1 /* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 */
5
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28
29 #include <asm/head.h>
30 #include <asm/ptrace.h>
31 #include <linux/atomic.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/cpudata.h>
35 #include <asm/hvtramp.h>
36 #include <asm/io.h>
37 #include <asm/timer.h>
38
39 #include <asm/irq.h>
40 #include <asm/irq_regs.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/oplib.h>
44 #include <asm/uaccess.h>
45 #include <asm/starfire.h>
46 #include <asm/tlb.h>
47 #include <asm/sections.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/ldc.h>
51 #include <asm/hypervisor.h>
52 #include <asm/pcr.h>
53
54 #include "cpumap.h"
55
56 int sparc64_multi_core __read_mostly;
57
58 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
59 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
60 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
61
62 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
63 EXPORT_SYMBOL(cpu_core_map);
64
65 static cpumask_t smp_commenced_mask;
66
smp_info(struct seq_file * m)67 void smp_info(struct seq_file *m)
68 {
69 int i;
70
71 seq_printf(m, "State:\n");
72 for_each_online_cpu(i)
73 seq_printf(m, "CPU%d:\t\tonline\n", i);
74 }
75
smp_bogo(struct seq_file * m)76 void smp_bogo(struct seq_file *m)
77 {
78 int i;
79
80 for_each_online_cpu(i)
81 seq_printf(m,
82 "Cpu%dClkTck\t: %016lx\n",
83 i, cpu_data(i).clock_tick);
84 }
85
86 extern void setup_sparc64_timer(void);
87
88 static volatile unsigned long callin_flag = 0;
89
smp_callin(void)90 void __cpuinit smp_callin(void)
91 {
92 int cpuid = hard_smp_processor_id();
93
94 __local_per_cpu_offset = __per_cpu_offset(cpuid);
95
96 if (tlb_type == hypervisor)
97 sun4v_ktsb_register();
98
99 __flush_tlb_all();
100
101 setup_sparc64_timer();
102
103 if (cheetah_pcache_forced_on)
104 cheetah_enable_pcache();
105
106 local_irq_enable();
107
108 callin_flag = 1;
109 __asm__ __volatile__("membar #Sync\n\t"
110 "flush %%g6" : : : "memory");
111
112 /* Clear this or we will die instantly when we
113 * schedule back to this idler...
114 */
115 current_thread_info()->new_child = 0;
116
117 /* Attach to the address space of init_task. */
118 atomic_inc(&init_mm.mm_count);
119 current->active_mm = &init_mm;
120
121 /* inform the notifiers about the new cpu */
122 notify_cpu_starting(cpuid);
123
124 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
125 rmb();
126
127 ipi_call_lock_irq();
128 set_cpu_online(cpuid, true);
129 ipi_call_unlock_irq();
130
131 /* idle thread is expected to have preempt disabled */
132 preempt_disable();
133 }
134
cpu_panic(void)135 void cpu_panic(void)
136 {
137 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
138 panic("SMP bolixed\n");
139 }
140
141 /* This tick register synchronization scheme is taken entirely from
142 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
143 *
144 * The only change I've made is to rework it so that the master
145 * initiates the synchonization instead of the slave. -DaveM
146 */
147
148 #define MASTER 0
149 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
150
151 #define NUM_ROUNDS 64 /* magic value */
152 #define NUM_ITERS 5 /* likewise */
153
154 static DEFINE_SPINLOCK(itc_sync_lock);
155 static unsigned long go[SLAVE + 1];
156
157 #define DEBUG_TICK_SYNC 0
158
get_delta(long * rt,long * master)159 static inline long get_delta (long *rt, long *master)
160 {
161 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
162 unsigned long tcenter, t0, t1, tm;
163 unsigned long i;
164
165 for (i = 0; i < NUM_ITERS; i++) {
166 t0 = tick_ops->get_tick();
167 go[MASTER] = 1;
168 membar_safe("#StoreLoad");
169 while (!(tm = go[SLAVE]))
170 rmb();
171 go[SLAVE] = 0;
172 wmb();
173 t1 = tick_ops->get_tick();
174
175 if (t1 - t0 < best_t1 - best_t0)
176 best_t0 = t0, best_t1 = t1, best_tm = tm;
177 }
178
179 *rt = best_t1 - best_t0;
180 *master = best_tm - best_t0;
181
182 /* average best_t0 and best_t1 without overflow: */
183 tcenter = (best_t0/2 + best_t1/2);
184 if (best_t0 % 2 + best_t1 % 2 == 2)
185 tcenter++;
186 return tcenter - best_tm;
187 }
188
smp_synchronize_tick_client(void)189 void smp_synchronize_tick_client(void)
190 {
191 long i, delta, adj, adjust_latency = 0, done = 0;
192 unsigned long flags, rt, master_time_stamp;
193 #if DEBUG_TICK_SYNC
194 struct {
195 long rt; /* roundtrip time */
196 long master; /* master's timestamp */
197 long diff; /* difference between midpoint and master's timestamp */
198 long lat; /* estimate of itc adjustment latency */
199 } t[NUM_ROUNDS];
200 #endif
201
202 go[MASTER] = 1;
203
204 while (go[MASTER])
205 rmb();
206
207 local_irq_save(flags);
208 {
209 for (i = 0; i < NUM_ROUNDS; i++) {
210 delta = get_delta(&rt, &master_time_stamp);
211 if (delta == 0)
212 done = 1; /* let's lock on to this... */
213
214 if (!done) {
215 if (i > 0) {
216 adjust_latency += -delta;
217 adj = -delta + adjust_latency/4;
218 } else
219 adj = -delta;
220
221 tick_ops->add_tick(adj);
222 }
223 #if DEBUG_TICK_SYNC
224 t[i].rt = rt;
