1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/info.h>
30 #include <sound/pcm.h>
31 #include <sound/pcm_params.h>
32 #include <sound/timer.h>
33
34 /*
35 * fill ring buffer with silence
36 * runtime->silence_start: starting pointer to silence area
37 * runtime->silence_filled: size filled with silence
38 * runtime->silence_threshold: threshold from application
39 * runtime->silence_size: maximal size from application
40 *
41 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
42 */
snd_pcm_playback_silence(struct snd_pcm_substream * substream,snd_pcm_uframes_t new_hw_ptr)43 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
44 {
45 struct snd_pcm_runtime *runtime = substream->runtime;
46 snd_pcm_uframes_t frames, ofs, transfer;
47
48 if (runtime->silence_size < runtime->boundary) {
49 snd_pcm_sframes_t noise_dist, n;
50 if (runtime->silence_start != runtime->control->appl_ptr) {
51 n = runtime->control->appl_ptr - runtime->silence_start;
52 if (n < 0)
53 n += runtime->boundary;
54 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
55 runtime->silence_filled -= n;
56 else
57 runtime->silence_filled = 0;
58 runtime->silence_start = runtime->control->appl_ptr;
59 }
60 if (runtime->silence_filled >= runtime->buffer_size)
61 return;
62 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
63 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
64 return;
65 frames = runtime->silence_threshold - noise_dist;
66 if (frames > runtime->silence_size)
67 frames = runtime->silence_size;
68 } else {
69 if (new_hw_ptr == ULONG_MAX) { /* initialization */
70 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
71 if (avail > runtime->buffer_size)
72 avail = runtime->buffer_size;
73 runtime->silence_filled = avail > 0 ? avail : 0;
74 runtime->silence_start = (runtime->status->hw_ptr +
75 runtime->silence_filled) %
76 runtime->boundary;
77 } else {
78 ofs = runtime->status->hw_ptr;
79 frames = new_hw_ptr - ofs;
80 if ((snd_pcm_sframes_t)frames < 0)
81 frames += runtime->boundary;
82 runtime->silence_filled -= frames;
83 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
84 runtime->silence_filled = 0;
85 runtime->silence_start = new_hw_ptr;
86 } else {
87 runtime->silence_start = ofs;
88 }
89 }
90 frames = runtime->buffer_size - runtime->silence_filled;
91 }
92 if (snd_BUG_ON(frames > runtime->buffer_size))
93 return;
94 if (frames == 0)
95 return;
96 ofs = runtime->silence_start % runtime->buffer_size;
97 while (frames > 0) {
98 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
99 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
100 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
101 if (substream->ops->silence) {
102 int err;
103 err = substream->ops->silence(substream, -1, ofs, transfer);
104 snd_BUG_ON(err < 0);
105 } else {
106 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
107 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
108 }
109 } else {
110 unsigned int c;
111 unsigned int channels = runtime->channels;
112 if (substream->ops->silence) {
113 for (c = 0; c < channels; ++c) {
114 int err;
115 err = substream->ops->silence(substream, c, ofs, transfer);
116 snd_BUG_ON(err < 0);
117 }
118 } else {
119 size_t dma_csize = runtime->dma_bytes / channels;
120 for (c = 0; c < channels; ++c) {
121 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
122 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
123 }
124 }
125 }
126 runtime->silence_filled += transfer;
127 frames -= transfer;
128 ofs = 0;
129 }
130 }
131
132 #ifdef CONFIG_SND_DEBUG
snd_pcm_debug_name(struct snd_pcm_substream * substream,char * name,size_t len)133 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
134 char *name, size_t len)
135 {
136 snprintf(name, len, "pcmC%dD%d%c:%d",
137 substream->pcm->card->number,
138 substream->pcm->device,
139 substream->stream ? 'c' : 'p',
140 substream->number);
141 }
142 EXPORT_SYMBOL(snd_pcm_debug_name);
143 #endif
144
145 #define XRUN_DEBUG_BASIC (1<<0)
146 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
147 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
148 #define XRUN_DEBUG_PERIODUPDATE (1<<3) /* full period update info */
149 #define XRUN_DEBUG_HWPTRUPDATE (1<<4) /* full hwptr update info */
150 #define XRUN_DEBUG_LOG (1<<5) /* show last 10 positions on err */
151 #define XRUN_DEBUG_LOGONCE (1<<6) /* do above only once */
152
153 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
154
155 #define xrun_debug(substream, mask) \
156 ((substream)->pstr->xrun_debug & (mask))
157 #else
158 #define xrun_debug(substream, mask) 0
159 #endif
160
161 #define dump_stack_on_xrun(substream) do { \
162 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
163 dump_stack(); \
164 } while (0)
165
xrun(struct snd_pcm_substream * substream)166 static void xrun(struct snd_pcm_substream *substream)
167 {
168 struct snd_pcm_runtime *runtime = substream->runtime;
169
170 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
171 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
172 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
173 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
174 char name[16];
175 snd_pcm_debug_name(substream, name, sizeof(name));
176 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
177 dump_stack_on_xrun(substream);
178 }
179 }
180
181 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
182 #define hw_ptr_error(substream, fmt, args...) \
183 do { \
184 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
185 xrun_log_show(substream); \
186 if (printk_ratelimit()) { \
187 snd_printd("PCM: " fmt, ##args); \
188 } \
189 dump_stack_on_xrun(substream); \
190 } \
191 } while (0)
192
193 #define XRUN_LOG_CNT 10
194
195 struct hwptr_log_entry {
196 unsigned int in_interrupt;
197 unsigned long jiffies;
198 snd_pcm_uframes_t pos;
199 snd_pcm_uframes_t period_size;
200 snd_pcm_uframes_t buffer_size;
201 snd_pcm_uframes_t old_hw_ptr;
202 snd_pcm_uframes_t hw_ptr_base;
203 };
204
205 struct snd_pcm_hwptr_log {
206 unsigned int idx;
207 unsigned int hit: 1;
208 struct hwptr_log_entry entries[XRUN_LOG_CNT];
209 };
210
xrun_log(struct snd_pcm_substream * substream,snd_pcm_uframes_t pos,int in_interrupt)211 static void xrun_log(struct snd_pcm_substream *substream,
212 snd_pcm_uframes_t pos, int in_interrupt)
213 {
214 struct snd_pcm_runtime *runtime = substream->runtime;
215 struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
216 struct hwptr_log_entry *entry;
217
218 if (log == NULL) {
219 log = kzalloc(sizeof(*log), GFP_ATOMIC);
220 if (log == NULL)
221 return;
222 runtime->hwptr_log = log;
223 } else {
224 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
225 return;
226 }
227 entry = &log->entries[log->idx];
228 entry->in_interrupt = in_interrupt;
229 entry->jiffies = jiffies;
230 entry->pos = pos;
231 entry->period_size = runtime->period_size;
232 entry->buffer_size = runtime->buffer_size;
233 entry->old_hw_ptr = runtime->status->hw_ptr;
234 entry->hw_ptr_base = runtime->hw_ptr_base;
235 log->idx = (log->idx + 1) % XRUN_LOG_CNT;
236 }
237
xrun_log_show(struct snd_pcm_substream * substream)238 static void xrun_log_show(struct snd_pcm_substream *substream)
239 {
240 struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
241 struct hwptr_log_entry *entry;
242 char name[16];
243 unsigned int idx;
244 int cnt;
245
246 if (log == NULL)
247 return;
248 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
249 return;
250 snd_pcm_debug_name(substream, name, sizeof(name));
251 for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
252 entry = &log->entries[idx];
253 if (entry->period_size == 0)
254 break;
255 snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
256 "hwptr=%ld/%ld\n",
257 name, entry->in_interrupt ? "[Q] " : "",
258 entry->jiffies,
259 (unsigned long)entry->pos,
260 (unsigned long)entry->period_size,
261 (unsigned long)entry->buffer_size,
262 (unsigned long)entry->old_hw_ptr,
263 (unsigned long)entry->hw_ptr_base);
264 idx++;
265 idx %= XRUN_LOG_CNT;
266 }
267 log->hit = 1;
268 }
269
270 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
271
272 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
273 #define xrun_log(substream, pos, in_interrupt) do { } while (0)
274 #define xrun_log_show(substream) do { } while (0)
275
276 #endif
277
snd_pcm_update_state(struct snd_pcm_substream * substream,struct snd_pcm_runtime * runtime)278 int snd_pcm_update_state(struct snd_pcm_substream *substream,
279 struct snd_pcm_runtime *runtime)
280 {
281 snd_pcm_uframes_t avail;
282
283 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
284 avail = snd_pcm_playback_avail(runtime);
285 else
286 avail = snd_pcm_capture_avail(runtime);
287 if (avail > runtime->avail_max)
288 runtime->avail_max = avail;
289 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
290 if (avail >= runtime->buffer_size) {
291 snd_pcm_drain_done(substream);
292 return -EPIPE;
293 }
294 } else {
295 if (avail >= runtime->stop_threshold) {
296 xrun(substream);
297 return -EPIPE;
298 }
299 }
300 if (runtime->twake) {
301 if (avail >= runtime->twake)
302 wake_up(&runtime->tsleep);
303 } else if (avail >= runtime->control->avail_min)
304 wake_up(&runtime->sleep);
305 return 0;
306 }
307
snd_pcm_update_hw_ptr0(struct snd_pcm_substream * substream,unsigned int in_interrupt)308 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
309 unsigned int in_interrupt)
310 {
311 struct snd_pcm_runtime *runtime = substream->runtime;
312 snd_pcm_uframes_t pos;
313 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
314 snd_pcm_sframes_t hdelta, delta;
315 unsigned long jdelta;
316
317 old_hw_ptr = runtime->status->hw_ptr;
318 pos = substream->ops->pointer(substream);
319 if (pos == SNDRV_PCM_POS_XRUN) {
320 xrun(substream);
321 return -EPIPE;
322 }
323 if (pos >= runtime->buffer_size) {
324 if (printk_ratelimit()) {
325 char name[16];
326 snd_pcm_debug_name(substream, name, sizeof(name));
327 xrun_log_show(substream);
328 snd_printd(KERN_ERR "BUG: %s, pos = %ld, "
329 "buffer size = %ld, period size = %ld\n",
330 name, pos, runtime->buffer_size,
331 runtime->period_size);
332 }
333 pos = 0;
334 }
335 pos -= pos % runtime->min_align;
336 if (xrun_debug(substream, XRUN_DEBUG_LOG))
337 xrun_log(substream, pos, in_interrupt);
338 hw_base = runtime->hw_ptr_base;
339 new_hw_ptr = hw_base + pos;
340 if (in_interrupt) {
341 /* we know that one period was processed */
342 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
343 delta = runtime->hw_ptr_interrupt + runtime->period_size;
344 if (delta > new_hw_ptr) {
345 /* check for double acknowledged interrupts */
346 hdelta = jiffies - runtime->hw_ptr_jiffies;
347 if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
348 hw_base += runtime->buffer_size;
349 if (hw_base >= runtime->boundary)
350 hw_base = 0;
351 new_hw_ptr = hw_base + pos;
352 goto __delta;
353 }
354 }
355 }
356 /* new_hw_ptr might be lower than old_hw_ptr in case when */
357 /* pointer crosses the end of the ring buffer */
358 if (new_hw_ptr < old_hw_ptr) {
359 hw_base += runtime->buffer_size;
360 if (hw_base >= runtime->boundary)
361 hw_base = 0;
362 new_hw_ptr = hw_base + pos;
363 }
364 __delta:
365 delta = new_hw_ptr - old_hw_ptr;
366 if (delta < 0)
367 delta += runtime->boundary;
368 if (xrun_debug(substream, in_interrupt ?
