1 /*
2 * SMP support for ppc.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
5 * deal of code from the sparc and intel versions.
6 *
7 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
8 *
9 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
10 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
18 #undef DEBUG
19
20 #include <linux/kernel.h>
21 #include <linux/export.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/spinlock.h>
28 #include <linux/cache.h>
29 #include <linux/err.h>
30 #include <linux/device.h>
31 #include <linux/cpu.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34
35 #include <asm/ptrace.h>
36 #include <linux/atomic.h>
37 #include <asm/irq.h>
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/prom.h>
41 #include <asm/smp.h>
42 #include <asm/time.h>
43 #include <asm/machdep.h>
44 #include <asm/cputhreads.h>
45 #include <asm/cputable.h>
46 #include <asm/mpic.h>
47 #include <asm/vdso_datapage.h>
48 #ifdef CONFIG_PPC64
49 #include <asm/paca.h>
50 #endif
51 #include <asm/debug.h>
52
53 #ifdef DEBUG
54 #include <asm/udbg.h>
55 #define DBG(fmt...) udbg_printf(fmt)
56 #else
57 #define DBG(fmt...)
58 #endif
59
60
61 /* Store all idle threads, this can be reused instead of creating
62 * a new thread. Also avoids complicated thread destroy functionality
63 * for idle threads.
64 */
65 #ifdef CONFIG_HOTPLUG_CPU
66 /*
67 * Needed only for CONFIG_HOTPLUG_CPU because __cpuinitdata is
68 * removed after init for !CONFIG_HOTPLUG_CPU.
69 */
70 static DEFINE_PER_CPU(struct task_struct *, idle_thread_array);
71 #define get_idle_for_cpu(x) (per_cpu(idle_thread_array, x))
72 #define set_idle_for_cpu(x, p) (per_cpu(idle_thread_array, x) = (p))
73
74 /* State of each CPU during hotplug phases */
75 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
76
77 #else
78 static struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
79 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
80 #define set_idle_for_cpu(x, p) (idle_thread_array[(x)] = (p))
81 #endif
82
83 struct thread_info *secondary_ti;
84
85 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
86 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
87
88 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
89 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
90
91 /* SMP operations for this machine */
92 struct smp_ops_t *smp_ops;
93
94 /* Can't be static due to PowerMac hackery */
95 volatile unsigned int cpu_callin_map[NR_CPUS];
96
97 int smt_enabled_at_boot = 1;
98
99 static void (*crash_ipi_function_ptr)(struct pt_regs *) = NULL;
100
101 #ifdef CONFIG_PPC64
smp_generic_kick_cpu(int nr)102 int __devinit smp_generic_kick_cpu(int nr)
103 {
104 BUG_ON(nr < 0 || nr >= NR_CPUS);
105
106 /*
107 * The processor is currently spinning, waiting for the
108 * cpu_start field to become non-zero After we set cpu_start,
109 * the processor will continue on to secondary_start
110 */
111 if (!paca[nr].cpu_start) {
112 paca[nr].cpu_start = 1;
113 smp_mb();
114 return 0;
115 }
116
117 #ifdef CONFIG_HOTPLUG_CPU
118 /*
119 * Ok it's not there, so it might be soft-unplugged, let's
120 * try to bring it back
121 */
122 per_cpu(cpu_state, nr) = CPU_UP_PREPARE;
123 smp_wmb();
124 smp_send_reschedule(nr);
125 #endif /* CONFIG_HOTPLUG_CPU */
126
127 return 0;
128 }
129 #endif /* CONFIG_PPC64 */
130
call_function_action(int irq,void * data)131 static irqreturn_t call_function_action(int irq, void *data)
132 {
133 generic_smp_call_function_interrupt();
134 return IRQ_HANDLED;
135 }
136
