1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2017, Microsoft Corporation.
4 *
5 * Author(s): Long Li <longli@microsoft.com>
6 */
7 #include <linux/module.h>
8 #include <linux/highmem.h>
9 #include "smbdirect.h"
10 #include "cifs_debug.h"
11 #include "cifsproto.h"
12 #include "smb2proto.h"
13
14 static struct smbd_response *get_empty_queue_buffer(
15 struct smbd_connection *info);
16 static struct smbd_response *get_receive_buffer(
17 struct smbd_connection *info);
18 static void put_receive_buffer(
19 struct smbd_connection *info,
20 struct smbd_response *response);
21 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
22 static void destroy_receive_buffers(struct smbd_connection *info);
23
24 static void put_empty_packet(
25 struct smbd_connection *info, struct smbd_response *response);
26 static void enqueue_reassembly(
27 struct smbd_connection *info,
28 struct smbd_response *response, int data_length);
29 static struct smbd_response *_get_first_reassembly(
30 struct smbd_connection *info);
31
32 static int smbd_post_recv(
33 struct smbd_connection *info,
34 struct smbd_response *response);
35
36 static int smbd_post_send_empty(struct smbd_connection *info);
37 static int smbd_post_send_data(
38 struct smbd_connection *info,
39 struct kvec *iov, int n_vec, int remaining_data_length);
40 static int smbd_post_send_page(struct smbd_connection *info,
41 struct page *page, unsigned long offset,
42 size_t size, int remaining_data_length);
43
44 static void destroy_mr_list(struct smbd_connection *info);
45 static int allocate_mr_list(struct smbd_connection *info);
46
47 /* SMBD version number */
48 #define SMBD_V1 0x0100
49
50 /* Port numbers for SMBD transport */
51 #define SMB_PORT 445
52 #define SMBD_PORT 5445
53
54 /* Address lookup and resolve timeout in ms */
55 #define RDMA_RESOLVE_TIMEOUT 5000
56
57 /* SMBD negotiation timeout in seconds */
58 #define SMBD_NEGOTIATE_TIMEOUT 120
59
60 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
61 #define SMBD_MIN_RECEIVE_SIZE 128
62 #define SMBD_MIN_FRAGMENTED_SIZE 131072
63
64 /*
65 * Default maximum number of RDMA read/write outstanding on this connection
66 * This value is possibly decreased during QP creation on hardware limit
67 */
68 #define SMBD_CM_RESPONDER_RESOURCES 32
69
70 /* Maximum number of retries on data transfer operations */
71 #define SMBD_CM_RETRY 6
72 /* No need to retry on Receiver Not Ready since SMBD manages credits */
73 #define SMBD_CM_RNR_RETRY 0
74
75 /*
76 * User configurable initial values per SMBD transport connection
77 * as defined in [MS-SMBD] 3.1.1.1
78 * Those may change after a SMBD negotiation
79 */
80 /* The local peer's maximum number of credits to grant to the peer */
81 int smbd_receive_credit_max = 255;
82
83 /* The remote peer's credit request of local peer */
84 int smbd_send_credit_target = 255;
85
86 /* The maximum single message size can be sent to remote peer */
87 int smbd_max_send_size = 1364;
88
89 /* The maximum fragmented upper-layer payload receive size supported */
90 int smbd_max_fragmented_recv_size = 1024 * 1024;
91
92 /* The maximum single-message size which can be received */
93 int smbd_max_receive_size = 8192;
94
95 /* The timeout to initiate send of a keepalive message on idle */
96 int smbd_keep_alive_interval = 120;
97
98 /*
99 * User configurable initial values for RDMA transport
100 * The actual values used may be lower and are limited to hardware capabilities
101 */
102 /* Default maximum number of SGEs in a RDMA write/read */
103 int smbd_max_frmr_depth = 2048;
104
105 /* If payload is less than this byte, use RDMA send/recv not read/write */
106 int rdma_readwrite_threshold = 4096;
107
108 /* Transport logging functions
109 * Logging are defined as classes. They can be OR'ed to define the actual
110 * logging level via module parameter smbd_logging_class
111 * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
112 * log_rdma_event()
113 */
114 #define LOG_OUTGOING 0x1
115 #define LOG_INCOMING 0x2
116 #define LOG_READ 0x4
117 #define LOG_WRITE 0x8
118 #define LOG_RDMA_SEND 0x10
119 #define LOG_RDMA_RECV 0x20
120 #define LOG_KEEP_ALIVE 0x40
121 #define LOG_RDMA_EVENT 0x80
122 #define LOG_RDMA_MR 0x100
123 static unsigned int smbd_logging_class;
124 module_param(smbd_logging_class, uint, 0644);
125 MODULE_PARM_DESC(smbd_logging_class,
126 "Logging class for SMBD transport 0x0 to 0x100");
127
128 #define ERR 0x0
129 #define INFO 0x1
130 static unsigned int smbd_logging_level = ERR;
131 module_param(smbd_logging_level, uint, 0644);
132 MODULE_PARM_DESC(smbd_logging_level,
133 "Logging level for SMBD transport, 0 (default): error, 1: info");
134
135 #define log_rdma(level, class, fmt, args...) \
136 do { \
137 if (level <= smbd_logging_level || class & smbd_logging_class) \
138 cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
139 } while (0)
140
141 #define log_outgoing(level, fmt, args...) \
142 log_rdma(level, LOG_OUTGOING, fmt, ##args)
143 #define log_incoming(level, fmt, args...) \
144 log_rdma(level, LOG_INCOMING, fmt, ##args)
145 #define log_read(level, fmt, args...) log_rdma(level, LOG_READ, fmt, ##args)
146 #define log_write(level, fmt, args...) log_rdma(level, LOG_WRITE, fmt, ##args)
147 #define log_rdma_send(level, fmt, args...) \
148 log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
149 #define log_rdma_recv(level, fmt, args...) \
150 log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
151 #define log_keep_alive(level, fmt, args...) \
152 log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
153 #define log_rdma_event(level, fmt, args...) \
154 log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
155 #define log_rdma_mr(level, fmt, args...) \
156 log_rdma(level, LOG_RDMA_MR, fmt, ##args)
157
smbd_disconnect_rdma_work(struct work_struct * work)158 static void smbd_disconnect_rdma_work(struct work_struct *work)
159 {
160 struct smbd_connection *info =
161 container_of(work, struct smbd_connection, disconnect_work);
162
163 if (info->transport_status == SMBD_CONNECTED) {
164 info->transport_status = SMBD_DISCONNECTING;
165 rdma_disconnect(info->id);
166 }
167 }
168
smbd_disconnect_rdma_connection(struct smbd_connection * info)169 static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
170 {
171 queue_work(info->workqueue, &info->disconnect_work);
172 }
173
174 /* Upcall from RDMA CM */