369 XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
370 char name[16];
371 snd_pcm_debug_name(substream, name, sizeof(name));
372 snd_printd("%s_update: %s: pos=%u/%u/%u, "
373 "hwptr=%ld/%ld/%ld/%ld\n",
374 in_interrupt ? "period" : "hwptr",
375 name,
376 (unsigned int)pos,
377 (unsigned int)runtime->period_size,
378 (unsigned int)runtime->buffer_size,
379 (unsigned long)delta,
380 (unsigned long)old_hw_ptr,
381 (unsigned long)new_hw_ptr,
382 (unsigned long)runtime->hw_ptr_base);
383 }
384
385 if (runtime->no_period_wakeup) {
386 snd_pcm_sframes_t xrun_threshold;
387 /*
388 * Without regular period interrupts, we have to check
389 * the elapsed time to detect xruns.
390 */
391 jdelta = jiffies - runtime->hw_ptr_jiffies;
392 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
393 goto no_delta_check;
394 hdelta = jdelta - delta * HZ / runtime->rate;
395 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
396 while (hdelta > xrun_threshold) {
397 delta += runtime->buffer_size;
398 hw_base += runtime->buffer_size;
399 if (hw_base >= runtime->boundary)
400 hw_base = 0;
401 new_hw_ptr = hw_base + pos;
402 hdelta -= runtime->hw_ptr_buffer_jiffies;
403 }
404 goto no_delta_check;
405 }
406
407 /* something must be really wrong */
408 if (delta >= runtime->buffer_size + runtime->period_size) {
409 hw_ptr_error(substream,
410 "Unexpected hw_pointer value %s"
411 "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
412 "old_hw_ptr=%ld)\n",
413 in_interrupt ? "[Q] " : "[P]",
414 substream->stream, (long)pos,
415 (long)new_hw_ptr, (long)old_hw_ptr);
416 return 0;
417 }
418
419 /* Do jiffies check only in xrun_debug mode */
420 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
421 goto no_jiffies_check;
422
423 /* Skip the jiffies check for hardwares with BATCH flag.
424 * Such hardware usually just increases the position at each IRQ,
425 * thus it can't give any strange position.
426 */
427 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
428 goto no_jiffies_check;
429 hdelta = delta;
430 if (hdelta < runtime->delay)
431 goto no_jiffies_check;
432 hdelta -= runtime->delay;
433 jdelta = jiffies - runtime->hw_ptr_jiffies;
434 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
435 delta = jdelta /
436 (((runtime->period_size * HZ) / runtime->rate)
437 + HZ/100);
438 /* move new_hw_ptr according jiffies not pos variable */
439 new_hw_ptr = old_hw_ptr;
440 hw_base = delta;
441 /* use loop to avoid checks for delta overflows */
442 /* the delta value is small or zero in most cases */
443 while (delta > 0) {
444 new_hw_ptr += runtime->period_size;
445 if (new_hw_ptr >= runtime->boundary)
446 new_hw_ptr -= runtime->boundary;
447 delta--;
448 }
449 /* align hw_base to buffer_size */
450 hw_ptr_error(substream,
451 "hw_ptr skipping! %s"
452 "(pos=%ld, delta=%ld, period=%ld, "
453 "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
454 in_interrupt ? "[Q] " : "",
455 (long)pos, (long)hdelta,
456 (long)runtime->period_size, jdelta,
457 ((hdelta * HZ) / runtime->rate), hw_base,
458 (unsigned long)old_hw_ptr,
459 (unsigned long)new_hw_ptr);
460 /* reset values to proper state */
461 delta = 0;
462 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
463 }
464 no_jiffies_check:
465 if (delta > runtime->period_size + runtime->period_size / 2) {
466 hw_ptr_error(substream,
467 "Lost interrupts? %s"
468 "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
469 "old_hw_ptr=%ld)\n",
470 in_interrupt ? "[Q] " : "",
471 substream->stream, (long)delta,
472 (long)new_hw_ptr,
473 (long)old_hw_ptr);
474 }
475
476 no_delta_check:
477 if (runtime->status->hw_ptr == new_hw_ptr)
478 return 0;
479
480 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
481 runtime->silence_size > 0)
482 snd_pcm_playback_silence(substream, new_hw_ptr);
483
484 if (in_interrupt) {
485 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
486 if (delta < 0)
487 delta += runtime->boundary;
488 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
489 runtime->hw_ptr_interrupt += delta;
490 if (runtime->hw_ptr_interrupt >= runtime->boundary)
491 runtime->hw_ptr_interrupt -= runtime->boundary;
492 }
493 runtime->hw_ptr_base = hw_base;
494 runtime->status->hw_ptr = new_hw_ptr;
495 runtime->hw_ptr_jiffies = jiffies;
496 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
497 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
498
499 return snd_pcm_update_state(substream, runtime);
500 }
501
502 /* CAUTION: call it with irq disabled */
snd_pcm_update_hw_ptr(struct snd_pcm_substream * substream)503 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
504 {
505 return snd_pcm_update_hw_ptr0(substream, 0);
506 }
507
508 /**
509 * snd_pcm_set_ops - set the PCM operators
510 * @pcm: the pcm instance
511 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
512 * @ops: the operator table
513 *
514 * Sets the given PCM operators to the pcm instance.
515 */
snd_pcm_set_ops(struct snd_pcm * pcm,int direction,struct snd_pcm_ops * ops)516 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
517 {
518 struct snd_pcm_str *stream = &pcm->streams[direction];
519 struct snd_pcm_substream *substream;
520
521 for (substream = stream->substream; substream != NULL; substream = substream->next)
522 substream->ops = ops;
523 }
524
525 EXPORT_SYMBOL(snd_pcm_set_ops);
526
527 /**
528 * snd_pcm_sync - set the PCM sync id
529 * @substream: the pcm substream
530 *
531 * Sets the PCM sync identifier for the card.
532 */
snd_pcm_set_sync(struct snd_pcm_substream * substream)533 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
534 {
535 struct snd_pcm_runtime *runtime = substream->runtime;
536
537 runtime->sync.id32[0] = substream->pcm->card->number;
538 runtime->sync.id32[1] = -1;
539 runtime->sync.id32[2] = -1;
540 runtime->sync.id32[3] = -1;
541 }
542
543 EXPORT_SYMBOL(snd_pcm_set_sync);
544
545 /*
546 * Standard ioctl routine
547 */
548
div32(unsigned int a,unsigned int b,unsigned int * r)549 static inline unsigned int div32(unsigned int a, unsigned int b,
550 unsigned int *r)
551 {
552 if (b == 0) {
553 *r = 0;
554 return UINT_MAX;
555 }
556 *r = a % b;
557 return a / b;
558 }
559
div_down(unsigned int a,unsigned int b)560 static inline unsigned int div_down(unsigned int a, unsigned int b)
561 {
562 if (b == 0)
563 return UINT_MAX;
564 return a / b;
565 }
566
div_up(unsigned int a,unsigned int b)567 static inline unsigned int div_up(unsigned int a, unsigned int b)
568 {
569 unsigned int r;
570 unsigned int q;
571 if (b == 0)
572 return UINT_MAX;
573 q = div32(a, b, &r);
574 if (r)
575 ++q;
576 return q;
577 }
578
mul(unsigned int a,unsigned int b)579 static inline unsigned int mul(unsigned int a, unsigned int b)
580 {
581 if (a == 0)
582 return 0;
583 if (div_down(UINT_MAX, a) < b)
584 return UINT_MAX;
585 return a * b;
586 }
587
muldiv32(unsigned int a,unsigned int b,unsigned int c,unsigned int * r)588 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
589 unsigned int c, unsigned int *r)
590 {
591 u_int64_t n = (u_int64_t) a * b;
592 if (c == 0) {
593 snd_BUG_ON(!n);
594 *r = 0;
595 return UINT_MAX;
596 }
597 n = div_u64_rem(n, c, r);
598 if (n >= UINT_MAX) {
599 *r = 0;
600 return UINT_MAX;
601 }
602 return n;
603 }
604
605 /**
606 * snd_interval_refine - refine the interval value of configurator
607 * @i: the interval value to refine
608 * @v: the interval value to refer to
609 *
610 * Refines the interval value with the reference value.
