1 /*
2  * SN2 Platform specific SMP Support
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (C) 2000-2006 Silicon Graphics, Inc. All rights reserved.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/spinlock.h>
14 #include <linux/threads.h>
15 #include <linux/sched.h>
16 #include <linux/smp.h>
17 #include <linux/interrupt.h>
18 #include <linux/irq.h>
19 #include <linux/mmzone.h>
20 #include <linux/module.h>
21 #include <linux/bitops.h>
22 #include <linux/nodemask.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 
26 #include <asm/processor.h>
27 #include <asm/irq.h>
28 #include <asm/sal.h>
29 #include <asm/delay.h>
30 #include <asm/io.h>
31 #include <asm/smp.h>
32 #include <asm/tlb.h>
33 #include <asm/numa.h>
34 #include <asm/hw_irq.h>
35 #include <asm/current.h>
36 #include <asm/sn/sn_cpuid.h>
37 #include <asm/sn/sn_sal.h>
38 #include <asm/sn/addrs.h>
39 #include <asm/sn/shub_mmr.h>
40 #include <asm/sn/nodepda.h>
41 #include <asm/sn/rw_mmr.h>
42 #include <asm/sn/sn_feature_sets.h>
43 
44 DEFINE_PER_CPU(struct ptc_stats, ptcstats);
45 DECLARE_PER_CPU(struct ptc_stats, ptcstats);
46 
47 static  __cacheline_aligned DEFINE_SPINLOCK(sn2_global_ptc_lock);
48 
49 /* 0 = old algorithm (no IPI flushes), 1 = ipi deadlock flush, 2 = ipi instead of SHUB ptc, >2 = always ipi */
50 static int sn2_flush_opt = 0;
51 
52 extern unsigned long
53 sn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long,
54 			       volatile unsigned long *, unsigned long,
55 			       volatile unsigned long *, unsigned long);
56 void
57 sn2_ptc_deadlock_recovery(short *, short, short, int,
58 			  volatile unsigned long *, unsigned long,
59 			  volatile unsigned long *, unsigned long);
60 
61 /*
62  * Note: some is the following is captured here to make degugging easier
63  * (the macros make more sense if you see the debug patch - not posted)
64  */
65 #define sn2_ptctest	0
66 #define local_node_uses_ptc_ga(sh1)	((sh1) ? 1 : 0)
67 #define max_active_pio(sh1)		((sh1) ? 32 : 7)
68 #define reset_max_active_on_deadlock()	1
69 #define PTC_LOCK(sh1)			((sh1) ? &sn2_global_ptc_lock : &sn_nodepda->ptc_lock)
70 
71 struct ptc_stats {
72 	unsigned long ptc_l;
73 	unsigned long change_rid;
74 	unsigned long shub_ptc_flushes;
75 	unsigned long nodes_flushed;
76 	unsigned long deadlocks;
77 	unsigned long deadlocks2;
78 	unsigned long lock_itc_clocks;
79 	unsigned long shub_itc_clocks;
80 	unsigned long shub_itc_clocks_max;
81 	unsigned long shub_ptc_flushes_not_my_mm;
82 	unsigned long shub_ipi_flushes;
83 	unsigned long shub_ipi_flushes_itc_clocks;
84 };
85 
86 #define sn2_ptctest	0
87 
wait_piowc(void)88 static inline unsigned long wait_piowc(void)
89 {
90 	volatile unsigned long *piows;
91 	unsigned long zeroval, ws;
92 
93 	piows = pda->pio_write_status_addr;
94 	zeroval = pda->pio_write_status_val;
95 	do {
96 		cpu_relax();
97 	} while (((ws = *piows) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != zeroval);
98 	return (ws & SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK) != 0;
99 }
100 
101 /**
102  * sn_migrate - SN-specific task migration actions
103  * @task: Task being migrated to new CPU
104  *
105  * SN2 PIO writes from separate CPUs are not guaranteed to arrive in order.
