1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SMP related functions
4 *
5 * Copyright IBM Corp. 1999, 2012
6 * Author(s): Denis Joseph Barrow,
7 * Martin Schwidefsky <schwidefsky@de.ibm.com>,
8 *
9 * based on other smp stuff by
10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
11 * (c) 1998 Ingo Molnar
12 *
13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
14 * the translation of logical to physical cpu ids. All new code that
15 * operates on physical cpu numbers needs to go into smp.c.
16 */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/memblock.h>
23 #include <linux/export.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/err.h>
27 #include <linux/spinlock.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/irqflags.h>
32 #include <linux/irq_work.h>
33 #include <linux/cpu.h>
34 #include <linux/slab.h>
35 #include <linux/sched/hotplug.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/crash_dump.h>
38 #include <linux/kprobes.h>
39 #include <asm/asm-offsets.h>
40 #include <asm/diag.h>
41 #include <asm/switch_to.h>
42 #include <asm/facility.h>
43 #include <asm/ipl.h>
44 #include <asm/setup.h>
45 #include <asm/irq.h>
46 #include <asm/tlbflush.h>
47 #include <asm/vtimer.h>
48 #include <asm/lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/debug.h>
51 #include <asm/os_info.h>
52 #include <asm/sigp.h>
53 #include <asm/idle.h>
54 #include <asm/nmi.h>
55 #include <asm/stacktrace.h>
56 #include <asm/topology.h>
57 #include <asm/vdso.h>
58 #include "entry.h"
59
60 enum {
61 ec_schedule = 0,
62 ec_call_function_single,
63 ec_stop_cpu,
64 ec_mcck_pending,
65 ec_irq_work,
66 };
67
68 enum {
69 CPU_STATE_STANDBY,
70 CPU_STATE_CONFIGURED,
71 };
72
73 static DEFINE_PER_CPU(struct cpu *, cpu_device);
74
75 struct pcpu {
76 unsigned long ec_mask; /* bit mask for ec_xxx functions */
77 unsigned long ec_clk; /* sigp timestamp for ec_xxx */
78 signed char state; /* physical cpu state */
79 signed char polarization; /* physical polarization */
80 u16 address; /* physical cpu address */
81 };
82
83 static u8 boot_core_type;
84 static struct pcpu pcpu_devices[NR_CPUS];
85
86 unsigned int smp_cpu_mt_shift;
87 EXPORT_SYMBOL(smp_cpu_mt_shift);
88
89 unsigned int smp_cpu_mtid;
90 EXPORT_SYMBOL(smp_cpu_mtid);
91
92 #ifdef CONFIG_CRASH_DUMP
93 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
94 #endif
95
96 static unsigned int smp_max_threads __initdata = -1U;
97 cpumask_t cpu_setup_mask;
98
early_nosmt(char * s)99 static int __init early_nosmt(char *s)
100 {
101 smp_max_threads = 1;
102 return 0;
103 }
104 early_param("nosmt", early_nosmt);
105
early_smt(char * s)106 static int __init early_smt(char *s)
107 {
108 get_option(&s, &smp_max_threads);
109 return 0;
110 }
111 early_param("smt", early_smt);
112
113 /*
114 * The smp_cpu_state_mutex must be held when changing the state or polarization
115 * member of a pcpu data structure within the pcpu_devices arreay.
116 */
117 DEFINE_MUTEX(smp_cpu_state_mutex);
118
119 /*
120 * Signal processor helper functions.
121 */
__pcpu_sigp_relax(u16 addr,u8 order,unsigned long parm)122 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
123 {
124 int cc;
125
126 while (1) {
127 cc = __pcpu_sigp(addr, order, parm, NULL);
128 if (cc != SIGP_CC_BUSY)
129 return cc;
130 cpu_relax();
131 }
132 }
133
pcpu_sigp_retry(struct pcpu * pcpu,u8 order,u32 parm)134 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
135 {
136 int cc, retry;
137
138 for (retry = 0; ; retry++) {
139 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
140 if (cc != SIGP_CC_BUSY)
141 break;
142 if (retry >= 3)
143 udelay(10);
144 }
145 return cc;
146 }
147
pcpu_stopped(struct pcpu * pcpu)148 static inline int pcpu_stopped(struct pcpu *pcpu)
149 {
150 u32 status;
151
152 if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
153 0, &status) != SIGP_CC_STATUS_STORED)
154 return 0;
155 return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
156 }
157
pcpu_running(struct pcpu * pcpu)158 static inline int pcpu_running(struct pcpu *pcpu)
159 {
160 if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
161 0, NULL) != SIGP_CC_STATUS_STORED)
162 return 1;
163 /* Status stored condition code is equivalent to cpu not running. */
164 return 0;
165 }
166
167 /*
168 * Find struct pcpu by cpu address.