611 * The interval is changed to the range satisfying both intervals.
612 * The interval status (min, max, integer, etc.) are evaluated.
613 *
614 * Returns non-zero if the value is changed, zero if not changed.
615 */
snd_interval_refine(struct snd_interval * i,const struct snd_interval * v)616 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
617 {
618 int changed = 0;
619 if (snd_BUG_ON(snd_interval_empty(i)))
620 return -EINVAL;
621 if (i->min < v->min) {
622 i->min = v->min;
623 i->openmin = v->openmin;
624 changed = 1;
625 } else if (i->min == v->min && !i->openmin && v->openmin) {
626 i->openmin = 1;
627 changed = 1;
628 }
629 if (i->max > v->max) {
630 i->max = v->max;
631 i->openmax = v->openmax;
632 changed = 1;
633 } else if (i->max == v->max && !i->openmax && v->openmax) {
634 i->openmax = 1;
635 changed = 1;
636 }
637 if (!i->integer && v->integer) {
638 i->integer = 1;
639 changed = 1;
640 }
641 if (i->integer) {
642 if (i->openmin) {
643 i->min++;
644 i->openmin = 0;
645 }
646 if (i->openmax) {
647 i->max--;
648 i->openmax = 0;
649 }
650 } else if (!i->openmin && !i->openmax && i->min == i->max)
651 i->integer = 1;
652 if (snd_interval_checkempty(i)) {
653 snd_interval_none(i);
654 return -EINVAL;
655 }
656 return changed;
657 }
658
659 EXPORT_SYMBOL(snd_interval_refine);
660
snd_interval_refine_first(struct snd_interval * i)661 static int snd_interval_refine_first(struct snd_interval *i)
662 {
663 if (snd_BUG_ON(snd_interval_empty(i)))
664 return -EINVAL;
665 if (snd_interval_single(i))
666 return 0;
667 i->max = i->min;
668 i->openmax = i->openmin;
669 if (i->openmax)
670 i->max++;
671 return 1;
672 }
673
snd_interval_refine_last(struct snd_interval * i)674 static int snd_interval_refine_last(struct snd_interval *i)
675 {
676 if (snd_BUG_ON(snd_interval_empty(i)))
677 return -EINVAL;
678 if (snd_interval_single(i))
679 return 0;
680 i->min = i->max;
681 i->openmin = i->openmax;
682 if (i->openmin)
683 i->min--;
684 return 1;
685 }
686
snd_interval_mul(const struct snd_interval * a,const struct snd_interval * b,struct snd_interval * c)687 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
688 {
689 if (a->empty || b->empty) {
690 snd_interval_none(c);
691 return;
692 }
693 c->empty = 0;
694 c->min = mul(a->min, b->min);
695 c->openmin = (a->openmin || b->openmin);
696 c->max = mul(a->max, b->max);
697 c->openmax = (a->openmax || b->openmax);
698 c->integer = (a->integer && b->integer);
699 }
700
701 /**
702 * snd_interval_div - refine the interval value with division
703 * @a: dividend
704 * @b: divisor
705 * @c: quotient
706 *
707 * c = a / b
708 *
709 * Returns non-zero if the value is changed, zero if not changed.
710 */
snd_interval_div(const struct snd_interval * a,const struct snd_interval * b,struct snd_interval * c)711 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
712 {
713 unsigned int r;
714 if (a->empty || b->empty) {
715 snd_interval_none(c);
716 return;
717 }
718 c->empty = 0;
719 c->min = div32(a->min, b->max, &r);
720 c->openmin = (r || a->openmin || b->openmax);
721 if (b->min > 0) {
722 c->max = div32(a->max, b->min, &r);
723 if (r) {
724 c->max++;
725 c->openmax = 1;
726 } else
727 c->openmax = (a->openmax || b->openmin);
728 } else {
729 c->max = UINT_MAX;
730 c->openmax = 0;
731 }
732 c->integer = 0;
733 }
734
735 /**
736 * snd_interval_muldivk - refine the interval value
737 * @a: dividend 1
738 * @b: dividend 2
739 * @k: divisor (as integer)
740 * @c: result
741 *
742 * c = a * b / k
743 *
744 * Returns non-zero if the value is changed, zero if not changed.
745 */
snd_interval_muldivk(const struct snd_interval * a,const struct snd_interval * b,unsigned int k,struct snd_interval * c)746 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
747 unsigned int k, struct snd_interval *c)
748 {
749 unsigned int r;
750 if (a->empty || b->empty) {
751 snd_interval_none(c);
752 return;
753 }
754 c->empty = 0;
755 c->min = muldiv32(a->min, b->min, k, &r);
756 c->openmin = (r || a->openmin || b->openmin);
757 c->max = muldiv32(a->max, b->max, k, &r);
758 if (r) {
759 c->max++;
760 c->openmax = 1;
761 } else
762 c->openmax = (a->openmax || b->openmax);
763 c->integer = 0;
764 }
765
766 /**
767 * snd_interval_mulkdiv - refine the interval value
768 * @a: dividend 1
769 * @k: dividend 2 (as integer)
770 * @b: divisor
771 * @c: result
772 *
773 * c = a * k / b
774 *
775 * Returns non-zero if the value is changed, zero if not changed.
776 */
snd_interval_mulkdiv(const struct snd_interval * a,unsigned int k,const struct snd_interval * b,struct snd_interval * c)777 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
778 const struct snd_interval *b, struct snd_interval *c)
779 {
780 unsigned int r;
781 if (a->empty || b->empty) {
782 snd_interval_none(c);
783 return;
784 }
785 c->empty = 0;
786 c->min = muldiv32(a->min, k, b->max, &r);
787 c->openmin = (r || a->openmin || b->openmax);
788 if (b->min > 0) {
789 c->max = muldiv32(a->max, k, b->min, &r);
790 if (r) {
791 c->max++;
792 c->openmax = 1;
793 } else
794 c->openmax = (a->openmax || b->openmin);
795 } else {
796 c->max = UINT_MAX;
797 c->openmax = 0;
798 }
799 c->integer = 0;
800 }
801
802 /* ---- */
803
804
805 /**
806 * snd_interval_ratnum - refine the interval value
807 * @i: interval to refine
808 * @rats_count: number of ratnum_t
809 * @rats: ratnum_t array
810 * @nump: pointer to store the resultant numerator
811 * @denp: pointer to store the resultant denominator
812 *
813 * Returns non-zero if the value is changed, zero if not changed.
814 */
snd_interval_ratnum(struct snd_interval * i,unsigned int rats_count,struct snd_ratnum * rats,unsigned int * nump,unsigned int * denp)815 int snd_interval_ratnum(struct snd_interval *i,
816 unsigned int rats_count, struct snd_ratnum *rats,
817 unsigned int *nump, unsigned int *denp)
818 {
819 unsigned int best_num, best_den;
820 int best_diff;
821 unsigned int k;
822 struct snd_interval t;
823 int err;
824 unsigned int result_num, result_den;
825 int result_diff;
826
827 best_num = best_den = best_diff = 0;
828 for (k = 0; k < rats_count; ++k) {
829 unsigned int num = rats[k].num;
830 unsigned int den;
831 unsigned int q = i->min;
832 int diff;
833 if (q == 0)
834 q = 1;
835 den = div_up(num, q);
836 if (den < rats[k].den_min)
837 continue;
838 if (den > rats[k].den_max)
839 den = rats[k].den_max;
840 else {
841 unsigned int r;
842 r = (den - rats[k].den_min) % rats[k].den_step;
843 if (r != 0)
844 den -= r;
845 }
846 diff = num - q * den;
847 if (diff < 0)
848 diff = -diff;
849 if (best_num == 0 ||
850 diff * best_den < best_diff * den) {
851 best_diff = diff;
852 best_den = den;
853 best_num = num;
854 }
855 }
856 if (best_den == 0) {
857 i->empty = 1;
858 return -EINVAL;
859 }
860 t.min = div_down(best_num, best_den);
861 t.openmin = !!(best_num % best_den);
862
863 result_num = best_num;
864 result_diff = best_diff;
865 result_den = best_den;
866 best_num = best_den = best_diff = 0;
867 for (k = 0; k < rats_count; ++k) {
868 unsigned int num = rats[k].num;
869 unsigned int den;
870 unsigned int q = i->max;
871 int diff;
872 if (q == 0) {
873 i->empty = 1;
874 return -EINVAL;
875 }
876 den = div_down(num, q);
877 if (den > rats[k].den_max)
878 continue;
879 if (den < rats[k].den_min)
880 den = rats[k].den_min;
881 else {
882 unsigned int r;
883 r = (den - rats[k].den_min) % rats[k].den_step;
884 if (r != 0)
885 den += rats[k].den_step - r;
886 }
887 diff = q * den - num;
888 if (diff < 0)
889 diff = -diff;
890 if (best_num == 0 ||
891 diff * best_den < best_diff * den) {
892 best_diff = diff;
893 best_den = den;
894 best_num = num;
895 }
896 }
897 if (best_den == 0) {
898 i->empty = 1;
899 return -EINVAL;
900 }
901 t.max = div_up(best_num, best_den);
902 t.openmax = !!(best_num % best_den);
903 t.integer = 0;
904 err = snd_interval_refine(i, &t);
905 if (err < 0)
906 return err;
907
908 if (snd_interval_single(i)) {
909 if (best_diff * result_den < result_diff * best_den) {
910 result_num = best_num;
911 result_den = best_den;
912 }
913 if (nump)
914 *nump = result_num;
915 if (denp)
916 *denp = result_den;
917 }
918 return err;
919 }
920
921 EXPORT_SYMBOL(snd_interval_ratnum);
922
923 /**
924 * snd_interval_ratden - refine the interval value
925 * @i: interval to refine
926 * @rats_count: number of struct ratden
927 * @rats: struct ratden array
928 * @nump: pointer to store the resultant numerator
929 * @denp: pointer to store the resultant denominator
930 *
931 * Returns non-zero if the value is changed, zero if not changed.
