1 /*
2  *
3  * Common boot and setup code.
4  *
5  * Copyright (C) 2001 PPC64 Team, IBM Corp
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #undef DEBUG
14 
15 #include <linux/export.h>
16 #include <linux/string.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/reboot.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/seq_file.h>
24 #include <linux/ioport.h>
25 #include <linux/console.h>
26 #include <linux/utsname.h>
27 #include <linux/tty.h>
28 #include <linux/root_dev.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/unistd.h>
32 #include <linux/serial.h>
33 #include <linux/serial_8250.h>
34 #include <linux/bootmem.h>
35 #include <linux/pci.h>
36 #include <linux/lockdep.h>
37 #include <linux/memblock.h>
38 #include <linux/hugetlb.h>
39 
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/prom.h>
43 #include <asm/processor.h>
44 #include <asm/pgtable.h>
45 #include <asm/smp.h>
46 #include <asm/elf.h>
47 #include <asm/machdep.h>
48 #include <asm/paca.h>
49 #include <asm/time.h>
50 #include <asm/cputable.h>
51 #include <asm/sections.h>
52 #include <asm/btext.h>
53 #include <asm/nvram.h>
54 #include <asm/setup.h>
55 #include <asm/rtas.h>
56 #include <asm/iommu.h>
57 #include <asm/serial.h>
58 #include <asm/cache.h>
59 #include <asm/page.h>
60 #include <asm/mmu.h>
61 #include <asm/firmware.h>
62 #include <asm/xmon.h>
63 #include <asm/udbg.h>
64 #include <asm/kexec.h>
65 #include <asm/mmu_context.h>
66 #include <asm/code-patching.h>
67 #include <asm/kvm_ppc.h>
68 #include <asm/hugetlb.h>
69 
70 #include "setup.h"
71 
72 #ifdef DEBUG
73 #define DBG(fmt...) udbg_printf(fmt)
74 #else
75 #define DBG(fmt...)
76 #endif
77 
78 int boot_cpuid = 0;
79 int spinning_secondaries;
80 u64 ppc64_pft_size;
81 
82 /* Pick defaults since we might want to patch instructions
83  * before we've read this from the device tree.
84  */
85 struct ppc64_caches ppc64_caches = {
86 	.dline_size = 0x40,
87 	.log_dline_size = 6,
88 	.iline_size = 0x40,
89 	.log_iline_size = 6
90 };
91 EXPORT_SYMBOL_GPL(ppc64_caches);
92 
93 /*
94  * These are used in binfmt_elf.c to put aux entries on the stack
95  * for each elf executable being started.
96  */
97 int dcache_bsize;
98 int icache_bsize;
99 int ucache_bsize;
100 
101 #ifdef CONFIG_SMP
102 
103 static char *smt_enabled_cmdline;
104 
105 /* Look for ibm,smt-enabled OF option */
check_smt_enabled(void)106 static void check_smt_enabled(void)
107 {
108 	struct device_node *dn;
109 	const char *smt_option;
110 
111 	/* Default to enabling all threads */
112 	smt_enabled_at_boot = threads_per_core;
113 
114 	/* Allow the command line to overrule the OF option */
115 	if (smt_enabled_cmdline) {
116 		if (!strcmp(smt_enabled_cmdline, "on"))
117 			smt_enabled_at_boot = threads_per_core;
118 		else if (!strcmp(smt_enabled_cmdline, "off"))
119 			smt_enabled_at_boot = 0;
120 		else {
121 			long smt;
122 			int rc;
123 
124 			rc = strict_strtol(smt_enabled_cmdline, 10, &smt);
125 			if (!rc)
126 				smt_enabled_at_boot =
127 					min(threads_per_core, (int)smt);
128 		}
129 	} else {
130 		dn = of_find_node_by_path("/options");
131 		if (dn) {
132 			smt_option = of_get_property(dn, "ibm,smt-enabled",
133 						     NULL);
134 
135 			if (smt_option) {
136 				if (!strcmp(smt_option, "on"))
137 					smt_enabled_at_boot = threads_per_core;
138 				else if (!strcmp(smt_option, "off"))
139 					smt_enabled_at_boot = 0;
140 			}
141 
142 			of_node_put(dn);
143 		}
144 	}
145 }
146 
147 /* Look for smt-enabled= cmdline option */
early_smt_enabled(char * p)148 static int __init early_smt_enabled(char *p)
149 {
150 	smt_enabled_cmdline = p;
151 	return 0;
152 }
153 early_param("smt-enabled", early_smt_enabled);
154 
155 #else
156 #define check_smt_enabled()
157 #endif /* CONFIG_SMP */
158 
159 /*
160  * Early initialization entry point. This is called by head.S
161  * with MMU translation disabled. We rely on the "feature" of
162  * the CPU that ignores the top 2 bits of the address in real
163  * mode so we can access kernel globals normally provided we
164  * only toy with things in the RMO region. From here, we do
165  * some early parsing of the device-tree to setup out MEMBLOCK
166  * data structures, and allocate & initialize the hash table
167  * and segment tables so we can start running with translation
168  * enabled.