smbd_conn_upcall(struct rdma_cm_id * id,struct rdma_cm_event * event)175 static int smbd_conn_upcall(
176 struct rdma_cm_id *id, struct rdma_cm_event *event)
177 {
178 struct smbd_connection *info = id->context;
179
180 log_rdma_event(INFO, "event=%d status=%d\n",
181 event->event, event->status);
182
183 switch (event->event) {
184 case RDMA_CM_EVENT_ADDR_RESOLVED:
185 case RDMA_CM_EVENT_ROUTE_RESOLVED:
186 info->ri_rc = 0;
187 complete(&info->ri_done);
188 break;
189
190 case RDMA_CM_EVENT_ADDR_ERROR:
191 info->ri_rc = -EHOSTUNREACH;
192 complete(&info->ri_done);
193 break;
194
195 case RDMA_CM_EVENT_ROUTE_ERROR:
196 info->ri_rc = -ENETUNREACH;
197 complete(&info->ri_done);
198 break;
199
200 case RDMA_CM_EVENT_ESTABLISHED:
201 log_rdma_event(INFO, "connected event=%d\n", event->event);
202 info->transport_status = SMBD_CONNECTED;
203 wake_up_interruptible(&info->conn_wait);
204 break;
205
206 case RDMA_CM_EVENT_CONNECT_ERROR:
207 case RDMA_CM_EVENT_UNREACHABLE:
208 case RDMA_CM_EVENT_REJECTED:
209 log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
210 info->transport_status = SMBD_DISCONNECTED;
211 wake_up_interruptible(&info->conn_wait);
212 break;
213
214 case RDMA_CM_EVENT_DEVICE_REMOVAL:
215 case RDMA_CM_EVENT_DISCONNECTED:
216 /* This happenes when we fail the negotiation */
217 if (info->transport_status == SMBD_NEGOTIATE_FAILED) {
218 info->transport_status = SMBD_DISCONNECTED;
219 wake_up(&info->conn_wait);
220 break;
221 }
222
223 info->transport_status = SMBD_DISCONNECTED;
224 wake_up_interruptible(&info->disconn_wait);
225 wake_up_interruptible(&info->wait_reassembly_queue);
226 wake_up_interruptible_all(&info->wait_send_queue);
227 break;
228
229 default:
230 break;
231 }
232
233 return 0;
234 }
235
236 /* Upcall from RDMA QP */
237 static void
smbd_qp_async_error_upcall(struct ib_event * event,void * context)238 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
239 {
240 struct smbd_connection *info = context;
241
242 log_rdma_event(ERR, "%s on device %s info %p\n",
243 ib_event_msg(event->event), event->device->name, info);
244
245 switch (event->event) {
246 case IB_EVENT_CQ_ERR:
247 case IB_EVENT_QP_FATAL:
248 smbd_disconnect_rdma_connection(info);
249 break;
250
251 default:
252 break;
253 }
254 }
255
smbd_request_payload(struct smbd_request * request)256 static inline void *smbd_request_payload(struct smbd_request *request)
257 {
258 return (void *)request->packet;
259 }
260
smbd_response_payload(struct smbd_response * response)261 static inline void *smbd_response_payload(struct smbd_response *response)
262 {
263 return (void *)response->packet;
264 }
265
266 /* Called when a RDMA send is done */
send_done(struct ib_cq * cq,struct ib_wc * wc)267 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
268 {
269 int i;
270 struct smbd_request *request =
271 container_of(wc->wr_cqe, struct smbd_request, cqe);
272
273 log_rdma_send(INFO, "smbd_request %p completed wc->status=%d\n",
274 request, wc->status);
275
276 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
277 log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
278 wc->status, wc->opcode);
279 smbd_disconnect_rdma_connection(request->info);
280 }
281
282 for (i = 0; i < request->num_sge; i++)
283 ib_dma_unmap_single(request->info->id->device,
284 request->sge[i].addr,
285 request->sge[i].length,
286 DMA_TO_DEVICE);
287
288 if (atomic_dec_and_test(&request->info->send_pending))
289 wake_up(&request->info->wait_send_pending);
290
291 wake_up(&request->info->wait_post_send);
292
293 mempool_free(request, request->info->request_mempool);
294 }
295
dump_smbd_negotiate_resp(struct smbd_negotiate_resp * resp)296 static void dump_smbd_negotiate_resp(struct smbd_negotiate_resp *resp)
297 {
298 log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n",
299 resp->min_version, resp->max_version,
300 resp->negotiated_version, resp->credits_requested,
301 resp->credits_granted, resp->status,
302 resp->max_readwrite_size, resp->preferred_send_size,
303 resp->max_receive_size, resp->max_fragmented_size);
304 }
305
306 /*
307 * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
308 * response, packet_length: the negotiation response message
309 * return value: true if negotiation is a success, false if failed
310 */
process_negotiation_response(struct smbd_response * response,int packet_length)311 static bool process_negotiation_response(
312 struct smbd_response *response, int packet_length)
313 {
314 struct smbd_connection *info = response->info;
315 struct smbd_negotiate_resp *packet = smbd_response_payload(response);
316
317 if (packet_length < sizeof(struct smbd_negotiate_resp)) {
318 log_rdma_event(ERR,
319 "error: packet_length=%d\n", packet_length);
320 return false;
321 }
322
323 if (le16_to_cpu(packet->negotiated_version) != SMBD_V1) {
324 log_rdma_event(ERR, "error: negotiated_version=%x\n",
325 le16_to_cpu(packet->negotiated_version));
326 return false;
327 }
328 info->protocol = le16_to_cpu(packet->negotiated_version);
329
330 if (packet->credits_requested == 0) {
331 log_rdma_event(ERR, "error: credits_requested==0\n");
332 return false;
333 }
334 info->receive_credit_target = le16_to_cpu(packet->credits_requested);
335
336 if (packet->credits_granted == 0) {
337 log_rdma_event(ERR, "error: credits_granted==0\n");
338 return false;
339 }
340 atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
341
342 atomic_set(&info->receive_credits, 0);
343
344 if (le32_to_cpu(packet->preferred_send_size) > info->max_receive_size) {
345 log_rdma_event(ERR, "error: preferred_send_size=%d\n",
346 le32_to_cpu(packet->preferred_send_size));
347 return false;
348 }
349 info->max_receive_size = le32_to_cpu(packet->preferred_send_size);
350
351 if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
352 log_rdma_event(ERR, "error: max_receive_size=%d\n",
353 le32_to_cpu(packet->max_receive_size));
354 return false;
355 }
356 info->max_send_size = min_t(int, info->max_send_size,
357 le32_to_cpu(packet->max_receive_size));
358
359 if (le32_to_cpu(packet->max_fragmented_size) <
360 SMBD_MIN_FRAGMENTED_SIZE) {
361 log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
362 le32_to_cpu(packet->max_fragmented_size));
363 return false;
364 }
365 info->max_fragmented_send_size =
366 le32_to_cpu(packet->max_fragmented_size);
367 info->rdma_readwrite_threshold =
368 rdma_readwrite_threshold > info->max_fragmented_send_size ?
