1 /* smp.c: Sparc SMP support.
2 *
3 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
4 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
5 * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
6 */
7
8 #include <asm/head.h>
9
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/threads.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23
24 #include <asm/ptrace.h>
25 #include <asm/atomic.h>
26
27 #include <asm/irq.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/oplib.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cpudata.h>
35 #include <asm/leon.h>
36
37 #include "irq.h"
38
39 volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
40 unsigned char boot_cpu_id = 0;
41 unsigned char boot_cpu_id4 = 0; /* boot_cpu_id << 2 */
42
43 cpumask_t smp_commenced_mask = CPU_MASK_NONE;
44
45 /* The only guaranteed locking primitive available on all Sparc
46 * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
47 * places the current byte at the effective address into dest_reg and
48 * places 0xff there afterwards. Pretty lame locking primitive
49 * compared to the Alpha and the Intel no? Most Sparcs have 'swap'
50 * instruction which is much better...
51 */
52
smp_store_cpu_info(int id)53 void __cpuinit smp_store_cpu_info(int id)
54 {
55 int cpu_node;
56 int mid;
57
58 cpu_data(id).udelay_val = loops_per_jiffy;
59
60 cpu_find_by_mid(id, &cpu_node);
61 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
62 "clock-frequency", 0);
63 cpu_data(id).prom_node = cpu_node;
64 mid = cpu_get_hwmid(cpu_node);
65
66 if (mid < 0) {
67 printk(KERN_NOTICE "No MID found for CPU%d at node 0x%08d", id, cpu_node);
68 mid = 0;
69 }
70 cpu_data(id).mid = mid;
71 }
72
smp_cpus_done(unsigned int max_cpus)73 void __init smp_cpus_done(unsigned int max_cpus)
74 {
75 extern void smp4m_smp_done(void);
76 extern void smp4d_smp_done(void);
77 unsigned long bogosum = 0;
78 int cpu, num = 0;
79
80 for_each_online_cpu(cpu) {
81 num++;
82 bogosum += cpu_data(cpu).udelay_val;
83 }
84
85 printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
86 num, bogosum/(500000/HZ),
87 (bogosum/(5000/HZ))%100);
88
89 switch(sparc_cpu_model) {
90 case sun4:
91 printk("SUN4\n");
92 BUG();
93 break;
94 case sun4c:
95 printk("SUN4C\n");
96 BUG();
97 break;
98 case sun4m:
99 smp4m_smp_done();
100 break;
101 case sun4d:
102 smp4d_smp_done();
103 break;
104 case sparc_leon:
105 leon_smp_done();
106 break;
107 case sun4e:
108 printk("SUN4E\n");
109 BUG();
110 break;
111 case sun4u:
112 printk("SUN4U\n");
113 BUG();
114 break;
115 default:
116 printk("UNKNOWN!\n");
117 BUG();
118 break;
119 };
120 }
121
cpu_panic(void)122 void cpu_panic(void)
123 {
124 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
125 panic("SMP bolixed\n");
126 }
127
128 struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
129
smp_send_reschedule(int cpu)130 void smp_send_reschedule(int cpu)
131 {
132 /* See sparc64 */
133 }
134
smp_send_stop(void)135 void smp_send_stop(void)
136 {
137 }
138
smp_flush_cache_all(void)139 void smp_flush_cache_all(void)
140 {
141 xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
142 local_flush_cache_all();
143 }
144
smp_flush_tlb_all(void)145 void smp_flush_tlb_all(void)
146 {
147 xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
148 local_flush_tlb_all();
149 }
150
smp_flush_cache_mm(struct mm_struct * mm)151 void smp_flush_cache_mm(struct mm_struct *mm)
152 {
153 if(mm->context != NO_CONTEXT) {
154 cpumask_t cpu_mask = *mm_cpumask(mm);
155 cpu_clear(smp_processor_id(), cpu_mask);
156 if (!cpus_empty(cpu_mask))
157 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
158 local_flush_cache_mm(mm);