169 */
pcpu_find_address(const struct cpumask * mask,u16 address)170 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
171 {
172 int cpu;
173
174 for_each_cpu(cpu, mask)
175 if (pcpu_devices[cpu].address == address)
176 return pcpu_devices + cpu;
177 return NULL;
178 }
179
pcpu_ec_call(struct pcpu * pcpu,int ec_bit)180 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
181 {
182 int order;
183
184 if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
185 return;
186 order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
187 pcpu->ec_clk = get_tod_clock_fast();
188 pcpu_sigp_retry(pcpu, order, 0);
189 }
190
pcpu_alloc_lowcore(struct pcpu * pcpu,int cpu)191 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
192 {
193 unsigned long async_stack, nodat_stack, mcck_stack;
194 struct lowcore *lc;
195
196 lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
197 nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
198 async_stack = stack_alloc();
199 mcck_stack = stack_alloc();
200 if (!lc || !nodat_stack || !async_stack || !mcck_stack)
201 goto out;
202 memcpy(lc, &S390_lowcore, 512);
203 memset((char *) lc + 512, 0, sizeof(*lc) - 512);
204 lc->async_stack = async_stack + STACK_INIT_OFFSET;
205 lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
206 lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
207 lc->cpu_nr = cpu;
208 lc->spinlock_lockval = arch_spin_lockval(cpu);
209 lc->spinlock_index = 0;
210 lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
211 lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
212 lc->preempt_count = PREEMPT_DISABLED;
213 if (nmi_alloc_mcesa(&lc->mcesad))
214 goto out;
215 lowcore_ptr[cpu] = lc;
216 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
217 return 0;
218
219 out:
220 stack_free(mcck_stack);
221 stack_free(async_stack);
222 free_pages(nodat_stack, THREAD_SIZE_ORDER);
223 free_pages((unsigned long) lc, LC_ORDER);
224 return -ENOMEM;
225 }
226
pcpu_free_lowcore(struct pcpu * pcpu)227 static void pcpu_free_lowcore(struct pcpu *pcpu)
228 {
229 unsigned long async_stack, nodat_stack, mcck_stack;
230 struct lowcore *lc;
231 int cpu;
232
233 cpu = pcpu - pcpu_devices;
234 lc = lowcore_ptr[cpu];
235 nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
236 async_stack = lc->async_stack - STACK_INIT_OFFSET;
237 mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
238 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
239 lowcore_ptr[cpu] = NULL;
240 nmi_free_mcesa(&lc->mcesad);
241 stack_free(async_stack);
242 stack_free(mcck_stack);
243 free_pages(nodat_stack, THREAD_SIZE_ORDER);
244 free_pages((unsigned long) lc, LC_ORDER);
245 }
246
pcpu_prepare_secondary(struct pcpu * pcpu,int cpu)247 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
248 {
249 struct lowcore *lc = lowcore_ptr[cpu];
250
251 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
252 cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
253 lc->cpu_nr = cpu;
254 lc->restart_flags = RESTART_FLAG_CTLREGS;
255 lc->spinlock_lockval = arch_spin_lockval(cpu);
256 lc->spinlock_index = 0;
257 lc->percpu_offset = __per_cpu_offset[cpu];
258 lc->kernel_asce = S390_lowcore.kernel_asce;
259 lc->user_asce = s390_invalid_asce;
260 lc->machine_flags = S390_lowcore.machine_flags;
261 lc->user_timer = lc->system_timer =
262 lc->steal_timer = lc->avg_steal_timer = 0;
263 __ctl_store(lc->cregs_save_area, 0, 15);
264 lc->cregs_save_area[1] = lc->kernel_asce;
265 lc->cregs_save_area[7] = lc->user_asce;
266 save_access_regs((unsigned int *) lc->access_regs_save_area);
267 arch_spin_lock_setup(cpu);
268 }
269
pcpu_attach_task(struct pcpu * pcpu,struct task_struct * tsk)270 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
271 {
272 struct lowcore *lc;
273 int cpu;
274
275 cpu = pcpu - pcpu_devices;
276 lc = lowcore_ptr[cpu];
277 lc->kernel_stack = (unsigned long) task_stack_page(tsk)
278 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
279 lc->current_task = (unsigned long) tsk;
280 lc->lpp = LPP_MAGIC;
281 lc->current_pid = tsk->pid;
282 lc->user_timer = tsk->thread.user_timer;
283 lc->guest_timer = tsk->thread.guest_timer;
284 lc->system_timer = tsk->thread.system_timer;
285 lc->hardirq_timer = tsk->thread.hardirq_timer;
286 lc->softirq_timer = tsk->thread.softirq_timer;
287 lc->steal_timer = 0;
288 }
289
pcpu_start_fn(struct pcpu * pcpu,void (* func)(void *),void * data)290 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
291 {
292 struct lowcore *lc;
293 int cpu;
294
295 cpu = pcpu - pcpu_devices;
296 lc = lowcore_ptr[cpu];
297 lc->restart_stack = lc->kernel_stack;
298 lc->restart_fn = (unsigned long) func;
299 lc->restart_data = (unsigned long) data;
300 lc->restart_source = -1U;
301 pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
302 }
303
304 typedef void (pcpu_delegate_fn)(void *);
305
306 /*
307 * Call function via PSW restart on pcpu and stop the current cpu.
