1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2004 Mips Technologies, Inc
17  * Copyright (C) 2008 Kevin D. Kissell
18  */
19 
20 #include <linux/clockchips.h>
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 #include <linux/cpumask.h>
25 #include <linux/interrupt.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/module.h>
28 #include <linux/ftrace.h>
29 #include <linux/slab.h>
30 
31 #include <asm/cpu.h>
32 #include <asm/processor.h>
33 #include <linux/atomic.h>
34 #include <asm/hardirq.h>
35 #include <asm/hazards.h>
36 #include <asm/irq.h>
37 #include <asm/mmu_context.h>
38 #include <asm/mipsregs.h>
39 #include <asm/cacheflush.h>
40 #include <asm/time.h>
41 #include <asm/addrspace.h>
42 #include <asm/smtc.h>
43 #include <asm/smtc_proc.h>
44 
45 /*
46  * SMTC Kernel needs to manipulate low-level CPU interrupt mask
47  * in do_IRQ. These are passed in setup_irq_smtc() and stored
48  * in this table.
49  */
50 unsigned long irq_hwmask[NR_IRQS];
51 
52 #define LOCK_MT_PRA() \
53 	local_irq_save(flags); \
54 	mtflags = dmt()
55 
56 #define UNLOCK_MT_PRA() \
57 	emt(mtflags); \
58 	local_irq_restore(flags)
59 
60 #define LOCK_CORE_PRA() \
61 	local_irq_save(flags); \
62 	mtflags = dvpe()
63 
64 #define UNLOCK_CORE_PRA() \
65 	evpe(mtflags); \
66 	local_irq_restore(flags)
67 
68 /*
69  * Data structures purely associated with SMTC parallelism
70  */
71 
72 
73 /*
74  * Table for tracking ASIDs whose lifetime is prolonged.
75  */
76 
77 asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
78 
79 /*
80  * Number of InterProcessor Interrupt (IPI) message buffers to allocate
81  */
82 
83 #define IPIBUF_PER_CPU 4
84 
85 struct smtc_ipi_q IPIQ[NR_CPUS];
86 static struct smtc_ipi_q freeIPIq;
87 
88 
89 /* Forward declarations */
90 
91 void ipi_decode(struct smtc_ipi *);
92 static void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
93 static void setup_cross_vpe_interrupts(unsigned int nvpe);
94 void init_smtc_stats(void);
95 
96 /* Global SMTC Status */
97 
98 unsigned int smtc_status;
99 
100 /* Boot command line configuration overrides */
101 
102 static int vpe0limit;
103 static int ipibuffers;
104 static int nostlb;
105 static int asidmask;
106 unsigned long smtc_asid_mask = 0xff;
107 
vpe0tcs(char * str)108 static int __init vpe0tcs(char *str)
109 {
110 	get_option(&str, &vpe0limit);
111 
112 	return 1;
113 }
114 
ipibufs(char * str)115 static int __init ipibufs(char *str)
116 {
117 	get_option(&str, &ipibuffers);
118 	return 1;
119 }
120 
stlb_disable(char * s)121 static int __init stlb_disable(char *s)
122 {
123 	nostlb = 1;
124 	return 1;
125 }
126 
asidmask_set(char * str)127 static int __init asidmask_set(char *str)
128 {
129 	get_option(&str, &asidmask);
130 	switch (asidmask) {
131 	case 0x1:
132 	case 0x3:
133 	case 0x7:
134 	case 0xf:
135 	case 0x1f:
136 	case 0x3f:
137 	case 0x7f:
138 	case 0xff:
139 		smtc_asid_mask = (unsigned long)asidmask;
140 		break;
141 	default:
142 		printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
143 	}
144 	return 1;
145 }
146 
147 __setup("vpe0tcs=", vpe0tcs);
148 __setup("ipibufs=", ipibufs);
149 __setup("nostlb", stlb_disable);
150 __setup("asidmask=", asidmask_set);
151 
152 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
153 
154 static int hang_trig;
155 
hangtrig_enable(char * s)156 static int __init hangtrig_enable(char *s)
157 {
158 	hang_trig = 1;
159 	return 1;
160 }
161 
162 
163 __setup("hangtrig", hangtrig_enable);
164 
165 #define DEFAULT_BLOCKED_IPI_LIMIT 32
166 
167 static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
168 
tintq(char * str)169 static int __init tintq(char *str)
170 {
171 	get_option(&str, &timerq_limit);
172 	return 1;
173 }
174 
175 __setup("tintq=", tintq);
176 
177 static int imstuckcount[2][8];
178 /* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
179 static int vpemask[2][8] = {
180 	{0, 0, 1, 0, 0, 0, 0, 1},
181 	{0, 0, 0, 0, 0, 0, 0, 1}
182 };
183 int tcnoprog[NR_CPUS];
184 static atomic_t idle_hook_initialized = ATOMIC_INIT(0);
185 static int clock_hang_reported[NR_CPUS];
186 
187 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
188 
189 /*
190  * Configure shared TLB - VPC configuration bit must be set by caller
191  */
192 
smtc_configure_tlb(void)193 static void smtc_configure_tlb(void)
194 {
195 	int i, tlbsiz, vpes;
196 	unsigned long mvpconf0;
197 	unsigned long config1val;
198 
199 	/* Set up ASID preservation table */
200 	for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
201 	    for(i = 0; i < MAX_SMTC_ASIDS; i++) {
202 		smtc_live_asid[vpes][i] = 0;
203 	    }
204 	}
205 	mvpconf0 = read_c0_mvpconf0();
206 
207 	if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
208 			>> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
209 	    /* If we have multiple VPEs, try to share the TLB */
210 	    if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
211 		/*
212 		 * If TLB sizing is programmable, shared TLB
213 		 * size is the total available complement.
214 		 * Otherwise, we have to take the sum of all
215 		 * static VPE TLB entries.
216 		 */
217 		if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
218 				>> MVPCONF0_PTLBE_SHIFT)) == 0) {
219 		    /*
220 		     * If there's more than one VPE, there had better
221 		     * be more than one TC, because we need one to bind
222 		     * to each VPE in turn to be able to read
223 		     * its configuration state!
224 		     */
225 		    settc(1);
226 		    /* Stop the TC from doing anything foolish */
227 		    write_tc_c0_tchalt(TCHALT_H);
228 		    mips_ihb();
229 		    /* No need to un-Halt - that happens later anyway */
230 		    for (i=0; i < vpes; i++) {
231 		    	write_tc_c0_tcbind(i);
232 			/*
233 			 * To be 100% sure we're really getting the right
234 			 * information, we exit the configuration state
235 			 * and do an IHB after each rebinding.
