc->min;
591 int max = mc->max;
592 unsigned int mask = (1 << fls(max)) - 1;
593 unsigned int invert = mc->invert;
594 unsigned int val;
595
596 val = snd_soc_component_read(component, reg);
597 ucontrol->value.integer.value[0] = (val >> shift) & mask;
598 if (invert)
599 ucontrol->value.integer.value[0] =
600 max - ucontrol->value.integer.value[0];
601 else
602 ucontrol->value.integer.value[0] =
603 ucontrol->value.integer.value[0] - min;
604
605 if (snd_soc_volsw_is_stereo(mc)) {
606 val = snd_soc_component_read(component, rreg);
607 ucontrol->value.integer.value[1] = (val >> shift) & mask;
608 if (invert)
609 ucontrol->value.integer.value[1] =
610 max - ucontrol->value.integer.value[1];
611 else
612 ucontrol->value.integer.value[1] =
613 ucontrol->value.integer.value[1] - min;
614 }
615
616 return 0;
617 }
618 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
619
620 /**
621 * snd_soc_limit_volume - Set new limit to an existing volume control.
622 *
623 * @card: where to look for the control
624 * @name: Name of the control
625 * @max: new maximum limit
626 *
627 * Return 0 for success, else error.
628 */
snd_soc_limit_volume(struct snd_soc_card * card,const char * name,int max)629 int snd_soc_limit_volume(struct snd_soc_card *card,
630 const char *name, int max)
631 {
632 struct snd_kcontrol *kctl;
633 int ret = -EINVAL;
634
635 /* Sanity check for name and max */
636 if (unlikely(!name || max <= 0))
637 return -EINVAL;
638
639 kctl = snd_soc_card_get_kcontrol(card, name);
640 if (kctl) {
641 struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
642 if (max <= mc->max) {
643 mc->platform_max = max;
644 ret = 0;
645 }
646 }
647 return ret;
648 }
649 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
650
snd_soc_bytes_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)651 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
652 struct snd_ctl_elem_info *uinfo)
653 {
654 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
655 struct soc_bytes *params = (void *)kcontrol->private_value;
656
657 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
658 uinfo->count = params->num_regs * component->val_bytes;
659
660 return 0;
661 }
662 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
663
snd_soc_bytes_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)664 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
665 struct snd_ctl_elem_value *ucontrol)
666 {
667 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
668 struct soc_bytes *params = (void *)kcontrol->private_value;
669 int ret;
670
671 if (component->regmap)
672 ret = regmap_raw_read(component->regmap, params->base,
673 ucontrol->value.bytes.data,
674 params->num_regs * component->val_bytes);
675 else
676 ret = -EINVAL;
677
678 /* Hide any masked bytes to ensure consistent data reporting */
679 if (ret == 0 && params->mask) {
680 switch (component->val_bytes) {
681 case 1:
682 ucontrol->value.bytes.data[0] &= ~params->mask;
683 break;
684 case 2:
685 ((u16 *)(&ucontrol->value.bytes.data))[0]
686 &= cpu_to_be16(~params->mask);
687 break;
688 case 4:
689 ((u32 *)(&ucontrol->value.bytes.data))[0]
690 &= cpu_to_be32(~params->mask);
691 break;
692 default:
693 return -EINVAL;
694 }
695 }
696
697 return ret;
698 }
699 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
700
snd_soc_bytes_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)701 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
702 struct snd_ctl_elem_value *ucontrol)
703 {
704 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
705 struct soc_bytes *params = (void *)kcontrol->private_value;
706 int ret, len;
707 unsigned int val, mask;
708 void *data;
709
710 if (!component->regmap || !params->num_regs)
711 return -EINVAL;
712
713 len = params->num_regs * component->val_bytes;
714
715 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
716 if (!data)
717 return -ENOMEM;
718
719 /*
720 * If we've got a mask then we need to preserve the register
721 * bits. We shouldn't modify the incoming data so take a
722 * copy.