308 */
__pcpu_delegate(pcpu_delegate_fn * func,void * data)309 static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
310 {
311 func(data); /* should not return */
312 }
313
pcpu_delegate(struct pcpu * pcpu,pcpu_delegate_fn * func,void * data,unsigned long stack)314 static void pcpu_delegate(struct pcpu *pcpu,
315 pcpu_delegate_fn *func,
316 void *data, unsigned long stack)
317 {
318 struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
319 unsigned int source_cpu = stap();
320
321 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
322 if (pcpu->address == source_cpu) {
323 call_on_stack(2, stack, void, __pcpu_delegate,
324 pcpu_delegate_fn *, func, void *, data);
325 }
326 /* Stop target cpu (if func returns this stops the current cpu). */
327 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
328 /* Restart func on the target cpu and stop the current cpu. */
329 if (lc) {
330 lc->restart_stack = stack;
331 lc->restart_fn = (unsigned long)func;
332 lc->restart_data = (unsigned long)data;
333 lc->restart_source = source_cpu;
334 } else {
335 put_abs_lowcore(restart_stack, stack);
336 put_abs_lowcore(restart_fn, (unsigned long)func);
337 put_abs_lowcore(restart_data, (unsigned long)data);
338 put_abs_lowcore(restart_source, source_cpu);
339 }
340 __bpon();
341 asm volatile(
342 "0: sigp 0,%0,%2 # sigp restart to target cpu\n"
343 " brc 2,0b # busy, try again\n"
344 "1: sigp 0,%1,%3 # sigp stop to current cpu\n"
345 " brc 2,1b # busy, try again\n"
346 : : "d" (pcpu->address), "d" (source_cpu),
347 "K" (SIGP_RESTART), "K" (SIGP_STOP)
348 : "0", "1", "cc");
349 for (;;) ;
350 }
351
352 /*
353 * Enable additional logical cpus for multi-threading.
354 */
pcpu_set_smt(unsigned int mtid)355 static int pcpu_set_smt(unsigned int mtid)
356 {
357 int cc;
358
359 if (smp_cpu_mtid == mtid)
360 return 0;
361 cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
362 if (cc == 0) {
363 smp_cpu_mtid = mtid;
364 smp_cpu_mt_shift = 0;
365 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
366 smp_cpu_mt_shift++;
367 pcpu_devices[0].address = stap();
368 }
369 return cc;
370 }
371
372 /*
373 * Call function on an online CPU.
374 */
smp_call_online_cpu(void (* func)(void *),void * data)375 void smp_call_online_cpu(void (*func)(void *), void *data)
376 {
377 struct pcpu *pcpu;
378
379 /* Use the current cpu if it is online. */
380 pcpu = pcpu_find_address(cpu_online_mask, stap());
381 if (!pcpu)
382 /* Use the first online cpu. */
383 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
384 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
385 }
386
387 /*
388 * Call function on the ipl CPU.
389 */
smp_call_ipl_cpu(void (* func)(void *),void * data)390 void smp_call_ipl_cpu(void (*func)(void *), void *data)
391 {
392 struct lowcore *lc = lowcore_ptr[0];
393
394 if (pcpu_devices[0].address == stap())
395 lc = &S390_lowcore;
396
397 pcpu_delegate(&pcpu_devices[0], func, data,
398 lc->nodat_stack);
399 }
400
smp_find_processor_id(u16 address)401 int smp_find_processor_id(u16 address)
402 {
403 int cpu;
404
405 for_each_present_cpu(cpu)
406 if (pcpu_devices[cpu].address == address)
407 return cpu;
408 return -1;
409 }
410
schedule_mcck_handler(void)411 void schedule_mcck_handler(void)
412 {
413 pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
414 }
415
arch_vcpu_is_preempted(int cpu)416 bool notrace arch_vcpu_is_preempted(int cpu)
417 {
418 if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
419 return false;
420 if (pcpu_running(pcpu_devices + cpu))
421 return false;
422 return true;
423 }
424 EXPORT_SYMBOL(arch_vcpu_is_preempted);
425
smp_yield_cpu(int cpu)426 void notrace smp_yield_cpu(int cpu)
427 {
428 if (!MACHINE_HAS_DIAG9C)
429 return;
430 diag_stat_inc_norecursion(DIAG_STAT_X09C);
431 asm volatile("diag %0,0,0x9c"
432 : : "d" (pcpu_devices[cpu].address));
433 }
434 EXPORT_SYMBOL_GPL(smp_yield_cpu);
435
436 /*
437 * Send cpus emergency shutdown signal. This gives the cpus the
438 * opportunity to complete outstanding interrupts.
439 */
smp_emergency_stop(void)440 void notrace smp_emergency_stop(void)
441 {
442 static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
443 static cpumask_t cpumask;
444 u64 end;
445 int cpu;
446
447 arch_spin_lock(&lock);
448 cpumask_copy(&cpumask, cpu_online_mask);
449 cpumask_clear_cpu(smp_processor_id(), &cpumask);
450
451 end = get_tod_clock() + (1000000UL << 12);
452 for_each_cpu(cpu, &cpumask) {
453 struct pcpu *pcpu = pcpu_devices + cpu;
454 set_bit(ec_stop_cpu, &pcpu->ec_mask);
455 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
456 0, NULL) == SIGP_CC_BUSY &&
457 get_tod_clock() < end)
458 cpu_relax();
459 }
460 while (get_tod_clock() < end) {
461 for_each_cpu(cpu, &cpumask)
462 if (pcpu_stopped(pcpu_devices + cpu))
463 cpumask_clear_cpu(cpu, &cpumask);
464 if (cpumask_empty(&cpumask))
465 break;
466 cpu_relax();
467 }
468 arch_spin_unlock(&lock);
469 }
470 NOKPROBE_SYMBOL(smp_emergency_stop);
471
472 /*
473 * Stop all cpus but the current one.
474 */
smp_send_stop(void)475 void smp_send_stop(void)
476 {
477 int cpu;
478
479 /* Disable all interrupts/machine checks */
480 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
481 trace_hardirqs_off();
482
483 debug_set_critical();
484
485 if (oops_in_progress)
486 smp_emergency_stop();
487
488 /* stop all processors */
489 for_each_online_cpu(cpu) {
490 if (cpu == smp_processor_id())
491 continue;
492 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
493 while (!pcpu_stopped(pcpu_devices + cpu))
494 cpu_relax();
495 }
496 }
497
498 /*
499 * This is the main routine where commands issued by other
500 * cpus are handled.