236 			 */
237 			write_c0_mvpcontrol(
238 				read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
239 			mips_ihb();
240 			/*
241 			 * Only count if the MMU Type indicated is TLB
242 			 */
243 			if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
244 				config1val = read_vpe_c0_config1();
245 				tlbsiz += ((config1val >> 25) & 0x3f) + 1;
246 			}
247 
248 			/* Put core back in configuration state */
249 			write_c0_mvpcontrol(
250 				read_c0_mvpcontrol() | MVPCONTROL_VPC );
251 			mips_ihb();
252 		    }
253 		}
254 		write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
255 		ehb();
256 
257 		/*
258 		 * Setup kernel data structures to use software total,
259 		 * rather than read the per-VPE Config1 value. The values
260 		 * for "CPU 0" gets copied to all the other CPUs as part
261 		 * of their initialization in smtc_cpu_setup().
262 		 */
263 
264 		/* MIPS32 limits TLB indices to 64 */
265 		if (tlbsiz > 64)
266 			tlbsiz = 64;
267 		cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
268 		smtc_status |= SMTC_TLB_SHARED;
269 		local_flush_tlb_all();
270 
271 		printk("TLB of %d entry pairs shared by %d VPEs\n",
272 			tlbsiz, vpes);
273 	    } else {
274 		printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
275 	    }
276 	}
277 }
278 
279 
280 /*
281  * Incrementally build the CPU map out of constituent MIPS MT cores,
282  * using the specified available VPEs and TCs.  Plaform code needs
283  * to ensure that each MIPS MT core invokes this routine on reset,
284  * one at a time(!).
285  *
286  * This version of the build_cpu_map and prepare_cpus routines assumes
287  * that *all* TCs of a MIPS MT core will be used for Linux, and that
288  * they will be spread across *all* available VPEs (to minimise the
289  * loss of efficiency due to exception service serialization).
290  * An improved version would pick up configuration information and
291  * possibly leave some TCs/VPEs as "slave" processors.
292  *
293  * Use c0_MVPConf0 to find out how many TCs are available, setting up
294  * cpu_possible_mask and the logical/physical mappings.
295  */
296 
smtc_build_cpu_map(int start_cpu_slot)297 int __init smtc_build_cpu_map(int start_cpu_slot)
298 {
299 	int i, ntcs;
300 
301 	/*
302 	 * The CPU map isn't actually used for anything at this point,
303 	 * so it's not clear what else we should do apart from set
304 	 * everything up so that "logical" = "physical".
305 	 */
306 	ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
307 	for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
308 		set_cpu_possible(i, true);
309 		__cpu_number_map[i] = i;
310 		__cpu_logical_map[i] = i;
311 	}
312 #ifdef CONFIG_MIPS_MT_FPAFF
313 	/* Initialize map of CPUs with FPUs */
314 	cpus_clear(mt_fpu_cpumask);
315 #endif
316 
317 	/* One of those TC's is the one booting, and not a secondary... */
318 	printk("%i available secondary CPU TC(s)\n", i - 1);
319 
320 	return i;
321 }
322 
323 /*
324  * Common setup before any secondaries are started
325  * Make sure all CPU's are in a sensible state before we boot any of the
326  * secondaries.
327  *
328  * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
329  * as possible across the available VPEs.
330  */
331 
smtc_tc_setup(int vpe,int tc,int cpu)332 static void smtc_tc_setup(int vpe, int tc, int cpu)
333 {
334 	settc(tc);
335 	write_tc_c0_tchalt(TCHALT_H);
336 	mips_ihb();
337 	write_tc_c0_tcstatus((read_tc_c0_tcstatus()
338 			& ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
339 			| TCSTATUS_A);
340 	/*
341 	 * TCContext gets an offset from the base of the IPIQ array
342 	 * to be used in low-level code to detect the presence of
343 	 * an active IPI queue
344 	 */
345 	write_tc_c0_tccontext((sizeof(struct smtc_ipi_q) * cpu) << 16);
346 	/* Bind tc to vpe */
347 	write_tc_c0_tcbind(vpe);
348 	/* In general, all TCs should have the same cpu_data indications */
349 	memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
350 	/* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
351 	if (cpu_data[0].cputype == CPU_34K ||
352 	    cpu_data[0].cputype == CPU_1004K)
353 		cpu_data[cpu].options &= ~MIPS_CPU_FPU;
354 	cpu_data[cpu].vpe_id = vpe;
355 	cpu_data[cpu].tc_id = tc;
356 	/* Multi-core SMTC hasn't been tested, but be prepared */
357 	cpu_data[cpu].core = (read_vpe_c0_ebase() >> 1) & 0xff;
358 }
359 
360 /*
361  * Tweak to get Count registes in as close a sync as possible.
362  * Value seems good for 34K-class cores.
363  */
364 
365 #define CP0_SKEW 8
366 
smtc_prepare_cpus(int cpus)367 void smtc_prepare_cpus(int cpus)
368 {
369 	int i, vpe, tc, ntc, nvpe, tcpervpe[NR_CPUS], slop, cpu;
370 	unsigned long flags;
371 	unsigned long val;
372 	int nipi;
373 	struct smtc_ipi *pipi;
374 
375 	/* disable interrupts so we can disable MT */
376 	local_irq_save(flags);
377 	/* disable MT so we can configure */
378 	dvpe();
379 	dmt();
380 
381 	spin_lock_init(&freeIPIq.lock);
382 
383 	/*
384 	 * We probably don't have as many VPEs as we do SMP "CPUs",
385 	 * but it's possible - and in any case we'll never use more!
