1 /*
2  * Platform dependent support for SGI SN
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (c) 2000-2008 Silicon Graphics, Inc.  All Rights Reserved.
9  */
10 
11 #include <linux/irq.h>
12 #include <linux/spinlock.h>
13 #include <linux/init.h>
14 #include <linux/rculist.h>
15 #include <linux/slab.h>
16 #include <asm/sn/addrs.h>
17 #include <asm/sn/arch.h>
18 #include <asm/sn/intr.h>
19 #include <asm/sn/pcibr_provider.h>
20 #include <asm/sn/pcibus_provider_defs.h>
21 #include <asm/sn/pcidev.h>
22 #include <asm/sn/shub_mmr.h>
23 #include <asm/sn/sn_sal.h>
24 #include <asm/sn/sn_feature_sets.h>
25 
26 static void register_intr_pda(struct sn_irq_info *sn_irq_info);
27 static void unregister_intr_pda(struct sn_irq_info *sn_irq_info);
28 
29 extern int sn_ioif_inited;
30 struct list_head **sn_irq_lh;
31 static DEFINE_SPINLOCK(sn_irq_info_lock); /* non-IRQ lock */
32 
sn_intr_alloc(nasid_t local_nasid,int local_widget,struct sn_irq_info * sn_irq_info,int req_irq,nasid_t req_nasid,int req_slice)33 u64 sn_intr_alloc(nasid_t local_nasid, int local_widget,
34 				     struct sn_irq_info *sn_irq_info,
35 				     int req_irq, nasid_t req_nasid,
36 				     int req_slice)
37 {
38 	struct ia64_sal_retval ret_stuff;
39 	ret_stuff.status = 0;
40 	ret_stuff.v0 = 0;
41 
42 	SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
43 			(u64) SAL_INTR_ALLOC, (u64) local_nasid,
44 			(u64) local_widget, __pa(sn_irq_info), (u64) req_irq,
45 			(u64) req_nasid, (u64) req_slice);
46 
47 	return ret_stuff.status;
48 }
49 
sn_intr_free(nasid_t local_nasid,int local_widget,struct sn_irq_info * sn_irq_info)50 void sn_intr_free(nasid_t local_nasid, int local_widget,
51 				struct sn_irq_info *sn_irq_info)
52 {
53 	struct ia64_sal_retval ret_stuff;
54 	ret_stuff.status = 0;
55 	ret_stuff.v0 = 0;
56 
57 	SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
58 			(u64) SAL_INTR_FREE, (u64) local_nasid,
59 			(u64) local_widget, (u64) sn_irq_info->irq_irq,
60 			(u64) sn_irq_info->irq_cookie, 0, 0);
61 }
62 
sn_intr_redirect(nasid_t local_nasid,int local_widget,struct sn_irq_info * sn_irq_info,nasid_t req_nasid,int req_slice)63 u64 sn_intr_redirect(nasid_t local_nasid, int local_widget,
64 		      struct sn_irq_info *sn_irq_info,
65 		      nasid_t req_nasid, int req_slice)
66 {
67 	struct ia64_sal_retval ret_stuff;
68 	ret_stuff.status = 0;
69 	ret_stuff.v0 = 0;
70 
71 	SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
72 			(u64) SAL_INTR_REDIRECT, (u64) local_nasid,
73 			(u64) local_widget, __pa(sn_irq_info),
74 			(u64) req_nasid, (u64) req_slice, 0);
75 
76 	return ret_stuff.status;
77 }
78 
sn_startup_irq(struct irq_data * data)79 static unsigned int sn_startup_irq(struct irq_data *data)
80 {
81 	return 0;
82 }
83 
sn_shutdown_irq(struct irq_data * data)84 static void sn_shutdown_irq(struct irq_data *data)
85 {
86 }
87 
88 extern void ia64_mca_register_cpev(int);
89 
sn_disable_irq(struct irq_data * data)90 static void sn_disable_irq(struct irq_data *data)
91 {
92 	if (data->irq == local_vector_to_irq(IA64_CPE_VECTOR))