106  * Context switching user threads which have memory-mapped MMIO may cause
107  * PIOs to issue from separate CPUs, thus the PIO writes must be drained
108  * from the previous CPU's Shub before execution resumes on the new CPU.
109  */
sn_migrate(struct task_struct * task)110 void sn_migrate(struct task_struct *task)
111 {
112 	pda_t *last_pda = pdacpu(task_thread_info(task)->last_cpu);
113 	volatile unsigned long *adr = last_pda->pio_write_status_addr;
114 	unsigned long val = last_pda->pio_write_status_val;
115 
116 	/* Drain PIO writes from old CPU's Shub */
117 	while (unlikely((*adr & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK)
118 			!= val))
119 		cpu_relax();
120 }
121 
sn_tlb_migrate_finish(struct mm_struct * mm)122 void sn_tlb_migrate_finish(struct mm_struct *mm)
123 {
124 	/* flush_tlb_mm is inefficient if more than 1 users of mm */
125 	if (mm == current->mm && mm && atomic_read(&mm->mm_users) == 1)
126 		flush_tlb_mm(mm);
127 }
128 
129 static void
sn2_ipi_flush_all_tlb(struct mm_struct * mm)130 sn2_ipi_flush_all_tlb(struct mm_struct *mm)
131 {
132 	unsigned long itc;
133 
134 	itc = ia64_get_itc();
135 	smp_flush_tlb_cpumask(*mm_cpumask(mm));
136 	itc = ia64_get_itc() - itc;
137 	__get_cpu_var(ptcstats).shub_ipi_flushes_itc_clocks += itc;
138 	__get_cpu_var(ptcstats).shub_ipi_flushes++;
139 }
140 
141 /**
142  * sn2_global_tlb_purge - globally purge translation cache of virtual address range
143  * @mm: mm_struct containing virtual address range
144  * @start: start of virtual address range
145  * @end: end of virtual address range
146  * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc))
147  *
148  * Purges the translation caches of all processors of the given virtual address
149  * range.
150  *
151  * Note:
152  * 	- cpu_vm_mask is a bit mask that indicates which cpus have loaded the context.
153  * 	- cpu_vm_mask is converted into a nodemask of the nodes containing the
154  * 	  cpus in cpu_vm_mask.
155  *	- if only one bit is set in cpu_vm_mask & it is the current cpu & the
156  *	  process is purging its own virtual address range, then only the
157  *	  local TLB needs to be flushed. This flushing can be done using
158  *	  ptc.l. This is the common case & avoids the global spinlock.
159  *	- if multiple cpus have loaded the context, then flushing has to be
160  *	  done with ptc.g/MMRs under protection of the global ptc_lock.
161  */
162 
163 void
sn2_global_tlb_purge(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned long nbits)164 sn2_global_tlb_purge(struct mm_struct *mm, unsigned long start,
165 		     unsigned long end, unsigned long nbits)
166 {
167 	int i, ibegin, shub1, cnode, mynasid, cpu, lcpu = 0, nasid;
168 	int mymm = (mm == current->active_mm && mm == current->mm);
169 	int use_cpu_ptcga;
170 	volatile unsigned long *ptc0, *ptc1;