386 	 */
387 	for (i=0; i<NR_CPUS; i++) {
388 		IPIQ[i].head = IPIQ[i].tail = NULL;
389 		spin_lock_init(&IPIQ[i].lock);
390 		IPIQ[i].depth = 0;
391 		IPIQ[i].resched_flag = 0; /* No reschedules queued initially */
392 	}
393 
394 	/* cpu_data index starts at zero */
395 	cpu = 0;
396 	cpu_data[cpu].vpe_id = 0;
397 	cpu_data[cpu].tc_id = 0;
398 	cpu_data[cpu].core = (read_c0_ebase() >> 1) & 0xff;
399 	cpu++;
400 
401 	/* Report on boot-time options */
402 	mips_mt_set_cpuoptions();
403 	if (vpelimit > 0)
404 		printk("Limit of %d VPEs set\n", vpelimit);
405 	if (tclimit > 0)
406 		printk("Limit of %d TCs set\n", tclimit);
407 	if (nostlb) {
408 		printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
409 	}
410 	if (asidmask)
411 		printk("ASID mask value override to 0x%x\n", asidmask);
412 
413 	/* Temporary */
414 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
415 	if (hang_trig)
416 		printk("Logic Analyser Trigger on suspected TC hang\n");
417 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
418 
419 	/* Put MVPE's into 'configuration state' */
420 	write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
421 
422 	val = read_c0_mvpconf0();
423 	nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
424 	if (vpelimit > 0 && nvpe > vpelimit)
425 		nvpe = vpelimit;
426 	ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
427 	if (ntc > NR_CPUS)
428 		ntc = NR_CPUS;
429 	if (tclimit > 0 && ntc > tclimit)
430 		ntc = tclimit;
431 	slop = ntc % nvpe;
432 	for (i = 0; i < nvpe; i++) {
433 		tcpervpe[i] = ntc / nvpe;
434 		if (slop) {
435 			if((slop - i) > 0) tcpervpe[i]++;
436 		}
437 	}
438 	/* Handle command line override for VPE0 */
439 	if (vpe0limit > ntc) vpe0limit = ntc;
440 	if (vpe0limit > 0) {
441 		int slopslop;
442 		if (vpe0limit < tcpervpe[0]) {
443 		    /* Reducing TC count - distribute to others */
444 		    slop = tcpervpe[0] - vpe0limit;
445 		    slopslop = slop % (nvpe - 1);
446 		    tcpervpe[0] = vpe0limit;
447 		    for (i = 1; i < nvpe; i++) {
448 			tcpervpe[i] += slop / (nvpe - 1);
449 			if(slopslop && ((slopslop - (i - 1) > 0)))
450 				tcpervpe[i]++;
451 		    }
452 		} else if (vpe0limit > tcpervpe[0]) {
453 		    /* Increasing TC count - steal from others */
454 		    slop = vpe0limit - tcpervpe[0];
455 		    slopslop = slop % (nvpe - 1);
456 		    tcpervpe[0] = vpe0limit;
457 		    for (i = 1; i < nvpe; i++) {
458 			tcpervpe[i] -= slop / (nvpe - 1);
459 			if(slopslop && ((slopslop - (i - 1) > 0)))
460 				tcpervpe[i]--;
461 		    }
462 		}
463 	}
464 
465 	/* Set up shared TLB */
466 	smtc_configure_tlb();
467 
468 	for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
469 		if (tcpervpe[vpe] == 0)
470 			continue;
471 		if (vpe != 0)
472 			printk(", ");
473 		printk("VPE %d: TC", vpe);
474 		for (i = 0; i < tcpervpe[vpe]; i++) {
475 			/*
476 			 * TC 0 is bound to VPE 0 at reset,
477 			 * and is presumably executing this
478 			 * code.  Leave it alone!
479 			 */
480 			if (tc != 0) {
481 				smtc_tc_setup(vpe, tc, cpu);
482 				cpu++;
483 			}
484 			printk(" %d", tc);
485 			tc++;
486 		}
487 		if (vpe != 0) {
488 			/*
489 			 * Allow this VPE to control others.
490 			 */
491 			write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() |
492 					      VPECONF0_MVP);
493 
494 			/*
495 			 * Clear any stale software interrupts from VPE's Cause
496 			 */
497 			write_vpe_c0_cause(0);
498 
499 			/*
500 			 * Clear ERL/EXL of VPEs other than 0
501 			 * and set restricted interrupt enable/mask.
502 			 */
503 			write_vpe_c0_status((read_vpe_c0_status()
504 				& ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
505 				| (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
506 				| ST0_IE));
507 			/*
508 			 * set config to be the same as vpe0,
509 			 *  particularly kseg0 coherency alg
510 			 */
511 			write_vpe_c0_config(read_c0_config());
512 			/* Clear any pending timer interrupt */
513 			write_vpe_c0_compare(0);
514 			/* Propagate Config7 */
515 			write_vpe_c0_config7(read_c0_config7());
516 			write_vpe_c0_count(read_c0_count() + CP0_SKEW);
517 			ehb();
518 		}
519 		/* enable multi-threading within VPE */
520 		write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
521 		/* enable the VPE */
522 		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
523 	}
524 
525 	/*
526 	 * Pull any physically present but unused TCs out of circulation.
527 	 */
528 	while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
529 		set_cpu_possible(tc, false);
530 		set_cpu_present(tc, false);
531 		tc++;
532 	}
533 
534 	/* release config state */
535 	write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
536 
537 	printk("\n");
538 
539 	/* Set up coprocessor affinity CPU mask(s) */
540 
541 #ifdef CONFIG_MIPS_MT_FPAFF
542 	for (tc = 0; tc < ntc; tc++) {
543 		if (cpu_data[tc].options & MIPS_CPU_FPU)
544 			cpu_set(tc, mt_fpu_cpumask);
545 	}
546 #endif
547 
548 	/* set up ipi interrupts... */
549 
550 	/* If we have multiple VPEs running, set up the cross-VPE interrupt */
551 
552 	setup_cross_vpe_interrupts(nvpe);
553 
554 	/* Set up queue of free IPI "messages". */
555 	nipi = NR_CPUS * IPIBUF_PER_CPU;
556 	if (ipibuffers > 0)
557 		nipi = ipibuffers;
558 
559 	pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
560 	if (pipi == NULL)
561 		panic("kmalloc of IPI message buffers failed");
562 	else
563 		printk("IPI buffer pool of %d buffers\n", nipi);
564 	for (i = 0; i < nipi; i++) {
565 		smtc_ipi_nq(&freeIPIq, pipi);
566 		pipi++;
567 	}
568 
569 	/* Arm multithreading and enable other VPEs - but all TCs are Halted */
570 	emt(EMT_ENABLE);
571 	evpe(EVPE_ENABLE);
572 	local_irq_restore(flags);
573 	/* Initialize SMTC /proc statistics/diagnostics */
574 	init_smtc_stats();
575 }
576 
577 
578 /*
579  * Setup the PC, SP, and GP of a secondary processor and start it
580  * running!