93 		ia64_mca_register_cpev(0);
94 }
95 
sn_enable_irq(struct irq_data * data)96 static void sn_enable_irq(struct irq_data *data)
97 {
98 	if (data->irq == local_vector_to_irq(IA64_CPE_VECTOR))
99 		ia64_mca_register_cpev(data->irq);
100 }
101 
sn_ack_irq(struct irq_data * data)102 static void sn_ack_irq(struct irq_data *data)
103 {
104 	u64 event_occurred, mask;
105 	unsigned int irq = data->irq & 0xff;
106 
107 	event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED));
108 	mask = event_occurred & SH_ALL_INT_MASK;
109 	HUB_S((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS), mask);
110 	__set_bit(irq, (volatile void *)pda->sn_in_service_ivecs);
111 
112 	irq_move_irq(data);
113 }
114 
sn_retarget_vector(struct sn_irq_info * sn_irq_info,nasid_t nasid,int slice)115 struct sn_irq_info *sn_retarget_vector(struct sn_irq_info *sn_irq_info,
116 				       nasid_t nasid, int slice)
117 {
118 	int vector;
119 	int cpuid;
120 #ifdef CONFIG_SMP
121 	int cpuphys;
122 #endif
123 	int64_t bridge;
124 	int local_widget, status;
125 	nasid_t local_nasid;
126 	struct sn_irq_info *new_irq_info;
127 	struct sn_pcibus_provider *pci_provider;
128 
129 	bridge = (u64) sn_irq_info->irq_bridge;
130 	if (!bridge) {
131 		return NULL; /* irq is not a device interrupt */
132 	}
133 
134 	local_nasid = NASID_GET(bridge);
135 
136 	if (local_nasid & 1)
137 		local_widget = TIO_SWIN_WIDGETNUM(bridge);
138 	else
139 		local_widget = SWIN_WIDGETNUM(bridge);
140 	vector = sn_irq_info->irq_irq;
141 
142 	/* Make use of SAL_INTR_REDIRECT if PROM supports it */
143 	status = sn_intr_redirect(local_nasid, local_widget, sn_irq_info, nasid, slice);
144 	if (!status) {
145 		new_irq_info = sn_irq_info;
146 		goto finish_up;
147 	}
148 
149 	/*
150 	 * PROM does not support SAL_INTR_REDIRECT, or it failed.
151 	 * Revert to old method.
152 	 */
153 	new_irq_info = kmemdup(sn_irq_info, sizeof(struct sn_irq_info),
154 			       GFP_ATOMIC);
155 	if (new_irq_info == NULL)
156 		return NULL;
157 
158 	/* Free the old PROM new_irq_info structure */
159 	sn_intr_free(local_nasid, local_widget, new_irq_info);
160 	unregister_intr_pda(new_irq_info);
161 
162 	/* allocate a new PROM new_irq_info struct */
163 	status = sn_intr_alloc(local_nasid, local_widget,
164 			       new_irq_info, vector,
165 			       nasid, slice);
166 
167 	/* SAL call failed */
168 	if (status) {
169 		kfree(new_irq_info);
170 		return NULL;
171 	}
172 
173 	register_intr_pda(new_irq_info);
174 	spin_lock(&sn_irq_info_lock);
175 	list_replace_rcu(&sn_irq_info->list, &new_irq_info->list);
176 	spin_unlock(&sn_irq_info_lock);
177 	kfree_rcu(sn_irq_info, rcu);
178 
179 
180 finish_up:
181 	/* Update kernels new_irq_info with new target info */
182 	cpuid = nasid_slice_to_cpuid(new_irq_info->irq_nasid,
183 				     new_irq_info->irq_slice);
184 	new_irq_info->irq_cpuid = cpuid;
185 
186 	pci_provider = sn_pci_provider[new_irq_info->irq_bridge_type];
187 
188 	/*
189 	 * If this represents a line interrupt, target it.  If it's
190 	 * an msi (irq_int_bit < 0), it's already targeted.