723 */
724 if (params->mask) {
725 ret = regmap_read(component->regmap, params->base, &val);
726 if (ret != 0)
727 goto out;
728
729 val &= params->mask;
730
731 switch (component->val_bytes) {
732 case 1:
733 ((u8 *)data)[0] &= ~params->mask;
734 ((u8 *)data)[0] |= val;
735 break;
736 case 2:
737 mask = ~params->mask;
738 ret = regmap_parse_val(component->regmap,
739 &mask, &mask);
740 if (ret != 0)
741 goto out;
742
743 ((u16 *)data)[0] &= mask;
744
745 ret = regmap_parse_val(component->regmap,
746 &val, &val);
747 if (ret != 0)
748 goto out;
749
750 ((u16 *)data)[0] |= val;
751 break;
752 case 4:
753 mask = ~params->mask;
754 ret = regmap_parse_val(component->regmap,
755 &mask, &mask);
756 if (ret != 0)
757 goto out;
758
759 ((u32 *)data)[0] &= mask;
760
761 ret = regmap_parse_val(component->regmap,
762 &val, &val);
763 if (ret != 0)
764 goto out;
765
766 ((u32 *)data)[0] |= val;
767 break;
768 default:
769 ret = -EINVAL;
770 goto out;
771 }
772 }
773
774 ret = regmap_raw_write(component->regmap, params->base,
775 data, len);
776
777 out:
778 kfree(data);
779
780 return ret;
781 }
782 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
783
snd_soc_bytes_info_ext(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * ucontrol)784 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
785 struct snd_ctl_elem_info *ucontrol)
786 {
787 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
788
789 ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
790 ucontrol->count = params->max;
791
792 return 0;
793 }
794 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
795
snd_soc_bytes_tlv_callback(struct snd_kcontrol * kcontrol,int op_flag,unsigned int size,unsigned int __user * tlv)796 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
797 unsigned int size, unsigned int __user *tlv)
798 {
799 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
800 unsigned int count = size < params->max ? size : params->max;
801 int ret = -ENXIO;
802
803 switch (op_flag) {
804 case SNDRV_CTL_TLV_OP_READ:
805 if (params->get)
806 ret = params->get(kcontrol, tlv, count);
807 break;
808 case SNDRV_CTL_TLV_OP_WRITE:
809 if (params->put)
810 ret = params->put(kcontrol, tlv, count);
811 break;
812 }
813 return ret;
814 }
815 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
816
817 /**
818 * snd_soc_info_xr_sx - signed multi register info callback
819 * @kcontrol: mreg control
820 * @uinfo: control element information
821 *
822 * Callback to provide information of a control that can
823 * span multiple codec registers which together
824 * forms a single signed value in a MSB/LSB manner.
825 *
826 * Returns 0 for success.
827 */
snd_soc_info_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)828 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
829 struct snd_ctl_elem_info *uinfo)
830 {
831 struct soc_mreg_control *mc =
832 (struct soc_mreg_control *)kcontrol->private_value;
833 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
834 uinfo->count = 1;
835 uinfo->value.integer.min = mc->min;
836 uinfo->value.integer.max = mc->max;
837
838 return 0;
839 }
840 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
841
842 /**
843 * snd_soc_get_xr_sx - signed multi register get callback
844 * @kcontrol: mreg control
845 * @ucontrol: control element information
846 *
847 * Callback to get the value of a control that can span
848 * multiple codec registers which together forms a single
849 * signed value in a MSB/LSB manner. The control supports
850 * specifying total no of bits used to allow for bitfields
851 * across the multiple codec registers.
852 *
853 * Returns 0 for success.