369 info->max_fragmented_send_size :
370 rdma_readwrite_threshold;
371
372
373 info->max_readwrite_size = min_t(u32,
374 le32_to_cpu(packet->max_readwrite_size),
375 info->max_frmr_depth * PAGE_SIZE);
376 info->max_frmr_depth = info->max_readwrite_size / PAGE_SIZE;
377
378 return true;
379 }
380
smbd_post_send_credits(struct work_struct * work)381 static void smbd_post_send_credits(struct work_struct *work)
382 {
383 int ret = 0;
384 int use_receive_queue = 1;
385 int rc;
386 struct smbd_response *response;
387 struct smbd_connection *info =
388 container_of(work, struct smbd_connection,
389 post_send_credits_work);
390
391 if (info->transport_status != SMBD_CONNECTED) {
392 wake_up(&info->wait_receive_queues);
393 return;
394 }
395
396 if (info->receive_credit_target >
397 atomic_read(&info->receive_credits)) {
398 while (true) {
399 if (use_receive_queue)
400 response = get_receive_buffer(info);
401 else
402 response = get_empty_queue_buffer(info);
403 if (!response) {
404 /* now switch to emtpy packet queue */
405 if (use_receive_queue) {
406 use_receive_queue = 0;
407 continue;
408 } else
409 break;
410 }
411
412 response->type = SMBD_TRANSFER_DATA;
413 response->first_segment = false;
414 rc = smbd_post_recv(info, response);
415 if (rc) {
416 log_rdma_recv(ERR,
417 "post_recv failed rc=%d\n", rc);
418 put_receive_buffer(info, response);
419 break;
420 }
421
422 ret++;
423 }
424 }
425
426 spin_lock(&info->lock_new_credits_offered);
427 info->new_credits_offered += ret;
428 spin_unlock(&info->lock_new_credits_offered);
429
430 /* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */
431 info->send_immediate = true;
432 if (atomic_read(&info->receive_credits) <
433 info->receive_credit_target - 1) {
434 if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
435 info->send_immediate) {
436 log_keep_alive(INFO, "send an empty message\n");
437 smbd_post_send_empty(info);
438 }
439 }
440 }
441
442 /* Called from softirq, when recv is done */
recv_done(struct ib_cq * cq,struct ib_wc * wc)443 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
444 {
445 struct smbd_data_transfer *data_transfer;
446 struct smbd_response *response =
447 container_of(wc->wr_cqe, struct smbd_response, cqe);
448 struct smbd_connection *info = response->info;
449 int data_length = 0;
450
451 log_rdma_recv(INFO, "response=%p type=%d wc status=%d wc opcode %d byte_len=%d pkey_index=%x\n",
452 response, response->type, wc->status, wc->opcode,
453 wc->byte_len, wc->pkey_index);
454
455 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
456 log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
457 wc->status, wc->opcode);
458 smbd_disconnect_rdma_connection(info);
459 goto error;
460 }
461
462 ib_dma_sync_single_for_cpu(
463 wc->qp->device,
464 response->sge.addr,
465 response->sge.length,
466 DMA_FROM_DEVICE);
467
468 switch (response->type) {
469 /* SMBD negotiation response */
470 case SMBD_NEGOTIATE_RESP:
471 dump_smbd_negotiate_resp(smbd_response_payload(response));
472 info->full_packet_received = true;
473 info->negotiate_done =
474 process_negotiation_response(response, wc->byte_len);
475 complete(&info->negotiate_completion);
476 break;
477
478 /* SMBD data transfer packet */
479 case SMBD_TRANSFER_DATA:
480 data_transfer = smbd_response_payload(response);
481 data_length = le32_to_cpu(data_transfer->data_length);
482
483 /*
484 * If this is a packet with data playload place the data in
485 * reassembly queue and wake up the reading thread
486 */
487 if (data_length) {
488 if (info->full_packet_received)
489 response->first_segment = true;
490
491 if (le32_to_cpu(data_transfer->remaining_data_length))
492 info->full_packet_received = false;
493 else
494 info->full_packet_received = true;
495
496 enqueue_reassembly(
497 info,
498 response,
499 data_length);
500 } else
501 put_empty_packet(info, response);
502
503 if (data_length)
504 wake_up_interruptible(&info->wait_reassembly_queue);
505
506 atomic_dec(&info->receive_credits);
507 info->receive_credit_target =
508 le16_to_cpu(data_transfer->credits_requested);
509 if (le16_to_cpu(data_transfer->credits_granted)) {
510 atomic_add(le16_to_cpu(data_transfer->credits_granted),
511 &info->send_credits);
512 /*
513 * We have new send credits granted from remote peer
514 * If any sender is waiting for credits, unblock it
515 */
516 wake_up_interruptible(&info->wait_send_queue);
517 }
518
519 log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n",
520 le16_to_cpu(data_transfer->flags),
521 le32_to_cpu(data_transfer->data_offset),
522 le32_to_cpu(data_transfer->data_length),
523 le32_to_cpu(data_transfer->remaining_data_length));
524
525 /* Send a KEEP_ALIVE response right away if requested */
526 info->keep_alive_requested = KEEP_ALIVE_NONE;
527 if (le16_to_cpu(data_transfer->flags) &
528 SMB_DIRECT_RESPONSE_REQUESTED) {
529 info->keep_alive_requested = KEEP_ALIVE_PENDING;
530 }
531
532 return;
533
534 default:
535 log_rdma_recv(ERR,
536 "unexpected response type=%d\n", response->type);
537 }
538
539 error:
540 put_receive_buffer(info, response);
541 }
542
smbd_create_id(struct smbd_connection * info,struct sockaddr * dstaddr,int port)543 static struct rdma_cm_id *smbd_create_id(
544 struct smbd_connection *info,
545 struct sockaddr *dstaddr, int port)
546 {
547 struct rdma_cm_id *id;
548 int rc;
549 __be16 *sport;
550
551 id = rdma_create_id(&init_net, smbd_conn_upcall, info,
552 RDMA_PS_TCP, IB_QPT_RC);
553 if (IS_ERR(id)) {
554 rc = PTR_ERR(id);
555 log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
556 return id;
557 }
558
559 if (dstaddr->sa_family == AF_INET6)
560 sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
561 else
562 sport = &((struct sockaddr_in *)dstaddr)->sin_port;
563
564 *sport = htons(port);
565
566 init_completion(&info->ri_done);
567 info->ri_rc = -ETIMEDOUT;
568
569 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
570 RDMA_RESOLVE_TIMEOUT);
571 if (rc) {
572 log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
573 goto out;
574 }
575 rc = wait_for_completion_interruptible_timeout(
576 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