225 t[i].master = master_time_stamp;
226 t[i].diff = delta;
227 t[i].lat = adjust_latency/4;
228 #endif
229 }
230 }
231 local_irq_restore(flags);
232
233 #if DEBUG_TICK_SYNC
234 for (i = 0; i < NUM_ROUNDS; i++)
235 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
236 t[i].rt, t[i].master, t[i].diff, t[i].lat);
237 #endif
238
239 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
240 "(last diff %ld cycles, maxerr %lu cycles)\n",
241 smp_processor_id(), delta, rt);
242 }
243
244 static void smp_start_sync_tick_client(int cpu);
245
smp_synchronize_one_tick(int cpu)246 static void smp_synchronize_one_tick(int cpu)
247 {
248 unsigned long flags, i;
249
250 go[MASTER] = 0;
251
252 smp_start_sync_tick_client(cpu);
253
254 /* wait for client to be ready */
255 while (!go[MASTER])
256 rmb();
257
258 /* now let the client proceed into his loop */
259 go[MASTER] = 0;
260 membar_safe("#StoreLoad");
261
262 spin_lock_irqsave(&itc_sync_lock, flags);
263 {
264 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
265 while (!go[MASTER])
266 rmb();
267 go[MASTER] = 0;
268 wmb();
269 go[SLAVE] = tick_ops->get_tick();
270 membar_safe("#StoreLoad");
271 }
272 }
273 spin_unlock_irqrestore(&itc_sync_lock, flags);
274 }
275
276 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
277 /* XXX Put this in some common place. XXX */
kimage_addr_to_ra(void * p)278 static unsigned long kimage_addr_to_ra(void *p)
279 {
280 unsigned long val = (unsigned long) p;
281
282 return kern_base + (val - KERNBASE);
283 }
284
ldom_startcpu_cpuid(unsigned int cpu,unsigned long thread_reg,void ** descrp)285 static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
286 {
287 extern unsigned long sparc64_ttable_tl0;
288 extern unsigned long kern_locked_tte_data;
289 struct hvtramp_descr *hdesc;
290 unsigned long trampoline_ra;
291 struct trap_per_cpu *tb;
292 u64 tte_vaddr, tte_data;
293 unsigned long hv_err;
294 int i;
295
296 hdesc = kzalloc(sizeof(*hdesc) +
297 (sizeof(struct hvtramp_mapping) *
298 num_kernel_image_mappings - 1),
299 GFP_KERNEL);
300 if (!hdesc) {
301 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
302 "hvtramp_descr.\n");
303 return;
304 }
305 *descrp = hdesc;
306
307 hdesc->cpu = cpu;
308 hdesc->num_mappings = num_kernel_image_mappings;
309
310 tb = &trap_block[cpu];
311
312 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
313 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
314
315 hdesc->thread_reg = thread_reg;
316
317 tte_vaddr = (unsigned long) KERNBASE;
318 tte_data = kern_locked_tte_data;
319
320 for (i = 0; i < hdesc->num_mappings; i++) {
321 hdesc->maps[i].vaddr = tte_vaddr;
322 hdesc->maps[i].tte = tte_data;
323 tte_vaddr += 0x400000;
324 tte_data += 0x400000;
325 }
326
327 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
328
329 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
330 kimage_addr_to_ra(&sparc64_ttable_tl0),
331 __pa(hdesc));
332 if (hv_err)
333 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
334 "gives error %lu\n", hv_err);
335 }
336 #endif
337
338 extern unsigned long sparc64_cpu_startup;
339
340 /* The OBP cpu startup callback truncates the 3rd arg cookie to
341 * 32-bits (I think) so to be safe we have it read the pointer
342 * contained here so we work on >4GB machines. -DaveM
343 */
344 static struct thread_info *cpu_new_thread = NULL;
345
smp_boot_one_cpu(unsigned int cpu)346 static int __cpuinit smp_boot_one_cpu(unsigned int cpu)
347 {
348 unsigned long entry =
349 (unsigned long)(&sparc64_cpu_startup);
350 unsigned long cookie =
351 (unsigned long)(&cpu_new_thread);
352 struct task_struct *p;
353 void *descr = NULL;
354 int timeout, ret;
355
356 p = fork_idle(cpu);
357 if (IS_ERR(p))
358 return PTR_ERR(p);
359 callin_flag = 0;
360 cpu_new_thread = task_thread_info(p);
361
362 if (tlb_type == hypervisor) {
363 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
364 if (ldom_domaining_enabled)
365 ldom_startcpu_cpuid(cpu,
366 (unsigned long) cpu_new_thread,
367 &descr);
368 else
369 #endif
370 prom_startcpu_cpuid(cpu, entry, cookie);
371 } else {
372 struct device_node *dp = of_find_node_by_cpuid(cpu);
373
374 prom_startcpu(dp->phandle, entry, cookie);
375 }
376
377 for (timeout = 0; timeout < 50000; timeout++) {
378 if (callin_flag)
379 break;
380 udelay(100);
381 }
382
383 if (callin_flag) {
384 ret = 0;
385 } else {
386 printk("Processor %d is stuck.\n", cpu);
387 ret = -ENODEV;
388 }
389 cpu_new_thread = NULL;
390
391 kfree(descr);
392
393 return ret;
394 }
395
spitfire_xcall_helper(u64 data0,u64 data1,u64 data2,u64 pstate,unsigned long cpu)396 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
397 {
398 u64 result, target;
399 int stuck, tmp;
400
401 if (this_is_starfire) {
402 /* map to real upaid */
403 cpu = (((cpu & 0x3c) << 1) |
404 ((cpu & 0x40) >> 4) |
405 (cpu & 0x3));
406 }
407
408 target = (cpu << 14) | 0x70;
409 again:
410 /* Ok, this is the real Spitfire Errata #54.
411 * One must read back from a UDB internal register
412 * after writes to the UDB interrupt dispatch, but
413 * before the membar Sync for that write.