reschedule_action(int irq,void * data)137 static irqreturn_t reschedule_action(int irq, void *data)
138 {
139 scheduler_ipi();
140 return IRQ_HANDLED;
141 }
142
call_function_single_action(int irq,void * data)143 static irqreturn_t call_function_single_action(int irq, void *data)
144 {
145 generic_smp_call_function_single_interrupt();
146 return IRQ_HANDLED;
147 }
148
debug_ipi_action(int irq,void * data)149 static irqreturn_t debug_ipi_action(int irq, void *data)
150 {
151 if (crash_ipi_function_ptr) {
152 crash_ipi_function_ptr(get_irq_regs());
153 return IRQ_HANDLED;
154 }
155
156 #ifdef CONFIG_DEBUGGER
157 debugger_ipi(get_irq_regs());
158 #endif /* CONFIG_DEBUGGER */
159
160 return IRQ_HANDLED;
161 }
162
163 static irq_handler_t smp_ipi_action[] = {
164 [PPC_MSG_CALL_FUNCTION] = call_function_action,
165 [PPC_MSG_RESCHEDULE] = reschedule_action,
166 [PPC_MSG_CALL_FUNC_SINGLE] = call_function_single_action,
167 [PPC_MSG_DEBUGGER_BREAK] = debug_ipi_action,
168 };
169
170 const char *smp_ipi_name[] = {
171 [PPC_MSG_CALL_FUNCTION] = "ipi call function",
172 [PPC_MSG_RESCHEDULE] = "ipi reschedule",
173 [PPC_MSG_CALL_FUNC_SINGLE] = "ipi call function single",
174 [PPC_MSG_DEBUGGER_BREAK] = "ipi debugger",
175 };
176
177 /* optional function to request ipi, for controllers with >= 4 ipis */
smp_request_message_ipi(int virq,int msg)178 int smp_request_message_ipi(int virq, int msg)
179 {
180 int err;
181
182 if (msg < 0 || msg > PPC_MSG_DEBUGGER_BREAK) {
183 return -EINVAL;
184 }
185 #if !defined(CONFIG_DEBUGGER) && !defined(CONFIG_KEXEC)
186 if (msg == PPC_MSG_DEBUGGER_BREAK) {
187 return 1;
188 }
189 #endif
190 err = request_irq(virq, smp_ipi_action[msg],
191 IRQF_PERCPU | IRQF_NO_THREAD,
192 smp_ipi_name[msg], 0);
193 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
194 virq, smp_ipi_name[msg], err);
195
196 return err;
197 }
198
199 #ifdef CONFIG_PPC_SMP_MUXED_IPI
200 struct cpu_messages {
201 int messages; /* current messages */
202 unsigned long data; /* data for cause ipi */
203 };
204 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
205
smp_muxed_ipi_set_data(int cpu,unsigned long data)206 void smp_muxed_ipi_set_data(int cpu, unsigned long data)
207 {
208 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
209
210 info->data = data;
211 }
212
smp_muxed_ipi_message_pass(int cpu,int msg)213 void smp_muxed_ipi_message_pass(int cpu, int msg)
214 {
215 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
216 char *message = (char *)&info->messages;
217
218 /*
219 * Order previous accesses before accesses in the IPI handler.
220 */
221 smp_mb();
222 message[msg] = 1;
223 /*
224 * cause_ipi functions are required to include a full barrier
225 * before doing whatever causes the IPI.
226 */
227 smp_ops->cause_ipi(cpu, info->data);
228 }
229
smp_ipi_demux(void)230 irqreturn_t smp_ipi_demux(void)
231 {
232 struct cpu_messages *info = &__get_cpu_var(ipi_message);
233 unsigned int all;
234
235 mb(); /* order any irq clear */
236
237 do {
238 all = xchg(&info->messages, 0);
239
240 #ifdef __BIG_ENDIAN
241 if (all & (1 << (24 - 8 * PPC_MSG_CALL_FUNCTION)))
242 generic_smp_call_function_interrupt();
243 if (all & (1 << (24 - 8 * PPC_MSG_RESCHEDULE)))
244 scheduler_ipi();
245 if (all & (1 << (24 - 8 * PPC_MSG_CALL_FUNC_SINGLE)))
246 generic_smp_call_function_single_interrupt();
247 if (all & (1 << (24 - 8 * PPC_MSG_DEBUGGER_BREAK)))
248 debug_ipi_action(0, NULL);
249 #else
250 #error Unsupported ENDIAN
251 #endif
252 } while (info->messages);
253
254 return IRQ_HANDLED;
255 }
256 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
257