577 /* e.g. if interrupted returns -ERESTARTSYS */
578 if (rc < 0) {
579 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
580 goto out;
581 }
582 rc = info->ri_rc;
583 if (rc) {
584 log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
585 goto out;
586 }
587
588 info->ri_rc = -ETIMEDOUT;
589 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
590 if (rc) {
591 log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
592 goto out;
593 }
594 rc = wait_for_completion_interruptible_timeout(
595 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
596 /* e.g. if interrupted returns -ERESTARTSYS */
597 if (rc < 0) {
598 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
599 goto out;
600 }
601 rc = info->ri_rc;
602 if (rc) {
603 log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
604 goto out;
605 }
606
607 return id;
608
609 out:
610 rdma_destroy_id(id);
611 return ERR_PTR(rc);
612 }
613
614 /*
615 * Test if FRWR (Fast Registration Work Requests) is supported on the device
616 * This implementation requries FRWR on RDMA read/write
617 * return value: true if it is supported
618 */
frwr_is_supported(struct ib_device_attr * attrs)619 static bool frwr_is_supported(struct ib_device_attr *attrs)
620 {
621 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
622 return false;
623 if (attrs->max_fast_reg_page_list_len == 0)
624 return false;
625 return true;
626 }
627
smbd_ia_open(struct smbd_connection * info,struct sockaddr * dstaddr,int port)628 static int smbd_ia_open(
629 struct smbd_connection *info,
630 struct sockaddr *dstaddr, int port)
631 {
632 int rc;
633
634 info->id = smbd_create_id(info, dstaddr, port);
635 if (IS_ERR(info->id)) {
636 rc = PTR_ERR(info->id);
637 goto out1;
638 }
639
640 if (!frwr_is_supported(&info->id->device->attrs)) {
641 log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n");
642 log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n",
643 info->id->device->attrs.device_cap_flags,
644 info->id->device->attrs.max_fast_reg_page_list_len);
645 rc = -EPROTONOSUPPORT;
646 goto out2;
647 }
648 info->max_frmr_depth = min_t(int,
649 smbd_max_frmr_depth,
650 info->id->device->attrs.max_fast_reg_page_list_len);
651 info->mr_type = IB_MR_TYPE_MEM_REG;
652 if (info->id->device->attrs.kernel_cap_flags & IBK_SG_GAPS_REG)
653 info->mr_type = IB_MR_TYPE_SG_GAPS;
654
655 info->pd = ib_alloc_pd(info->id->device, 0);
656 if (IS_ERR(info->pd)) {
657 rc = PTR_ERR(info->pd);
658 log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
659 goto out2;
660 }
661
662 return 0;
663
664 out2:
665 rdma_destroy_id(info->id);
666 info->id = NULL;
667
668 out1:
669 return rc;
670 }
671
672 /*
673 * Send a negotiation request message to the peer
674 * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
675 * After negotiation, the transport is connected and ready for
676 * carrying upper layer SMB payload
677 */
smbd_post_send_negotiate_req(struct smbd_connection * info)678 static int smbd_post_send_negotiate_req(struct smbd_connection *info)
679 {
680 struct ib_send_wr send_wr;
681 int rc = -ENOMEM;
682 struct smbd_request *request;
683 struct smbd_negotiate_req *packet;
684
685 request = mempool_alloc(info->request_mempool, GFP_KERNEL);
686 if (!request)
687 return rc;
688
689 request->info = info;
690
691 packet = smbd_request_payload(request);
692 packet->min_version = cpu_to_le16(SMBD_V1);
693 packet->max_version = cpu_to_le16(SMBD_V1);
694 packet->reserved = 0;
695 packet->credits_requested = cpu_to_le16(info->send_credit_target);
696 packet->preferred_send_size = cpu_to_le32(info->max_send_size);
697 packet->max_receive_size = cpu_to_le32(info->max_receive_size);
698 packet->max_fragmented_size =
699 cpu_to_le32(info->max_fragmented_recv_size);
700
701 request->num_sge = 1;
702 request->sge[0].addr = ib_dma_map_single(
703 info->id->device, (void *)packet,
704 sizeof(*packet), DMA_TO_DEVICE);
705 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
706 rc = -EIO;
707 goto dma_mapping_failed;
708 }
709
710 request->sge[0].length = sizeof(*packet);
711 request->sge[0].lkey = info->pd->local_dma_lkey;
712
713 ib_dma_sync_single_for_device(
714 info->id->device, request->sge[0].addr,
715 request->sge[0].length, DMA_TO_DEVICE);
716
717 request->cqe.done = send_done;
718
719 send_wr.next = NULL;
720 send_wr.wr_cqe = &request->cqe;
721 send_wr.sg_list = request->sge;
722 send_wr.num_sge = request->num_sge;
723 send_wr.opcode = IB_WR_SEND;
724 send_wr.send_flags = IB_SEND_SIGNALED;
725
726 log_rdma_send(INFO, "sge addr=%llx length=%x lkey=%x\n",
727 request->sge[0].addr,
728 request->sge[0].length, request->sge[0].lkey);
729
730 atomic_inc(&info->send_pending);
731 rc = ib_post_send(info->id->qp, &send_wr, NULL);
732 if (!rc)
733 return 0;
734
735 /* if we reach here, post send failed */
736 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
737 atomic_dec(&info->send_pending);
738 ib_dma_unmap_single(info->id->device, request->sge[0].addr,
739 request->sge[0].length, DMA_TO_DEVICE);
740
741 smbd_disconnect_rdma_connection(info);
742
743 dma_mapping_failed:
744 mempool_free(request, info->request_mempool);
745 return rc;
746 }
747
748 /*
749 * Extend the credits to remote peer
750 * This implements [MS-SMBD] 3.1.5.9
751 * The idea is that we should extend credits to remote peer as quickly as
752 * it's allowed, to maintain data flow. We allocate as much receive
753 * buffer as possible, and extend the receive credits to remote peer
754 * return value: the new credtis being granted.
755 */
manage_credits_prior_sending(struct smbd_connection * info)756 static int manage_credits_prior_sending(struct smbd_connection *info)
757 {
758 int new_credits;
759
760 spin_lock(&info->lock_new_credits_offered);
761 new_credits = info->new_credits_offered;
762 info->new_credits_offered = 0;
763 spin_unlock(&info->lock_new_credits_offered);
764
765 return new_credits;
766 }
767
768 /*
769 * Check if we need to send a KEEP_ALIVE message
770 * The idle connection timer triggers a KEEP_ALIVE message when expires
771 * SMB_DIRECT_RESPONSE_REQUESTED is set in the message flag to have peer send
772 * back a response.