501 */
smp_handle_ext_call(void)502 static void smp_handle_ext_call(void)
503 {
504 unsigned long bits;
505
506 /* handle bit signal external calls */
507 bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
508 if (test_bit(ec_stop_cpu, &bits))
509 smp_stop_cpu();
510 if (test_bit(ec_schedule, &bits))
511 scheduler_ipi();
512 if (test_bit(ec_call_function_single, &bits))
513 generic_smp_call_function_single_interrupt();
514 if (test_bit(ec_mcck_pending, &bits))
515 __s390_handle_mcck();
516 if (test_bit(ec_irq_work, &bits))
517 irq_work_run();
518 }
519
do_ext_call_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)520 static void do_ext_call_interrupt(struct ext_code ext_code,
521 unsigned int param32, unsigned long param64)
522 {
523 inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
524 smp_handle_ext_call();
525 }
526
arch_send_call_function_ipi_mask(const struct cpumask * mask)527 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
528 {
529 int cpu;
530
531 for_each_cpu(cpu, mask)
532 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
533 }
534
arch_send_call_function_single_ipi(int cpu)535 void arch_send_call_function_single_ipi(int cpu)
536 {
537 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
538 }
539
540 /*
541 * this function sends a 'reschedule' IPI to another CPU.
542 * it goes straight through and wastes no time serializing
543 * anything. Worst case is that we lose a reschedule ...
544 */
smp_send_reschedule(int cpu)545 void smp_send_reschedule(int cpu)
546 {
547 pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
548 }
549
550 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)551 void arch_irq_work_raise(void)
552 {
553 pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
554 }
555 #endif
556
557 /*
558 * parameter area for the set/clear control bit callbacks
559 */
560 struct ec_creg_mask_parms {
561 unsigned long orval;
562 unsigned long andval;
563 int cr;
564 };
565
566 /*
567 * callback for setting/clearing control bits
568 */
smp_ctl_bit_callback(void * info)569 static void smp_ctl_bit_callback(void *info)
570 {
571 struct ec_creg_mask_parms *pp = info;
572 unsigned long cregs[16];
573
574 __ctl_store(cregs, 0, 15);
575 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
576 __ctl_load(cregs, 0, 15);
577 }
578
579 static DEFINE_SPINLOCK(ctl_lock);
580
smp_ctl_set_clear_bit(int cr,int bit,bool set)581 void smp_ctl_set_clear_bit(int cr, int bit, bool set)
582 {
583 struct ec_creg_mask_parms parms = { .cr = cr, };
584 u64 ctlreg;
585
586 if (set) {
587 parms.orval = 1UL << bit;
588 parms.andval = -1UL;
589 } else {
590 parms.orval = 0;
591 parms.andval = ~(1UL << bit);
592 }
593 spin_lock(&ctl_lock);
594 get_abs_lowcore(ctlreg, cregs_save_area[cr]);
595 ctlreg = (ctlreg & parms.andval) | parms.orval;
596 put_abs_lowcore(cregs_save_area[cr], ctlreg);
597 spin_unlock(&ctl_lock);
598 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
599 }
600 EXPORT_SYMBOL(smp_ctl_set_clear_bit);
601
602 #ifdef CONFIG_CRASH_DUMP
603
smp_store_status(int cpu)604 int smp_store_status(int cpu)
605 {
606 struct lowcore *lc;
607 struct pcpu *pcpu;
608 unsigned long pa;
609
610 pcpu = pcpu_devices + cpu;
611 lc = lowcore_ptr[cpu];
612 pa = __pa(&lc->floating_pt_save_area);
613 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
614 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
615 return -EIO;
616 if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
617 return 0;
618 pa = lc->mcesad & MCESA_ORIGIN_MASK;
619 if (MACHINE_HAS_GS)
620 pa |= lc->mcesad & MCESA_LC_MASK;
621 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
622 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
623 return -EIO;
624 return 0;
625 }
626
627 /*
628 * Collect CPU state of the previous, crashed system.
629 * There are four cases:
630 * 1) standard zfcp/nvme dump
631 * condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
632 * The state for all CPUs except the boot CPU needs to be collected
633 * with sigp stop-and-store-status. The boot CPU state is located in
634 * the absolute lowcore of the memory stored in the HSA. The zcore code
635 * will copy the boot CPU state from the HSA.
636 * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
637 * condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
638 * The state for all CPUs except the boot CPU needs to be collected
639 * with sigp stop-and-store-status. The firmware or the boot-loader
640 * stored the registers of the boot CPU in the absolute lowcore in the
641 * memory of the old system.
642 * 3) kdump and the old kernel did not store the CPU state,
643 * or stand-alone kdump for DASD
644 * condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
645 * The state for all CPUs except the boot CPU needs to be collected
646 * with sigp stop-and-store-status. The kexec code or the boot-loader
647 * stored the registers of the boot CPU in the memory of the old system.