581  * smp_bootstrap is the place to resume from
582  * __KSTK_TOS(idle) is apparently the stack pointer
583  * (unsigned long)idle->thread_info the gp
584  *
585  */
smtc_boot_secondary(int cpu,struct task_struct * idle)586 void __cpuinit smtc_boot_secondary(int cpu, struct task_struct *idle)
587 {
588 	extern u32 kernelsp[NR_CPUS];
589 	unsigned long flags;
590 	int mtflags;
591 
592 	LOCK_MT_PRA();
593 	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
594 		dvpe();
595 	}
596 	settc(cpu_data[cpu].tc_id);
597 
598 	/* pc */
599 	write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
600 
601 	/* stack pointer */
602 	kernelsp[cpu] = __KSTK_TOS(idle);
603 	write_tc_gpr_sp(__KSTK_TOS(idle));
604 
605 	/* global pointer */
606 	write_tc_gpr_gp((unsigned long)task_thread_info(idle));
607 
608 	smtc_status |= SMTC_MTC_ACTIVE;
609 	write_tc_c0_tchalt(0);
610 	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
611 		evpe(EVPE_ENABLE);
612 	}
613 	UNLOCK_MT_PRA();
614 }
615 
smtc_init_secondary(void)616 void smtc_init_secondary(void)
617 {
618 	local_irq_enable();
619 }
620 
smtc_smp_finish(void)621 void smtc_smp_finish(void)
622 {
623 	int cpu = smp_processor_id();
624 
625 	/*
626 	 * Lowest-numbered CPU per VPE starts a clock tick.
627 	 * Like per_cpu_trap_init() hack, this assumes that
628 	 * SMTC init code assigns TCs consdecutively and
629 	 * in ascending order across available VPEs.
630 	 */
631 	if (cpu > 0 && (cpu_data[cpu].vpe_id != cpu_data[cpu - 1].vpe_id))
632 		write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ);
633 
634 	printk("TC %d going on-line as CPU %d\n",
635 		cpu_data[smp_processor_id()].tc_id, smp_processor_id());
636 }
637 
smtc_cpus_done(void)638 void smtc_cpus_done(void)
639 {
640 }
641 
642 /*
643  * Support for SMTC-optimized driver IRQ registration
644  */
645 
646 /*
647  * SMTC Kernel needs to manipulate low-level CPU interrupt mask
648  * in do_IRQ. These are passed in setup_irq_smtc() and stored
649  * in this table.
650  */
651 
setup_irq_smtc(unsigned int irq,struct irqaction * new,unsigned long hwmask)652 int setup_irq_smtc(unsigned int irq, struct irqaction * new,
653 			unsigned long hwmask)
654 {
655 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
656 	unsigned int vpe = current_cpu_data.vpe_id;
657 
658 	vpemask[vpe][irq - MIPS_CPU_IRQ_BASE] = 1;
659 #endif
660 	irq_hwmask[irq] = hwmask;
661 
662 	return setup_irq(irq, new);
663 }
664 
665 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
666 /*
667  * Support for IRQ affinity to TCs
668  */
669 
smtc_set_irq_affinity(unsigned int irq,cpumask_t affinity)670 void smtc_set_irq_affinity(unsigned int irq, cpumask_t affinity)
671 {
672 	/*
673 	 * If a "fast path" cache of quickly decodable affinity state
674 	 * is maintained, this is where it gets done, on a call up
675 	 * from the platform affinity code.
676 	 */
677 }
678 
smtc_forward_irq(struct irq_data * d)679 void smtc_forward_irq(struct irq_data *d)
680 {
681 	unsigned int irq = d->irq;
682 	int target;
683 
684 	/*
685 	 * OK wise guy, now figure out how to get the IRQ
686 	 * to be serviced on an authorized "CPU".
687 	 *
688 	 * Ideally, to handle the situation where an IRQ has multiple
689 	 * eligible CPUS, we would maintain state per IRQ that would
690 	 * allow a fair distribution of service requests.  Since the
691 	 * expected use model is any-or-only-one, for simplicity
692 	 * and efficiency, we just pick the easiest one to find.
693 	 */
694 
695 	target = cpumask_first(d->affinity);
696 
697 	/*
698 	 * We depend on the platform code to have correctly processed
699 	 * IRQ affinity change requests to ensure that the IRQ affinity
700 	 * mask has been purged of bits corresponding to nonexistent and
701 	 * offline "CPUs", and to TCs bound to VPEs other than the VPE
702 	 * connected to the physical interrupt input for the interrupt
703 	 * in question.  Otherwise we have a nasty problem with interrupt
704 	 * mask management.  This is best handled in non-performance-critical
705 	 * platform IRQ affinity setting code,  to minimize interrupt-time
706 	 * checks.
707 	 */
708 
709 	/* If no one is eligible, service locally */
710 	if (target >= NR_CPUS)
711 		do_IRQ_no_affinity(irq);
712 	else
713 		smtc_send_ipi(target, IRQ_AFFINITY_IPI, irq);
714 }
715 
716 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
717 
718 /*
719  * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
720  * Within a VPE one TC can interrupt another by different approaches.
721  * The easiest to get right would probably be to make all TCs except
722  * the target IXMT and set a software interrupt, but an IXMT-based
723  * scheme requires that a handler must run before a new IPI could
724  * be sent, which would break the "broadcast" loops in MIPS MT.
725  * A more gonzo approach within a VPE is to halt the TC, extract
726  * its Restart, Status, and a couple of GPRs, and program the Restart
727  * address to emulate an interrupt.
728  *
729  * Within a VPE, one can be confident that the target TC isn't in
730  * a critical EXL state when halted, since the write to the Halt
731  * register could not have issued on the writing thread if the
732  * halting thread had EXL set. So k0 and k1 of the target TC
733  * can be used by the injection code.  Across VPEs, one can't
734  * be certain that the target TC isn't in a critical exception
735  * state. So we try a two-step process of sending a software
736  * interrupt to the target VPE, which either handles the event
737  * itself (if it was the target) or injects the event within
738  * the VPE.
739  */
740 
smtc_ipi_qdump(void)741 static void smtc_ipi_qdump(void)
742 {
743 	int i;
744 	struct smtc_ipi *temp;
745 
746 	for (i = 0; i < NR_CPUS ;i++) {
747 		pr_info("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
748 			i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
749 			IPIQ[i].depth);
750 		temp = IPIQ[i].head;
751 
752 		while (temp != IPIQ[i].tail) {
753 			pr_debug("%d %d %d: ", temp->type, temp->dest,
754 			       (int)temp->arg);
755 #ifdef	SMTC_IPI_DEBUG
756 		    pr_debug("%u %lu\n", temp->sender, temp->stamp);
757 #else
758 		    pr_debug("\n");
759 #endif
760 		    temp = temp->flink;
761 		}
762 	}
763 }
764 
765 /*
766  * The standard atomic.h primitives don't quite do what we want
767  * here: We need an atomic add-and-return-previous-value (which
768  * could be done with atomic_add_return and a decrement) and an
769  * atomic set/zero-and-return-previous-value (which can't really
770  * be done with the atomic.h primitives). And since this is
771  * MIPS MT, we can assume that we have LL/SC.