169  *
170  * It is this function which will call the probe() callback of
171  * the various platform types and copy the matching one to the
172  * global ppc_md structure. Your platform can eventually do
173  * some very early initializations from the probe() routine, but
174  * this is not recommended, be very careful as, for example, the
175  * device-tree is not accessible via normal means at this point.
176  */
177 
early_setup(unsigned long dt_ptr)178 void __init early_setup(unsigned long dt_ptr)
179 {
180 	/* -------- printk is _NOT_ safe to use here ! ------- */
181 
182 	/* Identify CPU type */
183 	identify_cpu(0, mfspr(SPRN_PVR));
184 
185 	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
186 	initialise_paca(&boot_paca, 0);
187 	setup_paca(&boot_paca);
188 
189 	/* Initialize lockdep early or else spinlocks will blow */
190 	lockdep_init();
191 
192 	/* -------- printk is now safe to use ------- */
193 
194 	/* Enable early debugging if any specified (see udbg.h) */
195 	udbg_early_init();
196 
197  	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
198 
199 	/*
200 	 * Do early initialization using the flattened device
201 	 * tree, such as retrieving the physical memory map or
202 	 * calculating/retrieving the hash table size.
203 	 */
204 	early_init_devtree(__va(dt_ptr));
205 
206 	/* Now we know the logical id of our boot cpu, setup the paca. */
207 	setup_paca(&paca[boot_cpuid]);
208 
209 	/* Fix up paca fields required for the boot cpu */
210 	get_paca()->cpu_start = 1;
211 
212 	/* Probe the machine type */
213 	probe_machine();
214 
215 	setup_kdump_trampoline();
216 
217 	DBG("Found, Initializing memory management...\n");
218 
219 	/* Initialize the hash table or TLB handling */
220 	early_init_mmu();
221 
222 	/*
223 	 * Reserve any gigantic pages requested on the command line.
224 	 * memblock needs to have been initialized by the time this is
225 	 * called since this will reserve memory.
226 	 */
227 	reserve_hugetlb_gpages();
228 
229 	DBG(" <- early_setup()\n");
230 }
231 
232 #ifdef CONFIG_SMP
early_setup_secondary(void)233 void early_setup_secondary(void)
234 {
235 	/* Mark interrupts enabled in PACA */
236 	get_paca()->soft_enabled = 0;
237 
238 	/* Initialize the hash table or TLB handling */
239 	early_init_mmu_secondary();
240 }
241 
242 #endif /* CONFIG_SMP */
243 
244 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
smp_release_cpus(void)245 void smp_release_cpus(void)
246 {
247 	unsigned long *ptr;
248 	int i;
249 
250 	DBG(" -> smp_release_cpus()\n");
251 
252 	/* All secondary cpus are spinning on a common spinloop, release them
253 	 * all now so they can start to spin on their individual paca
254 	 * spinloops. For non SMP kernels, the secondary cpus never get out
255 	 * of the common spinloop.