do_message_pass(int cpu,int msg)258 static inline void do_message_pass(int cpu, int msg)
259 {
260 if (smp_ops->message_pass)
261 smp_ops->message_pass(cpu, msg);
262 #ifdef CONFIG_PPC_SMP_MUXED_IPI
263 else
264 smp_muxed_ipi_message_pass(cpu, msg);
265 #endif
266 }
267
smp_send_reschedule(int cpu)268 void smp_send_reschedule(int cpu)
269 {
270 if (likely(smp_ops))
271 do_message_pass(cpu, PPC_MSG_RESCHEDULE);
272 }
273 EXPORT_SYMBOL_GPL(smp_send_reschedule);
274
arch_send_call_function_single_ipi(int cpu)275 void arch_send_call_function_single_ipi(int cpu)
276 {
277 do_message_pass(cpu, PPC_MSG_CALL_FUNC_SINGLE);
278 }
279
arch_send_call_function_ipi_mask(const struct cpumask * mask)280 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
281 {
282 unsigned int cpu;
283
284 for_each_cpu(cpu, mask)
285 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
286 }
287
288 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
smp_send_debugger_break(void)289 void smp_send_debugger_break(void)
290 {
291 int cpu;
292 int me = raw_smp_processor_id();
293
294 if (unlikely(!smp_ops))
295 return;
296
297 for_each_online_cpu(cpu)
298 if (cpu != me)
299 do_message_pass(cpu, PPC_MSG_DEBUGGER_BREAK);
300 }
301 #endif
302
303 #ifdef CONFIG_KEXEC
crash_send_ipi(void (* crash_ipi_callback)(struct pt_regs *))304 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
305 {
306 crash_ipi_function_ptr = crash_ipi_callback;
307 if (crash_ipi_callback) {
308 mb();
309 smp_send_debugger_break();
310 }
311 }
312 #endif
313
stop_this_cpu(void * dummy)314 static void stop_this_cpu(void *dummy)
315 {
316 /* Remove this CPU */
317 set_cpu_online(smp_processor_id(), false);
318
319 local_irq_disable();
320 while (1)
321 ;
322 }
323
smp_send_stop(void)324 void smp_send_stop(void)
325 {
326 smp_call_function(stop_this_cpu, NULL, 0);
327 }
328
329 struct thread_info *current_set[NR_CPUS];
330
smp_store_cpu_info(int id)331 static void __devinit smp_store_cpu_info(int id)
332 {
333 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
334 #ifdef CONFIG_PPC_FSL_BOOK3E
335 per_cpu(next_tlbcam_idx, id)
336 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
337 #endif
338 }
339
smp_prepare_cpus(unsigned int max_cpus)340 void __init smp_prepare_cpus(unsigned int max_cpus)
341 {
342 unsigned int cpu;
343
344 DBG("smp_prepare_cpus\n");
345
346 /*
347 * setup_cpu may need to be called on the boot cpu. We havent
348 * spun any cpus up but lets be paranoid.
349 */
350 BUG_ON(boot_cpuid != smp_processor_id());
351
352 /* Fixup boot cpu */
353 smp_store_cpu_info(boot_cpuid);
354 cpu_callin_map[boot_cpuid] = 1;
355
356 for_each_possible_cpu(cpu) {
357 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
358 GFP_KERNEL, cpu_to_node(cpu));
359 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
360 GFP_KERNEL, cpu_to_node(cpu));
361 }
362
363 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
364 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
365
366 if (smp_ops)
367 if (smp_ops->probe)
368 max_cpus = smp_ops->probe();
369 else
370 max_cpus = NR_CPUS;
371 else
372 max_cpus = 1;
373 }
374
smp_prepare_boot_cpu(void)375 void __devinit smp_prepare_boot_cpu(void)
376 {
377 BUG_ON(smp_processor_id() != boot_cpuid);
378 #ifdef CONFIG_PPC64
379 paca[boot_cpuid].__current = current;
380 #endif
381 current_set[boot_cpuid] = task_thread_info(current);
382 }
383
384 #ifdef CONFIG_HOTPLUG_CPU
385
generic_cpu_disable(void)386 int generic_cpu_disable(void)
387 {
388 unsigned int cpu = smp_processor_id();
389
390 if (cpu == boot_cpuid)
391 return -EBUSY;
392