772  */
atomic_postincrement(atomic_t * v)773 static inline int atomic_postincrement(atomic_t *v)
774 {
775 	unsigned long result;
776 
777 	unsigned long temp;
778 
779 	__asm__ __volatile__(
780 	"1:	ll	%0, %2					\n"
781 	"	addu	%1, %0, 1				\n"
782 	"	sc	%1, %2					\n"
783 	"	beqz	%1, 1b					\n"
784 	__WEAK_LLSC_MB
785 	: "=&r" (result), "=&r" (temp), "=m" (v->counter)
786 	: "m" (v->counter)
787 	: "memory");
788 
789 	return result;
790 }
791 
smtc_send_ipi(int cpu,int type,unsigned int action)792 void smtc_send_ipi(int cpu, int type, unsigned int action)
793 {
794 	int tcstatus;
795 	struct smtc_ipi *pipi;
796 	unsigned long flags;
797 	int mtflags;
798 	unsigned long tcrestart;
799 	extern void r4k_wait_irqoff(void), __pastwait(void);
800 	int set_resched_flag = (type == LINUX_SMP_IPI &&
801 				action == SMP_RESCHEDULE_YOURSELF);
802 
803 	if (cpu == smp_processor_id()) {
804 		printk("Cannot Send IPI to self!\n");
805 		return;
806 	}
807 	if (set_resched_flag && IPIQ[cpu].resched_flag != 0)
808 		return; /* There is a reschedule queued already */
809 
810 	/* Set up a descriptor, to be delivered either promptly or queued */
811 	pipi = smtc_ipi_dq(&freeIPIq);
812 	if (pipi == NULL) {
813 		bust_spinlocks(1);
814 		mips_mt_regdump(dvpe());
815 		panic("IPI Msg. Buffers Depleted");
816 	}
817 	pipi->type = type;
818 	pipi->arg = (void *)action;
819 	pipi->dest = cpu;
820 	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
821 		/* If not on same VPE, enqueue and send cross-VPE interrupt */
822 		IPIQ[cpu].resched_flag |= set_resched_flag;
823 		smtc_ipi_nq(&IPIQ[cpu], pipi);
824 		LOCK_CORE_PRA();
825 		settc(cpu_data[cpu].tc_id);
826 		write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
827 		UNLOCK_CORE_PRA();
828 	} else {
829 		/*
830 		 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
831 		 * since ASID shootdown on the other VPE may
832 		 * collide with this operation.
833 		 */
834 		LOCK_CORE_PRA();
835 		settc(cpu_data[cpu].tc_id);
836 		/* Halt the targeted TC */
837 		write_tc_c0_tchalt(TCHALT_H);
838 		mips_ihb();
839 
840 		/*
841 	 	 * Inspect TCStatus - if IXMT is set, we have to queue
842 		 * a message. Otherwise, we set up the "interrupt"
843 		 * of the other TC
844 	 	 */
845 		tcstatus = read_tc_c0_tcstatus();
846 
847 		if ((tcstatus & TCSTATUS_IXMT) != 0) {
848 			/*
849 			 * If we're in the the irq-off version of the wait
850 			 * loop, we need to force exit from the wait and
851 			 * do a direct post of the IPI.
852 			 */
853 			if (cpu_wait == r4k_wait_irqoff) {
854 				tcrestart = read_tc_c0_tcrestart();
855 				if (tcrestart >= (unsigned long)r4k_wait_irqoff
856 				    && tcrestart < (unsigned long)__pastwait) {
857 					write_tc_c0_tcrestart(__pastwait);
858 					tcstatus &= ~TCSTATUS_IXMT;
859 					write_tc_c0_tcstatus(tcstatus);
860 					goto postdirect;
861 				}
862 			}
863 			/*
864 			 * Otherwise we queue the message for the target TC
865 			 * to pick up when he does a local_irq_restore()
866 			 */
867 			write_tc_c0_tchalt(0);
868 			UNLOCK_CORE_PRA();
869 			IPIQ[cpu].resched_flag |= set_resched_flag;
870 			smtc_ipi_nq(&IPIQ[cpu], pipi);
871 		} else {
872 postdirect:
873 			post_direct_ipi(cpu, pipi);
874 			write_tc_c0_tchalt(0);
875 			UNLOCK_CORE_PRA();
876 		}
877 	}
878 }
879 
880 /*
881  * Send IPI message to Halted TC, TargTC/TargVPE already having been set
882  */
post_direct_ipi(int cpu,struct smtc_ipi * pipi)883 static void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
884 {
885 	struct pt_regs *kstack;
886 	unsigned long tcstatus;
887 	unsigned long tcrestart;
888 	extern u32 kernelsp[NR_CPUS];
889 	extern void __smtc_ipi_vector(void);
890 //printk("%s: on %d for %d\n", __func__, smp_processor_id(), cpu);
891 
892 	/* Extract Status, EPC from halted TC */
893 	tcstatus = read_tc_c0_tcstatus();
894 	tcrestart = read_tc_c0_tcrestart();
895 	/* If TCRestart indicates a WAIT instruction, advance the PC */
896 	if ((tcrestart & 0x80000000)
897 	    && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
898 		tcrestart += 4;
899 	}
900 	/*
901 	 * Save on TC's future kernel stack
902 	 *
903 	 * CU bit of Status is indicator that TC was
904 	 * already running on a kernel stack...