773 * return value:
774 * 1 if SMB_DIRECT_RESPONSE_REQUESTED needs to be set
775 * 0: otherwise
776 */
manage_keep_alive_before_sending(struct smbd_connection * info)777 static int manage_keep_alive_before_sending(struct smbd_connection *info)
778 {
779 if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
780 info->keep_alive_requested = KEEP_ALIVE_SENT;
781 return 1;
782 }
783 return 0;
784 }
785
786 /* Post the send request */
smbd_post_send(struct smbd_connection * info,struct smbd_request * request)787 static int smbd_post_send(struct smbd_connection *info,
788 struct smbd_request *request)
789 {
790 struct ib_send_wr send_wr;
791 int rc, i;
792
793 for (i = 0; i < request->num_sge; i++) {
794 log_rdma_send(INFO,
795 "rdma_request sge[%d] addr=%llu length=%u\n",
796 i, request->sge[i].addr, request->sge[i].length);
797 ib_dma_sync_single_for_device(
798 info->id->device,
799 request->sge[i].addr,
800 request->sge[i].length,
801 DMA_TO_DEVICE);
802 }
803
804 request->cqe.done = send_done;
805
806 send_wr.next = NULL;
807 send_wr.wr_cqe = &request->cqe;
808 send_wr.sg_list = request->sge;
809 send_wr.num_sge = request->num_sge;
810 send_wr.opcode = IB_WR_SEND;
811 send_wr.send_flags = IB_SEND_SIGNALED;
812
813 rc = ib_post_send(info->id->qp, &send_wr, NULL);
814 if (rc) {
815 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
816 smbd_disconnect_rdma_connection(info);
817 rc = -EAGAIN;
818 } else
819 /* Reset timer for idle connection after packet is sent */
820 mod_delayed_work(info->workqueue, &info->idle_timer_work,
821 info->keep_alive_interval*HZ);
822
823 return rc;
824 }
825
smbd_post_send_sgl(struct smbd_connection * info,struct scatterlist * sgl,int data_length,int remaining_data_length)826 static int smbd_post_send_sgl(struct smbd_connection *info,
827 struct scatterlist *sgl, int data_length, int remaining_data_length)
828 {
829 int num_sgs;
830 int i, rc;
831 int header_length;
832 struct smbd_request *request;
833 struct smbd_data_transfer *packet;
834 int new_credits;
835 struct scatterlist *sg;
836
837 wait_credit:
838 /* Wait for send credits. A SMBD packet needs one credit */
839 rc = wait_event_interruptible(info->wait_send_queue,
840 atomic_read(&info->send_credits) > 0 ||
841 info->transport_status != SMBD_CONNECTED);
842 if (rc)
843 goto err_wait_credit;
844
845 if (info->transport_status != SMBD_CONNECTED) {
846 log_outgoing(ERR, "disconnected not sending on wait_credit\n");
847 rc = -EAGAIN;
848 goto err_wait_credit;
849 }
850 if (unlikely(atomic_dec_return(&info->send_credits) < 0)) {
851 atomic_inc(&info->send_credits);
852 goto wait_credit;
853 }
854
855 wait_send_queue:
856 wait_event(info->wait_post_send,
857 atomic_read(&info->send_pending) < info->send_credit_target ||
858 info->transport_status != SMBD_CONNECTED);
859
860 if (info->transport_status != SMBD_CONNECTED) {
861 log_outgoing(ERR, "disconnected not sending on wait_send_queue\n");
862 rc = -EAGAIN;
863 goto err_wait_send_queue;
864 }
865
866 if (unlikely(atomic_inc_return(&info->send_pending) >
867 info->send_credit_target)) {
868 atomic_dec(&info->send_pending);
869 goto wait_send_queue;
870 }
871
872 request = mempool_alloc(info->request_mempool, GFP_KERNEL);
873 if (!request) {
874 rc = -ENOMEM;
875 goto err_alloc;
876 }
877
878 request->info = info;
879
880 /* Fill in the packet header */
881 packet = smbd_request_payload(request);
882 packet->credits_requested = cpu_to_le16(info->send_credit_target);
883
884 new_credits = manage_credits_prior_sending(info);
885 atomic_add(new_credits, &info->receive_credits);
886 packet->credits_granted = cpu_to_le16(new_credits);
887
888 info->send_immediate = false;
889
890 packet->flags = 0;
891 if (manage_keep_alive_before_sending(info))
892 packet->flags |= cpu_to_le16(SMB_DIRECT_RESPONSE_REQUESTED);
893
894 packet->reserved = 0;
895 if (!data_length)
896 packet->data_offset = 0;
897 else
898 packet->data_offset = cpu_to_le32(24);
899 packet->data_length = cpu_to_le32(data_length);
900 packet->remaining_data_length = cpu_to_le32(remaining_data_length);
901 packet->padding = 0;
902
903 log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n",
904 le16_to_cpu(packet->credits_requested),
905 le16_to_cpu(packet->credits_granted),
906 le32_to_cpu(packet->data_offset),
907 le32_to_cpu(packet->data_length),
908 le32_to_cpu(packet->remaining_data_length));
909
910 /* Map the packet to DMA */
911 header_length = sizeof(struct smbd_data_transfer);
912 /* If this is a packet without payload, don't send padding */
913 if (!data_length)
914 header_length = offsetof(struct smbd_data_transfer, padding);
915
916 request->num_sge = 1;
917 request->sge[0].addr = ib_dma_map_single(info->id->device,
918 (void *)packet,
919 header_length,
920 DMA_TO_DEVICE);
921 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
922 rc = -EIO;
923 request->sge[0].addr = 0;
924 goto err_dma;
925 }
926
927 request->sge[0].length = header_length;
928 request->sge[0].lkey = info->pd->local_dma_lkey;
929
930 /* Fill in the packet data payload */
931 num_sgs = sgl ? sg_nents(sgl) : 0;
932 for_each_sg(sgl, sg, num_sgs, i) {
933 request->sge[i+1].addr =
934 ib_dma_map_page(info->id->device, sg_page(sg),
935 sg->offset, sg->length, DMA_TO_DEVICE);
936 if (ib_dma_mapping_error(
937 info->id->device, request->sge[i+1].addr)) {
938 rc = -EIO;
939 request->sge[i+1].addr = 0;
940 goto err_dma;
941 }
942 request->sge[i+1].length = sg->length;
943 request->sge[i+1].lkey = info->pd->local_dma_lkey;
944 request->num_sge++;
945 }
946
947 rc = smbd_post_send(info, request);
948 if (!rc)
949 return 0;
950
951 err_dma:
952 for (i = 0; i < request->num_sge; i++)
953 if (request->sge[i].addr)
954 ib_dma_unmap_single(info->id->device,
955 request->sge[i].addr,
956 request->sge[i].length,
957 DMA_TO_DEVICE);
958 mempool_free(request, info->request_mempool);
959
960 /* roll back receive credits and credits to be offered */
961 spin_lock(&info->lock_new_credits_offered);
962 info->new_credits_offered += new_credits;
963 spin_unlock(&info->lock_new_credits_offered);
964 atomic_sub(new_credits, &info->receive_credits);
965
966 err_alloc:
967 if (atomic_dec_and_test(&info->send_pending))
968 wake_up(&info->wait_send_pending);
969
970 err_wait_send_queue:
971 /* roll back send credits and pending */
972 atomic_inc(&info->send_credits);
973
974 err_wait_credit:
975 return rc;
976 }
977
978 /*
979 * Send a page
980 * page: the page to send
981 * offset: offset in the page to send
982 * size: length in the page to send
983 * remaining_data_length: remaining data to send in this payload
984 */
smbd_post_send_page(struct smbd_connection * info,struct page * page,unsigned long offset,size_t size,int remaining_data_length)985 static int smbd_post_send_page(struct smbd_connection *info, struct page *page,
986 unsigned long offset, size_t size, int remaining_data_length)
987 {
988 struct scatterlist sgl;
989
990 sg_init_table(&sgl, 1);
991 sg_set_page(&sgl, page, size, offset);