648 * 4) kdump and the old kernel stored the CPU state
649 * condition: OLDMEM_BASE != NULL && is_kdump_kernel()
650 * This case does not exist for s390 anymore, setup_arch explicitly
651 * deactivates the elfcorehdr= kernel parameter
652 */
smp_save_cpu_vxrs(struct save_area * sa,u16 addr,bool is_boot_cpu,__vector128 * vxrs)653 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
654 bool is_boot_cpu, __vector128 *vxrs)
655 {
656 if (is_boot_cpu)
657 vxrs = boot_cpu_vector_save_area;
658 else
659 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(vxrs));
660 save_area_add_vxrs(sa, vxrs);
661 }
662
smp_save_cpu_regs(struct save_area * sa,u16 addr,bool is_boot_cpu,void * regs)663 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
664 bool is_boot_cpu, void *regs)
665 {
666 if (is_boot_cpu)
667 copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
668 else
669 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(regs));
670 save_area_add_regs(sa, regs);
671 }
672
smp_save_dump_cpus(void)673 void __init smp_save_dump_cpus(void)
674 {
675 int addr, boot_cpu_addr, max_cpu_addr;
676 struct save_area *sa;
677 bool is_boot_cpu;
678 void *page;
679
680 if (!(oldmem_data.start || is_ipl_type_dump()))
681 /* No previous system present, normal boot. */
682 return;
683 /* Allocate a page as dumping area for the store status sigps */
684 page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
685 if (!page)
686 panic("ERROR: Failed to allocate %lx bytes below %lx\n",
687 PAGE_SIZE, 1UL << 31);
688
689 /* Set multi-threading state to the previous system. */
690 pcpu_set_smt(sclp.mtid_prev);
691 boot_cpu_addr = stap();
692 max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
693 for (addr = 0; addr <= max_cpu_addr; addr++) {
694 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
695 SIGP_CC_NOT_OPERATIONAL)
696 continue;
697 is_boot_cpu = (addr == boot_cpu_addr);
698 /* Allocate save area */
699 sa = save_area_alloc(is_boot_cpu);
700 if (!sa)
701 panic("could not allocate memory for save area\n");
702 if (MACHINE_HAS_VX)
703 /* Get the vector registers */
704 smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
705 /*
706 * For a zfcp/nvme dump OLDMEM_BASE == NULL and the registers
707 * of the boot CPU are stored in the HSA. To retrieve
708 * these registers an SCLP request is required which is
709 * done by drivers/s390/char/zcore.c:init_cpu_info()
710 */
711 if (!is_boot_cpu || oldmem_data.start)
712 /* Get the CPU registers */
713 smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
714 }
715 memblock_free(page, PAGE_SIZE);
716 diag_amode31_ops.diag308_reset();
717 pcpu_set_smt(0);
718 }
719 #endif /* CONFIG_CRASH_DUMP */
720
smp_cpu_set_polarization(int cpu,int val)721 void smp_cpu_set_polarization(int cpu, int val)
722 {
723 pcpu_devices[cpu].polarization = val;
724 }
725
smp_cpu_get_polarization(int cpu)726 int smp_cpu_get_polarization(int cpu)
727 {
728 return pcpu_devices[cpu].polarization;
729 }
730
smp_cpu_get_cpu_address(int cpu)731 int smp_cpu_get_cpu_address(int cpu)
732 {
733 return pcpu_devices[cpu].address;
734 }
735
smp_get_core_info(struct sclp_core_info * info,int early)736 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
737 {
738 static int use_sigp_detection;
739 int address;
740
741 if (use_sigp_detection || sclp_get_core_info(info, early)) {
742 use_sigp_detection = 1;
743 for (address = 0;
744 address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
745 address += (1U << smp_cpu_mt_shift)) {
746 if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
747 SIGP_CC_NOT_OPERATIONAL)
748 continue;
749 info->core[info->configured].core_id =
750 address >> smp_cpu_mt_shift;
751 info->configured++;
752 }
753 info->combined = info->configured;
754 }
755 }
756
757 static int smp_add_present_cpu(int cpu);
758
smp_add_core(struct sclp_core_entry * core,cpumask_t * avail,bool configured,bool early)759 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
760 bool configured, bool early)
761 {
762 struct pcpu *pcpu;
763 int cpu, nr, i;
764 u16 address;
765
766 nr = 0;
767 if (sclp.has_core_type && core->type != boot_core_type)
768 return nr;
769 cpu = cpumask_first(avail);
770 address = core->core_id << smp_cpu_mt_shift;
771 for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
772 if (pcpu_find_address(cpu_present_mask, address + i))
773 continue;
774 pcpu = pcpu_devices + cpu;
775 pcpu->address = address + i;
776 if (configured)
777 pcpu->state = CPU_STATE_CONFIGURED;
778 else
779 pcpu->state = CPU_STATE_STANDBY;
780 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
781 set_cpu_present(cpu, true);
782 if (!early && smp_add_present_cpu(cpu) != 0)
783 set_cpu_present(cpu, false);
784 else
785 nr++;
786 cpumask_clear_cpu(cpu, avail);
787 cpu = cpumask_next(cpu, avail);
788 }
789 return nr;
790 }
791
__smp_rescan_cpus(struct sclp_core_info * info,bool early)792 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
793 {
794 struct sclp_core_entry *core;
795 static cpumask_t avail;
796 bool configured;
797 u16 core_id;
798 int nr, i;
799
800 cpus_read_lock();
801 mutex_lock(&smp_cpu_state_mutex);
802 nr = 0;
803 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
804 /*
805 * Add IPL core first (which got logical CPU number 0) to make sure
806 * that all SMT threads get subsequent logical CPU numbers.