414 * So we use the high UDB control register (ASI 0x7f,
415 * ADDR 0x20) for the dummy read. -DaveM
416 */
417 tmp = 0x40;
418 __asm__ __volatile__(
419 "wrpr %1, %2, %%pstate\n\t"
420 "stxa %4, [%0] %3\n\t"
421 "stxa %5, [%0+%8] %3\n\t"
422 "add %0, %8, %0\n\t"
423 "stxa %6, [%0+%8] %3\n\t"
424 "membar #Sync\n\t"
425 "stxa %%g0, [%7] %3\n\t"
426 "membar #Sync\n\t"
427 "mov 0x20, %%g1\n\t"
428 "ldxa [%%g1] 0x7f, %%g0\n\t"
429 "membar #Sync"
430 : "=r" (tmp)
431 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
432 "r" (data0), "r" (data1), "r" (data2), "r" (target),
433 "r" (0x10), "0" (tmp)
434 : "g1");
435
436 /* NOTE: PSTATE_IE is still clear. */
437 stuck = 100000;
438 do {
439 __asm__ __volatile__("ldxa [%%g0] %1, %0"
440 : "=r" (result)
441 : "i" (ASI_INTR_DISPATCH_STAT));
442 if (result == 0) {
443 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
444 : : "r" (pstate));
445 return;
446 }
447 stuck -= 1;
448 if (stuck == 0)
449 break;
450 } while (result & 0x1);
451 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
452 : : "r" (pstate));
453 if (stuck == 0) {
454 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
455 smp_processor_id(), result);
456 } else {
457 udelay(2);
458 goto again;
459 }
460 }
461
spitfire_xcall_deliver(struct trap_per_cpu * tb,int cnt)462 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
463 {
464 u64 *mondo, data0, data1, data2;
465 u16 *cpu_list;
466 u64 pstate;
467 int i;
468
469 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
470 cpu_list = __va(tb->cpu_list_pa);
471 mondo = __va(tb->cpu_mondo_block_pa);
472 data0 = mondo[0];
473 data1 = mondo[1];
474 data2 = mondo[2];
475 for (i = 0; i < cnt; i++)
476 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
477 }
478
479 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
480 * packet, but we have no use for that. However we do take advantage of
481 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
482 */
cheetah_xcall_deliver(struct trap_per_cpu * tb,int cnt)483 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
484 {
485 int nack_busy_id, is_jbus, need_more;
486 u64 *mondo, pstate, ver, busy_mask;
487 u16 *cpu_list;
488
489 cpu_list = __va(tb->cpu_list_pa);
490 mondo = __va(tb->cpu_mondo_block_pa);
491
492 /* Unfortunately, someone at Sun had the brilliant idea to make the
493 * busy/nack fields hard-coded by ITID number for this Ultra-III
494 * derivative processor.
495 */
496 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
497 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
498 (ver >> 32) == __SERRANO_ID);
499
500 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
501
502 retry:
503 need_more = 0;
504 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
505 : : "r" (pstate), "i" (PSTATE_IE));
506
507 /* Setup the dispatch data registers. */
508 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
509 "stxa %1, [%4] %6\n\t"
510 "stxa %2, [%5] %6\n\t"
511 "membar #Sync\n\t"
512 : /* no outputs */
513 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
514 "r" (0x40), "r" (0x50), "r" (0x60),
515 "i" (ASI_INTR_W));
516
517 nack_busy_id = 0;
518 busy_mask = 0;
519 {
520 int i;
521
522 for (i = 0; i < cnt; i++) {
523 u64 target, nr;
524
525 nr = cpu_list[i];
526 if (nr == 0xffff)
527 continue;
528
529 target = (nr << 14) | 0x70;
530 if (is_jbus) {
531 busy_mask |= (0x1UL << (nr * 2));
532 } else {
533 target |= (nack_busy_id << 24);
534 busy_mask |= (0x1UL <<
535 (nack_busy_id * 2));
536 }
537 __asm__ __volatile__(
538 "stxa %%g0, [%0] %1\n\t"
539 "membar #Sync\n\t"
540 : /* no outputs */
541 : "r" (target), "i" (ASI_INTR_W));
542 nack_busy_id++;
543 if (nack_busy_id == 32) {
544 need_more = 1;
545 break;
546 }
547 }
548 }
549
550 /* Now, poll for completion. */
551 {
552 u64 dispatch_stat, nack_mask;
553 long stuck;
554
555 stuck = 100000 * nack_busy_id;
556 nack_mask = busy_mask << 1;
557 do {
558 __asm__ __volatile__("ldxa [%%g0] %1, %0"
559 : "=r" (dispatch_stat)
560 : "i" (ASI_INTR_DISPATCH_STAT));
561 if (!(dispatch_stat & (busy_mask | nack_mask))) {
562 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
563 : : "r" (pstate));
564 if (unlikely(need_more)) {
565 int i, this_cnt = 0;
566 for (i = 0; i < cnt; i++) {
567 if (cpu_list[i] == 0xffff)
568 continue;
569 cpu_list[i] = 0xffff;
570 this_cnt++;
571 if (this_cnt == 32)
572 break;
573 }
574 goto retry;
575 }
576 return;
577 }
578 if (!--stuck)
579 break;
580 } while (dispatch_stat & busy_mask);
581
582 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
583 : : "r" (pstate));
584
585 if (dispatch_stat & busy_mask) {
586 /* Busy bits will not clear, continue instead
587 * of freezing up on this cpu.
588 */
589 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
590 smp_processor_id(), dispatch_stat);
591 } else {
592 int i, this_busy_nack = 0;
593
594 /* Delay some random time with interrupts enabled
595 * to prevent deadlock.
596 */
597 udelay(2 * nack_busy_id);
598
599 /* Clear out the mask bits for cpus which did not
600 * NACK us.
