1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Takashi Iwai <tiwai@suse.de>
5 *
6 * Generic memory allocators
7 */
8
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dma-map-ops.h>
13 #include <linux/genalloc.h>
14 #include <linux/highmem.h>
15 #include <linux/vmalloc.h>
16 #ifdef CONFIG_X86
17 #include <asm/set_memory.h>
18 #endif
19 #include <sound/memalloc.h>
20 #include "memalloc_local.h"
21
22 #define DEFAULT_GFP \
23 (GFP_KERNEL | \
24 __GFP_COMP | /* compound page lets parts be mapped */ \
25 __GFP_RETRY_MAYFAIL | /* don't trigger OOM-killer */ \
26 __GFP_NOWARN) /* no stack trace print - this call is non-critical */
27
28 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab);
29
30 #ifdef CONFIG_SND_DMA_SGBUF
31 static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size);
32 #endif
33
__snd_dma_alloc_pages(struct snd_dma_buffer * dmab,size_t size)34 static void *__snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size)
35 {
36 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
37
38 if (WARN_ON_ONCE(!ops || !ops->alloc))
39 return NULL;
40 return ops->alloc(dmab, size);
41 }
42
43 /**
44 * snd_dma_alloc_dir_pages - allocate the buffer area according to the given
45 * type and direction
46 * @type: the DMA buffer type
47 * @device: the device pointer
48 * @dir: DMA direction
49 * @size: the buffer size to allocate
50 * @dmab: buffer allocation record to store the allocated data
51 *
52 * Calls the memory-allocator function for the corresponding
53 * buffer type.
54 *
55 * Return: Zero if the buffer with the given size is allocated successfully,
56 * otherwise a negative value on error.
57 */
snd_dma_alloc_dir_pages(int type,struct device * device,enum dma_data_direction dir,size_t size,struct snd_dma_buffer * dmab)58 int snd_dma_alloc_dir_pages(int type, struct device *device,
59 enum dma_data_direction dir, size_t size,
60 struct snd_dma_buffer *dmab)
61 {
62 if (WARN_ON(!size))
63 return -ENXIO;
64 if (WARN_ON(!dmab))
65 return -ENXIO;
66
67 size = PAGE_ALIGN(size);
68 dmab->dev.type = type;
69 dmab->dev.dev = device;
70 dmab->dev.dir = dir;
71 dmab->bytes = 0;
72 dmab->addr = 0;
73 dmab->private_data = NULL;
74 dmab->area = __snd_dma_alloc_pages(dmab, size);
75 if (!dmab->area)
76 return -ENOMEM;
77 dmab->bytes = size;
78 return 0;
79 }
80 EXPORT_SYMBOL(snd_dma_alloc_dir_pages);
81
82 /**
83 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
84 * @type: the DMA buffer type
85 * @device: the device pointer
86 * @size: the buffer size to allocate
87 * @dmab: buffer allocation record to store the allocated data
88 *
89 * Calls the memory-allocator function for the corresponding
90 * buffer type. When no space is left, this function reduces the size and
91 * tries to allocate again. The size actually allocated is stored in
92 * res_size argument.
93 *
94 * Return: Zero if the buffer with the given size is allocated successfully,
95 * otherwise a negative value on error.
96 */
snd_dma_alloc_pages_fallback(int type,struct device * device,size_t size,struct snd_dma_buffer * dmab)97 int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
98 struct snd_dma_buffer *dmab)
99 {
100 int err;
101
102 while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
103 if (err != -ENOMEM)
104 return err;
105 if (size <= PAGE_SIZE)
106 return -ENOMEM;
107 size >>= 1;
108 size = PAGE_SIZE << get_order(size);
109 }
110 if (! dmab->area)
111 return -ENOMEM;
112 return 0;
113 }
114 EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
115
116 /**
117 * snd_dma_free_pages - release the allocated buffer
118 * @dmab: the buffer allocation record to release
119 *
120 * Releases the allocated buffer via snd_dma_alloc_pages().
121 */
snd_dma_free_pages(struct snd_dma_buffer * dmab)122 void snd_dma_free_pages(struct snd_dma_buffer *dmab)
123 {
124 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
125
126 if (ops && ops->free)
127 ops->free(dmab);
128 }
129 EXPORT_SYMBOL(snd_dma_free_pages);
130
131 /* called by devres */
__snd_release_pages(struct device * dev,void * res)132 static void __snd_release_pages(struct device *dev, void *res)
133 {
134 snd_dma_free_pages(res);
135 }
136
137 /**
138 * snd_devm_alloc_dir_pages - allocate the buffer and manage with devres
139 * @dev: the device pointer
140 * @type: the DMA buffer type
141 * @dir: DMA direction
142 * @size: the buffer size to allocate
143 *
144 * Allocate buffer pages depending on the given type and manage using devres.