393 set_cpu_online(cpu, false);
394 #ifdef CONFIG_PPC64
395 vdso_data->processorCount--;
396 #endif
397 migrate_irqs();
398 return 0;
399 }
400
generic_cpu_die(unsigned int cpu)401 void generic_cpu_die(unsigned int cpu)
402 {
403 int i;
404
405 for (i = 0; i < 100; i++) {
406 smp_rmb();
407 if (per_cpu(cpu_state, cpu) == CPU_DEAD)
408 return;
409 msleep(100);
410 }
411 printk(KERN_ERR "CPU%d didn't die...\n", cpu);
412 }
413
generic_mach_cpu_die(void)414 void generic_mach_cpu_die(void)
415 {
416 unsigned int cpu;
417
418 local_irq_disable();
419 idle_task_exit();
420 cpu = smp_processor_id();
421 printk(KERN_DEBUG "CPU%d offline\n", cpu);
422 __get_cpu_var(cpu_state) = CPU_DEAD;
423 smp_wmb();
424 while (__get_cpu_var(cpu_state) != CPU_UP_PREPARE)
425 cpu_relax();
426 }
427
generic_set_cpu_dead(unsigned int cpu)428 void generic_set_cpu_dead(unsigned int cpu)
429 {
430 per_cpu(cpu_state, cpu) = CPU_DEAD;
431 }
432
generic_check_cpu_restart(unsigned int cpu)433 int generic_check_cpu_restart(unsigned int cpu)
434 {
435 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
436 }
437 #endif
438
439 struct create_idle {
440 struct work_struct work;
441 struct task_struct *idle;
442 struct completion done;
443 int cpu;
444 };
445
do_fork_idle(struct work_struct * work)446 static void __cpuinit do_fork_idle(struct work_struct *work)
447 {
448 struct create_idle *c_idle =
449 container_of(work, struct create_idle, work);
450
451 c_idle->idle = fork_idle(c_idle->cpu);
452 complete(&c_idle->done);
453 }
454
create_idle(unsigned int cpu)455 static int __cpuinit create_idle(unsigned int cpu)
456 {
457 struct thread_info *ti;
458 struct create_idle c_idle = {
459 .cpu = cpu,
460 .done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
461 };
462 INIT_WORK_ONSTACK(&c_idle.work, do_fork_idle);
463
464 c_idle.idle = get_idle_for_cpu(cpu);
465
466 /* We can't use kernel_thread since we must avoid to
467 * reschedule the child. We use a workqueue because
468 * we want to fork from a kernel thread, not whatever
469 * userspace process happens to be trying to online us.
470 */
471 if (!c_idle.idle) {
472 schedule_work(&c_idle.work);
473 wait_for_completion(&c_idle.done);
474 } else
475 init_idle(c_idle.idle, cpu);
476 if (IS_ERR(c_idle.idle)) {
477 pr_err("Failed fork for CPU %u: %li", cpu, PTR_ERR(c_idle.idle));
478 return PTR_ERR(c_idle.idle);
479 }
480 ti = task_thread_info(c_idle.idle);
481
482 #ifdef CONFIG_PPC64
483 paca[cpu].__current = c_idle.idle;
484 paca[cpu].kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
485 #endif
486 ti->cpu = cpu;
487 current_set[cpu] = ti;
488
489 return 0;
490 }
491
__cpu_up(unsigned int cpu)492 int __cpuinit __cpu_up(unsigned int cpu)
493 {
494 int rc, c;
495
496 if (smp_ops == NULL ||
497 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
498 return -EINVAL;
499
500 /* Make sure we have an idle thread */
501 rc = create_idle(cpu);
502 if (rc)
503 return rc;
504
505 secondary_ti = current_set[cpu];
506
507 /* Make sure callin-map entry is 0 (can be leftover a CPU
508 * hotplug
509 */
510 cpu_callin_map[cpu] = 0;
511
512 /* The information for processor bringup must
513 * be written out to main store before we release
514 * the processor.
515 */
516 smp_mb();
517
518 /* wake up cpus */
519 DBG("smp: kicking cpu %d\n", cpu);
520 rc = smp_ops->kick_cpu(cpu);
521 if (rc) {
522 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
523 return rc;
524 }
525
526 /*
527 * wait to see if the cpu made a callin (is actually up).
528 * use this value that I found through experimentation.