601 */
602 for (i = 0; i < cnt; i++) {
603 u64 check_mask, nr;
604
605 nr = cpu_list[i];
606 if (nr == 0xffff)
607 continue;
608
609 if (is_jbus)
610 check_mask = (0x2UL << (2*nr));
611 else
612 check_mask = (0x2UL <<
613 this_busy_nack);
614 if ((dispatch_stat & check_mask) == 0)
615 cpu_list[i] = 0xffff;
616 this_busy_nack += 2;
617 if (this_busy_nack == 64)
618 break;
619 }
620
621 goto retry;
622 }
623 }
624 }
625
626 /* Multi-cpu list version. */
hypervisor_xcall_deliver(struct trap_per_cpu * tb,int cnt)627 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
628 {
629 int retries, this_cpu, prev_sent, i, saw_cpu_error;
630 unsigned long status;
631 u16 *cpu_list;
632
633 this_cpu = smp_processor_id();
634
635 cpu_list = __va(tb->cpu_list_pa);
636
637 saw_cpu_error = 0;
638 retries = 0;
639 prev_sent = 0;
640 do {
641 int forward_progress, n_sent;
642
643 status = sun4v_cpu_mondo_send(cnt,
644 tb->cpu_list_pa,
645 tb->cpu_mondo_block_pa);
646
647 /* HV_EOK means all cpus received the xcall, we're done. */
648 if (likely(status == HV_EOK))
649 break;
650
651 /* First, see if we made any forward progress.
652 *
653 * The hypervisor indicates successful sends by setting
654 * cpu list entries to the value 0xffff.
655 */
656 n_sent = 0;
657 for (i = 0; i < cnt; i++) {
658 if (likely(cpu_list[i] == 0xffff))
659 n_sent++;
660 }
661
662 forward_progress = 0;
663 if (n_sent > prev_sent)
664 forward_progress = 1;
665
666 prev_sent = n_sent;
667
668 /* If we get a HV_ECPUERROR, then one or more of the cpus
669 * in the list are in error state. Use the cpu_state()
670 * hypervisor call to find out which cpus are in error state.
671 */
672 if (unlikely(status == HV_ECPUERROR)) {
673 for (i = 0; i < cnt; i++) {
674 long err;
675 u16 cpu;
676
677 cpu = cpu_list[i];
678 if (cpu == 0xffff)
679 continue;
680
681 err = sun4v_cpu_state(cpu);
682 if (err == HV_CPU_STATE_ERROR) {
683 saw_cpu_error = (cpu + 1);
684 cpu_list[i] = 0xffff;
685 }
686 }
687 } else if (unlikely(status != HV_EWOULDBLOCK))
688 goto fatal_mondo_error;
689
690 /* Don't bother rewriting the CPU list, just leave the
691 * 0xffff and non-0xffff entries in there and the
692 * hypervisor will do the right thing.
693 *
694 * Only advance timeout state if we didn't make any
695 * forward progress.
696 */
697 if (unlikely(!forward_progress)) {
698 if (unlikely(++retries > 10000))
699 goto fatal_mondo_timeout;
700
701 /* Delay a little bit to let other cpus catch up
702 * on their cpu mondo queue work.
703 */
704 udelay(2 * cnt);
705 }
706 } while (1);
707
708 if (unlikely(saw_cpu_error))
709 goto fatal_mondo_cpu_error;
710
711 return;
712
713 fatal_mondo_cpu_error:
714 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
715 "(including %d) were in error state\n",
716 this_cpu, saw_cpu_error - 1);
717 return;
718
719 fatal_mondo_timeout:
720 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
721 " progress after %d retries.\n",
722 this_cpu, retries);
723 goto dump_cpu_list_and_out;
724
725 fatal_mondo_error:
726 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
727 this_cpu, status);
728 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
729 "mondo_block_pa(%lx)\n",
730 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
731
732 dump_cpu_list_and_out:
733 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
734 for (i = 0; i < cnt; i++)
735 printk("%u ", cpu_list[i]);
736 printk("]\n");
737 }
738
739 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
740
xcall_deliver(u64 data0,u64 data1,u64 data2,const cpumask_t * mask)741 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
742 {
743 struct trap_per_cpu *tb;
744 int this_cpu, i, cnt;
745 unsigned long flags;
746 u16 *cpu_list;
747 u64 *mondo;
748
749 /* We have to do this whole thing with interrupts fully disabled.
750 * Otherwise if we send an xcall from interrupt context it will
751 * corrupt both our mondo block and cpu list state.
752 *
753 * One consequence of this is that we cannot use timeout mechanisms
754 * that depend upon interrupts being delivered locally. So, for
755 * example, we cannot sample jiffies and expect it to advance.
756 *
757 * Fortunately, udelay() uses %stick/%tick so we can use that.
758 */
759 local_irq_save(flags);
760
761 this_cpu = smp_processor_id();
762 tb = &trap_block[this_cpu];
763
764 mondo = __va(tb->cpu_mondo_block_pa);
765 mondo[0] = data0;
766 mondo[1] = data1;
767 mondo[2] = data2;
768 wmb();
769
770 cpu_list = __va(tb->cpu_list_pa);
771
772 /* Setup the initial cpu list. */
773 cnt = 0;
774 for_each_cpu(i, mask) {
775 if (i == this_cpu || !cpu_online(i))
776 continue;
777 cpu_list[cnt++] = i;
778 }
779
780 if (cnt)
781 xcall_deliver_impl(tb, cnt);
782
783 local_irq_restore(flags);
784 }
785
786 /* Send cross call to all processors mentioned in MASK_P
787 * except self. Really, there are only two cases currently,
788 * "cpu_online_mask" and "mm_cpumask(mm)".