145 * The pages will be released automatically at the device removal.
146 *
147 * Unlike snd_dma_alloc_pages(), this function requires the real device pointer,
148 * hence it can't work with SNDRV_DMA_TYPE_CONTINUOUS or
149 * SNDRV_DMA_TYPE_VMALLOC type.
150 *
151 * Return: the snd_dma_buffer object at success, or NULL if failed
152 */
153 struct snd_dma_buffer *
snd_devm_alloc_dir_pages(struct device * dev,int type,enum dma_data_direction dir,size_t size)154 snd_devm_alloc_dir_pages(struct device *dev, int type,
155 enum dma_data_direction dir, size_t size)
156 {
157 struct snd_dma_buffer *dmab;
158 int err;
159
160 if (WARN_ON(type == SNDRV_DMA_TYPE_CONTINUOUS ||
161 type == SNDRV_DMA_TYPE_VMALLOC))
162 return NULL;
163
164 dmab = devres_alloc(__snd_release_pages, sizeof(*dmab), GFP_KERNEL);
165 if (!dmab)
166 return NULL;
167
168 err = snd_dma_alloc_dir_pages(type, dev, dir, size, dmab);
169 if (err < 0) {
170 devres_free(dmab);
171 return NULL;
172 }
173
174 devres_add(dev, dmab);
175 return dmab;
176 }
177 EXPORT_SYMBOL_GPL(snd_devm_alloc_dir_pages);
178
179 /**
180 * snd_dma_buffer_mmap - perform mmap of the given DMA buffer
181 * @dmab: buffer allocation information
182 * @area: VM area information
183 *
184 * Return: zero if successful, or a negative error code
185 */
snd_dma_buffer_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)186 int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab,
187 struct vm_area_struct *area)
188 {
189 const struct snd_malloc_ops *ops;
190
191 if (!dmab)
192 return -ENOENT;
193 ops = snd_dma_get_ops(dmab);
194 if (ops && ops->mmap)
195 return ops->mmap(dmab, area);
196 else
197 return -ENOENT;
198 }
199 EXPORT_SYMBOL(snd_dma_buffer_mmap);
200
201 #ifdef CONFIG_HAS_DMA
202 /**
203 * snd_dma_buffer_sync - sync DMA buffer between CPU and device
204 * @dmab: buffer allocation information
205 * @mode: sync mode
206 */
snd_dma_buffer_sync(struct snd_dma_buffer * dmab,enum snd_dma_sync_mode mode)207 void snd_dma_buffer_sync(struct snd_dma_buffer *dmab,
208 enum snd_dma_sync_mode mode)
209 {
210 const struct snd_malloc_ops *ops;
211
212 if (!dmab || !dmab->dev.need_sync)
213 return;
214 ops = snd_dma_get_ops(dmab);
215 if (ops && ops->sync)
216 ops->sync(dmab, mode);
217 }
218 EXPORT_SYMBOL_GPL(snd_dma_buffer_sync);
219 #endif /* CONFIG_HAS_DMA */
220
221 /**
222 * snd_sgbuf_get_addr - return the physical address at the corresponding offset
223 * @dmab: buffer allocation information
224 * @offset: offset in the ring buffer
225 *
226 * Return: the physical address
227 */
snd_sgbuf_get_addr(struct snd_dma_buffer * dmab,size_t offset)228 dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset)
229 {
230 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
231
232 if (ops && ops->get_addr)
233 return ops->get_addr(dmab, offset);
234 else
235 return dmab->addr + offset;
236 }
237 EXPORT_SYMBOL(snd_sgbuf_get_addr);
238
239 /**
240 * snd_sgbuf_get_page - return the physical page at the corresponding offset
241 * @dmab: buffer allocation information
242 * @offset: offset in the ring buffer
243 *
244 * Return: the page pointer
245 */
snd_sgbuf_get_page(struct snd_dma_buffer * dmab,size_t offset)246 struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset)
247 {
248 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
249
250 if (ops && ops->get_page)
251 return ops->get_page(dmab, offset);
252 else
253 return virt_to_page(dmab->area + offset);
254 }
255 EXPORT_SYMBOL(snd_sgbuf_get_page);
256
257 /**
258 * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages
259 * on sg-buffer