992
993 return smbd_post_send_sgl(info, &sgl, size, remaining_data_length);
994 }
995
996 /*
997 * Send an empty message
998 * Empty message is used to extend credits to peer to for keep live
999 * while there is no upper layer payload to send at the time
1000 */
smbd_post_send_empty(struct smbd_connection * info)1001 static int smbd_post_send_empty(struct smbd_connection *info)
1002 {
1003 info->count_send_empty++;
1004 return smbd_post_send_sgl(info, NULL, 0, 0);
1005 }
1006
1007 /*
1008 * Send a data buffer
1009 * iov: the iov array describing the data buffers
1010 * n_vec: number of iov array
1011 * remaining_data_length: remaining data to send following this packet
1012 * in segmented SMBD packet
1013 */
smbd_post_send_data(struct smbd_connection * info,struct kvec * iov,int n_vec,int remaining_data_length)1014 static int smbd_post_send_data(
1015 struct smbd_connection *info, struct kvec *iov, int n_vec,
1016 int remaining_data_length)
1017 {
1018 int i;
1019 u32 data_length = 0;
1020 struct scatterlist sgl[SMBDIRECT_MAX_SGE];
1021
1022 if (n_vec > SMBDIRECT_MAX_SGE) {
1023 cifs_dbg(VFS, "Can't fit data to SGL, n_vec=%d\n", n_vec);
1024 return -EINVAL;
1025 }
1026
1027 sg_init_table(sgl, n_vec);
1028 for (i = 0; i < n_vec; i++) {
1029 data_length += iov[i].iov_len;
1030 sg_set_buf(&sgl[i], iov[i].iov_base, iov[i].iov_len);
1031 }
1032
1033 return smbd_post_send_sgl(info, sgl, data_length, remaining_data_length);
1034 }
1035
1036 /*
1037 * Post a receive request to the transport
1038 * The remote peer can only send data when a receive request is posted
1039 * The interaction is controlled by send/receive credit system
1040 */
smbd_post_recv(struct smbd_connection * info,struct smbd_response * response)1041 static int smbd_post_recv(
1042 struct smbd_connection *info, struct smbd_response *response)
1043 {
1044 struct ib_recv_wr recv_wr;
1045 int rc = -EIO;
1046
1047 response->sge.addr = ib_dma_map_single(
1048 info->id->device, response->packet,
1049 info->max_receive_size, DMA_FROM_DEVICE);
1050 if (ib_dma_mapping_error(info->id->device, response->sge.addr))
1051 return rc;
1052
1053 response->sge.length = info->max_receive_size;
1054 response->sge.lkey = info->pd->local_dma_lkey;
1055
1056 response->cqe.done = recv_done;
1057
1058 recv_wr.wr_cqe = &response->cqe;
1059 recv_wr.next = NULL;
1060 recv_wr.sg_list = &response->sge;
1061 recv_wr.num_sge = 1;
1062
1063 rc = ib_post_recv(info->id->qp, &recv_wr, NULL);
1064 if (rc) {
1065 ib_dma_unmap_single(info->id->device, response->sge.addr,
1066 response->sge.length, DMA_FROM_DEVICE);
1067 smbd_disconnect_rdma_connection(info);
1068 log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1069 }
1070
1071 return rc;
1072 }
1073
1074 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
smbd_negotiate(struct smbd_connection * info)1075 static int smbd_negotiate(struct smbd_connection *info)
1076 {
1077 int rc;
1078 struct smbd_response *response = get_receive_buffer(info);
1079
1080 response->type = SMBD_NEGOTIATE_RESP;
1081 rc = smbd_post_recv(info, response);
1082 log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=%llx iov.length=%x iov.lkey=%x\n",
1083 rc, response->sge.addr,
1084 response->sge.length, response->sge.lkey);
1085 if (rc)
1086 return rc;
1087
1088 init_completion(&info->negotiate_completion);
1089 info->negotiate_done = false;
1090 rc = smbd_post_send_negotiate_req(info);
1091 if (rc)
1092 return rc;
1093
1094 rc = wait_for_completion_interruptible_timeout(
1095 &info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1096 log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1097
1098 if (info->negotiate_done)
1099 return 0;
1100
1101 if (rc == 0)
1102 rc = -ETIMEDOUT;
1103 else if (rc == -ERESTARTSYS)
1104 rc = -EINTR;
1105 else
1106 rc = -ENOTCONN;
1107
1108 return rc;
1109 }
1110
put_empty_packet(struct smbd_connection * info,struct smbd_response * response)1111 static void put_empty_packet(
1112 struct smbd_connection *info, struct smbd_response *response)
1113 {
1114 spin_lock(&info->empty_packet_queue_lock);
1115 list_add_tail(&response->list, &info->empty_packet_queue);
1116 info->count_empty_packet_queue++;
1117 spin_unlock(&info->empty_packet_queue_lock);
1118
1119 queue_work(info->workqueue, &info->post_send_credits_work);
1120 }
1121
1122 /*
1123 * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1124 * This is a queue for reassembling upper layer payload and present to upper
1125 * layer. All the inncoming payload go to the reassembly queue, regardless of
1126 * if reassembly is required. The uuper layer code reads from the queue for all
1127 * incoming payloads.
1128 * Put a received packet to the reassembly queue
1129 * response: the packet received
1130 * data_length: the size of payload in this packet
1131 */
enqueue_reassembly(struct smbd_connection * info,struct smbd_response * response,int data_length)1132 static void enqueue_reassembly(
1133 struct smbd_connection *info,
1134 struct smbd_response *response,
1135 int data_length)
1136 {
1137 spin_lock(&info->reassembly_queue_lock);
1138 list_add_tail(&response->list, &info->reassembly_queue);
1139 info->reassembly_queue_length++;
1140 /*
1141 * Make sure reassembly_data_length is updated after list and
1142 * reassembly_queue_length are updated. On the dequeue side
1143 * reassembly_data_length is checked without a lock to determine
1144 * if reassembly_queue_length and list is up to date
1145 */
1146 virt_wmb();
1147 info->reassembly_data_length += data_length;
1148 spin_unlock(&info->reassembly_queue_lock);
1149 info->count_reassembly_queue++;
1150 info->count_enqueue_reassembly_queue++;
1151 }
1152
1153 /*
1154 * Get the first entry at the front of reassembly queue
1155 * Caller is responsible for locking
1156 * return value: the first entry if any, NULL if queue is empty
1157 */
_get_first_reassembly(struct smbd_connection * info)1158 static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
1159 {
1160 struct smbd_response *ret = NULL;
1161
1162 if (!list_empty(&info->reassembly_queue)) {
1163 ret = list_first_entry(
1164 &info->reassembly_queue,
1165 struct smbd_response, list);
1166 }
1167 return ret;
1168 }
1169
get_empty_queue_buffer(struct smbd_connection * info)1170 static struct smbd_response *get_empty_queue_buffer(
1171 struct smbd_connection *info)
1172 {
1173 struct smbd_response *ret = NULL;
1174 unsigned long flags;
1175
1176 spin_lock_irqsave(&info->empty_packet_queue_lock, flags);
1177 if (!list_empty(&info->empty_packet_queue)) {
1178 ret = list_first_entry(
1179 &info->empty_packet_queue,
1180 struct smbd_response, list);
1181 list_del(&ret->list);
1182 info->count_empty_packet_queue--;
1183 }
1184 spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags);
1185
1186 return ret;
1187 }
1188
1189 /*
1190 * Get a receive buffer
1191 * For each remote send, we need to post a receive. The receive buffers are
1192 * pre-allocated in advance.