171 	unsigned long itc, itc2, flags, data0 = 0, data1 = 0, rr_value, old_rr = 0;
172 	short nasids[MAX_NUMNODES], nix;
173 	nodemask_t nodes_flushed;
174 	int active, max_active, deadlock, flush_opt = sn2_flush_opt;
175 
176 	if (flush_opt > 2) {
177 		sn2_ipi_flush_all_tlb(mm);
178 		return;
179 	}
180 
181 	nodes_clear(nodes_flushed);
182 	i = 0;
183 
184 	for_each_cpu(cpu, mm_cpumask(mm)) {
185 		cnode = cpu_to_node(cpu);
186 		node_set(cnode, nodes_flushed);
187 		lcpu = cpu;
188 		i++;
189 	}
190 
191 	if (i == 0)
192 		return;
193 
194 	preempt_disable();
195 
196 	if (likely(i == 1 && lcpu == smp_processor_id() && mymm)) {
197 		do {
198 			ia64_ptcl(start, nbits << 2);
199 			start += (1UL << nbits);
200 		} while (start < end);
201 		ia64_srlz_i();
202 		__get_cpu_var(ptcstats).ptc_l++;
203 		preempt_enable();
204 		return;
205 	}
206 
207 	if (atomic_read(&mm->mm_users) == 1 && mymm) {
208 		flush_tlb_mm(mm);
209 		__get_cpu_var(ptcstats).change_rid++;
210 		preempt_enable();
211 		return;
212 	}
213 
214 	if (flush_opt == 2) {
215 		sn2_ipi_flush_all_tlb(mm);
216 		preempt_enable();
217 		return;
218 	}
219 
220 	itc = ia64_get_itc();
221 	nix = 0;
222 	for_each_node_mask(cnode, nodes_flushed)
223 		nasids[nix++] = cnodeid_to_nasid(cnode);
224 
225 	rr_value = (mm->context << 3) | REGION_NUMBER(start);
226 
227 	shub1 = is_shub1();
228 	if (shub1) {
229 		data0 = (1UL << SH1_PTC_0_A_SHFT) |
230 		    	(nbits << SH1_PTC_0_PS_SHFT) |
231 			(rr_value << SH1_PTC_0_RID_SHFT) |
232 		    	(1UL << SH1_PTC_0_START_SHFT);
233 		ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_0);
234 		ptc1 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_1);
235 	} else {
236 		data0 = (1UL << SH2_PTC_A_SHFT) |
237 			(nbits << SH2_PTC_PS_SHFT) |
238 		    	(1UL << SH2_PTC_START_SHFT);
239 		ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH2_PTC +
240 			(rr_value << SH2_PTC_RID_SHFT));
241 		ptc1 = NULL;
242 	}
243 
244 
245 	mynasid = get_nasid();
246 	use_cpu_ptcga = local_node_uses_ptc_ga(shub1);
247 	max_active = max_active_pio(shub1);
248 
249 	itc = ia64_get_itc();
250 	spin_lock_irqsave(PTC_LOCK(shub1), flags);
251 	itc2 = ia64_get_itc();
252 
253 	__get_cpu_var(ptcstats).lock_itc_clocks += itc2 - itc;
254 	__get_cpu_var(ptcstats).shub_ptc_flushes++;
255 	__get_cpu_var(ptcstats).nodes_flushed += nix;
256 	if (!mymm)
257 		 __get_cpu_var(ptcstats).shub_ptc_flushes_not_my_mm++;
258 
259 	if (use_cpu_ptcga && !mymm) {
260 		old_rr = ia64_get_rr(start);
261 		ia64_set_rr(start, (old_rr & 0xff) | (rr_value << 8));
262 		ia64_srlz_d();
263 	}
264 
265 	wait_piowc();
266 	do {
267 		if (shub1)
268 			data1 = start | (1UL << SH1_PTC_1_START_SHFT);
269 		else
270 			data0 = (data0 & ~SH2_PTC_ADDR_MASK) | (start & SH2_PTC_ADDR_MASK);
271 		deadlock = 0;
272 		active = 0;