256 	 */
257 
258 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
259 			- PHYSICAL_START);
260 	*ptr = __pa(generic_secondary_smp_init);
261 
262 	/* And wait a bit for them to catch up */
263 	for (i = 0; i < 100000; i++) {
264 		mb();
265 		HMT_low();
266 		if (spinning_secondaries == 0)
267 			break;
268 		udelay(1);
269 	}
270 	DBG("spinning_secondaries = %d\n", spinning_secondaries);
271 
272 	DBG(" <- smp_release_cpus()\n");
273 }
274 #endif /* CONFIG_SMP || CONFIG_KEXEC */
275 
276 /*
277  * Initialize some remaining members of the ppc64_caches and systemcfg
278  * structures
279  * (at least until we get rid of them completely). This is mostly some
280  * cache informations about the CPU that will be used by cache flush
281  * routines and/or provided to userland
282  */
initialize_cache_info(void)283 static void __init initialize_cache_info(void)
284 {
285 	struct device_node *np;
286 	unsigned long num_cpus = 0;
287 
288 	DBG(" -> initialize_cache_info()\n");
289 
290 	for_each_node_by_type(np, "cpu") {
291 		num_cpus += 1;
292 
293 		/*
294 		 * We're assuming *all* of the CPUs have the same
295 		 * d-cache and i-cache sizes... -Peter
296 		 */
297 		if (num_cpus == 1) {
298 			const u32 *sizep, *lsizep;
299 			u32 size, lsize;
300 
301 			size = 0;
302 			lsize = cur_cpu_spec->dcache_bsize;
303 			sizep = of_get_property(np, "d-cache-size", NULL);
304 			if (sizep != NULL)
305 				size = *sizep;
306 			lsizep = of_get_property(np, "d-cache-block-size",
307 						 NULL);
308 			/* fallback if block size missing */
309 			if (lsizep == NULL)
310 				lsizep = of_get_property(np,
311 							 "d-cache-line-size",
312 							 NULL);
313 			if (lsizep != NULL)
314 				lsize = *lsizep;
315 			if (sizep == 0 || lsizep == 0)
316 				DBG("Argh, can't find dcache properties ! "
317 				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
318 
319 			ppc64_caches.dsize = size;
320 			ppc64_caches.dline_size = lsize;
321 			ppc64_caches.log_dline_size = __ilog2(lsize);
322 			ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
323 
324 			size = 0;
325 			lsize = cur_cpu_spec->icache_bsize;
326 			sizep = of_get_property(np, "i-cache-size", NULL);
327 			if (sizep != NULL)
328 				size = *sizep;
329 			lsizep = of_get_property(np, "i-cache-block-size",
330 						 NULL);
331 			if (lsizep == NULL)
332 				lsizep = of_get_property(np,
333 							 "i-cache-line-size",
334 							 NULL);
335 			if (lsizep != NULL)
336 				lsize = *lsizep;
337 			if (sizep == 0 || lsizep == 0)
338 				DBG("Argh, can't find icache properties ! "
339 				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
340 
341 			ppc64_caches.isize = size;
342 			ppc64_caches.iline_size = lsize;
343 			ppc64_caches.log_iline_size = __ilog2(lsize);
344 			ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
345 		}
346 	}
347 
348 	DBG(" <- initialize_cache_info()\n");
349 }
350 
351 
352 /*
353  * Do some initial setup of the system.  The parameters are those which
354  * were passed in from the bootloader.