1193 * return value: the receive buffer, NULL if none is available
1194 */
get_receive_buffer(struct smbd_connection * info)1195 static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
1196 {
1197 struct smbd_response *ret = NULL;
1198 unsigned long flags;
1199
1200 spin_lock_irqsave(&info->receive_queue_lock, flags);
1201 if (!list_empty(&info->receive_queue)) {
1202 ret = list_first_entry(
1203 &info->receive_queue,
1204 struct smbd_response, list);
1205 list_del(&ret->list);
1206 info->count_receive_queue--;
1207 info->count_get_receive_buffer++;
1208 }
1209 spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1210
1211 return ret;
1212 }
1213
1214 /*
1215 * Return a receive buffer
1216 * Upon returning of a receive buffer, we can post new receive and extend
1217 * more receive credits to remote peer. This is done immediately after a
1218 * receive buffer is returned.
1219 */
put_receive_buffer(struct smbd_connection * info,struct smbd_response * response)1220 static void put_receive_buffer(
1221 struct smbd_connection *info, struct smbd_response *response)
1222 {
1223 unsigned long flags;
1224
1225 ib_dma_unmap_single(info->id->device, response->sge.addr,
1226 response->sge.length, DMA_FROM_DEVICE);
1227
1228 spin_lock_irqsave(&info->receive_queue_lock, flags);
1229 list_add_tail(&response->list, &info->receive_queue);
1230 info->count_receive_queue++;
1231 info->count_put_receive_buffer++;
1232 spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1233
1234 queue_work(info->workqueue, &info->post_send_credits_work);
1235 }
1236
1237 /* Preallocate all receive buffer on transport establishment */
allocate_receive_buffers(struct smbd_connection * info,int num_buf)1238 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1239 {
1240 int i;
1241 struct smbd_response *response;
1242
1243 INIT_LIST_HEAD(&info->reassembly_queue);
1244 spin_lock_init(&info->reassembly_queue_lock);
1245 info->reassembly_data_length = 0;
1246 info->reassembly_queue_length = 0;
1247
1248 INIT_LIST_HEAD(&info->receive_queue);
1249 spin_lock_init(&info->receive_queue_lock);
1250 info->count_receive_queue = 0;
1251
1252 INIT_LIST_HEAD(&info->empty_packet_queue);
1253 spin_lock_init(&info->empty_packet_queue_lock);
1254 info->count_empty_packet_queue = 0;
1255
1256 init_waitqueue_head(&info->wait_receive_queues);
1257
1258 for (i = 0; i < num_buf; i++) {
1259 response = mempool_alloc(info->response_mempool, GFP_KERNEL);
1260 if (!response)
1261 goto allocate_failed;
1262
1263 response->info = info;
1264 list_add_tail(&response->list, &info->receive_queue);
1265 info->count_receive_queue++;
1266 }
1267
1268 return 0;
1269
1270 allocate_failed:
1271 while (!list_empty(&info->receive_queue)) {
1272 response = list_first_entry(
1273 &info->receive_queue,
1274 struct smbd_response, list);
1275 list_del(&response->list);
1276 info->count_receive_queue--;
1277
1278 mempool_free(response, info->response_mempool);
1279 }
1280 return -ENOMEM;
1281 }
1282
destroy_receive_buffers(struct smbd_connection * info)1283 static void destroy_receive_buffers(struct smbd_connection *info)
1284 {
1285 struct smbd_response *response;
1286
1287 while ((response = get_receive_buffer(info)))
1288 mempool_free(response, info->response_mempool);
1289
1290 while ((response = get_empty_queue_buffer(info)))
1291 mempool_free(response, info->response_mempool);
1292 }
1293
1294 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
idle_connection_timer(struct work_struct * work)1295 static void idle_connection_timer(struct work_struct *work)
1296 {
1297 struct smbd_connection *info = container_of(
1298 work, struct smbd_connection,
1299 idle_timer_work.work);
1300
1301 if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1302 log_keep_alive(ERR,
1303 "error status info->keep_alive_requested=%d\n",
1304 info->keep_alive_requested);
1305 smbd_disconnect_rdma_connection(info);
1306 return;
1307 }
1308
1309 log_keep_alive(INFO, "about to send an empty idle message\n");
1310 smbd_post_send_empty(info);
1311
1312 /* Setup the next idle timeout work */
1313 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1314 info->keep_alive_interval*HZ);
1315 }
1316
1317 /*
1318 * Destroy the transport and related RDMA and memory resources
1319 * Need to go through all the pending counters and make sure on one is using
1320 * the transport while it is destroyed
1321 */
smbd_destroy(struct TCP_Server_Info * server)1322 void smbd_destroy(struct TCP_Server_Info *server)
1323 {
1324 struct smbd_connection *info = server->smbd_conn;
1325 struct smbd_response *response;
1326 unsigned long flags;
1327
1328 if (!info) {
1329 log_rdma_event(INFO, "rdma session already destroyed\n");
1330 return;
1331 }
1332
1333 log_rdma_event(INFO, "destroying rdma session\n");
1334 if (info->transport_status != SMBD_DISCONNECTED) {
1335 rdma_disconnect(server->smbd_conn->id);
1336 log_rdma_event(INFO, "wait for transport being disconnected\n");
1337 wait_event_interruptible(
1338 info->disconn_wait,
1339 info->transport_status == SMBD_DISCONNECTED);
1340 }
1341
1342 log_rdma_event(INFO, "destroying qp\n");
1343 ib_drain_qp(info->id->qp);
1344 rdma_destroy_qp(info->id);
1345
1346 log_rdma_event(INFO, "cancelling idle timer\n");
1347 cancel_delayed_work_sync(&info->idle_timer_work);
1348
1349 log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
1350 wait_event(info->wait_send_pending,
1351 atomic_read(&info->send_pending) == 0);
1352
1353 /* It's not possible for upper layer to get to reassembly */
1354 log_rdma_event(INFO, "drain the reassembly queue\n");
1355 do {
1356 spin_lock_irqsave(&info->reassembly_queue_lock, flags);
1357 response = _get_first_reassembly(info);
1358 if (response) {
1359 list_del(&response->list);
1360 spin_unlock_irqrestore(
1361 &info->reassembly_queue_lock, flags);
1362 put_receive_buffer(info, response);
1363 } else
1364 spin_unlock_irqrestore(
1365 &info->reassembly_queue_lock, flags);
1366 } while (response);
1367 info->reassembly_data_length = 0;
1368
1369 log_rdma_event(INFO, "free receive buffers\n");
1370 wait_event(info->wait_receive_queues,
1371 info->count_receive_queue + info->count_empty_packet_queue
1372 == info->receive_credit_max);
1373 destroy_receive_buffers(info);
1374
1375 /*
1376 * For performance reasons, memory registration and deregistration
1377 * are not locked by srv_mutex. It is possible some processes are
1378 * blocked on transport srv_mutex while holding memory registration.