807 */
808 if (early) {
809 core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
810 for (i = 0; i < info->configured; i++) {
811 core = &info->core[i];
812 if (core->core_id == core_id) {
813 nr += smp_add_core(core, &avail, true, early);
814 break;
815 }
816 }
817 }
818 for (i = 0; i < info->combined; i++) {
819 configured = i < info->configured;
820 nr += smp_add_core(&info->core[i], &avail, configured, early);
821 }
822 mutex_unlock(&smp_cpu_state_mutex);
823 cpus_read_unlock();
824 return nr;
825 }
826
smp_detect_cpus(void)827 void __init smp_detect_cpus(void)
828 {
829 unsigned int cpu, mtid, c_cpus, s_cpus;
830 struct sclp_core_info *info;
831 u16 address;
832
833 /* Get CPU information */
834 info = memblock_alloc(sizeof(*info), 8);
835 if (!info)
836 panic("%s: Failed to allocate %zu bytes align=0x%x\n",
837 __func__, sizeof(*info), 8);
838 smp_get_core_info(info, 1);
839 /* Find boot CPU type */
840 if (sclp.has_core_type) {
841 address = stap();
842 for (cpu = 0; cpu < info->combined; cpu++)
843 if (info->core[cpu].core_id == address) {
844 /* The boot cpu dictates the cpu type. */
845 boot_core_type = info->core[cpu].type;
846 break;
847 }
848 if (cpu >= info->combined)
849 panic("Could not find boot CPU type");
850 }
851
852 /* Set multi-threading state for the current system */
853 mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
854 mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
855 pcpu_set_smt(mtid);
856
857 /* Print number of CPUs */
858 c_cpus = s_cpus = 0;
859 for (cpu = 0; cpu < info->combined; cpu++) {
860 if (sclp.has_core_type &&
861 info->core[cpu].type != boot_core_type)
862 continue;
863 if (cpu < info->configured)
864 c_cpus += smp_cpu_mtid + 1;
865 else
866 s_cpus += smp_cpu_mtid + 1;
867 }
868 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
869
870 /* Add CPUs present at boot */
871 __smp_rescan_cpus(info, true);
872 memblock_free(info, sizeof(*info));
873 }
874
875 /*
876 * Activate a secondary processor.
877 */
smp_start_secondary(void * cpuvoid)878 static void smp_start_secondary(void *cpuvoid)
879 {
880 int cpu = raw_smp_processor_id();
881
882 S390_lowcore.last_update_clock = get_tod_clock();
883 S390_lowcore.restart_stack = (unsigned long)restart_stack;
884 S390_lowcore.restart_fn = (unsigned long)do_restart;
885 S390_lowcore.restart_data = 0;
886 S390_lowcore.restart_source = -1U;
887 S390_lowcore.restart_flags = 0;
888 restore_access_regs(S390_lowcore.access_regs_save_area);
889 cpu_init();
890 rcu_cpu_starting(cpu);
891 init_cpu_timer();
892 vtime_init();
893 vdso_getcpu_init();
894 pfault_init();
895 cpumask_set_cpu(cpu, &cpu_setup_mask);
896 update_cpu_masks();
897 notify_cpu_starting(cpu);
898 if (topology_cpu_dedicated(cpu))
899 set_cpu_flag(CIF_DEDICATED_CPU);
900 else
901 clear_cpu_flag(CIF_DEDICATED_CPU);
902 set_cpu_online(cpu, true);
903 inc_irq_stat(CPU_RST);
904 local_irq_enable();
905 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
906 }
907
908 /* Upping and downing of CPUs */
__cpu_up(unsigned int cpu,struct task_struct * tidle)909 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
910 {
911 struct pcpu *pcpu = pcpu_devices + cpu;
912 int rc;
913
914 if (pcpu->state != CPU_STATE_CONFIGURED)
915 return -EIO;
916 if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
917 SIGP_CC_ORDER_CODE_ACCEPTED)
918 return -EIO;
919
920 rc = pcpu_alloc_lowcore(pcpu, cpu);
921 if (rc)
922 return rc;
923 pcpu_prepare_secondary(pcpu, cpu);
924 pcpu_attach_task(pcpu, tidle);
925 pcpu_start_fn(pcpu, smp_start_secondary, NULL);
926 /* Wait until cpu puts itself in the online & active maps */
927 while (!cpu_online(cpu))
928 cpu_relax();
929 return 0;
930 }
931
932 static unsigned int setup_possible_cpus __initdata;
933
_setup_possible_cpus(char * s)934 static int __init _setup_possible_cpus(char *s)
935 {
936 get_option(&s, &setup_possible_cpus);
937 return 0;
938 }
939 early_param("possible_cpus", _setup_possible_cpus);
940
__cpu_disable(void)941 int __cpu_disable(void)
942 {
943 unsigned long cregs[16];
944 int cpu;
945
946 /* Handle possible pending IPIs */
947 smp_handle_ext_call();
948 cpu = smp_processor_id();
949 set_cpu_online(cpu, false);
950 cpumask_clear_cpu(cpu, &cpu_setup_mask);
951 update_cpu_masks();
952 /* Disable pseudo page faults on this cpu. */
953 pfault_fini();
954 /* Disable interrupt sources via control register. */
955 __ctl_store(cregs, 0, 15);
956 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */
957 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */
958 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */
959 __ctl_load(cregs, 0, 15);
960 clear_cpu_flag(CIF_NOHZ_DELAY);
961 return 0;
962 }
963
__cpu_die(unsigned int cpu)964 void __cpu_die(unsigned int cpu)
965 {
966 struct pcpu *pcpu;
967
968 /* Wait until target cpu is down */