273 		for (ibegin = 0, i = 0; i < nix; i++) {
274 			nasid = nasids[i];
275 			if (use_cpu_ptcga && unlikely(nasid == mynasid)) {
276 				ia64_ptcga(start, nbits << 2);
277 				ia64_srlz_i();
278 			} else {
279 				ptc0 = CHANGE_NASID(nasid, ptc0);
280 				if (ptc1)
281 					ptc1 = CHANGE_NASID(nasid, ptc1);
282 				pio_atomic_phys_write_mmrs(ptc0, data0, ptc1, data1);
283 				active++;
284 			}
285 			if (active >= max_active || i == (nix - 1)) {
286 				if ((deadlock = wait_piowc())) {
287 					if (flush_opt == 1)
288 						goto done;
289 					sn2_ptc_deadlock_recovery(nasids, ibegin, i, mynasid, ptc0, data0, ptc1, data1);
290 					if (reset_max_active_on_deadlock())
291 						max_active = 1;
292 				}
293 				active = 0;
294 				ibegin = i + 1;
295 			}
296 		}
297 		start += (1UL << nbits);
298 	} while (start < end);
299 
300 done:
301 	itc2 = ia64_get_itc() - itc2;
302 	__get_cpu_var(ptcstats).shub_itc_clocks += itc2;
303 	if (itc2 > __get_cpu_var(ptcstats).shub_itc_clocks_max)
304 		__get_cpu_var(ptcstats).shub_itc_clocks_max = itc2;
305 
306 	if (old_rr) {
307 		ia64_set_rr(start, old_rr);
308 		ia64_srlz_d();
309 	}
310 
311 	spin_unlock_irqrestore(PTC_LOCK(shub1), flags);
312 
313 	if (flush_opt == 1 && deadlock) {
314 		__get_cpu_var(ptcstats).deadlocks++;
315 		sn2_ipi_flush_all_tlb(mm);
316 	}
317 
318 	preempt_enable();
319 }
320 
321 /*
322  * sn2_ptc_deadlock_recovery
323  *
324  * Recover from PTC deadlocks conditions. Recovery requires stepping thru each
325  * TLB flush transaction.  The recovery sequence is somewhat tricky & is
326  * coded in assembly language.
327  */
328 
329 void
sn2_ptc_deadlock_recovery(short * nasids,short ib,short ie,int mynasid,volatile unsigned long * ptc0,unsigned long data0,volatile unsigned long * ptc1,unsigned long data1)330 sn2_ptc_deadlock_recovery(short *nasids, short ib, short ie, int mynasid,
331 			  volatile unsigned long *ptc0, unsigned long data0,
332 			  volatile unsigned long *ptc1, unsigned long data1)
333 {
334 	short nasid, i;
335 	unsigned long *piows, zeroval, n;
336 
337 	__get_cpu_var(ptcstats).deadlocks++;
338 
339 	piows = (unsigned long *) pda->pio_write_status_addr;
340 	zeroval = pda->pio_write_status_val;
341 
342 
343 	for (i=ib; i <= ie; i++) {
344 		nasid = nasids[i];
345 		if (local_node_uses_ptc_ga(is_shub1()) && nasid == mynasid)
346 			continue;
347 		ptc0 = CHANGE_NASID(nasid, ptc0);
348 		if (ptc1)
349 			ptc1 = CHANGE_NASID(nasid, ptc1);
350 
351 		n = sn2_ptc_deadlock_recovery_core(ptc0, data0, ptc1, data1, piows, zeroval);
352 		__get_cpu_var(ptcstats).deadlocks2 += n;
353 	}
354 
355 }
356 
357 /**
358  * sn_send_IPI_phys - send an IPI to a Nasid and slice
359  * @nasid: nasid to receive the interrupt (may be outside partition)
360  * @physid: physical cpuid to receive the interrupt.