789 */
smp_cross_call_masked(unsigned long * func,u32 ctx,u64 data1,u64 data2,const cpumask_t * mask)790 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
791 {
792 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
793
794 xcall_deliver(data0, data1, data2, mask);
795 }
796
797 /* Send cross call to all processors except self. */
smp_cross_call(unsigned long * func,u32 ctx,u64 data1,u64 data2)798 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
799 {
800 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
801 }
802
803 extern unsigned long xcall_sync_tick;
804
smp_start_sync_tick_client(int cpu)805 static void smp_start_sync_tick_client(int cpu)
806 {
807 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
808 cpumask_of(cpu));
809 }
810
811 extern unsigned long xcall_call_function;
812
arch_send_call_function_ipi_mask(const struct cpumask * mask)813 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
814 {
815 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
816 }
817
818 extern unsigned long xcall_call_function_single;
819
arch_send_call_function_single_ipi(int cpu)820 void arch_send_call_function_single_ipi(int cpu)
821 {
822 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
823 cpumask_of(cpu));
824 }
825
smp_call_function_client(int irq,struct pt_regs * regs)826 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
827 {
828 clear_softint(1 << irq);
829 generic_smp_call_function_interrupt();
830 }
831
smp_call_function_single_client(int irq,struct pt_regs * regs)832 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
833 {
834 clear_softint(1 << irq);
835 generic_smp_call_function_single_interrupt();
836 }
837
tsb_sync(void * info)838 static void tsb_sync(void *info)
839 {
840 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
841 struct mm_struct *mm = info;
842
843 /* It is not valid to test "current->active_mm == mm" here.
844 *
845 * The value of "current" is not changed atomically with
846 * switch_mm(). But that's OK, we just need to check the
847 * current cpu's trap block PGD physical address.
848 */
849 if (tp->pgd_paddr == __pa(mm->pgd))
850 tsb_context_switch(mm);
851 }
852
smp_tsb_sync(struct mm_struct * mm)853 void smp_tsb_sync(struct mm_struct *mm)
854 {
855 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
856 }
857
858 extern unsigned long xcall_flush_tlb_mm;
859 extern unsigned long xcall_flush_tlb_page;
860 extern unsigned long xcall_flush_tlb_kernel_range;
861 extern unsigned long xcall_fetch_glob_regs;
862 extern unsigned long xcall_receive_signal;
863 extern unsigned long xcall_new_mmu_context_version;
864 #ifdef CONFIG_KGDB
865 extern unsigned long xcall_kgdb_capture;
866 #endif
867
868 #ifdef DCACHE_ALIASING_POSSIBLE
869 extern unsigned long xcall_flush_dcache_page_cheetah;
870 #endif
871 extern unsigned long xcall_flush_dcache_page_spitfire;
872
873 #ifdef CONFIG_DEBUG_DCFLUSH
874 extern atomic_t dcpage_flushes;
875 extern atomic_t dcpage_flushes_xcall;
876 #endif
877
__local_flush_dcache_page(struct page * page)878 static inline void __local_flush_dcache_page(struct page *page)
879 {
880 #ifdef DCACHE_ALIASING_POSSIBLE
881 __flush_dcache_page(page_address(page),
882 ((tlb_type == spitfire) &&
883 page_mapping(page) != NULL));
884 #else
885 if (page_mapping(page) != NULL &&
886 tlb_type == spitfire)
887 __flush_icache_page(__pa(page_address(page)));
888 #endif
889 }
890
smp_flush_dcache_page_impl(struct page * page,int cpu)891 void smp_flush_dcache_page_impl(struct page *page, int cpu)
892 {
893 int this_cpu;
894
895 if (tlb_type == hypervisor)
896 return;
897
898 #ifdef CONFIG_DEBUG_DCFLUSH
899 atomic_inc(&dcpage_flushes);
900 #endif
901
902 this_cpu = get_cpu();
903
904 if (cpu == this_cpu) {
905 __local_flush_dcache_page(page);
906 } else if (cpu_online(cpu)) {
907 void *pg_addr = page_address(page);
908 u64 data0 = 0;
909
910 if (tlb_type == spitfire) {
911 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
912 if (page_mapping(page) != NULL)
913 data0 |= ((u64)1 << 32);
914 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
915 #ifdef DCACHE_ALIASING_POSSIBLE
916 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
917 #endif
918 }
919 if (data0) {
920 xcall_deliver(data0, __pa(pg_addr),
921 (u64) pg_addr, cpumask_of(cpu));
922 #ifdef CONFIG_DEBUG_DCFLUSH
923 atomic_inc(&dcpage_flushes_xcall);
924 #endif
925 }
926 }
927
928 put_cpu();
929 }
930
flush_dcache_page_all(struct mm_struct * mm,struct page * page)931 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
932 {
933 void *pg_addr;
934 u64 data0;
935
936 if (tlb_type == hypervisor)
937 return;
938
939 preempt_disable();
940
941 #ifdef CONFIG_DEBUG_DCFLUSH
942 atomic_inc(&dcpage_flushes);
943 #endif
944 data0 = 0;
945 pg_addr = page_address(page);
946 if (tlb_type == spitfire) {
947 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
948 if (page_mapping(page) != NULL)
949 data0 |= ((u64)1 << 32);
950 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
951 #ifdef DCACHE_ALIASING_POSSIBLE
952 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
953 #endif
954 }
955 if (data0) {
956 xcall_deliver(data0, __pa(pg_addr),
957 (u64) pg_addr, cpu_online_mask);
958 #ifdef CONFIG_DEBUG_DCFLUSH
959 atomic_inc(&dcpage_flushes_xcall);
960 #endif
961 }
962 __local_flush_dcache_page(page);
963
964 preempt_enable();
965 }
966
smp_new_mmu_context_version_client(int irq,struct pt_regs * regs)967 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
968 {
969 struct mm_struct *mm;
970 unsigned long flags;
971
972 clear_softint(1 << irq);
973
974 /* See if we need to allocate a new TLB context because
975 * the version of the one we are using is now out of date.