260 * @dmab: buffer allocation information
261 * @ofs: offset in the ring buffer
262 * @size: the requested size
263 *
264 * Return: the chunk size
265 */
snd_sgbuf_get_chunk_size(struct snd_dma_buffer * dmab,unsigned int ofs,unsigned int size)266 unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab,
267 unsigned int ofs, unsigned int size)
268 {
269 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
270
271 if (ops && ops->get_chunk_size)
272 return ops->get_chunk_size(dmab, ofs, size);
273 else
274 return size;
275 }
276 EXPORT_SYMBOL(snd_sgbuf_get_chunk_size);
277
278 /*
279 * Continuous pages allocator
280 */
do_alloc_pages(struct device * dev,size_t size,dma_addr_t * addr,bool wc)281 static void *do_alloc_pages(struct device *dev, size_t size, dma_addr_t *addr,
282 bool wc)
283 {
284 void *p;
285 gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
286
287 again:
288 p = alloc_pages_exact(size, gfp);
289 if (!p)
290 return NULL;
291 *addr = page_to_phys(virt_to_page(p));
292 if (!dev)
293 return p;
294 if ((*addr + size - 1) & ~dev->coherent_dma_mask) {
295 if (IS_ENABLED(CONFIG_ZONE_DMA32) && !(gfp & GFP_DMA32)) {
296 gfp |= GFP_DMA32;
297 goto again;
298 }
299 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
300 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
301 goto again;
302 }
303 }
304 #ifdef CONFIG_X86
305 if (wc)
306 set_memory_wc((unsigned long)(p), size >> PAGE_SHIFT);
307 #endif
308 return p;
309 }
310
do_free_pages(void * p,size_t size,bool wc)311 static void do_free_pages(void *p, size_t size, bool wc)
312 {
313 #ifdef CONFIG_X86
314 if (wc)
315 set_memory_wb((unsigned long)(p), size >> PAGE_SHIFT);
316 #endif
317 free_pages_exact(p, size);
318 }
319
320
snd_dma_continuous_alloc(struct snd_dma_buffer * dmab,size_t size)321 static void *snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size)
322 {
323 return do_alloc_pages(dmab->dev.dev, size, &dmab->addr, false);
324 }
325
snd_dma_continuous_free(struct snd_dma_buffer * dmab)326 static void snd_dma_continuous_free(struct snd_dma_buffer *dmab)
327 {
328 do_free_pages(dmab->area, dmab->bytes, false);
329 }
330
snd_dma_continuous_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)331 static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab,
332 struct vm_area_struct *area)
333 {
334 return remap_pfn_range(area, area->vm_start,
335 dmab->addr >> PAGE_SHIFT,
336 area->vm_end - area->vm_start,
337 area->vm_page_prot);
338 }
339
340 static const struct snd_malloc_ops snd_dma_continuous_ops = {
341 .alloc = snd_dma_continuous_alloc,
342 .free = snd_dma_continuous_free,
343 .mmap = snd_dma_continuous_mmap,
344 };
345
346 /*
347 * VMALLOC allocator
348 */
snd_dma_vmalloc_alloc(struct snd_dma_buffer * dmab,size_t size)349 static void *snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size)
350 {
351 return vmalloc(size);
352 }
353
snd_dma_vmalloc_free(struct snd_dma_buffer * dmab)354 static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab)
355 {
356 vfree(dmab->area);
357 }
358
snd_dma_vmalloc_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)359 static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab,
360 struct vm_area_struct *area)
361 {
362 return remap_vmalloc_range(area, dmab->area, 0);
363 }
364
365 #define get_vmalloc_page_addr(dmab, offset) \
366 page_to_phys(vmalloc_to_page((dmab)->area + (offset)))
367
snd_dma_vmalloc_get_addr(struct snd_dma_buffer * dmab,size_t offset)368 static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab,
369 size_t offset)
370 {
371 return get_vmalloc_page_addr(dmab, offset) + offset % PAGE_SIZE;