159 }
160 }
161
smp_flush_tlb_mm(struct mm_struct * mm)162 void smp_flush_tlb_mm(struct mm_struct *mm)
163 {
164 if(mm->context != NO_CONTEXT) {
165 cpumask_t cpu_mask = *mm_cpumask(mm);
166 cpu_clear(smp_processor_id(), cpu_mask);
167 if (!cpus_empty(cpu_mask)) {
168 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
169 if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
170 cpumask_copy(mm_cpumask(mm),
171 cpumask_of(smp_processor_id()));
172 }
173 local_flush_tlb_mm(mm);
174 }
175 }
176
smp_flush_cache_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)177 void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
178 unsigned long end)
179 {
180 struct mm_struct *mm = vma->vm_mm;
181
182 if (mm->context != NO_CONTEXT) {
183 cpumask_t cpu_mask = *mm_cpumask(mm);
184 cpu_clear(smp_processor_id(), cpu_mask);
185 if (!cpus_empty(cpu_mask))
186 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
187 local_flush_cache_range(vma, start, end);
188 }
189 }
190
smp_flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)191 void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
192 unsigned long end)
193 {
194 struct mm_struct *mm = vma->vm_mm;
195
196 if (mm->context != NO_CONTEXT) {
197 cpumask_t cpu_mask = *mm_cpumask(mm);
198 cpu_clear(smp_processor_id(), cpu_mask);
199 if (!cpus_empty(cpu_mask))
200 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
201 local_flush_tlb_range(vma, start, end);
202 }
203 }
204
smp_flush_cache_page(struct vm_area_struct * vma,unsigned long page)205 void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
206 {
207 struct mm_struct *mm = vma->vm_mm;
208
209 if(mm->context != NO_CONTEXT) {
210 cpumask_t cpu_mask = *mm_cpumask(mm);
211 cpu_clear(smp_processor_id(), cpu_mask);
212 if (!cpus_empty(cpu_mask))
213 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
214 local_flush_cache_page(vma, page);
215 }
216 }
217
smp_flush_tlb_page(struct vm_area_struct * vma,unsigned long page)218 void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
219 {
220 struct mm_struct *mm = vma->vm_mm;
221
222 if(mm->context != NO_CONTEXT) {
223 cpumask_t cpu_mask = *mm_cpumask(mm);
224 cpu_clear(smp_processor_id(), cpu_mask);
225 if (!cpus_empty(cpu_mask))
226 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
227 local_flush_tlb_page(vma, page);
228 }
229 }
230
smp_reschedule_irq(void)231 void smp_reschedule_irq(void)
232 {
233 set_need_resched();
234 }
235
smp_flush_page_to_ram(unsigned long page)236 void smp_flush_page_to_ram(unsigned long page)
237 {
238 /* Current theory is that those who call this are the one's
239 * who have just dirtied their cache with the pages contents
240 * in kernel space, therefore we only run this on local cpu.
241 *
242 * XXX This experiment failed, research further... -DaveM
243 */
244 #if 1
245 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
246 #endif
247 local_flush_page_to_ram(page);
248 }
249
smp_flush_sig_insns(struct mm_struct * mm,unsigned long insn_addr)250 void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
251 {
252 cpumask_t cpu_mask = *mm_cpumask(mm);
253 cpu_clear(smp_processor_id(), cpu_mask);
254 if (!cpus_empty(cpu_mask))
255 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
256 local_flush_sig_insns(mm, insn_addr);
257 }
258
259 extern unsigned int lvl14_resolution;
260
261 /* /proc/profile writes can call this, don't __init it please. */
262 static DEFINE_SPINLOCK(prof_setup_lock);
263
setup_profiling_timer(unsigned int multiplier)264 int setup_profiling_timer(unsigned int multiplier)
265 {
266 int i;
267 unsigned long flags;
268
269 /* Prevent level14 ticker IRQ flooding. */