976 */
977 mm = current->active_mm;
978 if (unlikely(!mm || (mm == &init_mm)))
979 return;
980
981 spin_lock_irqsave(&mm->context.lock, flags);
982
983 if (unlikely(!CTX_VALID(mm->context)))
984 get_new_mmu_context(mm);
985
986 spin_unlock_irqrestore(&mm->context.lock, flags);
987
988 load_secondary_context(mm);
989 __flush_tlb_mm(CTX_HWBITS(mm->context),
990 SECONDARY_CONTEXT);
991 }
992
smp_new_mmu_context_version(void)993 void smp_new_mmu_context_version(void)
994 {
995 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
996 }
997
998 #ifdef CONFIG_KGDB
kgdb_roundup_cpus(unsigned long flags)999 void kgdb_roundup_cpus(unsigned long flags)
1000 {
1001 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1002 }
1003 #endif
1004
smp_fetch_global_regs(void)1005 void smp_fetch_global_regs(void)
1006 {
1007 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1008 }
1009
1010 /* We know that the window frames of the user have been flushed
1011 * to the stack before we get here because all callers of us
1012 * are flush_tlb_*() routines, and these run after flush_cache_*()
1013 * which performs the flushw.
1014 *
1015 * The SMP TLB coherency scheme we use works as follows:
1016 *
1017 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1018 * space has (potentially) executed on, this is the heuristic
1019 * we use to avoid doing cross calls.
1020 *
1021 * Also, for flushing from kswapd and also for clones, we
1022 * use cpu_vm_mask as the list of cpus to make run the TLB.
1023 *
1024 * 2) TLB context numbers are shared globally across all processors
1025 * in the system, this allows us to play several games to avoid
1026 * cross calls.
1027 *
1028 * One invariant is that when a cpu switches to a process, and
1029 * that processes tsk->active_mm->cpu_vm_mask does not have the
1030 * current cpu's bit set, that tlb context is flushed locally.
1031 *
1032 * If the address space is non-shared (ie. mm->count == 1) we avoid
1033 * cross calls when we want to flush the currently running process's
1034 * tlb state. This is done by clearing all cpu bits except the current
1035 * processor's in current->mm->cpu_vm_mask and performing the
1036 * flush locally only. This will force any subsequent cpus which run
1037 * this task to flush the context from the local tlb if the process
1038 * migrates to another cpu (again).
1039 *
1040 * 3) For shared address spaces (threads) and swapping we bite the
1041 * bullet for most cases and perform the cross call (but only to
1042 * the cpus listed in cpu_vm_mask).
1043 *
1044 * The performance gain from "optimizing" away the cross call for threads is
1045 * questionable (in theory the big win for threads is the massive sharing of
1046 * address space state across processors).
1047 */
1048
1049 /* This currently is only used by the hugetlb arch pre-fault
1050 * hook on UltraSPARC-III+ and later when changing the pagesize
1051 * bits of the context register for an address space.
1052 */
smp_flush_tlb_mm(struct mm_struct * mm)1053 void smp_flush_tlb_mm(struct mm_struct *mm)
1054 {
1055 u32 ctx = CTX_HWBITS(mm->context);
1056 int cpu = get_cpu();
1057
1058 if (atomic_read(&mm->mm_users) == 1) {
1059 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1060 goto local_flush_and_out;
1061 }
1062
1063 smp_cross_call_masked(&xcall_flush_tlb_mm,
1064 ctx, 0, 0,
1065 mm_cpumask(mm));
1066
1067 local_flush_and_out:
1068 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1069
1070 put_cpu();
1071 }
1072
1073 struct tlb_pending_info {
1074 unsigned long ctx;
1075 unsigned long nr;
1076 unsigned long *vaddrs;
1077 };
1078
tlb_pending_func(void * info)1079 static void tlb_pending_func(void *info)
1080 {
1081 struct tlb_pending_info *t = info;
1082
1083 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1084 }
1085
smp_flush_tlb_pending(struct mm_struct * mm,unsigned long nr,unsigned long * vaddrs)1086 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1087 {
1088 u32 ctx = CTX_HWBITS(mm->context);
1089 struct tlb_pending_info info;
1090 int cpu = get_cpu();
1091
1092 info.ctx = ctx;
1093 info.nr = nr;
1094 info.vaddrs = vaddrs;
1095
1096 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1097 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1098 else
1099 smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1100 &info, 1);
1101
1102 __flush_tlb_pending(ctx, nr, vaddrs);
1103
1104 put_cpu();
1105 }
1106
smp_flush_tlb_page(struct mm_struct * mm,unsigned long vaddr)1107 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1108 {
1109 unsigned long context = CTX_HWBITS(mm->context);
1110 int cpu = get_cpu();
1111
1112 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1113 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1114 else
1115 smp_cross_call_masked(&xcall_flush_tlb_page,
1116 context, vaddr, 0,
1117 mm_cpumask(mm));
1118 __flush_tlb_page(context, vaddr);
1119
1120 put_cpu();
1121 }
1122
smp_flush_tlb_kernel_range(unsigned long start,unsigned long end)1123 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1124 {
1125 start &= PAGE_MASK;
1126 end = PAGE_ALIGN(end);
1127 if (start != end) {
1128 smp_cross_call(&xcall_flush_tlb_kernel_range,
1129 0, start, end);
1130
1131 __flush_tlb_kernel_range(start, end);
1132 }
1133 }
1134
1135 /* CPU capture. */
1136 /* #define CAPTURE_DEBUG */
1137 extern unsigned long xcall_capture;
1138
1139 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1140 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1141 static unsigned long penguins_are_doing_time;
1142
smp_capture(void)1143 void smp_capture(void)
1144 {
1145 int result = atomic_add_ret(1, &smp_capture_depth);
1146
1147 if (result == 1) {
1148 int ncpus = num_online_cpus();
1149
1150 #ifdef CAPTURE_DEBUG
1151 printk("CPU[%d]: Sending penguins to jail...",
1152 smp_processor_id());
1153 #endif
1154 penguins_are_doing_time = 1;
1155 atomic_inc(&smp_capture_registry);
1156 smp_cross_call(&xcall_capture, 0, 0, 0);
1157 while (atomic_read(&smp_capture_registry) != ncpus)
1158 rmb();
1159 #ifdef CAPTURE_DEBUG
1160 printk("done\n");
1161 #endif
1162 }
1163 }
1164
smp_release(void)1165 void smp_release(void)
1166 {
1167 if (atomic_dec_and_test(&smp_capture_depth)) {
1168 #ifdef CAPTURE_DEBUG
1169 printk("CPU[%d]: Giving pardon to "
1170 "imprisoned penguins\n",
1171 smp_processor_id());
1172 #endif
1173 penguins_are_doing_time = 0;
1174 membar_safe("#StoreLoad");
1175 atomic_dec(&smp_capture_registry);
1176 }
1177 }
1178
1179 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1180 * set, so they can service tlb flush xcalls...