372 }
373
snd_dma_vmalloc_get_page(struct snd_dma_buffer * dmab,size_t offset)374 static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab,
375 size_t offset)
376 {
377 return vmalloc_to_page(dmab->area + offset);
378 }
379
380 static unsigned int
snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer * dmab,unsigned int ofs,unsigned int size)381 snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab,
382 unsigned int ofs, unsigned int size)
383 {
384 unsigned int start, end;
385 unsigned long addr;
386
387 start = ALIGN_DOWN(ofs, PAGE_SIZE);
388 end = ofs + size - 1; /* the last byte address */
389 /* check page continuity */
390 addr = get_vmalloc_page_addr(dmab, start);
391 for (;;) {
392 start += PAGE_SIZE;
393 if (start > end)
394 break;
395 addr += PAGE_SIZE;
396 if (get_vmalloc_page_addr(dmab, start) != addr)
397 return start - ofs;
398 }
399 /* ok, all on continuous pages */
400 return size;
401 }
402
403 static const struct snd_malloc_ops snd_dma_vmalloc_ops = {
404 .alloc = snd_dma_vmalloc_alloc,
405 .free = snd_dma_vmalloc_free,
406 .mmap = snd_dma_vmalloc_mmap,
407 .get_addr = snd_dma_vmalloc_get_addr,
408 .get_page = snd_dma_vmalloc_get_page,
409 .get_chunk_size = snd_dma_vmalloc_get_chunk_size,
410 };
411
412 #ifdef CONFIG_HAS_DMA
413 /*
414 * IRAM allocator
415 */
416 #ifdef CONFIG_GENERIC_ALLOCATOR
snd_dma_iram_alloc(struct snd_dma_buffer * dmab,size_t size)417 static void *snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size)
418 {
419 struct device *dev = dmab->dev.dev;
420 struct gen_pool *pool;
421 void *p;
422
423 if (dev->of_node) {
424 pool = of_gen_pool_get(dev->of_node, "iram", 0);
425 /* Assign the pool into private_data field */
426 dmab->private_data = pool;
427
428 p = gen_pool_dma_alloc_align(pool, size, &dmab->addr, PAGE_SIZE);
429 if (p)
430 return p;
431 }
432
433 /* Internal memory might have limited size and no enough space,
434 * so if we fail to malloc, try to fetch memory traditionally.
435 */
436 dmab->dev.type = SNDRV_DMA_TYPE_DEV;
437 return __snd_dma_alloc_pages(dmab, size);
438 }
439
snd_dma_iram_free(struct snd_dma_buffer * dmab)440 static void snd_dma_iram_free(struct snd_dma_buffer *dmab)
441 {
442 struct gen_pool *pool = dmab->private_data;
443
444 if (pool && dmab->area)
445 gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes);
446 }
447
snd_dma_iram_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)448 static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab,
449 struct vm_area_struct *area)
450 {
451 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
452 return remap_pfn_range(area, area->vm_start,
453 dmab->addr >> PAGE_SHIFT,
454 area->vm_end - area->vm_start,
455 area->vm_page_prot);
456 }
457
458 static const struct snd_malloc_ops snd_dma_iram_ops = {
459 .alloc = snd_dma_iram_alloc,
460 .free = snd_dma_iram_free,
461 .mmap = snd_dma_iram_mmap,
462 };
463 #endif /* CONFIG_GENERIC_ALLOCATOR */
464
465 /*
466 * Coherent device pages allocator
467 */
snd_dma_dev_alloc(struct snd_dma_buffer * dmab,size_t size)468 static void *snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size)
469 {
470 return dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
471 }
472
snd_dma_dev_free(struct snd_dma_buffer * dmab)473 static void snd_dma_dev_free(struct snd_dma_buffer *dmab)
474 {
475 dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
476 }
477
snd_dma_dev_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)478 static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab,
479 struct vm_area_struct *area)
480 {
481 return dma_mmap_coherent(dmab->dev.dev, area,