191 	 */
192 	if (new_irq_info->irq_int_bit >= 0 &&
193 	    pci_provider && pci_provider->target_interrupt)
194 		(pci_provider->target_interrupt)(new_irq_info);
195 
196 #ifdef CONFIG_SMP
197 	cpuphys = cpu_physical_id(cpuid);
198 	set_irq_affinity_info((vector & 0xff), cpuphys, 0);
199 #endif
200 
201 	return new_irq_info;
202 }
203 
sn_set_affinity_irq(struct irq_data * data,const struct cpumask * mask,bool force)204 static int sn_set_affinity_irq(struct irq_data *data,
205 			       const struct cpumask *mask, bool force)
206 {
207 	struct sn_irq_info *sn_irq_info, *sn_irq_info_safe;
208 	unsigned int irq = data->irq;
209 	nasid_t nasid;
210 	int slice;
211 
212 	nasid = cpuid_to_nasid(cpumask_first(mask));
213 	slice = cpuid_to_slice(cpumask_first(mask));
214 
215 	list_for_each_entry_safe(sn_irq_info, sn_irq_info_safe,
216 				 sn_irq_lh[irq], list)
217 		(void)sn_retarget_vector(sn_irq_info, nasid, slice);
218 
219 	return 0;
220 }
221 
222 #ifdef CONFIG_SMP
sn_set_err_irq_affinity(unsigned int irq)223 void sn_set_err_irq_affinity(unsigned int irq)
224 {
225         /*
226          * On systems which support CPU disabling (SHub2), all error interrupts
227          * are targeted at the boot CPU.
228          */
229         if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT))
230                 set_irq_affinity_info(irq, cpu_physical_id(0), 0);
231 }
232 #else
sn_set_err_irq_affinity(unsigned int irq)233 void sn_set_err_irq_affinity(unsigned int irq) { }
234 #endif
235 
236 static void
sn_mask_irq(struct irq_data * data)237 sn_mask_irq(struct irq_data *data)
238 {
239 }
240 
241 static void
sn_unmask_irq(struct irq_data * data)242 sn_unmask_irq(struct irq_data *data)
243 {
244 }
245 
246 struct irq_chip irq_type_sn = {
247 	.name			= "SN hub",
248 	.irq_startup		= sn_startup_irq,
249 	.irq_shutdown		= sn_shutdown_irq,
250 	.irq_enable		= sn_enable_irq,
251 	.irq_disable		= sn_disable_irq,
252 	.irq_ack		= sn_ack_irq,
253 	.irq_mask		= sn_mask_irq,
254 	.irq_unmask		= sn_unmask_irq,
255 	.irq_set_affinity	= sn_set_affinity_irq
256 };
257 
sn_irq_to_vector(int irq)258 ia64_vector sn_irq_to_vector(int irq)
259 {
260 	if (irq >= IA64_NUM_VECTORS)
261 		return 0;
262 	return (ia64_vector)irq;
263 }
264 
sn_local_vector_to_irq(u8 vector)265 unsigned int sn_local_vector_to_irq(u8 vector)
266 {
267 	return (CPU_VECTOR_TO_IRQ(smp_processor_id(), vector));
268 }
269 
sn_irq_init(void)270 void sn_irq_init(void)
271 {
272 	int i;
273 
274 	ia64_first_device_vector = IA64_SN2_FIRST_DEVICE_VECTOR;
275 	ia64_last_device_vector = IA64_SN2_LAST_DEVICE_VECTOR;
276 
277 	for (i = 0; i < NR_IRQS; i++) {
278 		if (irq_get_chip(i) == &no_irq_chip)