1181 */
1182 extern void prom_world(int);
1183
smp_penguin_jailcell(int irq,struct pt_regs * regs)1184 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1185 {
1186 clear_softint(1 << irq);
1187
1188 preempt_disable();
1189
1190 __asm__ __volatile__("flushw");
1191 prom_world(1);
1192 atomic_inc(&smp_capture_registry);
1193 membar_safe("#StoreLoad");
1194 while (penguins_are_doing_time)
1195 rmb();
1196 atomic_dec(&smp_capture_registry);
1197 prom_world(0);
1198
1199 preempt_enable();
1200 }
1201
1202 /* /proc/profile writes can call this, don't __init it please. */
setup_profiling_timer(unsigned int multiplier)1203 int setup_profiling_timer(unsigned int multiplier)
1204 {
1205 return -EINVAL;
1206 }
1207
smp_prepare_cpus(unsigned int max_cpus)1208 void __init smp_prepare_cpus(unsigned int max_cpus)
1209 {
1210 }
1211
smp_prepare_boot_cpu(void)1212 void __devinit smp_prepare_boot_cpu(void)
1213 {
1214 }
1215
smp_setup_processor_id(void)1216 void __init smp_setup_processor_id(void)
1217 {
1218 if (tlb_type == spitfire)
1219 xcall_deliver_impl = spitfire_xcall_deliver;
1220 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1221 xcall_deliver_impl = cheetah_xcall_deliver;
1222 else
1223 xcall_deliver_impl = hypervisor_xcall_deliver;
1224 }
1225
smp_fill_in_sib_core_maps(void)1226 void __devinit smp_fill_in_sib_core_maps(void)
1227 {
1228 unsigned int i;
1229
1230 for_each_present_cpu(i) {
1231 unsigned int j;
1232
1233 cpumask_clear(&cpu_core_map[i]);
1234 if (cpu_data(i).core_id == 0) {
1235 cpumask_set_cpu(i, &cpu_core_map[i]);
1236 continue;
1237 }
1238
1239 for_each_present_cpu(j) {
1240 if (cpu_data(i).core_id ==
1241 cpu_data(j).core_id)
1242 cpumask_set_cpu(j, &cpu_core_map[i]);
1243 }
1244 }
1245
1246 for_each_present_cpu(i) {
1247 unsigned int j;
1248
1249 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1250 if (cpu_data(i).proc_id == -1) {
1251 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1252 continue;
1253 }
1254
1255 for_each_present_cpu(j) {
1256 if (cpu_data(i).proc_id ==
1257 cpu_data(j).proc_id)
1258 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1259 }
1260 }
1261 }
1262
__cpu_up(unsigned int cpu)1263 int __cpuinit __cpu_up(unsigned int cpu)
1264 {
1265 int ret = smp_boot_one_cpu(cpu);
1266
1267 if (!ret) {
1268 cpumask_set_cpu(cpu, &smp_commenced_mask);
1269 while (!cpu_online(cpu))
1270 mb();
1271 if (!cpu_online(cpu)) {
1272 ret = -ENODEV;
1273 } else {
1274 /* On SUN4V, writes to %tick and %stick are
1275 * not allowed.