482 dmab->area, dmab->addr, dmab->bytes);
483 }
484
485 static const struct snd_malloc_ops snd_dma_dev_ops = {
486 .alloc = snd_dma_dev_alloc,
487 .free = snd_dma_dev_free,
488 .mmap = snd_dma_dev_mmap,
489 };
490
491 /*
492 * Write-combined pages
493 */
494 /* x86-specific allocations */
495 #ifdef CONFIG_SND_DMA_SGBUF
snd_dma_wc_alloc(struct snd_dma_buffer * dmab,size_t size)496 static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
497 {
498 return do_alloc_pages(dmab->dev.dev, size, &dmab->addr, true);
499 }
500
snd_dma_wc_free(struct snd_dma_buffer * dmab)501 static void snd_dma_wc_free(struct snd_dma_buffer *dmab)
502 {
503 do_free_pages(dmab->area, dmab->bytes, true);
504 }
505
snd_dma_wc_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)506 static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab,
507 struct vm_area_struct *area)
508 {
509 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
510 return snd_dma_continuous_mmap(dmab, area);
511 }
512 #else
snd_dma_wc_alloc(struct snd_dma_buffer * dmab,size_t size)513 static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
514 {
515 return dma_alloc_wc(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
516 }
517
snd_dma_wc_free(struct snd_dma_buffer * dmab)518 static void snd_dma_wc_free(struct snd_dma_buffer *dmab)
519 {
520 dma_free_wc(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
521 }
522
snd_dma_wc_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)523 static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab,
524 struct vm_area_struct *area)
525 {
526 return dma_mmap_wc(dmab->dev.dev, area,
527 dmab->area, dmab->addr, dmab->bytes);
528 }
529 #endif /* CONFIG_SND_DMA_SGBUF */
530
531 static const struct snd_malloc_ops snd_dma_wc_ops = {
532 .alloc = snd_dma_wc_alloc,
533 .free = snd_dma_wc_free,
534 .mmap = snd_dma_wc_mmap,
535 };
536
537 /*
538 * Non-contiguous pages allocator
539 */
snd_dma_noncontig_alloc(struct snd_dma_buffer * dmab,size_t size)540 static void *snd_dma_noncontig_alloc(struct snd_dma_buffer *dmab, size_t size)
541 {
542 struct sg_table *sgt;
543 void *p;
544
545 sgt = dma_alloc_noncontiguous(dmab->dev.dev, size, dmab->dev.dir,
546 DEFAULT_GFP, 0);
547 #ifdef CONFIG_SND_DMA_SGBUF
548 if (!sgt && !get_dma_ops(dmab->dev.dev)) {
549 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG)
550 dmab->dev.type = SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK;
551 else
552 dmab->dev.type = SNDRV_DMA_TYPE_DEV_SG_FALLBACK;
553 return snd_dma_sg_fallback_alloc(dmab, size);
554 }
555 #endif
556 if (!sgt)
557 return NULL;
558
559 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev,
560 sg_dma_address(sgt->sgl));
561 p = dma_vmap_noncontiguous(dmab->dev.dev, size, sgt);
562 if (p) {
563 dmab->private_data = sgt;
564 /* store the first page address for convenience */
565 dmab->addr = snd_sgbuf_get_addr(dmab, 0);
566 } else {
567 dma_free_noncontiguous(dmab->dev.dev, size, sgt, dmab->dev.dir);
568 }
569 return p;
570 }
571
snd_dma_noncontig_free(struct snd_dma_buffer * dmab)572 static void snd_dma_noncontig_free(struct snd_dma_buffer *dmab)
573 {
574 dma_vunmap_noncontiguous(dmab->dev.dev, dmab->area);
575 dma_free_noncontiguous(dmab->dev.dev, dmab->bytes, dmab->private_data,
576 dmab->dev.dir);
577 }
578
snd_dma_noncontig_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)579 static int snd_dma_noncontig_mmap(struct snd_dma_buffer *dmab,
580 struct vm_area_struct *area)
581 {
582 return dma_mmap_noncontiguous(dmab->dev.dev, area,
583 dmab->bytes, dmab->private_data);
584 }
585