905 	 */
906 	if (tcstatus & ST0_CU0)  {
907 		/* Note that this "- 1" is pointer arithmetic */
908 		kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
909 	} else {
910 		kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
911 	}
912 
913 	kstack->cp0_epc = (long)tcrestart;
914 	/* Save TCStatus */
915 	kstack->cp0_tcstatus = tcstatus;
916 	/* Pass token of operation to be performed kernel stack pad area */
917 	kstack->pad0[4] = (unsigned long)pipi;
918 	/* Pass address of function to be called likewise */
919 	kstack->pad0[5] = (unsigned long)&ipi_decode;
920 	/* Set interrupt exempt and kernel mode */
921 	tcstatus |= TCSTATUS_IXMT;
922 	tcstatus &= ~TCSTATUS_TKSU;
923 	write_tc_c0_tcstatus(tcstatus);
924 	ehb();
925 	/* Set TC Restart address to be SMTC IPI vector */
926 	write_tc_c0_tcrestart(__smtc_ipi_vector);
927 }
928 
ipi_resched_interrupt(void)929 static void ipi_resched_interrupt(void)
930 {
931 	scheduler_ipi();
932 }
933 
ipi_call_interrupt(void)934 static void ipi_call_interrupt(void)
935 {
936 	/* Invoke generic function invocation code in smp.c */
937 	smp_call_function_interrupt();
938 }
939 
940 DECLARE_PER_CPU(struct clock_event_device, mips_clockevent_device);
941 
smtc_clock_tick_interrupt(void)942 static void __irq_entry smtc_clock_tick_interrupt(void)
943 {
944 	unsigned int cpu = smp_processor_id();
945 	struct clock_event_device *cd;
946 	int irq = MIPS_CPU_IRQ_BASE + 1;
947 
948 	irq_enter();
949 	kstat_incr_irqs_this_cpu(irq, irq_to_desc(irq));
950 	cd = &per_cpu(mips_clockevent_device, cpu);
951 	cd->event_handler(cd);
952 	irq_exit();
953 }
954 
ipi_decode(struct smtc_ipi * pipi)955 void ipi_decode(struct smtc_ipi *pipi)
956 {
957 	void *arg_copy = pipi->arg;
958 	int type_copy = pipi->type;
959 
960 	smtc_ipi_nq(&freeIPIq, pipi);
961 
962 	switch (type_copy) {
963 	case SMTC_CLOCK_TICK:
964 		smtc_clock_tick_interrupt();
965 		break;
966 
967 	case LINUX_SMP_IPI:
968 		switch ((int)arg_copy) {
969 		case SMP_RESCHEDULE_YOURSELF:
970 			ipi_resched_interrupt();
971 			break;
972 		case SMP_CALL_FUNCTION:
973 			ipi_call_interrupt();
974 			break;
975 		default:
976 			printk("Impossible SMTC IPI Argument %p\n", arg_copy);
977 			break;
978 		}
979 		break;
980 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
981 	case IRQ_AFFINITY_IPI:
982 		/*
983 		 * Accept a "forwarded" interrupt that was initially
984 		 * taken by a TC who doesn't have affinity for the IRQ.
985 		 */
986 		do_IRQ_no_affinity((int)arg_copy);
987 		break;
988 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
989 	default:
990 		printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
991 		break;
992 	}
993 }
994 
995 /*
996  * Similar to smtc_ipi_replay(), but invoked from context restore,
997  * so it reuses the current exception frame rather than set up a
998  * new one with self_ipi.
999  */
1000 
deferred_smtc_ipi(void)1001 void deferred_smtc_ipi(void)
1002 {
1003 	int cpu = smp_processor_id();
1004 
1005 	/*
1006 	 * Test is not atomic, but much faster than a dequeue,
1007 	 * and the vast majority of invocations will have a null queue.
1008 	 * If irq_disabled when this was called, then any IPIs queued
1009 	 * after we test last will be taken on the next irq_enable/restore.
1010 	 * If interrupts were enabled, then any IPIs added after the
1011 	 * last test will be taken directly.
1012 	 */
1013 
1014 	while (IPIQ[cpu].head != NULL) {
1015 		struct smtc_ipi_q *q = &IPIQ[cpu];
1016 		struct smtc_ipi *pipi;
1017 		unsigned long flags;
1018 
1019 		/*
1020 		 * It may be possible we'll come in with interrupts
1021 		 * already enabled.
1022 		 */
1023 		local_irq_save(flags);
1024 		spin_lock(&q->lock);
1025 		pipi = __smtc_ipi_dq(q);
1026 		spin_unlock(&q->lock);
1027 		if (pipi != NULL) {
1028 			if (pipi->type == LINUX_SMP_IPI &&
1029 			    (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
1030 				IPIQ[cpu].resched_flag = 0;
1031 			ipi_decode(pipi);
1032 		}
1033 		/*
1034 		 * The use of the __raw_local restore isn't
1035 		 * as obviously necessary here as in smtc_ipi_replay(),
1036 		 * but it's more efficient, given that we're already
1037 		 * running down the IPI queue.
1038 		 */
1039 		__arch_local_irq_restore(flags);
1040 	}
1041 }
1042 
1043 /*
1044  * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
1045  * set via cross-VPE MTTR manipulation of the Cause register. It would be
1046  * in some regards preferable to have external logic for "doorbell" hardware
1047  * interrupts.
1048  */
1049 
1050 static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
1051 
ipi_interrupt(int irq,void * dev_idm)1052 static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
1053 {
1054 	int my_vpe = cpu_data[smp_processor_id()].vpe_id;
1055 	int my_tc = cpu_data[smp_processor_id()].tc_id;
1056 	int cpu;
1057 	struct smtc_ipi *pipi;
1058 	unsigned long tcstatus;
1059 	int sent;
1060 	unsigned long flags;
1061 	unsigned int mtflags;
1062 	unsigned int vpflags;
1063 
1064 	/*
1065 	 * So long as cross-VPE interrupts are done via
1066 	 * MFTR/MTTR read-modify-writes of Cause, we need
1067 	 * to stop other VPEs whenever the local VPE does
1068 	 * anything similar.
1069 	 */
1070 	local_irq_save(flags);
1071 	vpflags = dvpe();
1072 	clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
1073 	set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
1074 	irq_enable_hazard();
1075 	evpe(vpflags);
1076 	local_irq_restore(flags);
1077 
1078 	/*
1079 	 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
1080 	 * queued for TCs on this VPE other than the current one.
1081 	 * Return-from-interrupt should cause us to drain the queue
1082 	 * for the current TC, so we ought not to have to do it explicitly here.