1276 */
1277 if (tlb_type != hypervisor)
1278 smp_synchronize_one_tick(cpu);
1279 }
1280 }
1281 return ret;
1282 }
1283
1284 #ifdef CONFIG_HOTPLUG_CPU
cpu_play_dead(void)1285 void cpu_play_dead(void)
1286 {
1287 int cpu = smp_processor_id();
1288 unsigned long pstate;
1289
1290 idle_task_exit();
1291
1292 if (tlb_type == hypervisor) {
1293 struct trap_per_cpu *tb = &trap_block[cpu];
1294
1295 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1296 tb->cpu_mondo_pa, 0);
1297 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1298 tb->dev_mondo_pa, 0);
1299 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1300 tb->resum_mondo_pa, 0);
1301 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1302 tb->nonresum_mondo_pa, 0);
1303 }
1304
1305 cpumask_clear_cpu(cpu, &smp_commenced_mask);
1306 membar_safe("#Sync");
1307
1308 local_irq_disable();
1309
1310 __asm__ __volatile__(
1311 "rdpr %%pstate, %0\n\t"
1312 "wrpr %0, %1, %%pstate"
1313 : "=r" (pstate)
1314 : "i" (PSTATE_IE));
1315
1316 while (1)
1317 barrier();
1318 }
1319
__cpu_disable(void)1320 int __cpu_disable(void)
1321 {
1322 int cpu = smp_processor_id();
1323 cpuinfo_sparc *c;
1324 int i;
1325
1326 for_each_cpu(i, &cpu_core_map[cpu])
1327 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1328 cpumask_clear(&cpu_core_map[cpu]);
1329
1330 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1331 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1332 cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1333
1334 c = &cpu_data(cpu);
1335
1336 c->core_id = 0;
1337 c->proc_id = -1;
1338
1339 smp_wmb();
1340
1341 /* Make sure no interrupts point to this cpu. */
1342 fixup_irqs();
1343
1344 local_irq_enable();
1345 mdelay(1);
1346 local_irq_disable();
1347
1348 ipi_call_lock();
1349 set_cpu_online(cpu, false);
1350 ipi_call_unlock();
1351
1352 cpu_map_rebuild();
1353
1354 return 0;
1355 }
1356
__cpu_die(unsigned int cpu)1357 void __cpu_die(unsigned int cpu)
1358 {
1359 int i;
1360
1361 for (i = 0; i < 100; i++) {
1362 smp_rmb();
1363 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1364 break;
1365 msleep(100);
1366 }
1367 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1368 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1369 } else {
1370 #if defined(CONFIG_SUN_LDOMS)
1371 unsigned long hv_err;
1372 int limit = 100;
1373
1374 do {
1375 hv_err = sun4v_cpu_stop(cpu);
1376 if (hv_err == HV_EOK) {
1377 set_cpu_present(cpu, false);
1378 break;
1379 }
1380 } while (--limit > 0);
1381 if (limit <= 0) {
1382 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1383 hv_err);
1384 }
1385 #endif
1386 }
1387 }
1388 #endif
1389
smp_cpus_done(unsigned int max_cpus)1390 void __init smp_cpus_done(unsigned int max_cpus)
1391 {
1392 pcr_arch_init();
1393 }
1394
smp_send_reschedule(int cpu)1395 void smp_send_reschedule(int cpu)
1396 {
1397 xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1398 cpumask_of(cpu));
1399 }
1400
smp_receive_signal_client(int irq,struct pt_regs * regs)1401 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1402 {
1403 clear_softint(1 << irq);
1404 scheduler_ipi();
1405 }
1406
1407 /* This is a nop because we capture all other cpus
1408 * anyways when making the PROM active.
1409 */
smp_send_stop(void)1410 void smp_send_stop(void)
1411 {
1412 }
1413
1414 /**
1415 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1416 * @cpu: cpu to allocate for
1417 * @size: size allocation in bytes
1418 * @align: alignment
1419 *
1420 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
1421 * does the right thing for NUMA regardless of the current
1422 * configuration.
1423 *
1424 * RETURNS:
1425 * Pointer to the allocated area on success, NULL on failure.
1426 */
pcpu_alloc_bootmem(unsigned int cpu,size_t size,size_t align)1427 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1428 size_t align)
1429 {
1430 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1431 #ifdef CONFIG_NEED_MULTIPLE_NODES
1432 int node = cpu_to_node(cpu);
1433 void *ptr;
1434
1435 if (!node_online(node) || !NODE_DATA(node)) {
1436 ptr = __alloc_bootmem(size, align, goal);
1437 pr_info("cpu %d has no node %d or node-local memory\n",
1438 cpu, node);
1439 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1440 cpu, size, __pa(ptr));
1441 } else {
1442 ptr = __alloc_bootmem_node(NODE_DATA(node),
1443 size, align, goal);
1444 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1445 "%016lx\n", cpu, size, node, __pa(ptr));
1446 }
1447 return ptr;
1448 #else
1449 return __alloc_bootmem(size, align, goal);
1450 #endif
1451 }
1452
pcpu_free_bootmem(void * ptr,size_t size)1453 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1454 {
1455 free_bootmem(__pa(ptr), size);
1456 }
1457
pcpu_cpu_distance(unsigned int from,unsigned int to)1458 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1459 {
1460 if (cpu_to_node(from) == cpu_to_node(to))
1461 return LOCAL_DISTANCE;
1462 else
1463 return REMOTE_DISTANCE;
1464 }
1465
pcpu_populate_pte(unsigned long addr)1466 static void __init pcpu_populate_pte(unsigned long addr)
1467 {
1468 pgd_t *pgd = pgd_offset_k(addr);
1469 pud_t *pud;
1470 pmd_t *pmd;
1471
1472 pud = pud_offset(pgd, addr);
1473 if (pud_none(*pud)) {
1474 pmd_t *new;
1475
1476 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1477 pud_populate(&init_mm, pud, new);
1478 }
1479
1480 pmd = pmd_offset(pud, addr);
1481 if (!pmd_present(*pmd)) {
1482 pte_t *new;
1483
1484 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1485 pmd_populate_kernel(&init_mm, pmd, new);
1486 }
1487 }
1488
setup_per_cpu_areas(void)1489 void __init setup_per_cpu_areas(void)
1490 {
1491 unsigned long delta;
1492 unsigned int cpu;
1493 int rc = -EINVAL;
1494
1495 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1496 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1497 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1498 pcpu_cpu_distance,
1499 pcpu_alloc_bootmem,
1500 pcpu_free_bootmem);
1501 if (rc)
1502 pr_warning("PERCPU: %s allocator failed (%d), "
1503 "falling back to page size\n",
1504 pcpu_fc_names[pcpu_chosen_fc], rc);
1505 }
1506 if (rc < 0)
1507 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1508 pcpu_alloc_bootmem,
1509 pcpu_free_bootmem,
1510 pcpu_populate_pte);
1511 if (rc < 0)
1512 panic("cannot initialize percpu area (err=%d)", rc);
1513
1514 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1515 for_each_possible_cpu(cpu)
1516 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1517
1518 /* Setup %g5 for the boot cpu. */
1519 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1520
1521 of_fill_in_cpu_data();
1522 if (tlb_type == hypervisor)
1523 mdesc_fill_in_cpu_data(cpu_all_mask);
1524 }
1525