snd_dma_noncontig_sync(struct snd_dma_buffer * dmab,enum snd_dma_sync_mode mode)586 static void snd_dma_noncontig_sync(struct snd_dma_buffer *dmab,
587 enum snd_dma_sync_mode mode)
588 {
589 if (mode == SNDRV_DMA_SYNC_CPU) {
590 if (dmab->dev.dir == DMA_TO_DEVICE)
591 return;
592 invalidate_kernel_vmap_range(dmab->area, dmab->bytes);
593 dma_sync_sgtable_for_cpu(dmab->dev.dev, dmab->private_data,
594 dmab->dev.dir);
595 } else {
596 if (dmab->dev.dir == DMA_FROM_DEVICE)
597 return;
598 flush_kernel_vmap_range(dmab->area, dmab->bytes);
599 dma_sync_sgtable_for_device(dmab->dev.dev, dmab->private_data,
600 dmab->dev.dir);
601 }
602 }
603
snd_dma_noncontig_iter_set(struct snd_dma_buffer * dmab,struct sg_page_iter * piter,size_t offset)604 static inline void snd_dma_noncontig_iter_set(struct snd_dma_buffer *dmab,
605 struct sg_page_iter *piter,
606 size_t offset)
607 {
608 struct sg_table *sgt = dmab->private_data;
609
610 __sg_page_iter_start(piter, sgt->sgl, sgt->orig_nents,
611 offset >> PAGE_SHIFT);
612 }
613
snd_dma_noncontig_get_addr(struct snd_dma_buffer * dmab,size_t offset)614 static dma_addr_t snd_dma_noncontig_get_addr(struct snd_dma_buffer *dmab,
615 size_t offset)
616 {
617 struct sg_dma_page_iter iter;
618
619 snd_dma_noncontig_iter_set(dmab, &iter.base, offset);
620 __sg_page_iter_dma_next(&iter);
621 return sg_page_iter_dma_address(&iter) + offset % PAGE_SIZE;
622 }
623
snd_dma_noncontig_get_page(struct snd_dma_buffer * dmab,size_t offset)624 static struct page *snd_dma_noncontig_get_page(struct snd_dma_buffer *dmab,
625 size_t offset)
626 {
627 struct sg_page_iter iter;
628
629 snd_dma_noncontig_iter_set(dmab, &iter, offset);
630 __sg_page_iter_next(&iter);
631 return sg_page_iter_page(&iter);
632 }
633
634 static unsigned int
snd_dma_noncontig_get_chunk_size(struct snd_dma_buffer * dmab,unsigned int ofs,unsigned int size)635 snd_dma_noncontig_get_chunk_size(struct snd_dma_buffer *dmab,
636 unsigned int ofs, unsigned int size)
637 {
638 struct sg_dma_page_iter iter;
639 unsigned int start, end;
640 unsigned long addr;
641
642 start = ALIGN_DOWN(ofs, PAGE_SIZE);
643 end = ofs + size - 1; /* the last byte address */
644 snd_dma_noncontig_iter_set(dmab, &iter.base, start);
645 if (!__sg_page_iter_dma_next(&iter))
646 return 0;
647 /* check page continuity */
648 addr = sg_page_iter_dma_address(&iter);
649 for (;;) {
650 start += PAGE_SIZE;
651 if (start > end)
652 break;
653 addr += PAGE_SIZE;
654 if (!__sg_page_iter_dma_next(&iter) ||
655 sg_page_iter_dma_address(&iter) != addr)
656 return start - ofs;
657 }
658 /* ok, all on continuous pages */
659 return size;
660 }
661
662 static const struct snd_malloc_ops snd_dma_noncontig_ops = {
663 .alloc = snd_dma_noncontig_alloc,
664 .free = snd_dma_noncontig_free,
665 .mmap = snd_dma_noncontig_mmap,
666 .sync = snd_dma_noncontig_sync,
667 .get_addr = snd_dma_noncontig_get_addr,
668 .get_page = snd_dma_noncontig_get_page,
669 .get_chunk_size = snd_dma_noncontig_get_chunk_size,
670 };
671
672 /* x86-specific SG-buffer with WC pages */
673 #ifdef CONFIG_SND_DMA_SGBUF
674 #define sg_wc_address(it) ((unsigned long)page_address(sg_page_iter_page(it)))
675
snd_dma_sg_wc_alloc(struct snd_dma_buffer * dmab,size_t size)676 static void *snd_dma_sg_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
677 {
678 void *p = snd_dma_noncontig_alloc(dmab, size);
679 struct sg_table *sgt = dmab->private_data;
680 struct sg_page_iter iter;
681
682 if (!p)
683 return NULL;
684 if (dmab->dev.type != SNDRV_DMA_TYPE_DEV_WC_SG)
685 return p;
686 for_each_sgtable_page(sgt, &iter, 0)
687 set_memory_wc(sg_wc_address(&iter), 1);