1083 	 */
1084 
1085 	for_each_online_cpu(cpu) {
1086 		if (cpu_data[cpu].vpe_id != my_vpe)
1087 			continue;
1088 
1089 		pipi = smtc_ipi_dq(&IPIQ[cpu]);
1090 		if (pipi != NULL) {
1091 			if (cpu_data[cpu].tc_id != my_tc) {
1092 				sent = 0;
1093 				LOCK_MT_PRA();
1094 				settc(cpu_data[cpu].tc_id);
1095 				write_tc_c0_tchalt(TCHALT_H);
1096 				mips_ihb();
1097 				tcstatus = read_tc_c0_tcstatus();
1098 				if ((tcstatus & TCSTATUS_IXMT) == 0) {
1099 					post_direct_ipi(cpu, pipi);
1100 					sent = 1;
1101 				}
1102 				write_tc_c0_tchalt(0);
1103 				UNLOCK_MT_PRA();
1104 				if (!sent) {
1105 					smtc_ipi_req(&IPIQ[cpu], pipi);
1106 				}
1107 			} else {
1108 				/*
1109 				 * ipi_decode() should be called
1110 				 * with interrupts off
1111 				 */
1112 				local_irq_save(flags);
1113 				if (pipi->type == LINUX_SMP_IPI &&
1114 				    (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
1115 					IPIQ[cpu].resched_flag = 0;
1116 				ipi_decode(pipi);
1117 				local_irq_restore(flags);
1118 			}
1119 		}
1120 	}
1121 
1122 	return IRQ_HANDLED;
1123 }
1124 
ipi_irq_dispatch(void)1125 static void ipi_irq_dispatch(void)
1126 {
1127 	do_IRQ(cpu_ipi_irq);
1128 }
1129 
1130 static struct irqaction irq_ipi = {
1131 	.handler	= ipi_interrupt,
1132 	.flags		= IRQF_PERCPU,
1133 	.name		= "SMTC_IPI"
1134 };
1135 
setup_cross_vpe_interrupts(unsigned int nvpe)1136 static void setup_cross_vpe_interrupts(unsigned int nvpe)
1137 {
1138 	if (nvpe < 1)
1139 		return;
1140 
1141 	if (!cpu_has_vint)
1142 		panic("SMTC Kernel requires Vectored Interrupt support");
1143 
1144 	set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
1145 
1146 	setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
1147 
1148 	irq_set_handler(cpu_ipi_irq, handle_percpu_irq);
1149 }
1150 
1151 /*
1152  * SMTC-specific hacks invoked from elsewhere in the kernel.
1153  */
1154 
1155  /*
1156   * smtc_ipi_replay is called from raw_local_irq_restore
1157   */
1158 
smtc_ipi_replay(void)1159 void smtc_ipi_replay(void)
1160 {
1161 	unsigned int cpu = smp_processor_id();
1162 
1163 	/*
1164 	 * To the extent that we've ever turned interrupts off,
1165 	 * we may have accumulated deferred IPIs.  This is subtle.
1166 	 * we should be OK:  If we pick up something and dispatch
1167 	 * it here, that's great. If we see nothing, but concurrent
1168 	 * with this operation, another TC sends us an IPI, IXMT
1169 	 * is clear, and we'll handle it as a real pseudo-interrupt
1170 	 * and not a pseudo-pseudo interrupt.  The important thing
1171 	 * is to do the last check for queued message *after* the
1172 	 * re-enabling of interrupts.
1173 	 */
1174 	while (IPIQ[cpu].head != NULL) {
1175 		struct smtc_ipi_q *q = &IPIQ[cpu];
1176 		struct smtc_ipi *pipi;
1177 		unsigned long flags;
1178 
1179 		/*
1180 		 * It's just possible we'll come in with interrupts
1181 		 * already enabled.
1182 		 */
1183 		local_irq_save(flags);
1184 
1185 		spin_lock(&q->lock);
1186 		pipi = __smtc_ipi_dq(q);
1187 		spin_unlock(&q->lock);
1188 		/*
1189 		 ** But use a raw restore here to avoid recursion.
1190 		 */
1191 		__arch_local_irq_restore(flags);
1192 
1193 		if (pipi) {
1194 			self_ipi(pipi);
1195 			smtc_cpu_stats[cpu].selfipis++;
1196 		}
1197 	}
1198 }
1199 
1200 EXPORT_SYMBOL(smtc_ipi_replay);
1201 
smtc_idle_loop_hook(void)1202 void smtc_idle_loop_hook(void)
1203 {
1204 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
1205 	int im;
1206 	int flags;
1207 	int mtflags;
1208 	int bit;
1209 	int vpe;
1210 	int tc;
1211 	int hook_ntcs;
1212 	/*
1213 	 * printk within DMT-protected regions can deadlock,
1214 	 * so buffer diagnostic messages for later output.
1215 	 */
1216 	char *pdb_msg;
1217 	char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1218 
1219 	if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1220 		if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1221 			int mvpconf0;
1222 			/* Tedious stuff to just do once */
1223 			mvpconf0 = read_c0_mvpconf0();
1224 			hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1225 			if (hook_ntcs > NR_CPUS)
1226 				hook_ntcs = NR_CPUS;
1227 			for (tc = 0; tc < hook_ntcs; tc++) {
1228 				tcnoprog[tc] = 0;
1229 				clock_hang_reported[tc] = 0;
1230 	    		}
1231 			for (vpe = 0; vpe < 2; vpe++)
1232 				for (im = 0; im < 8; im++)
1233 					imstuckcount[vpe][im] = 0;
1234 			printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1235 			atomic_set(&idle_hook_initialized, 1000);
1236 		} else {
1237 			/* Someone else is initializing in parallel - let 'em finish */
1238 			while (atomic_read(&idle_hook_initialized) < 1000)
1239 				;
1240 		}
1241 	}
1242 
1243 	/* Have we stupidly left IXMT set somewhere? */
1244 	if (read_c0_tcstatus() & 0x400) {
1245 		write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1246 		ehb();
1247 		printk("Dangling IXMT in cpu_idle()\n");
1248 	}
1249 
1250 	/* Have we stupidly left an IM bit turned off? */
1251 #define IM_LIMIT 2000
1252 	local_irq_save(flags);
1253 	mtflags = dmt();
1254 	pdb_msg = &id_ho_db_msg[0];
1255 	im = read_c0_status();
1256 	vpe = current_cpu_data.vpe_id;
1257 	for (bit = 0; bit < 8; bit++) {
1258 		/*
1259 		 * In current prototype, I/O interrupts
1260 		 * are masked for VPE > 0
1261 		 */
1262 		if (vpemask[vpe][bit]) {
1263 			if (!(im & (0x100 << bit)))
1264 				imstuckcount[vpe][bit]++;
1265 			else
1266 				imstuckcount[vpe][bit] = 0;
1267 			if (imstuckcount[vpe][bit] > IM_LIMIT) {
1268 				set_c0_status(0x100 << bit);
1269 				ehb();
1270 				imstuckcount[vpe][bit] = 0;
1271 				pdb_msg += sprintf(pdb_msg,
1272 					"Dangling IM %d fixed for VPE %d\n", bit,
1273 					vpe);
1274 			}
1275 		}
1276 	}
1277 
1278 	emt(mtflags);
1279 	local_irq_restore(flags);
1280 	if (pdb_msg != &id_ho_db_msg[0])
1281 		printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1282 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
1283 
1284 	smtc_ipi_replay();
1285 }
1286 
smtc_soft_dump(void)1287 void smtc_soft_dump(void)
1288 {
1289 	int i;
1290 
1291 	printk("Counter Interrupts taken per CPU (TC)\n");
1292 	for (i=0; i < NR_CPUS; i++) {
1293 		printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1294 	}
1295 	printk("Self-IPI invocations:\n");
1296 	for (i=0; i < NR_CPUS; i++) {
1297 		printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1298 	}
1299 	smtc_ipi_qdump();
1300 	printk("%d Recoveries of \"stolen\" FPU\n",
1301 	       atomic_read(&smtc_fpu_recoveries));
1302 }
1303 
1304 
1305 /*
1306  * TLB management routines special to SMTC
1307  */
1308 
smtc_get_new_mmu_context(struct mm_struct * mm,unsigned long cpu)1309 void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1310 {
1311 	unsigned long flags, mtflags, tcstat, prevhalt, asid;
1312 	int tlb, i;
1313 
1314 	/*
1315 	 * It would be nice to be able to use a spinlock here,
1316 	 * but this is invoked from within TLB flush routines
1317 	 * that protect themselves with DVPE, so if a lock is
1318 	 * held by another TC, it'll never be freed.