355  */
setup_system(void)356 void __init setup_system(void)
357 {
358 	DBG(" -> setup_system()\n");
359 
360 	/* Apply the CPUs-specific and firmware specific fixups to kernel
361 	 * text (nop out sections not relevant to this CPU or this firmware)
362 	 */
363 	do_feature_fixups(cur_cpu_spec->cpu_features,
364 			  &__start___ftr_fixup, &__stop___ftr_fixup);
365 	do_feature_fixups(cur_cpu_spec->mmu_features,
366 			  &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup);
367 	do_feature_fixups(powerpc_firmware_features,
368 			  &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
369 	do_lwsync_fixups(cur_cpu_spec->cpu_features,
370 			 &__start___lwsync_fixup, &__stop___lwsync_fixup);
371 	do_final_fixups();
372 
373 	/*
374 	 * Unflatten the device-tree passed by prom_init or kexec
375 	 */
376 	unflatten_device_tree();
377 
378 	/*
379 	 * Fill the ppc64_caches & systemcfg structures with informations
380  	 * retrieved from the device-tree.
381 	 */
382 	initialize_cache_info();
383 
384 #ifdef CONFIG_PPC_RTAS
385 	/*
386 	 * Initialize RTAS if available
387 	 */
388 	rtas_initialize();
389 #endif /* CONFIG_PPC_RTAS */
390 
391 	/*
392 	 * Check if we have an initrd provided via the device-tree
393 	 */
394 	check_for_initrd();
395 
396 	/*
397 	 * Do some platform specific early initializations, that includes
398 	 * setting up the hash table pointers. It also sets up some interrupt-mapping
399 	 * related options that will be used by finish_device_tree()
400 	 */
401 	if (ppc_md.init_early)
402 		ppc_md.init_early();
403 
404  	/*
405 	 * We can discover serial ports now since the above did setup the
406 	 * hash table management for us, thus ioremap works. We do that early
407 	 * so that further code can be debugged
408 	 */
409 	find_legacy_serial_ports();
410 
411 	/*
412 	 * Register early console
413 	 */
414 	register_early_udbg_console();
415 
416 	/*
417 	 * Initialize xmon
418 	 */
419 	xmon_setup();
420 
421 	smp_setup_cpu_maps();
422 	check_smt_enabled();
423 
424 #ifdef CONFIG_SMP
425 	/* Release secondary cpus out of their spinloops at 0x60 now that
426 	 * we can map physical -> logical CPU ids
427 	 */
428 	smp_release_cpus();
429 #endif
430 
431 	printk("Starting Linux PPC64 %s\n", init_utsname()->version);
432 
433 	printk("-----------------------------------------------------\n");
434 	printk("ppc64_pft_size                = 0x%llx\n", ppc64_pft_size);
435 	printk("physicalMemorySize            = 0x%llx\n", memblock_phys_mem_size());
436 	if (ppc64_caches.dline_size != 0x80)
437 		printk("ppc64_caches.dcache_line_size = 0x%x\n",
438 		       ppc64_caches.dline_size);
439 	if (ppc64_caches.iline_size != 0x80)
440 		printk("ppc64_caches.icache_line_size = 0x%x\n",
441 		       ppc64_caches.iline_size);
442 #ifdef CONFIG_PPC_STD_MMU_64
443 	if (htab_address)
444 		printk("htab_address                  = 0x%p\n", htab_address);
445 	printk("htab_hash_mask                = 0x%lx\n", htab_hash_mask);
446 #endif /* CONFIG_PPC_STD_MMU_64 */
447 	if (PHYSICAL_START > 0)
448 		printk("physical_start                = 0x%llx\n",
449 		       (unsigned long long)PHYSICAL_START);
450 	printk("-----------------------------------------------------\n");
451 
452 	DBG(" <- setup_system()\n");
453 }
454 
455 /* This returns the limit below which memory accesses to the linear
456  * mapping are guarnateed not to cause a TLB or SLB miss. This is
457  * used to allocate interrupt or emergency stacks for which our
458  * exception entry path doesn't deal with being interrupted.