688 return p;
689 }
690
snd_dma_sg_wc_free(struct snd_dma_buffer * dmab)691 static void snd_dma_sg_wc_free(struct snd_dma_buffer *dmab)
692 {
693 struct sg_table *sgt = dmab->private_data;
694 struct sg_page_iter iter;
695
696 for_each_sgtable_page(sgt, &iter, 0)
697 set_memory_wb(sg_wc_address(&iter), 1);
698 snd_dma_noncontig_free(dmab);
699 }
700
snd_dma_sg_wc_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)701 static int snd_dma_sg_wc_mmap(struct snd_dma_buffer *dmab,
702 struct vm_area_struct *area)
703 {
704 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
705 return dma_mmap_noncontiguous(dmab->dev.dev, area,
706 dmab->bytes, dmab->private_data);
707 }
708
709 static const struct snd_malloc_ops snd_dma_sg_wc_ops = {
710 .alloc = snd_dma_sg_wc_alloc,
711 .free = snd_dma_sg_wc_free,
712 .mmap = snd_dma_sg_wc_mmap,
713 .sync = snd_dma_noncontig_sync,
714 .get_addr = snd_dma_noncontig_get_addr,
715 .get_page = snd_dma_noncontig_get_page,
716 .get_chunk_size = snd_dma_noncontig_get_chunk_size,
717 };
718
719 /* Fallback SG-buffer allocations for x86 */
720 struct snd_dma_sg_fallback {
721 size_t count;
722 struct page **pages;
723 };
724
__snd_dma_sg_fallback_free(struct snd_dma_buffer * dmab,struct snd_dma_sg_fallback * sgbuf)725 static void __snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab,
726 struct snd_dma_sg_fallback *sgbuf)
727 {
728 bool wc = dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK;
729 size_t i;
730
731 for (i = 0; i < sgbuf->count && sgbuf->pages[i]; i++)
732 do_free_pages(page_address(sgbuf->pages[i]), PAGE_SIZE, wc);
733 kvfree(sgbuf->pages);
734 kfree(sgbuf);
735 }
736
snd_dma_sg_fallback_alloc(struct snd_dma_buffer * dmab,size_t size)737 static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size)
738 {
739 struct snd_dma_sg_fallback *sgbuf;
740 struct page **pagep, *curp;
741 size_t chunk, npages;
742 dma_addr_t addr;
743 void *p;
744 bool wc = dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK;
745
746 sgbuf = kzalloc(sizeof(*sgbuf), GFP_KERNEL);
747 if (!sgbuf)
748 return NULL;
749 size = PAGE_ALIGN(size);
750 sgbuf->count = size >> PAGE_SHIFT;
751 sgbuf->pages = kvcalloc(sgbuf->count, sizeof(*sgbuf->pages), GFP_KERNEL);
752 if (!sgbuf->pages)
753 goto error;
754
755 pagep = sgbuf->pages;
756 chunk = size;
757 while (size > 0) {
758 chunk = min(size, chunk);
759 p = do_alloc_pages(dmab->dev.dev, chunk, &addr, wc);
760 if (!p) {
761 if (chunk <= PAGE_SIZE)
762 goto error;
763 chunk >>= 1;
764 chunk = PAGE_SIZE << get_order(chunk);
765 continue;
766 }
767
768 size -= chunk;
769 /* fill pages */
770 npages = chunk >> PAGE_SHIFT;
771 curp = virt_to_page(p);
772 while (npages--)
773 *pagep++ = curp++;
774 }
775
776 p = vmap(sgbuf->pages, sgbuf->count, VM_MAP, PAGE_KERNEL);
777 if (!p)
778 goto error;
779 dmab->private_data = sgbuf;
780 /* store the first page address for convenience */
781 dmab->addr = snd_sgbuf_get_addr(dmab, 0);
782 return p;
783
784 error:
785 __snd_dma_sg_fallback_free(dmab, sgbuf);
786 return NULL;
787 }
788
snd_dma_sg_fallback_free(struct snd_dma_buffer * dmab)789 static void snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab)
790 {
791 vunmap(dmab->area);
792 __snd_dma_sg_fallback_free(dmab, dmab->private_data);
793 }
794
snd_dma_sg_fallback_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)795 static int snd_dma_sg_fallback_mmap(struct snd_dma_buffer *dmab,
796 struct vm_area_struct *area)
797 {
798 struct snd_dma_sg_fallback *sgbuf = dmab->private_data;
799
800 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK)