1319 	 *
1320 	 * DVPE/DMT must not be done with interrupts enabled,
1321 	 * so even so most callers will already have disabled
1322 	 * them, let's be really careful...
1323 	 */
1324 
1325 	local_irq_save(flags);
1326 	if (smtc_status & SMTC_TLB_SHARED) {
1327 		mtflags = dvpe();
1328 		tlb = 0;
1329 	} else {
1330 		mtflags = dmt();
1331 		tlb = cpu_data[cpu].vpe_id;
1332 	}
1333 	asid = asid_cache(cpu);
1334 
1335 	do {
1336 		if (!((asid += ASID_INC) & ASID_MASK) ) {
1337 			if (cpu_has_vtag_icache)
1338 				flush_icache_all();
1339 			/* Traverse all online CPUs (hack requires contiguous range) */
1340 			for_each_online_cpu(i) {
1341 				/*
1342 				 * We don't need to worry about our own CPU, nor those of
1343 				 * CPUs who don't share our TLB.
1344 				 */
1345 				if ((i != smp_processor_id()) &&
1346 				    ((smtc_status & SMTC_TLB_SHARED) ||
1347 				     (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1348 					settc(cpu_data[i].tc_id);
1349 					prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1350 					if (!prevhalt) {
1351 						write_tc_c0_tchalt(TCHALT_H);
1352 						mips_ihb();
1353 					}
1354 					tcstat = read_tc_c0_tcstatus();
1355 					smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1356 					if (!prevhalt)
1357 						write_tc_c0_tchalt(0);
1358 				}
1359 			}
1360 			if (!asid)		/* fix version if needed */
1361 				asid = ASID_FIRST_VERSION;
1362 			local_flush_tlb_all();	/* start new asid cycle */
1363 		}
1364 	} while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1365 
1366 	/*
1367 	 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1368 	 */
1369 	for_each_online_cpu(i) {
1370 		if ((smtc_status & SMTC_TLB_SHARED) ||
1371 		    (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1372 			cpu_context(i, mm) = asid_cache(i) = asid;
1373 	}
1374 
1375 	if (smtc_status & SMTC_TLB_SHARED)
1376 		evpe(mtflags);
1377 	else
1378 		emt(mtflags);
1379 	local_irq_restore(flags);
1380 }
1381 
1382 /*
1383  * Invoked from macros defined in mmu_context.h
1384  * which must already have disabled interrupts
1385  * and done a DVPE or DMT as appropriate.
1386  */
1387 
smtc_flush_tlb_asid(unsigned long asid)1388 void smtc_flush_tlb_asid(unsigned long asid)
1389 {
1390 	int entry;
1391 	unsigned long ehi;
1392 
1393 	entry = read_c0_wired();
1394 
1395 	/* Traverse all non-wired entries */
1396 	while (entry < current_cpu_data.tlbsize) {
1397 		write_c0_index(entry);
1398 		ehb();
1399 		tlb_read();
1400 		ehb();
1401 		ehi = read_c0_entryhi();
1402 		if ((ehi & ASID_MASK) == asid) {
1403 		    /*
1404 		     * Invalidate only entries with specified ASID,
1405 		     * makiing sure all entries differ.
1406 		     */
1407 		    write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1408 		    write_c0_entrylo0(0);
1409 		    write_c0_entrylo1(0);
1410 		    mtc0_tlbw_hazard();
1411 		    tlb_write_indexed();
1412 		}
1413 		entry++;
1414 	}
1415 	write_c0_index(PARKED_INDEX);
1416 	tlbw_use_hazard();
1417 }
1418 
1419 /*
1420  * Support for single-threading cache flush operations.
1421  */
1422 
1423 static int halt_state_save[NR_CPUS];
1424 
1425 /*
1426  * To really, really be sure that nothing is being done
1427  * by other TCs, halt them all.  This code assumes that
1428  * a DVPE has already been done, so while their Halted
1429  * state is theoretically architecturally unstable, in
1430  * practice, it's not going to change while we're looking
1431  * at it.
1432  */
1433 
smtc_cflush_lockdown(void)1434 void smtc_cflush_lockdown(void)
1435 {
1436 	int cpu;
1437 
1438 	for_each_online_cpu(cpu) {
1439 		if (cpu != smp_processor_id()) {
1440 			settc(cpu_data[cpu].tc_id);
1441 			halt_state_save[cpu] = read_tc_c0_tchalt();
1442 			write_tc_c0_tchalt(TCHALT_H);
1443 		}
1444 	}
1445 	mips_ihb();
1446 }
1447 
1448 /* It would be cheating to change the cpu_online states during a flush! */
1449 
smtc_cflush_release(void)1450 void smtc_cflush_release(void)
1451 {
1452 	int cpu;
1453 
1454 	/*
1455 	 * Start with a hazard barrier to ensure
1456 	 * that all CACHE ops have played through.
1457 	 */
1458 	mips_ihb();
1459 
1460 	for_each_online_cpu(cpu) {
1461 		if (cpu != smp_processor_id()) {
1462 			settc(cpu_data[cpu].tc_id);
1463 			write_tc_c0_tchalt(halt_state_save[cpu]);
1464 		}
1465 	}
1466 	mips_ihb();
1467 }
1468