932 */
snd_interval_ratden(struct snd_interval * i,unsigned int rats_count,struct snd_ratden * rats,unsigned int * nump,unsigned int * denp)933 static int snd_interval_ratden(struct snd_interval *i,
934 unsigned int rats_count, struct snd_ratden *rats,
935 unsigned int *nump, unsigned int *denp)
936 {
937 unsigned int best_num, best_diff, best_den;
938 unsigned int k;
939 struct snd_interval t;
940 int err;
941
942 best_num = best_den = best_diff = 0;
943 for (k = 0; k < rats_count; ++k) {
944 unsigned int num;
945 unsigned int den = rats[k].den;
946 unsigned int q = i->min;
947 int diff;
948 num = mul(q, den);
949 if (num > rats[k].num_max)
950 continue;
951 if (num < rats[k].num_min)
952 num = rats[k].num_max;
953 else {
954 unsigned int r;
955 r = (num - rats[k].num_min) % rats[k].num_step;
956 if (r != 0)
957 num += rats[k].num_step - r;
958 }
959 diff = num - q * den;
960 if (best_num == 0 ||
961 diff * best_den < best_diff * den) {
962 best_diff = diff;
963 best_den = den;
964 best_num = num;
965 }
966 }
967 if (best_den == 0) {
968 i->empty = 1;
969 return -EINVAL;
970 }
971 t.min = div_down(best_num, best_den);
972 t.openmin = !!(best_num % best_den);
973
974 best_num = best_den = best_diff = 0;
975 for (k = 0; k < rats_count; ++k) {
976 unsigned int num;
977 unsigned int den = rats[k].den;
978 unsigned int q = i->max;
979 int diff;
980 num = mul(q, den);
981 if (num < rats[k].num_min)
982 continue;
983 if (num > rats[k].num_max)
984 num = rats[k].num_max;
985 else {
986 unsigned int r;
987 r = (num - rats[k].num_min) % rats[k].num_step;
988 if (r != 0)
989 num -= r;
990 }
991 diff = q * den - num;
992 if (best_num == 0 ||
993 diff * best_den < best_diff * den) {
994 best_diff = diff;
995 best_den = den;
996 best_num = num;
997 }
998 }
999 if (best_den == 0) {
1000 i->empty = 1;
1001 return -EINVAL;
1002 }
1003 t.max = div_up(best_num, best_den);
1004 t.openmax = !!(best_num % best_den);
1005 t.integer = 0;
1006 err = snd_interval_refine(i, &t);
1007 if (err < 0)
1008 return err;
1009
1010 if (snd_interval_single(i)) {
1011 if (nump)
1012 *nump = best_num;
1013 if (denp)
1014 *denp = best_den;
1015 }
1016 return err;
1017 }
1018
1019 /**
1020 * snd_interval_list - refine the interval value from the list
1021 * @i: the interval value to refine
1022 * @count: the number of elements in the list
1023 * @list: the value list
1024 * @mask: the bit-mask to evaluate
1025 *
1026 * Refines the interval value from the list.
1027 * When mask is non-zero, only the elements corresponding to bit 1 are
1028 * evaluated.
1029 *
1030 * Returns non-zero if the value is changed, zero if not changed.
1031 */
snd_interval_list(struct snd_interval * i,unsigned int count,const unsigned int * list,unsigned int mask)1032 int snd_interval_list(struct snd_interval *i, unsigned int count,
1033 const unsigned int *list, unsigned int mask)
1034 {
1035 unsigned int k;
1036 struct snd_interval list_range;
1037
1038 if (!count) {
1039 i->empty = 1;
1040 return -EINVAL;
1041 }
1042 snd_interval_any(&list_range);
1043 list_range.min = UINT_MAX;
1044 list_range.max = 0;
1045 for (k = 0; k < count; k++) {
1046 if (mask && !(mask & (1 << k)))
1047 continue;
1048 if (!snd_interval_test(i, list[k]))
1049 continue;
1050 list_range.min = min(list_range.min, list[k]);
1051 list_range.max = max(list_range.max, list[k]);
1052 }
1053 return snd_interval_refine(i, &list_range);
1054 }
1055
1056 EXPORT_SYMBOL(snd_interval_list);
1057
snd_interval_step(struct snd_interval * i,unsigned int min,unsigned int step)1058 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1059 {
1060 unsigned int n;
1061 int changed = 0;
1062 n = (i->min - min) % step;
1063 if (n != 0 || i->openmin) {
1064 i->min += step - n;
1065 changed = 1;
1066 }
1067 n = (i->max - min) % step;
1068 if (n != 0 || i->openmax) {
1069 i->max -= n;
1070 changed = 1;
1071 }
1072 if (snd_interval_checkempty(i)) {
1073 i->empty = 1;
1074 return -EINVAL;
1075 }
1076 return changed;
1077 }
1078
1079 /* Info constraints helpers */
1080
1081 /**
1082 * snd_pcm_hw_rule_add - add the hw-constraint rule
1083 * @runtime: the pcm runtime instance
1084 * @cond: condition bits
1085 * @var: the variable to evaluate
1086 * @func: the evaluation function
1087 * @private: the private data pointer passed to function
1088 * @dep: the dependent variables
1089 *
1090 * Returns zero if successful, or a negative error code on failure.
1091 */
snd_pcm_hw_rule_add(struct snd_pcm_runtime * runtime,unsigned int cond,int var,snd_pcm_hw_rule_func_t func,void * private,int dep,...)1092 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1093 int var,
1094 snd_pcm_hw_rule_func_t func, void *private,
1095 int dep, ...)
1096 {
1097 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1098 struct snd_pcm_hw_rule *c;
1099 unsigned int k;
1100 va_list args;
1101 va_start(args, dep);
1102 if (constrs->rules_num >= constrs->rules_all) {
1103 struct snd_pcm_hw_rule *new;
1104 unsigned int new_rules = constrs->rules_all + 16;
1105 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1106 if (!new) {
1107 va_end(args);
1108 return -ENOMEM;
1109 }
1110 if (constrs->rules) {
1111 memcpy(new, constrs->rules,
1112 constrs->rules_num * sizeof(*c));
1113 kfree(constrs->rules);
1114 }
1115 constrs->rules = new;
1116 constrs->rules_all = new_rules;
1117 }
1118 c = &constrs->rules[constrs->rules_num];
1119 c->cond = cond;
1120 c->func = func;
1121 c->var = var;
1122 c->private = private;
1123 k = 0;
1124 while (1) {
1125 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1126 va_end(args);
1127 return -EINVAL;
1128 }
1129 c->deps[k++] = dep;
1130 if (dep < 0)
1131 break;
1132 dep = va_arg(args, int);
1133 }
1134 constrs->rules_num++;
1135 va_end(args);
1136 return 0;
1137 }
1138
1139 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1140
1141 /**
1142 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1143 * @runtime: PCM runtime instance
1144 * @var: hw_params variable to apply the mask
1145 * @mask: the bitmap mask
1146 *
1147 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1148 */
snd_pcm_hw_constraint_mask(struct snd_pcm_runtime * runtime,snd_pcm_hw_param_t var,u_int32_t mask)1149 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1150 u_int32_t mask)
1151 {
1152 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1153 struct snd_mask *maskp = constrs_mask(constrs, var);
1154 *maskp->bits &= mask;
1155 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1156 if (*maskp->bits == 0)
1157 return -EINVAL;
1158 return 0;
1159 }
1160
1161 /**
1162 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1163 * @runtime: PCM runtime instance
1164 * @var: hw_params variable to apply the mask
1165 * @mask: the 64bit bitmap mask
1166 *
1167 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1168 */
snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime * runtime,snd_pcm_hw_param_t var,u_int64_t mask)1169 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1170 u_int64_t mask)
1171 {
1172 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1173 struct snd_mask *maskp = constrs_mask(constrs, var);
1174 maskp->bits[0] &= (u_int32_t)mask;
1175 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1176 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1177 if (! maskp->bits[0] && ! maskp->bits[1])
1178 return -EINVAL;
1179 return 0;
1180 }
1181
1182 /**
1183 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1184 * @runtime: PCM runtime instance
1185 * @var: hw_params variable to apply the integer constraint
1186 *
1187 * Apply the constraint of integer to an interval parameter.
