1 /* smp.c: Sparc SMP support.
2  *
3  * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
4  * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
5  * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
6  */
7 
8 #include <asm/head.h>
9 
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/threads.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 
24 #include <asm/ptrace.h>
25 #include <linux/atomic.h>
26 
27 #include <asm/irq.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/oplib.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cpudata.h>
35 #include <asm/leon.h>
36 
37 #include "irq.h"
38 
39 volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
40 
41 cpumask_t smp_commenced_mask = CPU_MASK_NONE;
42 
43 /* The only guaranteed locking primitive available on all Sparc
44  * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
45  * places the current byte at the effective address into dest_reg and
46  * places 0xff there afterwards.  Pretty lame locking primitive
47  * compared to the Alpha and the Intel no?  Most Sparcs have 'swap'
48  * instruction which is much better...
49  */
50 
smp_store_cpu_info(int id)51 void __cpuinit smp_store_cpu_info(int id)
52 {
53 	int cpu_node;
54 	int mid;
55 
56 	cpu_data(id).udelay_val = loops_per_jiffy;
57 
58 	cpu_find_by_mid(id, &cpu_node);
59 	cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
60 						     "clock-frequency", 0);
61 	cpu_data(id).prom_node = cpu_node;
62 	mid = cpu_get_hwmid(cpu_node);
63 
64 	if (mid < 0) {
65 		printk(KERN_NOTICE "No MID found for CPU%d at node 0x%08d", id, cpu_node);
66 		mid = 0;
67 	}
68 	cpu_data(id).mid = mid;
69 }
70 
smp_cpus_done(unsigned int max_cpus)71 void __init smp_cpus_done(unsigned int max_cpus)
72 {
73 	extern void smp4m_smp_done(void);
74 	extern void smp4d_smp_done(void);
75 	unsigned long bogosum = 0;
76 	int cpu, num = 0;
77 
78 	for_each_online_cpu(cpu) {
79 		num++;
80 		bogosum += cpu_data(cpu).udelay_val;
81 	}
82 
83 	printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
84 		num, bogosum/(500000/HZ),
85 		(bogosum/(5000/HZ))%100);
86 
87 	switch(sparc_cpu_model) {
88 	case sun4:
89 		printk("SUN4\n");
90 		BUG();
91 		break;
92 	case sun4c:
93 		printk("SUN4C\n");
94 		BUG();
95 		break;
96 	case sun4m:
97 		smp4m_smp_done();
98 		break;
99 	case sun4d:
100 		smp4d_smp_done();
101 		break;
102 	case sparc_leon:
103 		leon_smp_done();
104 		break;
105 	case sun4e:
106 		printk("SUN4E\n");
107 		BUG();
108 		break;
109 	case sun4u:
110 		printk("SUN4U\n");
111 		BUG();
112 		break;
113 	default:
114 		printk("UNKNOWN!\n");
115 		BUG();
116 		break;
117 	}
118 }
119 
cpu_panic(void)120 void cpu_panic(void)
121 {
122 	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
123 	panic("SMP bolixed\n");
124 }
125 
126 struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
127 
smp_send_reschedule(int cpu)128 void smp_send_reschedule(int cpu)
129 {
130 	/*
131 	 * CPU model dependent way of implementing IPI generation targeting
132 	 * a single CPU. The trap handler needs only to do trap entry/return
133 	 * to call schedule.
134 	 */
135 	BTFIXUP_CALL(smp_ipi_resched)(cpu);
136 }
137 
smp_send_stop(void)138 void smp_send_stop(void)
139 {
140 }
141 
arch_send_call_function_single_ipi(int cpu)142 void arch_send_call_function_single_ipi(int cpu)
143 {
144 	/* trigger one IPI single call on one CPU */
145 	BTFIXUP_CALL(smp_ipi_single)(cpu);
146 }
147 
arch_send_call_function_ipi_mask(const struct cpumask * mask)148 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
149 {
150 	int cpu;
151 
152 	/* trigger IPI mask call on each CPU */
153 	for_each_cpu(cpu, mask)
154 		BTFIXUP_CALL(smp_ipi_mask_one)(cpu);
155 }
156 
smp_resched_interrupt(void)157 void smp_resched_interrupt(void)
158 {
159 	irq_enter();
160 	scheduler_ipi();
161 	local_cpu_data().irq_resched_count++;
162 	irq_exit();
163 	/* re-schedule routine called by interrupt return code. */
164 }
165 
smp_call_function_single_interrupt(void)166 void smp_call_function_single_interrupt(void)
167 {
168 	irq_enter();