361  * @vector: command to send
362  * @delivery_mode: delivery mechanism
363  *
364  * Sends an IPI (interprocessor interrupt) to the processor specified by
365  * @physid
366  *
367  * @delivery_mode can be one of the following
368  *
369  * %IA64_IPI_DM_INT - pend an interrupt
370  * %IA64_IPI_DM_PMI - pend a PMI
371  * %IA64_IPI_DM_NMI - pend an NMI
372  * %IA64_IPI_DM_INIT - pend an INIT interrupt
373  */
sn_send_IPI_phys(int nasid,long physid,int vector,int delivery_mode)374 void sn_send_IPI_phys(int nasid, long physid, int vector, int delivery_mode)
375 {
376 	long val;
377 	unsigned long flags = 0;
378 	volatile long *p;
379 
380 	p = (long *)GLOBAL_MMR_PHYS_ADDR(nasid, SH_IPI_INT);
381 	val = (1UL << SH_IPI_INT_SEND_SHFT) |
382 	    (physid << SH_IPI_INT_PID_SHFT) |
383 	    ((long)delivery_mode << SH_IPI_INT_TYPE_SHFT) |
384 	    ((long)vector << SH_IPI_INT_IDX_SHFT) |
385 	    (0x000feeUL << SH_IPI_INT_BASE_SHFT);
386 
387 	mb();
388 	if (enable_shub_wars_1_1()) {
389 		spin_lock_irqsave(&sn2_global_ptc_lock, flags);
390 	}
391 	pio_phys_write_mmr(p, val);
392 	if (enable_shub_wars_1_1()) {
393 		wait_piowc();
394 		spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
395 	}
396 
397 }
398 
399 EXPORT_SYMBOL(sn_send_IPI_phys);
400 
401 /**
402  * sn2_send_IPI - send an IPI to a processor
403  * @cpuid: target of the IPI
404  * @vector: command to send
405  * @delivery_mode: delivery mechanism
406  * @redirect: redirect the IPI?
407  *
408  * Sends an IPI (InterProcessor Interrupt) to the processor specified by
409  * @cpuid.  @vector specifies the command to send, while @delivery_mode can
410  * be one of the following
411  *
412  * %IA64_IPI_DM_INT - pend an interrupt
413  * %IA64_IPI_DM_PMI - pend a PMI
414  * %IA64_IPI_DM_NMI - pend an NMI
415  * %IA64_IPI_DM_INIT - pend an INIT interrupt
416  */
sn2_send_IPI(int cpuid,int vector,int delivery_mode,int redirect)417 void sn2_send_IPI(int cpuid, int vector, int delivery_mode, int redirect)
418 {
419 	long physid;
420 	int nasid;
421 
422 	physid = cpu_physical_id(cpuid);
423 	nasid = cpuid_to_nasid(cpuid);
424 
425 	/* the following is used only when starting cpus at boot time */
426 	if (unlikely(nasid == -1))
427 		ia64_sn_get_sapic_info(physid, &nasid, NULL, NULL);
428 
429 	sn_send_IPI_phys(nasid, physid, vector, delivery_mode);
430 }
431 
432 #ifdef CONFIG_HOTPLUG_CPU
433 /**
434  * sn_cpu_disable_allowed - Determine if a CPU can be disabled.
435  * @cpu - CPU that is requested to be disabled.
436  *
437  * CPU disable is only allowed on SHub2 systems running with a PROM
438  * that supports CPU disable. It is not permitted to disable the boot processor.
439  */
sn_cpu_disable_allowed(int cpu)440 bool sn_cpu_disable_allowed(int cpu)
441 {
442 	if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT)) {
443 		if (cpu != 0)
444 			return true;
445 		else
446 			printk(KERN_WARNING
447 			      "Disabling the boot processor is not allowed.\n");
448 
449 	} else
450 		printk(KERN_WARNING
451 		       "CPU disable is not supported on this system.\n");
452 
453 	return false;
454 }
455 #endif /* CONFIG_HOTPLUG_CPU */
456 
457 #ifdef CONFIG_PROC_FS
458 
459 #define PTC_BASENAME	"sgi_sn/ptc_statistics"
460 
sn2_ptc_seq_start(struct seq_file * file,loff_t * offset)461 static void *sn2_ptc_seq_start(struct seq_file *file, loff_t * offset)
462 {
463 	if (*offset < nr_cpu_ids)
464 		return offset;
465 	return NULL;
466 }
467 