1188 */
snd_pcm_hw_constraint_integer(struct snd_pcm_runtime * runtime,snd_pcm_hw_param_t var)1189 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1190 {
1191 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1192 return snd_interval_setinteger(constrs_interval(constrs, var));
1193 }
1194
1195 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1196
1197 /**
1198 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1199 * @runtime: PCM runtime instance
1200 * @var: hw_params variable to apply the range
1201 * @min: the minimal value
1202 * @max: the maximal value
1203 *
1204 * Apply the min/max range constraint to an interval parameter.
1205 */
snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime * runtime,snd_pcm_hw_param_t var,unsigned int min,unsigned int max)1206 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1207 unsigned int min, unsigned int max)
1208 {
1209 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1210 struct snd_interval t;
1211 t.min = min;
1212 t.max = max;
1213 t.openmin = t.openmax = 0;
1214 t.integer = 0;
1215 return snd_interval_refine(constrs_interval(constrs, var), &t);
1216 }
1217
1218 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1219
snd_pcm_hw_rule_list(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1220 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1221 struct snd_pcm_hw_rule *rule)
1222 {
1223 struct snd_pcm_hw_constraint_list *list = rule->private;
1224 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1225 }
1226
1227
1228 /**
1229 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1230 * @runtime: PCM runtime instance
1231 * @cond: condition bits
1232 * @var: hw_params variable to apply the list constraint
1233 * @l: list
1234 *
1235 * Apply the list of constraints to an interval parameter.
1236 */
snd_pcm_hw_constraint_list(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,struct snd_pcm_hw_constraint_list * l)1237 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1238 unsigned int cond,
1239 snd_pcm_hw_param_t var,
1240 struct snd_pcm_hw_constraint_list *l)
1241 {
1242 return snd_pcm_hw_rule_add(runtime, cond, var,
1243 snd_pcm_hw_rule_list, l,
1244 var, -1);
1245 }
1246
1247 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1248
snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1249 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1250 struct snd_pcm_hw_rule *rule)
1251 {
1252 struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1253 unsigned int num = 0, den = 0;
1254 int err;
1255 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1256 r->nrats, r->rats, &num, &den);
1257 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1258 params->rate_num = num;
1259 params->rate_den = den;
1260 }
1261 return err;
1262 }
1263
1264 /**
1265 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1266 * @runtime: PCM runtime instance
1267 * @cond: condition bits
1268 * @var: hw_params variable to apply the ratnums constraint
1269 * @r: struct snd_ratnums constriants
1270 */
snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,struct snd_pcm_hw_constraint_ratnums * r)1271 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1272 unsigned int cond,
1273 snd_pcm_hw_param_t var,
1274 struct snd_pcm_hw_constraint_ratnums *r)
1275 {
1276 return snd_pcm_hw_rule_add(runtime, cond, var,
1277 snd_pcm_hw_rule_ratnums, r,
1278 var, -1);
1279 }
1280
1281 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1282
snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1283 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1284 struct snd_pcm_hw_rule *rule)
1285 {
1286 struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1287 unsigned int num = 0, den = 0;
1288 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1289 r->nrats, r->rats, &num, &den);
1290 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1291 params->rate_num = num;
1292 params->rate_den = den;
1293 }
1294 return err;
1295 }
1296
1297 /**
1298 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1299 * @runtime: PCM runtime instance
1300 * @cond: condition bits
1301 * @var: hw_params variable to apply the ratdens constraint
1302 * @r: struct snd_ratdens constriants
1303 */
snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,struct snd_pcm_hw_constraint_ratdens * r)1304 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1305 unsigned int cond,
1306 snd_pcm_hw_param_t var,
1307 struct snd_pcm_hw_constraint_ratdens *r)
1308 {
1309 return snd_pcm_hw_rule_add(runtime, cond, var,
1310 snd_pcm_hw_rule_ratdens, r,
1311 var, -1);
1312 }
1313
1314 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1315
snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1316 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1317 struct snd_pcm_hw_rule *rule)
1318 {
1319 unsigned int l = (unsigned long) rule->private;
1320 int width = l & 0xffff;
1321 unsigned int msbits = l >> 16;
1322 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1323 if (snd_interval_single(i) && snd_interval_value(i) == width)
1324 params->msbits = msbits;
1325 return 0;
1326 }
1327
1328 /**
1329 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1330 * @runtime: PCM runtime instance
1331 * @cond: condition bits
1332 * @width: sample bits width
1333 * @msbits: msbits width
1334 */
snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime * runtime,unsigned int cond,unsigned int width,unsigned int msbits)1335 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1336 unsigned int cond,
1337 unsigned int width,
1338 unsigned int msbits)
1339 {
1340 unsigned long l = (msbits << 16) | width;
1341 return snd_pcm_hw_rule_add(runtime, cond, -1,
1342 snd_pcm_hw_rule_msbits,
1343 (void*) l,
1344 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1345 }
1346
1347 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1348
snd_pcm_hw_rule_step(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1349 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1350 struct snd_pcm_hw_rule *rule)
1351 {
1352 unsigned long step = (unsigned long) rule->private;
1353 return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1354 }
1355
1356 /**
1357 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1358 * @runtime: PCM runtime instance
1359 * @cond: condition bits
1360 * @var: hw_params variable to apply the step constraint
1361 * @step: step size
1362 */
snd_pcm_hw_constraint_step(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,unsigned long step)1363 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1364 unsigned int cond,
1365 snd_pcm_hw_param_t var,
1366 unsigned long step)
1367 {
1368 return snd_pcm_hw_rule_add(runtime, cond, var,
1369 snd_pcm_hw_rule_step, (void *) step,
1370 var, -1);
1371 }
1372
1373 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1374
snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1375 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1376 {
1377 static unsigned int pow2_sizes[] = {
1378 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1379 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1380 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1381 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1382 };
1383 return snd_interval_list(hw_param_interval(params, rule->var),
1384 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1385 }
1386
1387 /**
1388 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1389 * @runtime: PCM runtime instance
1390 * @cond: condition bits
1391 * @var: hw_params variable to apply the power-of-2 constraint
1392 */
snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var)1393 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1394 unsigned int cond,
1395 snd_pcm_hw_param_t var)
1396 {
1397 return snd_pcm_hw_rule_add(runtime, cond, var,
1398 snd_pcm_hw_rule_pow2, NULL,
1399 var, -1);
1400 }
1401
1402 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1403
snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1404 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1405 struct snd_pcm_hw_rule *rule)
1406 {
1407 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1408 struct snd_interval *rate;
1409
1410 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1411 return snd_interval_list(rate, 1, &base_rate, 0);
1412 }
1413
1414 /**
1415 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1416 * @runtime: PCM runtime instance
1417 * @base_rate: the rate at which the hardware does not resample
1418 */
snd_pcm_hw_rule_noresample(struct snd_pcm_runtime * runtime,unsigned int base_rate)1419 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1420 unsigned int base_rate)
1421 {
1422 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1423 SNDRV_PCM_HW_PARAM_RATE,
1424 snd_pcm_hw_rule_noresample_func,
1425 (void *)(uintptr_t)base_rate,
1426 SNDRV_PCM_HW_PARAM_RATE, -1);
1427 }
1428 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1429
_snd_pcm_hw_param_any(struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var)1430 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1431 snd_pcm_hw_param_t var)
1432 {
1433 if (hw_is_mask(var)) {
1434 snd_mask_any(hw_param_mask(params, var));
1435 params->cmask |= 1 << var;
1436 params->rmask |= 1 << var;
1437 return;
1438 }
1439 if (hw_is_interval(var)) {
1440 snd_interval_any(hw_param_interval(params, var));
1441 params->cmask |= 1 << var;
1442 params->rmask |= 1 << var;
1443 return;
1444 }
1445 snd_BUG();
1446 }
1447
_snd_pcm_hw_params_any(struct snd_pcm_hw_params * params)1448 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1449 {
1450 unsigned int k;
1451 memset(params, 0, sizeof(*params));
1452 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1453 _snd_pcm_hw_param_any(params, k);
1454 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1455 _snd_pcm_hw_param_any(params, k);
1456 params->info = ~0U;
1457 }
1458
1459 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1460
1461 /**
1462 * snd_pcm_hw_param_value - return @params field @var value
1463 * @params: the hw_params instance
1464 * @var: parameter to retrieve
1465 * @dir: pointer to the direction (-1,0,1) or %NULL
1466 *
1467 * Return the value for field @var if it's fixed in configuration space
1468 * defined by @params. Return -%EINVAL otherwise.