270 if((!multiplier) || (lvl14_resolution / multiplier) < 500)
271 return -EINVAL;
272
273 spin_lock_irqsave(&prof_setup_lock, flags);
274 for_each_possible_cpu(i) {
275 load_profile_irq(i, lvl14_resolution / multiplier);
276 prof_multiplier(i) = multiplier;
277 }
278 spin_unlock_irqrestore(&prof_setup_lock, flags);
279
280 return 0;
281 }
282
smp_prepare_cpus(unsigned int max_cpus)283 void __init smp_prepare_cpus(unsigned int max_cpus)
284 {
285 extern void __init smp4m_boot_cpus(void);
286 extern void __init smp4d_boot_cpus(void);
287 int i, cpuid, extra;
288
289 printk("Entering SMP Mode...\n");
290
291 extra = 0;
292 for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
293 if (cpuid >= NR_CPUS)
294 extra++;
295 }
296 /* i = number of cpus */
297 if (extra && max_cpus > i - extra)
298 printk("Warning: NR_CPUS is too low to start all cpus\n");
299
300 smp_store_cpu_info(boot_cpu_id);
301
302 switch(sparc_cpu_model) {
303 case sun4:
304 printk("SUN4\n");
305 BUG();
306 break;
307 case sun4c:
308 printk("SUN4C\n");
309 BUG();
310 break;
311 case sun4m:
312 smp4m_boot_cpus();
313 break;
314 case sun4d:
315 smp4d_boot_cpus();
316 break;
317 case sparc_leon:
318 leon_boot_cpus();
319 break;
320 case sun4e:
321 printk("SUN4E\n");
322 BUG();
323 break;
324 case sun4u:
325 printk("SUN4U\n");
326 BUG();
327 break;
328 default:
329 printk("UNKNOWN!\n");
330 BUG();
331 break;
332 };
333 }
334
335 /* Set this up early so that things like the scheduler can init
336 * properly. We use the same cpu mask for both the present and
337 * possible cpu map.
338 */
smp_setup_cpu_possible_map(void)339 void __init smp_setup_cpu_possible_map(void)
340 {
341 int instance, mid;
342
343 instance = 0;
344 while (!cpu_find_by_instance(instance, NULL, &mid)) {
345 if (mid < NR_CPUS) {
346 set_cpu_possible(mid, true);
347 set_cpu_present(mid, true);
348 }
349 instance++;
350 }
351 }
352
smp_prepare_boot_cpu(void)353 void __init smp_prepare_boot_cpu(void)
354 {
355 int cpuid = hard_smp_processor_id();
356
357 if (cpuid >= NR_CPUS) {
358 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
359 prom_halt();
360 }
361 if (cpuid != 0)
362 printk("boot cpu id != 0, this could work but is untested\n");
363
364 current_thread_info()->cpu = cpuid;
365 set_cpu_online(cpuid, true);
366 set_cpu_possible(cpuid, true);
367 }
368
__cpu_up(unsigned int cpu)369 int __cpuinit __cpu_up(unsigned int cpu)
370 {
371 extern int __cpuinit smp4m_boot_one_cpu(int);
372 extern int __cpuinit smp4d_boot_one_cpu(int);
373 int ret=0;
374
375 switch(sparc_cpu_model) {
376 case sun4:
377 printk("SUN4\n");
378 BUG();
379 break;
380 case sun4c:
381 printk("SUN4C\n");
382 BUG();
383 break;
384 case sun4m:
385 ret = smp4m_boot_one_cpu(cpu);
386 break;
387 case sun4d:
388 ret = smp4d_boot_one_cpu(cpu);
389 break;
390 case sparc_leon:
391 ret = leon_boot_one_cpu(cpu);
392 break;
393 case sun4e:
394 printk("SUN4E\n");
395 BUG();
396 break;
397 case sun4u:
398 printk("SUN4U\n");
399 BUG();
400 break;
401 default:
402 printk("UNKNOWN!\n");
403 BUG();
404 break;
405 };
406
407 if (!ret) {
408 cpu_set(cpu, smp_commenced_mask);
409 while (!cpu_online(cpu))
410 mb();
411 }
412 return ret;
413 }
414
smp_bogo(struct seq_file * m)415 void smp_bogo(struct seq_file *m)
416 {
417 int i;
418
419 for_each_online_cpu(i) {
420 seq_printf(m,
421 "Cpu%dBogo\t: %lu.%02lu\n",
422 i,
423 cpu_data(i).udelay_val/(500000/HZ),
424 (cpu_data(i).udelay_val/(5000/HZ))%100);
425 }
426 }
427
smp_info(struct seq_file * m)428 void smp_info(struct seq_file *m)
429 {
430 int i;
431
432 seq_printf(m, "State:\n");
433 for_each_online_cpu(i)
434 seq_printf(m, "CPU%d\t\t: online\n", i);
435 }
436