969 pcpu = pcpu_devices + cpu;
970 while (!pcpu_stopped(pcpu))
971 cpu_relax();
972 pcpu_free_lowcore(pcpu);
973 cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
974 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
975 }
976
cpu_die(void)977 void __noreturn cpu_die(void)
978 {
979 idle_task_exit();
980 __bpon();
981 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
982 for (;;) ;
983 }
984
smp_fill_possible_mask(void)985 void __init smp_fill_possible_mask(void)
986 {
987 unsigned int possible, sclp_max, cpu;
988
989 sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
990 sclp_max = min(smp_max_threads, sclp_max);
991 sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
992 possible = setup_possible_cpus ?: nr_cpu_ids;
993 possible = min(possible, sclp_max);
994 for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
995 set_cpu_possible(cpu, true);
996 }
997
smp_prepare_cpus(unsigned int max_cpus)998 void __init smp_prepare_cpus(unsigned int max_cpus)
999 {
1000 /* request the 0x1201 emergency signal external interrupt */
1001 if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
1002 panic("Couldn't request external interrupt 0x1201");
1003 /* request the 0x1202 external call external interrupt */
1004 if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
1005 panic("Couldn't request external interrupt 0x1202");
1006 }
1007
smp_prepare_boot_cpu(void)1008 void __init smp_prepare_boot_cpu(void)
1009 {
1010 struct pcpu *pcpu = pcpu_devices;
1011
1012 WARN_ON(!cpu_present(0) || !cpu_online(0));
1013 pcpu->state = CPU_STATE_CONFIGURED;
1014 S390_lowcore.percpu_offset = __per_cpu_offset[0];
1015 smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
1016 }
1017
smp_setup_processor_id(void)1018 void __init smp_setup_processor_id(void)
1019 {
1020 pcpu_devices[0].address = stap();
1021 S390_lowcore.cpu_nr = 0;
1022 S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1023 S390_lowcore.spinlock_index = 0;
1024 }
1025
1026 /*
1027 * the frequency of the profiling timer can be changed
1028 * by writing a multiplier value into /proc/profile.
1029 *
1030 * usually you want to run this on all CPUs ;)
1031 */
setup_profiling_timer(unsigned int multiplier)1032 int setup_profiling_timer(unsigned int multiplier)
1033 {
1034 return 0;
1035 }
1036
cpu_configure_show(struct device * dev,struct device_attribute * attr,char * buf)1037 static ssize_t cpu_configure_show(struct device *dev,
1038 struct device_attribute *attr, char *buf)
1039 {
1040 ssize_t count;
1041
1042 mutex_lock(&smp_cpu_state_mutex);
1043 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1044 mutex_unlock(&smp_cpu_state_mutex);
1045 return count;
1046 }
1047
cpu_configure_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1048 static ssize_t cpu_configure_store(struct device *dev,
1049 struct device_attribute *attr,
1050 const char *buf, size_t count)
1051 {
1052 struct pcpu *pcpu;
1053 int cpu, val, rc, i;
1054 char delim;
1055
1056 if (sscanf(buf, "%d %c", &val, &delim) != 1)
1057 return -EINVAL;
1058 if (val != 0 && val != 1)
1059 return -EINVAL;
1060 cpus_read_lock();
1061 mutex_lock(&smp_cpu_state_mutex);
1062 rc = -EBUSY;
1063 /* disallow configuration changes of online cpus and cpu 0 */
1064 cpu = dev->id;
1065 cpu = smp_get_base_cpu(cpu);
1066 if (cpu == 0)
1067 goto out;
1068 for (i = 0; i <= smp_cpu_mtid; i++)
1069 if (cpu_online(cpu + i))
1070 goto out;
1071 pcpu = pcpu_devices + cpu;
1072 rc = 0;
1073 switch (val) {
1074 case 0:
1075 if (pcpu->state != CPU_STATE_CONFIGURED)
1076 break;
1077 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1078 if (rc)
1079 break;
1080 for (i = 0; i <= smp_cpu_mtid; i++) {
1081 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1082 continue;
1083 pcpu[i].state = CPU_STATE_STANDBY;
1084 smp_cpu_set_polarization(cpu + i,
1085 POLARIZATION_UNKNOWN);
1086 }
1087 topology_expect_change();
1088 break;
1089 case 1:
1090 if (pcpu->state != CPU_STATE_STANDBY)
1091 break;
1092 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1093 if (rc)
1094 break;
1095 for (i = 0; i <= smp_cpu_mtid; i++) {
1096 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1097 continue;
1098 pcpu[i].state = CPU_STATE_CONFIGURED;
1099 smp_cpu_set_polarization(cpu + i,
1100 POLARIZATION_UNKNOWN);
1101 }
1102 topology_expect_change();
1103 break;
1104 default:
1105 break;
1106 }
1107 out:
1108 mutex_unlock(&smp_cpu_state_mutex);
1109 cpus_read_unlock();
1110 return rc ? rc : count;
1111 }
1112 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1113
show_cpu_address(struct device * dev,struct device_attribute * attr,char * buf)1114 static ssize_t show_cpu_address(struct device *dev,
1115 struct device_attribute *attr, char *buf)
1116 {
1117 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1118 }
1119 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1120