1469 */
snd_pcm_hw_param_value(const struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var,int * dir)1470 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1471 snd_pcm_hw_param_t var, int *dir)
1472 {
1473 if (hw_is_mask(var)) {
1474 const struct snd_mask *mask = hw_param_mask_c(params, var);
1475 if (!snd_mask_single(mask))
1476 return -EINVAL;
1477 if (dir)
1478 *dir = 0;
1479 return snd_mask_value(mask);
1480 }
1481 if (hw_is_interval(var)) {
1482 const struct snd_interval *i = hw_param_interval_c(params, var);
1483 if (!snd_interval_single(i))
1484 return -EINVAL;
1485 if (dir)
1486 *dir = i->openmin;
1487 return snd_interval_value(i);
1488 }
1489 return -EINVAL;
1490 }
1491
1492 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1493
_snd_pcm_hw_param_setempty(struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var)1494 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1495 snd_pcm_hw_param_t var)
1496 {
1497 if (hw_is_mask(var)) {
1498 snd_mask_none(hw_param_mask(params, var));
1499 params->cmask |= 1 << var;
1500 params->rmask |= 1 << var;
1501 } else if (hw_is_interval(var)) {
1502 snd_interval_none(hw_param_interval(params, var));
1503 params->cmask |= 1 << var;
1504 params->rmask |= 1 << var;
1505 } else {
1506 snd_BUG();
1507 }
1508 }
1509
1510 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1511
_snd_pcm_hw_param_first(struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var)1512 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1513 snd_pcm_hw_param_t var)
1514 {
1515 int changed;
1516 if (hw_is_mask(var))
1517 changed = snd_mask_refine_first(hw_param_mask(params, var));
1518 else if (hw_is_interval(var))
1519 changed = snd_interval_refine_first(hw_param_interval(params, var));
1520 else
1521 return -EINVAL;
1522 if (changed) {
1523 params->cmask |= 1 << var;
1524 params->rmask |= 1 << var;
1525 }
1526 return changed;
1527 }
1528
1529
1530 /**
1531 * snd_pcm_hw_param_first - refine config space and return minimum value
1532 * @pcm: PCM instance
1533 * @params: the hw_params instance
1534 * @var: parameter to retrieve
1535 * @dir: pointer to the direction (-1,0,1) or %NULL
1536 *
1537 * Inside configuration space defined by @params remove from @var all
1538 * values > minimum. Reduce configuration space accordingly.
1539 * Return the minimum.
1540 */
snd_pcm_hw_param_first(struct snd_pcm_substream * pcm,struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var,int * dir)1541 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1542 struct snd_pcm_hw_params *params,
1543 snd_pcm_hw_param_t var, int *dir)
1544 {
1545 int changed = _snd_pcm_hw_param_first(params, var);
1546 if (changed < 0)
1547 return changed;
1548 if (params->rmask) {
1549 int err = snd_pcm_hw_refine(pcm, params);
1550 if (snd_BUG_ON(err < 0))
1551 return err;
1552 }
1553 return snd_pcm_hw_param_value(params, var, dir);
1554 }
1555
1556 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1557
_snd_pcm_hw_param_last(struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var)1558 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1559 snd_pcm_hw_param_t var)
1560 {
1561 int changed;
1562 if (hw_is_mask(var))
1563 changed = snd_mask_refine_last(hw_param_mask(params, var));
1564 else if (hw_is_interval(var))
1565 changed = snd_interval_refine_last(hw_param_interval(params, var));
1566 else
1567 return -EINVAL;
1568 if (changed) {
1569 params->cmask |= 1 << var;
1570 params->rmask |= 1 << var;
1571 }
1572 return changed;
1573 }
1574
1575
1576 /**
1577 * snd_pcm_hw_param_last - refine config space and return maximum value
1578 * @pcm: PCM instance
1579 * @params: the hw_params instance
1580 * @var: parameter to retrieve
1581 * @dir: pointer to the direction (-1,0,1) or %NULL
1582 *
1583 * Inside configuration space defined by @params remove from @var all
1584 * values < maximum. Reduce configuration space accordingly.
1585 * Return the maximum.
1586 */
snd_pcm_hw_param_last(struct snd_pcm_substream * pcm,struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var,int * dir)1587 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1588 struct snd_pcm_hw_params *params,
1589 snd_pcm_hw_param_t var, int *dir)
1590 {
1591 int changed = _snd_pcm_hw_param_last(params, var);
1592 if (changed < 0)
1593 return changed;
1594 if (params->rmask) {
1595 int err = snd_pcm_hw_refine(pcm, params);
1596 if (snd_BUG_ON(err < 0))
1597 return err;
1598 }
1599 return snd_pcm_hw_param_value(params, var, dir);
1600 }
1601
1602 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1603
1604 /**
1605 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1606 * @pcm: PCM instance
1607 * @params: the hw_params instance
1608 *
1609 * Choose one configuration from configuration space defined by @params.
1610 * The configuration chosen is that obtained fixing in this order:
1611 * first access, first format, first subformat, min channels,
1612 * min rate, min period time, max buffer size, min tick time
1613 */
snd_pcm_hw_params_choose(struct snd_pcm_substream * pcm,struct snd_pcm_hw_params * params)1614 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1615 struct snd_pcm_hw_params *params)
1616 {
1617 static int vars[] = {
1618 SNDRV_PCM_HW_PARAM_ACCESS,
1619 SNDRV_PCM_HW_PARAM_FORMAT,
1620 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1621 SNDRV_PCM_HW_PARAM_CHANNELS,
1622 SNDRV_PCM_HW_PARAM_RATE,
1623 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1624 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1625 SNDRV_PCM_HW_PARAM_TICK_TIME,
1626 -1
1627 };
1628 int err, *v;
1629
1630 for (v = vars; *v != -1; v++) {
1631 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1632 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1633 else
1634 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1635 if (snd_BUG_ON(err < 0))
1636 return err;
1637 }
1638 return 0;
1639 }
1640
snd_pcm_lib_ioctl_reset(struct snd_pcm_substream * substream,void * arg)1641 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1642 void *arg)
1643 {
1644 struct snd_pcm_runtime *runtime = substream->runtime;
1645 unsigned long flags;
1646 snd_pcm_stream_lock_irqsave(substream, flags);
1647 if (snd_pcm_running(substream) &&
1648 snd_pcm_update_hw_ptr(substream) >= 0)
1649 runtime->status->hw_ptr %= runtime->buffer_size;
1650 else
1651 runtime->status->hw_ptr = 0;
1652 snd_pcm_stream_unlock_irqrestore(substream, flags);
1653 return 0;
1654 }
1655
snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream * substream,void * arg)1656 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1657 void *arg)
1658 {
1659 struct snd_pcm_channel_info *info = arg;
1660 struct snd_pcm_runtime *runtime = substream->runtime;
1661 int width;
1662 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1663 info->offset = -1;
1664 return 0;
1665 }
1666 width = snd_pcm_format_physical_width(runtime->format);
1667 if (width < 0)
1668 return width;
1669 info->offset = 0;
1670 switch (runtime->access) {
1671 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1672 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1673 info->first = info->channel * width;
1674 info->step = runtime->channels * width;
1675 break;
1676 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1677 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1678 {
1679 size_t size = runtime->dma_bytes / runtime->channels;
1680 info->first = info->channel * size * 8;
1681 info->step = width;
1682 break;
1683 }
1684 default:
1685 snd_BUG();
1686 break;
1687 }
1688 return 0;
1689 }
1690
snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream * substream,void * arg)1691 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1692 void *arg)
1693 {
1694 struct snd_pcm_hw_params *params = arg;
1695 snd_pcm_format_t format;
1696 int channels, width;
1697
1698 params->fifo_size = substream->runtime->hw.fifo_size;
1699 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1700 format = params_format(params);
1701 channels = params_channels(params);
1702 width = snd_pcm_format_physical_width(format);
1703 params->fifo_size /= width * channels;
1704 }
1705 return 0;
1706 }
1707
1708 /**
1709 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1710 * @substream: the pcm substream instance
1711 * @cmd: ioctl command
1712 * @arg: ioctl argument
1713 *
1714 * Processes the generic ioctl commands for PCM.
1715 * Can be passed as the ioctl callback for PCM ops.
1716 *
1717 * Returns zero if successful, or a negative error code on failure.
1718 */
snd_pcm_lib_ioctl(struct snd_pcm_substream * substream,unsigned int cmd,void * arg)1719 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1720 unsigned int cmd, void *arg)
1721 {
1722 switch (cmd) {
1723 case SNDRV_PCM_IOCTL1_INFO:
1724 return 0;
1725 case SNDRV_PCM_IOCTL1_RESET:
1726 return snd_pcm_lib_ioctl_reset(substream, arg);
1727 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1728 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1729 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1730 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1731 }
1732 return -ENXIO;
1733 }
1734
1735 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1736
1737 /**
1738 * snd_pcm_period_elapsed - update the pcm status for the next period
1739 * @substream: the pcm substream instance
1740 *
1741 * This function is called from the interrupt handler when the
1742 * PCM has processed the period size. It will update the current
1743 * pointer, wake up sleepers, etc.
1744 *
1745 * Even if more than one periods have elapsed since the last call, you
1746 * have to call this only once.