459  */
safe_stack_limit(void)460 static u64 safe_stack_limit(void)
461 {
462 #ifdef CONFIG_PPC_BOOK3E
463 	/* Freescale BookE bolts the entire linear mapping */
464 	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
465 		return linear_map_top;
466 	/* Other BookE, we assume the first GB is bolted */
467 	return 1ul << 30;
468 #else
469 	/* BookS, the first segment is bolted */
470 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
471 		return 1UL << SID_SHIFT_1T;
472 	return 1UL << SID_SHIFT;
473 #endif
474 }
475 
irqstack_early_init(void)476 static void __init irqstack_early_init(void)
477 {
478 	u64 limit = safe_stack_limit();
479 	unsigned int i;
480 
481 	/*
482 	 * Interrupt stacks must be in the first segment since we
483 	 * cannot afford to take SLB misses on them.
484 	 */
485 	for_each_possible_cpu(i) {
486 		softirq_ctx[i] = (struct thread_info *)
487 			__va(memblock_alloc_base(THREAD_SIZE,
488 					    THREAD_SIZE, limit));
489 		hardirq_ctx[i] = (struct thread_info *)
490 			__va(memblock_alloc_base(THREAD_SIZE,
491 					    THREAD_SIZE, limit));
492 	}
493 }
494 
495 #ifdef CONFIG_PPC_BOOK3E
exc_lvl_early_init(void)496 static void __init exc_lvl_early_init(void)
497 {
498 	extern unsigned int interrupt_base_book3e;
499 	extern unsigned int exc_debug_debug_book3e;
500 
501 	unsigned int i;
502 
503 	for_each_possible_cpu(i) {
504 		critirq_ctx[i] = (struct thread_info *)
505 			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
506 		dbgirq_ctx[i] = (struct thread_info *)
507 			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
508 		mcheckirq_ctx[i] = (struct thread_info *)
509 			__va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
510 	}
511 
512 	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
513 		patch_branch(&interrupt_base_book3e + (0x040 / 4) + 1,
514 			     (unsigned long)&exc_debug_debug_book3e, 0);
515 }
516 #else
517 #define exc_lvl_early_init()
518 #endif
519 
520 /*
521  * Stack space used when we detect a bad kernel stack pointer, and
522  * early in SMP boots before relocation is enabled.
523  */
emergency_stack_init(void)524 static void __init emergency_stack_init(void)
525 {
526 	u64 limit;
527 	unsigned int i;
528 
529 	/*
530 	 * Emergency stacks must be under 256MB, we cannot afford to take
531 	 * SLB misses on them. The ABI also requires them to be 128-byte
532 	 * aligned.
533 	 *
534 	 * Since we use these as temporary stacks during secondary CPU
535 	 * bringup, we need to get at them in real mode. This means they
536 	 * must also be within the RMO region.
537 	 */
538 	limit = min(safe_stack_limit(), ppc64_rma_size);
539 
540 	for_each_possible_cpu(i) {
541 		unsigned long sp;
542 		sp  = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
543 		sp += THREAD_SIZE;
544 		paca[i].emergency_sp = __va(sp);
545 	}
546 }
547 
548 /*
549  * Called into from start_kernel this initializes bootmem, which is used
550  * to manage page allocation until mem_init is called.
551  */
setup_arch(char ** cmdline_p)552 void __init setup_arch(char **cmdline_p)
553 {
554 	ppc64_boot_msg(0x12, "Setup Arch");
555 
556 	*cmdline_p = cmd_line;
557 
558 	/*
559 	 * Set cache line size based on type of cpu as a default.
560 	 * Systems with OF can look in the properties on the cpu node(s)
561 	 * for a possibly more accurate value.