529 * -- Cort
530 */
531 if (system_state < SYSTEM_RUNNING)
532 for (c = 50000; c && !cpu_callin_map[cpu]; c--)
533 udelay(100);
534 #ifdef CONFIG_HOTPLUG_CPU
535 else
536 /*
537 * CPUs can take much longer to come up in the
538 * hotplug case. Wait five seconds.
539 */
540 for (c = 5000; c && !cpu_callin_map[cpu]; c--)
541 msleep(1);
542 #endif
543
544 if (!cpu_callin_map[cpu]) {
545 printk(KERN_ERR "Processor %u is stuck.\n", cpu);
546 return -ENOENT;
547 }
548
549 DBG("Processor %u found.\n", cpu);
550
551 if (smp_ops->give_timebase)
552 smp_ops->give_timebase();
553
554 /* Wait until cpu puts itself in the online map */
555 while (!cpu_online(cpu))
556 cpu_relax();
557
558 return 0;
559 }
560
561 /* Return the value of the reg property corresponding to the given
562 * logical cpu.
563 */
cpu_to_core_id(int cpu)564 int cpu_to_core_id(int cpu)
565 {
566 struct device_node *np;
567 const int *reg;
568 int id = -1;
569
570 np = of_get_cpu_node(cpu, NULL);
571 if (!np)
572 goto out;
573
574 reg = of_get_property(np, "reg", NULL);
575 if (!reg)
576 goto out;
577
578 id = *reg;
579 out:
580 of_node_put(np);
581 return id;
582 }
583
584 /* Helper routines for cpu to core mapping */
cpu_core_index_of_thread(int cpu)585 int cpu_core_index_of_thread(int cpu)
586 {
587 return cpu >> threads_shift;
588 }
589 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
590
cpu_first_thread_of_core(int core)591 int cpu_first_thread_of_core(int core)
592 {
593 return core << threads_shift;
594 }
595 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
596
597 /* Must be called when no change can occur to cpu_present_mask,
598 * i.e. during cpu online or offline.
599 */
cpu_to_l2cache(int cpu)600 static struct device_node *cpu_to_l2cache(int cpu)
601 {
602 struct device_node *np;
603 struct device_node *cache;
604
605 if (!cpu_present(cpu))
606 return NULL;
607
608 np = of_get_cpu_node(cpu, NULL);
609 if (np == NULL)
610 return NULL;
611
612 cache = of_find_next_cache_node(np);
613
614 of_node_put(np);
615
616 return cache;
617 }
618
619 /* Activate a secondary processor. */
start_secondary(void * unused)620 void __devinit start_secondary(void *unused)
621 {
622 unsigned int cpu = smp_processor_id();
623 struct device_node *l2_cache;
624 int i, base;
625
626 atomic_inc(&init_mm.mm_count);
627 current->active_mm = &init_mm;
628
629 smp_store_cpu_info(cpu);
630 set_dec(tb_ticks_per_jiffy);
631 preempt_disable();
632 cpu_callin_map[cpu] = 1;
633
634 if (smp_ops->setup_cpu)
635 smp_ops->setup_cpu(cpu);
636 if (smp_ops->take_timebase)
637 smp_ops->take_timebase();
638
639 secondary_cpu_time_init();
640
641 #ifdef CONFIG_PPC64
642 if (system_state == SYSTEM_RUNNING)
643 vdso_data->processorCount++;
644 #endif
645 ipi_call_lock();
646 notify_cpu_starting(cpu);
647 set_cpu_online(cpu, true);
648 /* Update sibling maps */
649 base = cpu_first_thread_sibling(cpu);
650 for (i = 0; i < threads_per_core; i++) {
651 if (cpu_is_offline(base + i))
652 continue;
653 cpumask_set_cpu(cpu, cpu_sibling_mask(base + i));
654 cpumask_set_cpu(base + i, cpu_sibling_mask(cpu));
655
656 /* cpu_core_map should be a superset of
657 * cpu_sibling_map even if we don't have cache
658 * information, so update the former here, too.