279 			irq_set_chip(i, &irq_type_sn);
280 	}
281 }
282 
register_intr_pda(struct sn_irq_info * sn_irq_info)283 static void register_intr_pda(struct sn_irq_info *sn_irq_info)
284 {
285 	int irq = sn_irq_info->irq_irq;
286 	int cpu = sn_irq_info->irq_cpuid;
287 
288 	if (pdacpu(cpu)->sn_last_irq < irq) {
289 		pdacpu(cpu)->sn_last_irq = irq;
290 	}
291 
292 	if (pdacpu(cpu)->sn_first_irq == 0 || pdacpu(cpu)->sn_first_irq > irq)
293 		pdacpu(cpu)->sn_first_irq = irq;
294 }
295 
unregister_intr_pda(struct sn_irq_info * sn_irq_info)296 static void unregister_intr_pda(struct sn_irq_info *sn_irq_info)
297 {
298 	int irq = sn_irq_info->irq_irq;
299 	int cpu = sn_irq_info->irq_cpuid;
300 	struct sn_irq_info *tmp_irq_info;
301 	int i, foundmatch;
302 
303 	rcu_read_lock();
304 	if (pdacpu(cpu)->sn_last_irq == irq) {
305 		foundmatch = 0;
306 		for (i = pdacpu(cpu)->sn_last_irq - 1;
307 		     i && !foundmatch; i--) {
308 			list_for_each_entry_rcu(tmp_irq_info,
309 						sn_irq_lh[i],
310 						list) {
311 				if (tmp_irq_info->irq_cpuid == cpu) {
312 					foundmatch = 1;
313 					break;
314 				}
315 			}
316 		}
317 		pdacpu(cpu)->sn_last_irq = i;
318 	}
319 
320 	if (pdacpu(cpu)->sn_first_irq == irq) {
321 		foundmatch = 0;
322 		for (i = pdacpu(cpu)->sn_first_irq + 1;
323 		     i < NR_IRQS && !foundmatch; i++) {
324 			list_for_each_entry_rcu(tmp_irq_info,
325 						sn_irq_lh[i],
326 						list) {
327 				if (tmp_irq_info->irq_cpuid == cpu) {
328 					foundmatch = 1;
329 					break;
330 				}
331 			}
332 		}
333 		pdacpu(cpu)->sn_first_irq = ((i == NR_IRQS) ? 0 : i);
334 	}
335 	rcu_read_unlock();
336 }
337 
sn_irq_fixup(struct pci_dev * pci_dev,struct sn_irq_info * sn_irq_info)338 void sn_irq_fixup(struct pci_dev *pci_dev, struct sn_irq_info *sn_irq_info)
339 {
340 	nasid_t nasid = sn_irq_info->irq_nasid;
341 	int slice = sn_irq_info->irq_slice;
342 	int cpu = nasid_slice_to_cpuid(nasid, slice);
343 #ifdef CONFIG_SMP
344 	int cpuphys;
345 #endif
346 
347 	pci_dev_get(pci_dev);
348 	sn_irq_info->irq_cpuid = cpu;
349 	sn_irq_info->irq_pciioinfo = SN_PCIDEV_INFO(pci_dev);
350 
351 	/* link it into the sn_irq[irq] list */
352 	spin_lock(&sn_irq_info_lock);
353 	list_add_rcu(&sn_irq_info->list, sn_irq_lh[sn_irq_info->irq_irq]);
354 	reserve_irq_vector(sn_irq_info->irq_irq);
355 	if (sn_irq_info->irq_int_bit != -1)
356 		irq_set_handler(sn_irq_info->irq_irq, handle_level_irq);
357 	spin_unlock(&sn_irq_info_lock);
358 
359 	register_intr_pda(sn_irq_info);
360 #ifdef CONFIG_SMP
361 	cpuphys = cpu_physical_id(cpu);
362 	set_irq_affinity_info(sn_irq_info->irq_irq, cpuphys, 0);
363 	/*
364 	 * Affinity was set by the PROM, prevent it from
365 	 * being reset by the request_irq() path.