562 	 */
563 	dcache_bsize = ppc64_caches.dline_size;
564 	icache_bsize = ppc64_caches.iline_size;
565 
566 	/* reboot on panic */
567 	panic_timeout = 180;
568 
569 	if (ppc_md.panic)
570 		setup_panic();
571 
572 	init_mm.start_code = (unsigned long)_stext;
573 	init_mm.end_code = (unsigned long) _etext;
574 	init_mm.end_data = (unsigned long) _edata;
575 	init_mm.brk = klimit;
576 
577 	irqstack_early_init();
578 	exc_lvl_early_init();
579 	emergency_stack_init();
580 
581 #ifdef CONFIG_PPC_STD_MMU_64
582 	stabs_alloc();
583 #endif
584 	/* set up the bootmem stuff with available memory */
585 	do_init_bootmem();
586 	sparse_init();
587 
588 #ifdef CONFIG_DUMMY_CONSOLE
589 	conswitchp = &dummy_con;
590 #endif
591 
592 	if (ppc_md.setup_arch)
593 		ppc_md.setup_arch();
594 
595 	paging_init();
596 
597 	/* Initialize the MMU context management stuff */
598 	mmu_context_init();
599 
600 	kvm_linear_init();
601 
602 	ppc64_boot_msg(0x15, "Setup Done");
603 }
604 
605 
606 /* ToDo: do something useful if ppc_md is not yet setup. */
607 #define PPC64_LINUX_FUNCTION 0x0f000000
608 #define PPC64_IPL_MESSAGE 0xc0000000
609 #define PPC64_TERM_MESSAGE 0xb0000000
610 
ppc64_do_msg(unsigned int src,const char * msg)611 static void ppc64_do_msg(unsigned int src, const char *msg)
612 {
613 	if (ppc_md.progress) {
614 		char buf[128];
615 
616 		sprintf(buf, "%08X\n", src);
617 		ppc_md.progress(buf, 0);
618 		snprintf(buf, 128, "%s", msg);
619 		ppc_md.progress(buf, 0);
620 	}
621 }
622 
623 /* Print a boot progress message. */
ppc64_boot_msg(unsigned int src,const char * msg)624 void ppc64_boot_msg(unsigned int src, const char *msg)
625 {
626 	ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
627 	printk("[boot]%04x %s\n", src, msg);
628 }
629 
630 #ifdef CONFIG_SMP
631 #define PCPU_DYN_SIZE		()
632 
pcpu_fc_alloc(unsigned int cpu,size_t size,size_t align)633 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
634 {
635 	return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
636 				    __pa(MAX_DMA_ADDRESS));
637 }
638 
pcpu_fc_free(void * ptr,size_t size)639 static void __init pcpu_fc_free(void *ptr, size_t size)
640 {
641 	free_bootmem(__pa(ptr), size);
642 }
643 
pcpu_cpu_distance(unsigned int from,unsigned int to)644 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
645 {
646 	if (cpu_to_node(from) == cpu_to_node(to))
647 		return LOCAL_DISTANCE;
648 	else
649 		return REMOTE_DISTANCE;
650 }
651 
652 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
653 EXPORT_SYMBOL(__per_cpu_offset);
654 
setup_per_cpu_areas(void)655 void __init setup_per_cpu_areas(void)
656 {
657 	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
658 	size_t atom_size;
659 	unsigned long delta;
660 	unsigned int cpu;
661 	int rc;
662 
663 	/*
664 	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
665 	 * to group units.  For larger mappings, use 1M atom which
666 	 * should be large enough to contain a number of units.
667 	 */
668 	if (mmu_linear_psize == MMU_PAGE_4K)
669 		atom_size = PAGE_SIZE;
670 	else
671 		atom_size = 1 << 20;
672 
673 	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
674 				    pcpu_fc_alloc, pcpu_fc_free);
675 	if (rc < 0)
676 		panic("cannot initialize percpu area (err=%d)", rc);
677 
678 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
679 	for_each_possible_cpu(cpu) {
680                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
681 		paca[cpu].data_offset = __per_cpu_offset[cpu];
682 	}
683 }
684 #endif
685 
686 
687 #ifdef CONFIG_PPC_INDIRECT_IO
688 struct ppc_pci_io ppc_pci_io;
689 EXPORT_SYMBOL(ppc_pci_io);
690 #endif /* CONFIG_PPC_INDIRECT_IO */
691 
692