854 */
snd_soc_get_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)855 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
856 struct snd_ctl_elem_value *ucontrol)
857 {
858 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
859 struct soc_mreg_control *mc =
860 (struct soc_mreg_control *)kcontrol->private_value;
861 unsigned int regbase = mc->regbase;
862 unsigned int regcount = mc->regcount;
863 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
864 unsigned int regwmask = (1UL<<regwshift)-1;
865 unsigned int invert = mc->invert;
866 unsigned long mask = (1UL<<mc->nbits)-1;
867 long min = mc->min;
868 long max = mc->max;
869 long val = 0;
870 unsigned int i;
871
872 for (i = 0; i < regcount; i++) {
873 unsigned int regval = snd_soc_component_read(component, regbase+i);
874 val |= (regval & regwmask) << (regwshift*(regcount-i-1));
875 }
876 val &= mask;
877 if (min < 0 && val > max)
878 val |= ~mask;
879 if (invert)
880 val = max - val;
881 ucontrol->value.integer.value[0] = val;
882
883 return 0;
884 }
885 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
886
887 /**
888 * snd_soc_put_xr_sx - signed multi register get callback
889 * @kcontrol: mreg control
890 * @ucontrol: control element information
891 *
892 * Callback to set the value of a control that can span
893 * multiple codec registers which together forms a single
894 * signed value in a MSB/LSB manner. The control supports
895 * specifying total no of bits used to allow for bitfields
896 * across the multiple codec registers.
897 *
898 * Returns 0 for success.
899 */
snd_soc_put_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)900 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
901 struct snd_ctl_elem_value *ucontrol)
902 {
903 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
904 struct soc_mreg_control *mc =
905 (struct soc_mreg_control *)kcontrol->private_value;
906 unsigned int regbase = mc->regbase;
907 unsigned int regcount = mc->regcount;
908 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
909 unsigned int regwmask = (1UL<<regwshift)-1;
910 unsigned int invert = mc->invert;
911 unsigned long mask = (1UL<<mc->nbits)-1;
912 long max = mc->max;
913 long val = ucontrol->value.integer.value[0];
914 int ret = 0;
915 unsigned int i;
916
917 if (val < mc->min || val > mc->max)
918 return -EINVAL;
919 if (invert)
920 val = max - val;
921 val &= mask;
922 for (i = 0; i < regcount; i++) {
923 unsigned int regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
924 unsigned int regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
925 int err = snd_soc_component_update_bits(component, regbase+i,
926 regmask, regval);
927 if (err < 0)
928 return err;
929 if (err > 0)
930 ret = err;
931 }
932
933 return ret;
934 }
935 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
936
937 /**
938 * snd_soc_get_strobe - strobe get callback
939 * @kcontrol: mixer control
940 * @ucontrol: control element information
941 *
942 * Callback get the value of a strobe mixer control.
943 *
944 * Returns 0 for success.
945 */
snd_soc_get_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)946 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
947 struct snd_ctl_elem_value *ucontrol)
948 {
949 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
950 struct soc_mixer_control *mc =
951 (struct soc_mixer_control *)kcontrol->private_value;
952 unsigned int reg = mc->reg;
953 unsigned int shift = mc->shift;
954 unsigned int mask = 1 << shift;
955 unsigned int invert = mc->invert != 0;
956 unsigned int val;
957
958 val = snd_soc_component_read(component, reg);
959 val &= mask;
960
961 if (shift != 0 && val != 0)
962 val = val >> shift;
963 ucontrol->value.enumerated.item[0] = val ^ invert;
964
965 return 0;
966 }
967 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
968
969 /**
970 * snd_soc_put_strobe - strobe put callback
971 * @kcontrol: mixer control
972 * @ucontrol: control element information
973 *
974 * Callback strobe a register bit to high then low (or the inverse)
975 * in one pass of a single mixer enum control.
976 *
977 * Returns 1 for success.
978 */
snd_soc_put_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)979 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
980 struct snd_ctl_elem_value *ucontrol)
981 {
982 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
983 struct soc_mixer_control *mc =
984 (struct soc_mixer_control *)kcontrol->private_value;
985 unsigned int reg = mc->reg;
986 unsigned int shift = mc->shift;
987 unsigned int mask = 1 << shift;
988 unsigned int invert = mc->invert != 0;
989 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
990 unsigned int val1 = (strobe ^ invert) ? mask : 0;
991 unsigned int val2 = (strobe ^ invert) ? 0 : mask;
992 int err;
993
994 err = snd_soc_component_update_bits(component, reg, mask, val1);
995 if (err < 0)
996 return err;
997
998 return snd_soc_component_update_bits(component, reg, mask, val2);
999 }
1000 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
1001