1747 */
snd_pcm_period_elapsed(struct snd_pcm_substream * substream)1748 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1749 {
1750 struct snd_pcm_runtime *runtime;
1751 unsigned long flags;
1752
1753 if (PCM_RUNTIME_CHECK(substream))
1754 return;
1755 runtime = substream->runtime;
1756
1757 if (runtime->transfer_ack_begin)
1758 runtime->transfer_ack_begin(substream);
1759
1760 snd_pcm_stream_lock_irqsave(substream, flags);
1761 if (!snd_pcm_running(substream) ||
1762 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1763 goto _end;
1764
1765 if (substream->timer_running)
1766 snd_timer_interrupt(substream->timer, 1);
1767 _end:
1768 snd_pcm_stream_unlock_irqrestore(substream, flags);
1769 if (runtime->transfer_ack_end)
1770 runtime->transfer_ack_end(substream);
1771 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1772 }
1773
1774 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1775
1776 /*
1777 * Wait until avail_min data becomes available
1778 * Returns a negative error code if any error occurs during operation.
1779 * The available space is stored on availp. When err = 0 and avail = 0
1780 * on the capture stream, it indicates the stream is in DRAINING state.
1781 */
wait_for_avail(struct snd_pcm_substream * substream,snd_pcm_uframes_t * availp)1782 static int wait_for_avail(struct snd_pcm_substream *substream,
1783 snd_pcm_uframes_t *availp)
1784 {
1785 struct snd_pcm_runtime *runtime = substream->runtime;
1786 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1787 wait_queue_t wait;
1788 int err = 0;
1789 snd_pcm_uframes_t avail = 0;
1790 long wait_time, tout;
1791
1792 init_waitqueue_entry(&wait, current);
1793 set_current_state(TASK_INTERRUPTIBLE);
1794 add_wait_queue(&runtime->tsleep, &wait);
1795
1796 if (runtime->no_period_wakeup)
1797 wait_time = MAX_SCHEDULE_TIMEOUT;
1798 else {
1799 wait_time = 10;
1800 if (runtime->rate) {
1801 long t = runtime->period_size * 2 / runtime->rate;
1802 wait_time = max(t, wait_time);
1803 }
1804 wait_time = msecs_to_jiffies(wait_time * 1000);
1805 }
1806
1807 for (;;) {
1808 if (signal_pending(current)) {
1809 err = -ERESTARTSYS;
1810 break;
1811 }
1812
1813 /*
1814 * We need to check if space became available already
1815 * (and thus the wakeup happened already) first to close
1816 * the race of space already having become available.
1817 * This check must happen after been added to the waitqueue
1818 * and having current state be INTERRUPTIBLE.
1819 */
1820 if (is_playback)
1821 avail = snd_pcm_playback_avail(runtime);
1822 else
1823 avail = snd_pcm_capture_avail(runtime);
1824 if (avail >= runtime->twake)
1825 break;
1826 snd_pcm_stream_unlock_irq(substream);
1827
1828 tout = schedule_timeout(wait_time);
1829
1830 snd_pcm_stream_lock_irq(substream);
1831 set_current_state(TASK_INTERRUPTIBLE);
1832 switch (runtime->status->state) {
1833 case SNDRV_PCM_STATE_SUSPENDED:
1834 err = -ESTRPIPE;
1835 goto _endloop;
1836 case SNDRV_PCM_STATE_XRUN:
1837 err = -EPIPE;
1838 goto _endloop;
1839 case SNDRV_PCM_STATE_DRAINING:
1840 if (is_playback)
1841 err = -EPIPE;
1842 else
1843 avail = 0; /* indicate draining */
1844 goto _endloop;
1845 case SNDRV_PCM_STATE_OPEN:
1846 case SNDRV_PCM_STATE_SETUP:
1847 case SNDRV_PCM_STATE_DISCONNECTED:
1848 err = -EBADFD;
1849 goto _endloop;
1850 case SNDRV_PCM_STATE_PAUSED:
1851 continue;
1852 }
1853 if (!tout) {
1854 snd_printd("%s write error (DMA or IRQ trouble?)\n",
1855 is_playback ? "playback" : "capture");
1856 err = -EIO;
1857 break;
1858 }
1859 }
1860 _endloop:
1861 set_current_state(TASK_RUNNING);
1862 remove_wait_queue(&runtime->tsleep, &wait);
1863 *availp = avail;
1864 return err;
1865 }
1866
snd_pcm_lib_write_transfer(struct snd_pcm_substream * substream,unsigned int hwoff,unsigned long data,unsigned int off,snd_pcm_uframes_t frames)1867 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1868 unsigned int hwoff,
1869 unsigned long data, unsigned int off,
1870 snd_pcm_uframes_t frames)
1871 {
1872 struct snd_pcm_runtime *runtime = substream->runtime;
1873 int err;
1874 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1875 if (substream->ops->copy) {
1876 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1877 return err;
1878 } else {
1879 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1880 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1881 return -EFAULT;
1882 }
1883 return 0;
1884 }
1885
1886 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1887 unsigned long data, unsigned int off,
1888 snd_pcm_uframes_t size);
1889
snd_pcm_lib_write1(struct snd_pcm_substream * substream,unsigned long data,snd_pcm_uframes_t size,int nonblock,transfer_f transfer)1890 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1891 unsigned long data,
1892 snd_pcm_uframes_t size,
1893 int nonblock,
1894 transfer_f transfer)
1895 {
1896 struct snd_pcm_runtime *runtime = substream->runtime;
1897 snd_pcm_uframes_t xfer = 0;
1898 snd_pcm_uframes_t offset = 0;
1899 int err = 0;
1900
1901 if (size == 0)
1902 return 0;
1903
1904 snd_pcm_stream_lock_irq(substream);
1905 switch (runtime->status->state) {
1906 case SNDRV_PCM_STATE_PREPARED:
1907 case SNDRV_PCM_STATE_RUNNING:
1908 case SNDRV_PCM_STATE_PAUSED:
1909 break;
1910 case SNDRV_PCM_STATE_XRUN:
1911 err = -EPIPE;
1912 goto _end_unlock;
1913 case SNDRV_PCM_STATE_SUSPENDED:
1914 err = -ESTRPIPE;
1915 goto _end_unlock;
1916 default:
1917 err = -EBADFD;
1918 goto _end_unlock;
1919 }
1920
1921 runtime->twake = runtime->control->avail_min ? : 1;
1922 while (size > 0) {
1923 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1924 snd_pcm_uframes_t avail;
1925 snd_pcm_uframes_t cont;
1926 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1927 snd_pcm_update_hw_ptr(substream);
1928 avail = snd_pcm_playback_avail(runtime);
1929 if (!avail) {
1930 if (nonblock) {
1931 err = -EAGAIN;
1932 goto _end_unlock;
1933 }
1934 runtime->twake = min_t(snd_pcm_uframes_t, size,
1935 runtime->control->avail_min ? : 1);
1936 err = wait_for_avail(substream, &avail);
1937 if (err < 0)
1938 goto _end_unlock;
1939 }
1940 frames = size > avail ? avail : size;
1941 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1942 if (frames > cont)
1943 frames = cont;
1944 if (snd_BUG_ON(!frames)) {
1945 runtime->twake = 0;
1946 snd_pcm_stream_unlock_irq(substream);
1947 return -EINVAL;
1948 }
1949 appl_ptr = runtime->control->appl_ptr;
1950 appl_ofs = appl_ptr % runtime->buffer_size;
1951 snd_pcm_stream_unlock_irq(substream);
1952 err = transfer(substream, appl_ofs, data, offset, frames);
1953 snd_pcm_stream_lock_irq(substream);
1954 if (err < 0)
1955 goto _end_unlock;
1956 switch (runtime->status->state) {
1957 case SNDRV_PCM_STATE_XRUN:
1958 err = -EPIPE;
1959 goto _end_unlock;
1960 case SNDRV_PCM_STATE_SUSPENDED:
1961 err = -ESTRPIPE;
1962 goto _end_unlock;
1963 default:
1964 break;
1965 }
1966 appl_ptr += frames;
1967 if (appl_ptr >= runtime->boundary)
1968 appl_ptr -= runtime->boundary;
1969 runtime->control->appl_ptr = appl_ptr;
1970 if (substream->ops->ack)
1971 substream->ops->ack(substream);
1972
1973 offset += frames;
1974 size -= frames;
1975 xfer += frames;
1976 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1977 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1978 err = snd_pcm_start(substream);
1979 if (err < 0)
1980 goto _end_unlock;
1981 }
1982 }
1983 _end_unlock:
1984 runtime->twake = 0;
1985 if (xfer > 0 && err >= 0)
1986 snd_pcm_update_state(substream, runtime);
1987 snd_pcm_stream_unlock_irq(substream);
1988 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1989 }
1990
1991 /* sanity-check for read/write methods */
pcm_sanity_check(struct snd_pcm_substream * substream)1992 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1993 {
1994 struct snd_pcm_runtime *runtime;
1995 if (PCM_RUNTIME_CHECK(substream))
1996 return -ENXIO;
1997 runtime = substream->runtime;
1998 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1999 return -EINVAL;
2000 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2001 return -EBADFD;
2002 return 0;
2003 }
2004
snd_pcm_lib_write(struct snd_pcm_substream * substream,const void __user * buf,snd_pcm_uframes_t size)2005 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2006 {
2007 struct snd_pcm_runtime *runtime;
2008 int nonblock;
2009 int err;
2010
2011 err = pcm_sanity_check(substream);
2012 if (err < 0)
2013 return err;
2014 runtime = substream->runtime;
2015 nonblock = !!(substream->f_flags & O_NONBLOCK);
2016
2017 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2018 runtime->channels > 1)
2019 return -EINVAL;
2020 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2021 snd_pcm_lib_write_transfer);