366 	 */
367 	irqd_mark_affinity_was_set(irq_get_irq_data(sn_irq_info->irq_irq));
368 #endif
369 }
370 
sn_irq_unfixup(struct pci_dev * pci_dev)371 void sn_irq_unfixup(struct pci_dev *pci_dev)
372 {
373 	struct sn_irq_info *sn_irq_info;
374 
375 	/* Only cleanup IRQ stuff if this device has a host bus context */
376 	if (!SN_PCIDEV_BUSSOFT(pci_dev))
377 		return;
378 
379 	sn_irq_info = SN_PCIDEV_INFO(pci_dev)->pdi_sn_irq_info;
380 	if (!sn_irq_info)
381 		return;
382 	if (!sn_irq_info->irq_irq) {
383 		kfree(sn_irq_info);
384 		return;
385 	}
386 
387 	unregister_intr_pda(sn_irq_info);
388 	spin_lock(&sn_irq_info_lock);
389 	list_del_rcu(&sn_irq_info->list);
390 	spin_unlock(&sn_irq_info_lock);
391 	if (list_empty(sn_irq_lh[sn_irq_info->irq_irq]))
392 		free_irq_vector(sn_irq_info->irq_irq);
393 	kfree_rcu(sn_irq_info, rcu);
394 	pci_dev_put(pci_dev);
395 
396 }
397 
398 static inline void
sn_call_force_intr_provider(struct sn_irq_info * sn_irq_info)399 sn_call_force_intr_provider(struct sn_irq_info *sn_irq_info)
400 {
401 	struct sn_pcibus_provider *pci_provider;
402 
403 	pci_provider = sn_pci_provider[sn_irq_info->irq_bridge_type];
404 
405 	/* Don't force an interrupt if the irq has been disabled */
406 	if (!irqd_irq_disabled(irq_get_irq_data(sn_irq_info->irq_irq)) &&
407 	    pci_provider && pci_provider->force_interrupt)
408 		(*pci_provider->force_interrupt)(sn_irq_info);
409 }
410 
411 /*
412  * Check for lost interrupts.  If the PIC int_status reg. says that
413  * an interrupt has been sent, but not handled, and the interrupt
414  * is not pending in either the cpu irr regs or in the soft irr regs,
415  * and the interrupt is not in service, then the interrupt may have
416  * been lost.  Force an interrupt on that pin.  It is possible that
417  * the interrupt is in flight, so we may generate a spurious interrupt,
418  * but we should never miss a real lost interrupt.
419  */
sn_check_intr(int irq,struct sn_irq_info * sn_irq_info)420 static void sn_check_intr(int irq, struct sn_irq_info *sn_irq_info)
421 {
422 	u64 regval;
423 	struct pcidev_info *pcidev_info;
424 	struct pcibus_info *pcibus_info;
425 
426 	/*
427 	 * Bridge types attached to TIO (anything but PIC) do not need this WAR
428 	 * since they do not target Shub II interrupt registers.  If that
429 	 * ever changes, this check needs to accommodate.
430 	 */
431 	if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_PIC)
432 		return;
433 
434 	pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
435 	if (!pcidev_info)
436 		return;
437 
438 	pcibus_info =
439 	    (struct pcibus_info *)pcidev_info->pdi_host_pcidev_info->
440 	    pdi_pcibus_info;
441 	regval = pcireg_intr_status_get(pcibus_info);
442 
443 	if (!ia64_get_irr(irq_to_vector(irq))) {
444 		if (!test_bit(irq, pda->sn_in_service_ivecs)) {
445 			regval &= 0xff;
446 			if (sn_irq_info->irq_int_bit & regval &
447 			    sn_irq_info->irq_last_intr) {
448 				regval &= ~(sn_irq_info->irq_int_bit & regval);
449 				sn_call_force_intr_provider(sn_irq_info);
450 			}
451 		}
452 	}
453 	sn_irq_info->irq_last_intr = regval;
454 }
455 
sn_lb_int_war_check(void)456 void sn_lb_int_war_check(void)
457 {
458 	struct sn_irq_info *sn_irq_info;
459 	int i;
460 
461 	if (!sn_ioif_inited || pda->sn_first_irq == 0)
462 		return;
463 
464 	rcu_read_lock();
465 	for (i = pda->sn_first_irq; i <= pda->sn_last_irq; i++) {
466 		list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[i], list) {
467 			sn_check_intr(i, sn_irq_info);
468 		}
469 	}
470 	rcu_read_unlock();
471 }
472 
sn_irq_lh_init(void)473 void __init sn_irq_lh_init(void)
474 {
475 	int i;
476 
477 	sn_irq_lh = kmalloc(sizeof(struct list_head *) * NR_IRQS, GFP_KERNEL);
478 	if (!sn_irq_lh)
479 		panic("SN PCI INIT: Failed to allocate memory for PCI init\n");
480 
481 	for (i = 0; i < NR_IRQS; i++) {
482 		sn_irq_lh[i] = kmalloc(sizeof(struct list_head), GFP_KERNEL);
483 		if (!sn_irq_lh[i])
484 			panic("SN PCI INIT: Failed IRQ memory allocation\n");
485 
486 		INIT_LIST_HEAD(sn_irq_lh[i]);
487 	}
488 }
489