659 */
660 cpumask_set_cpu(cpu, cpu_core_mask(base + i));
661 cpumask_set_cpu(base + i, cpu_core_mask(cpu));
662 }
663 l2_cache = cpu_to_l2cache(cpu);
664 for_each_online_cpu(i) {
665 struct device_node *np = cpu_to_l2cache(i);
666 if (!np)
667 continue;
668 if (np == l2_cache) {
669 cpumask_set_cpu(cpu, cpu_core_mask(i));
670 cpumask_set_cpu(i, cpu_core_mask(cpu));
671 }
672 of_node_put(np);
673 }
674 of_node_put(l2_cache);
675 ipi_call_unlock();
676
677 local_irq_enable();
678
679 cpu_idle();
680
681 BUG();
682 }
683
setup_profiling_timer(unsigned int multiplier)684 int setup_profiling_timer(unsigned int multiplier)
685 {
686 return 0;
687 }
688
smp_cpus_done(unsigned int max_cpus)689 void __init smp_cpus_done(unsigned int max_cpus)
690 {
691 cpumask_var_t old_mask;
692
693 /* We want the setup_cpu() here to be called from CPU 0, but our
694 * init thread may have been "borrowed" by another CPU in the meantime
695 * se we pin us down to CPU 0 for a short while
696 */
697 alloc_cpumask_var(&old_mask, GFP_NOWAIT);
698 cpumask_copy(old_mask, tsk_cpus_allowed(current));
699 set_cpus_allowed_ptr(current, cpumask_of(boot_cpuid));
700
701 if (smp_ops && smp_ops->setup_cpu)
702 smp_ops->setup_cpu(boot_cpuid);
703
704 set_cpus_allowed_ptr(current, old_mask);
705
706 free_cpumask_var(old_mask);
707
708 if (smp_ops && smp_ops->bringup_done)
709 smp_ops->bringup_done();
710
711 dump_numa_cpu_topology();
712
713 }
714
arch_sd_sibling_asym_packing(void)715 int arch_sd_sibling_asym_packing(void)
716 {
717 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
718 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
719 return SD_ASYM_PACKING;
720 }
721 return 0;
722 }
723
724 #ifdef CONFIG_HOTPLUG_CPU
__cpu_disable(void)725 int __cpu_disable(void)
726 {
727 struct device_node *l2_cache;
728 int cpu = smp_processor_id();
729 int base, i;
730 int err;
731
732 if (!smp_ops->cpu_disable)
733 return -ENOSYS;
734
735 err = smp_ops->cpu_disable();
736 if (err)
737 return err;
738
739 /* Update sibling maps */
740 base = cpu_first_thread_sibling(cpu);
741 for (i = 0; i < threads_per_core; i++) {
742 cpumask_clear_cpu(cpu, cpu_sibling_mask(base + i));
743 cpumask_clear_cpu(base + i, cpu_sibling_mask(cpu));
744 cpumask_clear_cpu(cpu, cpu_core_mask(base + i));
745 cpumask_clear_cpu(base + i, cpu_core_mask(cpu));
746 }
747
748 l2_cache = cpu_to_l2cache(cpu);
749 for_each_present_cpu(i) {
750 struct device_node *np = cpu_to_l2cache(i);
751 if (!np)
752 continue;
753 if (np == l2_cache) {
754 cpumask_clear_cpu(cpu, cpu_core_mask(i));
755 cpumask_clear_cpu(i, cpu_core_mask(cpu));
756 }
757 of_node_put(np);
758 }
759 of_node_put(l2_cache);
760
761
762 return 0;
763 }
764
__cpu_die(unsigned int cpu)765 void __cpu_die(unsigned int cpu)
766 {
767 if (smp_ops->cpu_die)
768 smp_ops->cpu_die(cpu);
769 }
770
771 static DEFINE_MUTEX(powerpc_cpu_hotplug_driver_mutex);
772
cpu_hotplug_driver_lock()773 void cpu_hotplug_driver_lock()
774 {
775 mutex_lock(&powerpc_cpu_hotplug_driver_mutex);
776 }
777
cpu_hotplug_driver_unlock()778 void cpu_hotplug_driver_unlock()
779 {
780 mutex_unlock(&powerpc_cpu_hotplug_driver_mutex);
781 }
782
cpu_die(void)783 void cpu_die(void)
784 {
785 if (ppc_md.cpu_die)
786 ppc_md.cpu_die();
787
788 /* If we return, we re-enter start_secondary */
789 start_secondary_resume();
790 }
791
792 #endif
793