801 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
802 return vm_map_pages(area, sgbuf->pages, sgbuf->count);
803 }
804
805 static const struct snd_malloc_ops snd_dma_sg_fallback_ops = {
806 .alloc = snd_dma_sg_fallback_alloc,
807 .free = snd_dma_sg_fallback_free,
808 .mmap = snd_dma_sg_fallback_mmap,
809 /* reuse vmalloc helpers */
810 .get_addr = snd_dma_vmalloc_get_addr,
811 .get_page = snd_dma_vmalloc_get_page,
812 .get_chunk_size = snd_dma_vmalloc_get_chunk_size,
813 };
814 #endif /* CONFIG_SND_DMA_SGBUF */
815
816 /*
817 * Non-coherent pages allocator
818 */
snd_dma_noncoherent_alloc(struct snd_dma_buffer * dmab,size_t size)819 static void *snd_dma_noncoherent_alloc(struct snd_dma_buffer *dmab, size_t size)
820 {
821 void *p;
822
823 p = dma_alloc_noncoherent(dmab->dev.dev, size, &dmab->addr,
824 dmab->dev.dir, DEFAULT_GFP);
825 if (p)
826 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->addr);
827 return p;
828 }
829
snd_dma_noncoherent_free(struct snd_dma_buffer * dmab)830 static void snd_dma_noncoherent_free(struct snd_dma_buffer *dmab)
831 {
832 dma_free_noncoherent(dmab->dev.dev, dmab->bytes, dmab->area,
833 dmab->addr, dmab->dev.dir);
834 }
835
snd_dma_noncoherent_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)836 static int snd_dma_noncoherent_mmap(struct snd_dma_buffer *dmab,
837 struct vm_area_struct *area)
838 {
839 area->vm_page_prot = vm_get_page_prot(area->vm_flags);
840 return dma_mmap_pages(dmab->dev.dev, area,
841 area->vm_end - area->vm_start,
842 virt_to_page(dmab->area));
843 }
844
snd_dma_noncoherent_sync(struct snd_dma_buffer * dmab,enum snd_dma_sync_mode mode)845 static void snd_dma_noncoherent_sync(struct snd_dma_buffer *dmab,
846 enum snd_dma_sync_mode mode)
847 {
848 if (mode == SNDRV_DMA_SYNC_CPU) {
849 if (dmab->dev.dir != DMA_TO_DEVICE)
850 dma_sync_single_for_cpu(dmab->dev.dev, dmab->addr,
851 dmab->bytes, dmab->dev.dir);
852 } else {
853 if (dmab->dev.dir != DMA_FROM_DEVICE)
854 dma_sync_single_for_device(dmab->dev.dev, dmab->addr,
855 dmab->bytes, dmab->dev.dir);
856 }
857 }
858
859 static const struct snd_malloc_ops snd_dma_noncoherent_ops = {
860 .alloc = snd_dma_noncoherent_alloc,
861 .free = snd_dma_noncoherent_free,
862 .mmap = snd_dma_noncoherent_mmap,
863 .sync = snd_dma_noncoherent_sync,
864 };
865
866 #endif /* CONFIG_HAS_DMA */
867
868 /*
869 * Entry points
870 */
871 static const struct snd_malloc_ops *snd_dma_ops[] = {
872 [SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops,
873 [SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops,
874 #ifdef CONFIG_HAS_DMA
875 [SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops,
876 [SNDRV_DMA_TYPE_DEV_WC] = &snd_dma_wc_ops,
877 [SNDRV_DMA_TYPE_NONCONTIG] = &snd_dma_noncontig_ops,
878 [SNDRV_DMA_TYPE_NONCOHERENT] = &snd_dma_noncoherent_ops,
879 #ifdef CONFIG_SND_DMA_SGBUF
880 [SNDRV_DMA_TYPE_DEV_WC_SG] = &snd_dma_sg_wc_ops,
881 #endif
882 #ifdef CONFIG_GENERIC_ALLOCATOR
883 [SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops,
884 #endif /* CONFIG_GENERIC_ALLOCATOR */
885 #ifdef CONFIG_SND_DMA_SGBUF
886 [SNDRV_DMA_TYPE_DEV_SG_FALLBACK] = &snd_dma_sg_fallback_ops,
887 [SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK] = &snd_dma_sg_fallback_ops,
888 #endif
889 #endif /* CONFIG_HAS_DMA */
890 };
891
snd_dma_get_ops(struct snd_dma_buffer * dmab)892 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab)
893 {
894 if (WARN_ON_ONCE(!dmab))
895 return NULL;
896 if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN ||
897 dmab->dev.type >= ARRAY_SIZE(snd_dma_ops)))
898 return NULL;
899 return snd_dma_ops[dmab->dev.type];
900 }
901