2022 }
2023
2024 EXPORT_SYMBOL(snd_pcm_lib_write);
2025
snd_pcm_lib_writev_transfer(struct snd_pcm_substream * substream,unsigned int hwoff,unsigned long data,unsigned int off,snd_pcm_uframes_t frames)2026 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2027 unsigned int hwoff,
2028 unsigned long data, unsigned int off,
2029 snd_pcm_uframes_t frames)
2030 {
2031 struct snd_pcm_runtime *runtime = substream->runtime;
2032 int err;
2033 void __user **bufs = (void __user **)data;
2034 int channels = runtime->channels;
2035 int c;
2036 if (substream->ops->copy) {
2037 if (snd_BUG_ON(!substream->ops->silence))
2038 return -EINVAL;
2039 for (c = 0; c < channels; ++c, ++bufs) {
2040 if (*bufs == NULL) {
2041 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2042 return err;
2043 } else {
2044 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2045 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2046 return err;
2047 }
2048 }
2049 } else {
2050 /* default transfer behaviour */
2051 size_t dma_csize = runtime->dma_bytes / channels;
2052 for (c = 0; c < channels; ++c, ++bufs) {
2053 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2054 if (*bufs == NULL) {
2055 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2056 } else {
2057 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2058 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2059 return -EFAULT;
2060 }
2061 }
2062 }
2063 return 0;
2064 }
2065
snd_pcm_lib_writev(struct snd_pcm_substream * substream,void __user ** bufs,snd_pcm_uframes_t frames)2066 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2067 void __user **bufs,
2068 snd_pcm_uframes_t frames)
2069 {
2070 struct snd_pcm_runtime *runtime;
2071 int nonblock;
2072 int err;
2073
2074 err = pcm_sanity_check(substream);
2075 if (err < 0)
2076 return err;
2077 runtime = substream->runtime;
2078 nonblock = !!(substream->f_flags & O_NONBLOCK);
2079
2080 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2081 return -EINVAL;
2082 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2083 nonblock, snd_pcm_lib_writev_transfer);
2084 }
2085
2086 EXPORT_SYMBOL(snd_pcm_lib_writev);
2087
snd_pcm_lib_read_transfer(struct snd_pcm_substream * substream,unsigned int hwoff,unsigned long data,unsigned int off,snd_pcm_uframes_t frames)2088 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2089 unsigned int hwoff,
2090 unsigned long data, unsigned int off,
2091 snd_pcm_uframes_t frames)
2092 {
2093 struct snd_pcm_runtime *runtime = substream->runtime;
2094 int err;
2095 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2096 if (substream->ops->copy) {
2097 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2098 return err;
2099 } else {
2100 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2101 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2102 return -EFAULT;
2103 }
2104 return 0;
2105 }
2106
snd_pcm_lib_read1(struct snd_pcm_substream * substream,unsigned long data,snd_pcm_uframes_t size,int nonblock,transfer_f transfer)2107 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2108 unsigned long data,
2109 snd_pcm_uframes_t size,
2110 int nonblock,
2111 transfer_f transfer)
2112 {
2113 struct snd_pcm_runtime *runtime = substream->runtime;
2114 snd_pcm_uframes_t xfer = 0;
2115 snd_pcm_uframes_t offset = 0;
2116 int err = 0;
2117
2118 if (size == 0)
2119 return 0;
2120
2121 snd_pcm_stream_lock_irq(substream);
2122 switch (runtime->status->state) {
2123 case SNDRV_PCM_STATE_PREPARED:
2124 if (size >= runtime->start_threshold) {
2125 err = snd_pcm_start(substream);
2126 if (err < 0)
2127 goto _end_unlock;
2128 }
2129 break;
2130 case SNDRV_PCM_STATE_DRAINING:
2131 case SNDRV_PCM_STATE_RUNNING:
2132 case SNDRV_PCM_STATE_PAUSED:
2133 break;
2134 case SNDRV_PCM_STATE_XRUN:
2135 err = -EPIPE;
2136 goto _end_unlock;
2137 case SNDRV_PCM_STATE_SUSPENDED:
2138 err = -ESTRPIPE;
2139 goto _end_unlock;
2140 default:
2141 err = -EBADFD;
2142 goto _end_unlock;
2143 }
2144
2145 runtime->twake = runtime->control->avail_min ? : 1;
2146 while (size > 0) {
2147 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2148 snd_pcm_uframes_t avail;
2149 snd_pcm_uframes_t cont;
2150 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2151 snd_pcm_update_hw_ptr(substream);
2152 avail = snd_pcm_capture_avail(runtime);
2153 if (!avail) {
2154 if (runtime->status->state ==
2155 SNDRV_PCM_STATE_DRAINING) {
2156 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2157 goto _end_unlock;
2158 }
2159 if (nonblock) {
2160 err = -EAGAIN;
2161 goto _end_unlock;
2162 }
2163 runtime->twake = min_t(snd_pcm_uframes_t, size,
2164 runtime->control->avail_min ? : 1);
2165 err = wait_for_avail(substream, &avail);
2166 if (err < 0)
2167 goto _end_unlock;
2168 if (!avail)
2169 continue; /* draining */
2170 }
2171 frames = size > avail ? avail : size;
2172 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2173 if (frames > cont)
2174 frames = cont;
2175 if (snd_BUG_ON(!frames)) {
2176 runtime->twake = 0;
2177 snd_pcm_stream_unlock_irq(substream);
2178 return -EINVAL;
2179 }
2180 appl_ptr = runtime->control->appl_ptr;
2181 appl_ofs = appl_ptr % runtime->buffer_size;
2182 snd_pcm_stream_unlock_irq(substream);
2183 err = transfer(substream, appl_ofs, data, offset, frames);
2184 snd_pcm_stream_lock_irq(substream);
2185 if (err < 0)
2186 goto _end_unlock;
2187 switch (runtime->status->state) {
2188 case SNDRV_PCM_STATE_XRUN:
2189 err = -EPIPE;
2190 goto _end_unlock;
2191 case SNDRV_PCM_STATE_SUSPENDED:
2192 err = -ESTRPIPE;
2193 goto _end_unlock;
2194 default:
2195 break;
2196 }
2197 appl_ptr += frames;
2198 if (appl_ptr >= runtime->boundary)
2199 appl_ptr -= runtime->boundary;
2200 runtime->control->appl_ptr = appl_ptr;
2201 if (substream->ops->ack)
2202 substream->ops->ack(substream);
2203
2204 offset += frames;
2205 size -= frames;
2206 xfer += frames;
2207 }
2208 _end_unlock:
2209 runtime->twake = 0;
2210 if (xfer > 0 && err >= 0)
2211 snd_pcm_update_state(substream, runtime);
2212 snd_pcm_stream_unlock_irq(substream);
2213 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2214 }
2215
snd_pcm_lib_read(struct snd_pcm_substream * substream,void __user * buf,snd_pcm_uframes_t size)2216 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2217 {
2218 struct snd_pcm_runtime *runtime;
2219 int nonblock;
2220 int err;
2221
2222 err = pcm_sanity_check(substream);
2223 if (err < 0)
2224 return err;
2225 runtime = substream->runtime;
2226 nonblock = !!(substream->f_flags & O_NONBLOCK);
2227 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2228 return -EINVAL;
2229 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2230 }
2231
2232 EXPORT_SYMBOL(snd_pcm_lib_read);
2233
snd_pcm_lib_readv_transfer(struct snd_pcm_substream * substream,unsigned int hwoff,unsigned long data,unsigned int off,snd_pcm_uframes_t frames)2234 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2235 unsigned int hwoff,
2236 unsigned long data, unsigned int off,
2237 snd_pcm_uframes_t frames)
2238 {
2239 struct snd_pcm_runtime *runtime = substream->runtime;
2240 int err;
2241 void __user **bufs = (void __user **)data;
2242 int channels = runtime->channels;
2243 int c;
2244 if (substream->ops->copy) {
2245 for (c = 0; c < channels; ++c, ++bufs) {
2246 char __user *buf;
2247 if (*bufs == NULL)
2248 continue;
2249 buf = *bufs + samples_to_bytes(runtime, off);
2250 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2251 return err;
2252 }
2253 } else {
2254 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2255 for (c = 0; c < channels; ++c, ++bufs) {
2256 char *hwbuf;
2257 char __user *buf;
2258 if (*bufs == NULL)
2259 continue;
2260
2261 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2262 buf = *bufs + samples_to_bytes(runtime, off);
2263 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2264 return -EFAULT;
2265 }
2266 }
2267 return 0;
2268 }
2269
snd_pcm_lib_readv(struct snd_pcm_substream * substream,void __user ** bufs,snd_pcm_uframes_t frames)2270 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2271 void __user **bufs,
2272 snd_pcm_uframes_t frames)
2273 {
2274 struct snd_pcm_runtime *runtime;
2275 int nonblock;
2276 int err;
2277
2278 err = pcm_sanity_check(substream);
2279 if (err < 0)
2280 return err;
2281 runtime = substream->runtime;
2282 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2283 return -EBADFD;
2284
2285 nonblock = !!(substream->f_flags & O_NONBLOCK);
2286 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2287 return -EINVAL;
2288 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2289 }
2290
2291 EXPORT_SYMBOL(snd_pcm_lib_readv);
2292