169 	generic_smp_call_function_single_interrupt();
170 	local_cpu_data().irq_call_count++;
171 	irq_exit();
172 }
173 
smp_call_function_interrupt(void)174 void smp_call_function_interrupt(void)
175 {
176 	irq_enter();
177 	generic_smp_call_function_interrupt();
178 	local_cpu_data().irq_call_count++;
179 	irq_exit();
180 }
181 
smp_flush_cache_all(void)182 void smp_flush_cache_all(void)
183 {
184 	xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
185 	local_flush_cache_all();
186 }
187 
smp_flush_tlb_all(void)188 void smp_flush_tlb_all(void)
189 {
190 	xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
191 	local_flush_tlb_all();
192 }
193 
smp_flush_cache_mm(struct mm_struct * mm)194 void smp_flush_cache_mm(struct mm_struct *mm)
195 {
196 	if(mm->context != NO_CONTEXT) {
197 		cpumask_t cpu_mask;
198 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
199 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
200 		if (!cpumask_empty(&cpu_mask))
201 			xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
202 		local_flush_cache_mm(mm);
203 	}
204 }
205 
smp_flush_tlb_mm(struct mm_struct * mm)206 void smp_flush_tlb_mm(struct mm_struct *mm)
207 {
208 	if(mm->context != NO_CONTEXT) {
209 		cpumask_t cpu_mask;
210 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
211 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
212 		if (!cpumask_empty(&cpu_mask)) {
213 			xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
214 			if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
215 				cpumask_copy(mm_cpumask(mm),
216 					     cpumask_of(smp_processor_id()));
217 		}
218 		local_flush_tlb_mm(mm);
219 	}
220 }
221 
smp_flush_cache_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)222 void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
223 			   unsigned long end)
224 {
225 	struct mm_struct *mm = vma->vm_mm;
226 
227 	if (mm->context != NO_CONTEXT) {
228 		cpumask_t cpu_mask;
229 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
230 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
231 		if (!cpumask_empty(&cpu_mask))
232 			xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
233 		local_flush_cache_range(vma, start, end);
234 	}
235 }
236 
smp_flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)237 void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
238 			 unsigned long end)
239 {
240 	struct mm_struct *mm = vma->vm_mm;
241 
242 	if (mm->context != NO_CONTEXT) {
243 		cpumask_t cpu_mask;
244 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
245 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
246 		if (!cpumask_empty(&cpu_mask))
247 			xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
248 		local_flush_tlb_range(vma, start, end);
249 	}
250 }
251 
smp_flush_cache_page(struct vm_area_struct * vma,unsigned long page)252 void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
253 {
254 	struct mm_struct *mm = vma->vm_mm;
255 
256 	if(mm->context != NO_CONTEXT) {
257 		cpumask_t cpu_mask;
258 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
259 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
260 		if (!cpumask_empty(&cpu_mask))
261 			xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
262 		local_flush_cache_page(vma, page);
263 	}
264 }
265 
smp_flush_tlb_page(struct vm_area_struct * vma,unsigned long page)266 void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
267 {
268 	struct mm_struct *mm = vma->vm_mm;
269 
270 	if(mm->context != NO_CONTEXT) {
271 		cpumask_t cpu_mask;
272 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
273 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
274 		if (!cpumask_empty(&cpu_mask))
275 			xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
276 		local_flush_tlb_page(vma, page);
277 	}
278 }
279 
smp_flush_page_to_ram(unsigned long page)280 void smp_flush_page_to_ram(unsigned long page)
281 {
282 	/* Current theory is that those who call this are the one's
283 	 * who have just dirtied their cache with the pages contents
284 	 * in kernel space, therefore we only run this on local cpu.