sn2_ptc_seq_next(struct seq_file * file,void * data,loff_t * offset)468 static void *sn2_ptc_seq_next(struct seq_file *file, void *data, loff_t * offset)
469 {
470 	(*offset)++;
471 	if (*offset < nr_cpu_ids)
472 		return offset;
473 	return NULL;
474 }
475 
sn2_ptc_seq_stop(struct seq_file * file,void * data)476 static void sn2_ptc_seq_stop(struct seq_file *file, void *data)
477 {
478 }
479 
sn2_ptc_seq_show(struct seq_file * file,void * data)480 static int sn2_ptc_seq_show(struct seq_file *file, void *data)
481 {
482 	struct ptc_stats *stat;
483 	int cpu;
484 
485 	cpu = *(loff_t *) data;
486 
487 	if (!cpu) {
488 		seq_printf(file,
489 			   "# cpu ptc_l newrid ptc_flushes nodes_flushed deadlocks lock_nsec shub_nsec shub_nsec_max not_my_mm deadlock2 ipi_fluches ipi_nsec\n");
490 		seq_printf(file, "# ptctest %d, flushopt %d\n", sn2_ptctest, sn2_flush_opt);
491 	}
492 
493 	if (cpu < nr_cpu_ids && cpu_online(cpu)) {
494 		stat = &per_cpu(ptcstats, cpu);
495 		seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu, stat->ptc_l,
496 				stat->change_rid, stat->shub_ptc_flushes, stat->nodes_flushed,
497 				stat->deadlocks,
498 				1000 * stat->lock_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
499 				1000 * stat->shub_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
500 				1000 * stat->shub_itc_clocks_max / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
501 				stat->shub_ptc_flushes_not_my_mm,
502 				stat->deadlocks2,
503 				stat->shub_ipi_flushes,
504 				1000 * stat->shub_ipi_flushes_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec);
505 	}
506 	return 0;
507 }
508 
sn2_ptc_proc_write(struct file * file,const char __user * user,size_t count,loff_t * data)509 static ssize_t sn2_ptc_proc_write(struct file *file, const char __user *user, size_t count, loff_t *data)
510 {
511 	int cpu;
512 	char optstr[64];
513 
514 	if (count == 0 || count > sizeof(optstr))
515 		return -EINVAL;
516 	if (copy_from_user(optstr, user, count))
517 		return -EFAULT;
518 	optstr[count - 1] = '\0';
519 	sn2_flush_opt = simple_strtoul(optstr, NULL, 0);
520 
521 	for_each_online_cpu(cpu)
522 		memset(&per_cpu(ptcstats, cpu), 0, sizeof(struct ptc_stats));
523 
524 	return count;
525 }
526 
527 static const struct seq_operations sn2_ptc_seq_ops = {
528 	.start = sn2_ptc_seq_start,
529 	.next = sn2_ptc_seq_next,
530 	.stop = sn2_ptc_seq_stop,
531 	.show = sn2_ptc_seq_show
532 };
533 
sn2_ptc_proc_open(struct inode * inode,struct file * file)534 static int sn2_ptc_proc_open(struct inode *inode, struct file *file)
535 {
536 	return seq_open(file, &sn2_ptc_seq_ops);
537 }
538 
539 static const struct file_operations proc_sn2_ptc_operations = {
540 	.open = sn2_ptc_proc_open,
541 	.read = seq_read,
542 	.write = sn2_ptc_proc_write,
543 	.llseek = seq_lseek,
544 	.release = seq_release,
545 };
546 
547 static struct proc_dir_entry *proc_sn2_ptc;
548 
sn2_ptc_init(void)549 static int __init sn2_ptc_init(void)
550 {
551 	if (!ia64_platform_is("sn2"))
552 		return 0;
553 
554 	proc_sn2_ptc = proc_create(PTC_BASENAME, 0444,
555 				   NULL, &proc_sn2_ptc_operations);
556 	if (!proc_sn2_ptc) {
557 		printk(KERN_ERR "unable to create %s proc entry", PTC_BASENAME);
558 		return -EINVAL;
559 	}
560 	spin_lock_init(&sn2_global_ptc_lock);
561 	return 0;
562 }
563 
sn2_ptc_exit(void)564 static void __exit sn2_ptc_exit(void)
565 {
566 	remove_proc_entry(PTC_BASENAME, NULL);
567 }
568 
569 module_init(sn2_ptc_init);
570 module_exit(sn2_ptc_exit);
571 #endif /* CONFIG_PROC_FS */
572 
573