1121 static struct attribute *cpu_common_attrs[] = {
1122 &dev_attr_configure.attr,
1123 &dev_attr_address.attr,
1124 NULL,
1125 };
1126
1127 static struct attribute_group cpu_common_attr_group = {
1128 .attrs = cpu_common_attrs,
1129 };
1130
1131 static struct attribute *cpu_online_attrs[] = {
1132 &dev_attr_idle_count.attr,
1133 &dev_attr_idle_time_us.attr,
1134 NULL,
1135 };
1136
1137 static struct attribute_group cpu_online_attr_group = {
1138 .attrs = cpu_online_attrs,
1139 };
1140
smp_cpu_online(unsigned int cpu)1141 static int smp_cpu_online(unsigned int cpu)
1142 {
1143 struct device *s = &per_cpu(cpu_device, cpu)->dev;
1144
1145 return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1146 }
1147
smp_cpu_pre_down(unsigned int cpu)1148 static int smp_cpu_pre_down(unsigned int cpu)
1149 {
1150 struct device *s = &per_cpu(cpu_device, cpu)->dev;
1151
1152 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1153 return 0;
1154 }
1155
smp_add_present_cpu(int cpu)1156 static int smp_add_present_cpu(int cpu)
1157 {
1158 struct device *s;
1159 struct cpu *c;
1160 int rc;
1161
1162 c = kzalloc(sizeof(*c), GFP_KERNEL);
1163 if (!c)
1164 return -ENOMEM;
1165 per_cpu(cpu_device, cpu) = c;
1166 s = &c->dev;
1167 c->hotpluggable = 1;
1168 rc = register_cpu(c, cpu);
1169 if (rc)
1170 goto out;
1171 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1172 if (rc)
1173 goto out_cpu;
1174 rc = topology_cpu_init(c);
1175 if (rc)
1176 goto out_topology;
1177 return 0;
1178
1179 out_topology:
1180 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1181 out_cpu:
1182 unregister_cpu(c);
1183 out:
1184 return rc;
1185 }
1186
smp_rescan_cpus(void)1187 int __ref smp_rescan_cpus(void)
1188 {
1189 struct sclp_core_info *info;
1190 int nr;
1191
1192 info = kzalloc(sizeof(*info), GFP_KERNEL);
1193 if (!info)
1194 return -ENOMEM;
1195 smp_get_core_info(info, 0);
1196 nr = __smp_rescan_cpus(info, false);
1197 kfree(info);
1198 if (nr)
1199 topology_schedule_update();
1200 return 0;
1201 }
1202
rescan_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1203 static ssize_t __ref rescan_store(struct device *dev,
1204 struct device_attribute *attr,
1205 const char *buf,
1206 size_t count)
1207 {
1208 int rc;
1209
1210 rc = lock_device_hotplug_sysfs();
1211 if (rc)
1212 return rc;
1213 rc = smp_rescan_cpus();
1214 unlock_device_hotplug();
1215 return rc ? rc : count;
1216 }
1217 static DEVICE_ATTR_WO(rescan);
1218
s390_smp_init(void)1219 static int __init s390_smp_init(void)
1220 {
1221 int cpu, rc = 0;
1222
1223 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1224 if (rc)
1225 return rc;
1226 for_each_present_cpu(cpu) {
1227 rc = smp_add_present_cpu(cpu);
1228 if (rc)
1229 goto out;
1230 }
1231
1232 rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1233 smp_cpu_online, smp_cpu_pre_down);
1234 rc = rc <= 0 ? rc : 0;
1235 out:
1236 return rc;
1237 }
1238 subsys_initcall(s390_smp_init);
1239
set_new_lowcore(struct lowcore * lc)1240 static __always_inline void set_new_lowcore(struct lowcore *lc)
1241 {
1242 union register_pair dst, src;
1243 u32 pfx;
1244
1245 src.even = (unsigned long) &S390_lowcore;
1246 src.odd = sizeof(S390_lowcore);
1247 dst.even = (unsigned long) lc;
1248 dst.odd = sizeof(*lc);
1249 pfx = __pa(lc);
1250
1251 asm volatile(
1252 " mvcl %[dst],%[src]\n"
1253 " spx %[pfx]\n"
1254 : [dst] "+&d" (dst.pair), [src] "+&d" (src.pair)
1255 : [pfx] "Q" (pfx)
1256 : "memory", "cc");
1257 }
1258
smp_reinit_ipl_cpu(void)1259 static int __init smp_reinit_ipl_cpu(void)
1260 {
1261 unsigned long async_stack, nodat_stack, mcck_stack;
1262 struct lowcore *lc, *lc_ipl;
1263 unsigned long flags, cr0;
1264 u64 mcesad;
1265
1266 lc_ipl = lowcore_ptr[0];
1267 lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
1268 nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
1269 async_stack = stack_alloc();
1270 mcck_stack = stack_alloc();
1271 if (!lc || !nodat_stack || !async_stack || !mcck_stack || nmi_alloc_mcesa(&mcesad))
1272 panic("Couldn't allocate memory");
1273
1274 local_irq_save(flags);
1275 local_mcck_disable();
1276 set_new_lowcore(lc);
1277 S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET;
1278 S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET;
1279 S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET;
1280 __ctl_store(cr0, 0, 0);
1281 __ctl_clear_bit(0, 28); /* disable lowcore protection */
1282 S390_lowcore.mcesad = mcesad;
1283 __ctl_load(cr0, 0, 0);
1284 lowcore_ptr[0] = lc;
1285 local_mcck_enable();
1286 local_irq_restore(flags);
1287
1288 free_pages(lc_ipl->async_stack - STACK_INIT_OFFSET, THREAD_SIZE_ORDER);
1289 memblock_free_late(__pa(lc_ipl->mcck_stack - STACK_INIT_OFFSET), THREAD_SIZE);
1290 memblock_free_late(__pa(lc_ipl), sizeof(*lc_ipl));
1291
1292 return 0;
1293 }
1294 early_initcall(smp_reinit_ipl_cpu);
1295