285 	 *
286 	 * XXX This experiment failed, research further... -DaveM
287 	 */
288 #if 1
289 	xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
290 #endif
291 	local_flush_page_to_ram(page);
292 }
293 
smp_flush_sig_insns(struct mm_struct * mm,unsigned long insn_addr)294 void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
295 {
296 	cpumask_t cpu_mask;
297 	cpumask_copy(&cpu_mask, mm_cpumask(mm));
298 	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
299 	if (!cpumask_empty(&cpu_mask))
300 		xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
301 	local_flush_sig_insns(mm, insn_addr);
302 }
303 
304 extern unsigned int lvl14_resolution;
305 
306 /* /proc/profile writes can call this, don't __init it please. */
307 static DEFINE_SPINLOCK(prof_setup_lock);
308 
setup_profiling_timer(unsigned int multiplier)309 int setup_profiling_timer(unsigned int multiplier)
310 {
311 	int i;
312 	unsigned long flags;
313 
314 	/* Prevent level14 ticker IRQ flooding. */
315 	if((!multiplier) || (lvl14_resolution / multiplier) < 500)
316 		return -EINVAL;
317 
318 	spin_lock_irqsave(&prof_setup_lock, flags);
319 	for_each_possible_cpu(i) {
320 		load_profile_irq(i, lvl14_resolution / multiplier);
321 		prof_multiplier(i) = multiplier;
322 	}
323 	spin_unlock_irqrestore(&prof_setup_lock, flags);
324 
325 	return 0;
326 }
327 
smp_prepare_cpus(unsigned int max_cpus)328 void __init smp_prepare_cpus(unsigned int max_cpus)
329 {
330 	extern void __init smp4m_boot_cpus(void);
331 	extern void __init smp4d_boot_cpus(void);
332 	int i, cpuid, extra;
333 
334 	printk("Entering SMP Mode...\n");
335 
336 	extra = 0;
337 	for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
338 		if (cpuid >= NR_CPUS)
339 			extra++;
340 	}
341 	/* i = number of cpus */
342 	if (extra && max_cpus > i - extra)
343 		printk("Warning: NR_CPUS is too low to start all cpus\n");
344 
345 	smp_store_cpu_info(boot_cpu_id);
346 
347 	switch(sparc_cpu_model) {
348 	case sun4:
349 		printk("SUN4\n");
350 		BUG();
351 		break;
352 	case sun4c:
353 		printk("SUN4C\n");
354 		BUG();
355 		break;
356 	case sun4m:
357 		smp4m_boot_cpus();
358 		break;
359 	case sun4d:
360 		smp4d_boot_cpus();
361 		break;
362 	case sparc_leon:
363 		leon_boot_cpus();
364 		break;
365 	case sun4e:
366 		printk("SUN4E\n");
367 		BUG();
368 		break;
369 	case sun4u:
370 		printk("SUN4U\n");
371 		BUG();
372 		break;
373 	default:
374 		printk("UNKNOWN!\n");
375 		BUG();
376 		break;
377 	}
378 }
379 
380 /* Set this up early so that things like the scheduler can init
381  * properly.  We use the same cpu mask for both the present and
382  * possible cpu map.
383  */
smp_setup_cpu_possible_map(void)384 void __init smp_setup_cpu_possible_map(void)
385 {
386 	int instance, mid;
387 
388 	instance = 0;
389 	while (!cpu_find_by_instance(instance, NULL, &mid)) {
390 		if (mid < NR_CPUS) {
391 			set_cpu_possible(mid, true);
392 			set_cpu_present(mid, true);
393 		}
394 		instance++;
395 	}
396 }
397 
smp_prepare_boot_cpu(void)398 void __init smp_prepare_boot_cpu(void)
399 {
400 	int cpuid = hard_smp_processor_id();
401 
402 	if (cpuid >= NR_CPUS) {
403 		prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
404 		prom_halt();
405 	}
406 	if (cpuid != 0)
407 		printk("boot cpu id != 0, this could work but is untested\n");
408 
409 	current_thread_info()->cpu = cpuid;
410 	set_cpu_online(cpuid, true);
411 	set_cpu_possible(cpuid, true);
412 }
413 
__cpu_up(unsigned int cpu)414 int __cpuinit __cpu_up(unsigned int cpu)
415 {
416 	extern int __cpuinit smp4m_boot_one_cpu(int);
417 	extern int __cpuinit smp4d_boot_one_cpu(int);
418 	int ret=0;
419 
420 	switch(sparc_cpu_model) {
421 	case sun4:
422 		printk("SUN4\n");
423 		BUG();
424 		break;
425 	case sun4c:
426 		printk("SUN4C\n");
427 		BUG();
428 		break;
429 	case sun4m:
430 		ret = smp4m_boot_one_cpu(cpu);
431 		break;
432 	case sun4d:
433 		ret = smp4d_boot_one_cpu(cpu);
434 		break;
435 	case sparc_leon:
436 		ret = leon_boot_one_cpu(cpu);
437 		break;
438 	case sun4e:
439 		printk("SUN4E\n");
440 		BUG();
441 		break;
442 	case sun4u:
443 		printk("SUN4U\n");
444 		BUG();
445 		break;
446 	default:
447 		printk("UNKNOWN!\n");
448 		BUG();
449 		break;
450 	}
451 
452 	if (!ret) {
453 		cpumask_set_cpu(cpu, &smp_commenced_mask);
454 		while (!cpu_online(cpu))
455 			mb();
456 	}
457 	return ret;
458 }
459 
smp_bogo(struct seq_file * m)460 void smp_bogo(struct seq_file *m)
461 {
462 	int i;
463 
464 	for_each_online_cpu(i) {
465 		seq_printf(m,
466 			   "Cpu%dBogo\t: %lu.%02lu\n",
467 			   i,
468 			   cpu_data(i).udelay_val/(500000/HZ),
469 			   (cpu_data(i).udelay_val/(5000/HZ))%100);
470 	}
471 }
472 
smp_info(struct seq_file * m)473 void smp_info(struct seq_file *m)
474 {
475 	int i;
476 
477 	seq_printf(m, "State:\n");
478 	for_each_online_cpu(i)
479 		seq_printf(m, "CPU%d\t\t: online\n", i);
480 }
481