1379 * Release the transport srv_mutex to allow them to hit the failure
1380 * path when sending data, and then release memory registartions.
1381 */
1382 log_rdma_event(INFO, "freeing mr list\n");
1383 wake_up_interruptible_all(&info->wait_mr);
1384 while (atomic_read(&info->mr_used_count)) {
1385 cifs_server_unlock(server);
1386 msleep(1000);
1387 cifs_server_lock(server);
1388 }
1389 destroy_mr_list(info);
1390
1391 ib_free_cq(info->send_cq);
1392 ib_free_cq(info->recv_cq);
1393 ib_dealloc_pd(info->pd);
1394 rdma_destroy_id(info->id);
1395
1396 /* free mempools */
1397 mempool_destroy(info->request_mempool);
1398 kmem_cache_destroy(info->request_cache);
1399
1400 mempool_destroy(info->response_mempool);
1401 kmem_cache_destroy(info->response_cache);
1402
1403 info->transport_status = SMBD_DESTROYED;
1404
1405 destroy_workqueue(info->workqueue);
1406 log_rdma_event(INFO, "rdma session destroyed\n");
1407 kfree(info);
1408 }
1409
1410 /*
1411 * Reconnect this SMBD connection, called from upper layer
1412 * return value: 0 on success, or actual error code
1413 */
smbd_reconnect(struct TCP_Server_Info * server)1414 int smbd_reconnect(struct TCP_Server_Info *server)
1415 {
1416 log_rdma_event(INFO, "reconnecting rdma session\n");
1417
1418 if (!server->smbd_conn) {
1419 log_rdma_event(INFO, "rdma session already destroyed\n");
1420 goto create_conn;
1421 }
1422
1423 /*
1424 * This is possible if transport is disconnected and we haven't received
1425 * notification from RDMA, but upper layer has detected timeout
1426 */
1427 if (server->smbd_conn->transport_status == SMBD_CONNECTED) {
1428 log_rdma_event(INFO, "disconnecting transport\n");
1429 smbd_destroy(server);
1430 }
1431
1432 create_conn:
1433 log_rdma_event(INFO, "creating rdma session\n");
1434 server->smbd_conn = smbd_get_connection(
1435 server, (struct sockaddr *) &server->dstaddr);
1436
1437 if (server->smbd_conn)
1438 cifs_dbg(VFS, "RDMA transport re-established\n");
1439
1440 return server->smbd_conn ? 0 : -ENOENT;
1441 }
1442
destroy_caches_and_workqueue(struct smbd_connection * info)1443 static void destroy_caches_and_workqueue(struct smbd_connection *info)
1444 {
1445 destroy_receive_buffers(info);
1446 destroy_workqueue(info->workqueue);
1447 mempool_destroy(info->response_mempool);
1448 kmem_cache_destroy(info->response_cache);
1449 mempool_destroy(info->request_mempool);
1450 kmem_cache_destroy(info->request_cache);
1451 }
1452
1453 #define MAX_NAME_LEN 80
allocate_caches_and_workqueue(struct smbd_connection * info)1454 static int allocate_caches_and_workqueue(struct smbd_connection *info)
1455 {
1456 char name[MAX_NAME_LEN];
1457 int rc;
1458
1459 scnprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
1460 info->request_cache =
1461 kmem_cache_create(
1462 name,
1463 sizeof(struct smbd_request) +
1464 sizeof(struct smbd_data_transfer),
1465 0, SLAB_HWCACHE_ALIGN, NULL);
1466 if (!info->request_cache)
1467 return -ENOMEM;
1468
1469 info->request_mempool =
1470 mempool_create(info->send_credit_target, mempool_alloc_slab,
1471 mempool_free_slab, info->request_cache);
1472 if (!info->request_mempool)
1473 goto out1;
1474
1475 scnprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
1476 info->response_cache =
1477 kmem_cache_create(
1478 name,
1479 sizeof(struct smbd_response) +
1480 info->max_receive_size,
1481 0, SLAB_HWCACHE_ALIGN, NULL);
1482 if (!info->response_cache)
1483 goto out2;
1484
1485 info->response_mempool =
1486 mempool_create(info->receive_credit_max, mempool_alloc_slab,
1487 mempool_free_slab, info->response_cache);
1488 if (!info->response_mempool)
1489 goto out3;
1490
1491 scnprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1492 info->workqueue = create_workqueue(name);
1493 if (!info->workqueue)
1494 goto out4;
1495
1496 rc = allocate_receive_buffers(info, info->receive_credit_max);
1497 if (rc) {
1498 log_rdma_event(ERR, "failed to allocate receive buffers\n");
1499 goto out5;
1500 }
1501
1502 return 0;
1503
1504 out5:
1505 destroy_workqueue(info->workqueue);
1506 out4:
1507 mempool_destroy(info->response_mempool);
1508 out3:
1509 kmem_cache_destroy(info->response_cache);
1510 out2:
1511 mempool_destroy(info->request_mempool);
1512 out1:
1513 kmem_cache_destroy(info->request_cache);
1514 return -ENOMEM;
1515 }
1516
1517 /* Create a SMBD connection, called by upper layer */
_smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr,int port)1518 static struct smbd_connection *_smbd_get_connection(
1519 struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1520 {
1521 int rc;
1522 struct smbd_connection *info;
1523 struct rdma_conn_param conn_param;
1524 struct ib_qp_init_attr qp_attr;
1525 struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1526 struct ib_port_immutable port_immutable;
1527 u32 ird_ord_hdr[2];
1528
1529 info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1530 if (!info)
1531 return NULL;
1532
1533 info->transport_status = SMBD_CONNECTING;
1534 rc = smbd_ia_open(info, dstaddr, port);
1535 if (rc) {
1536 log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1537 goto create_id_failed;
1538 }
1539
1540 if (smbd_send_credit_target > info->id->device->attrs.max_cqe ||
1541 smbd_send_credit_target > info->id->device->attrs.max_qp_wr) {
1542 log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cpe %d max_qp_wr %d\n",
1543 smbd_send_credit_target,
1544 info->id->device->attrs.max_cqe,
1545 info->id->device->attrs.max_qp_wr);
1546 goto config_failed;
1547 }
1548
1549 if (smbd_receive_credit_max > info->id->device->attrs.max_cqe ||
1550 smbd_receive_credit_max > info->id->device->attrs.max_qp_wr) {
1551 log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cpe %d max_qp_wr %d\n",
1552 smbd_receive_credit_max,
1553 info->id->device->attrs.max_cqe,
1554 info->id->device->attrs.max_qp_wr);
1555 goto config_failed;
1556 }
1557
1558 info->receive_credit_max = smbd_receive_credit_max;
1559 info->send_credit_target = smbd_send_credit_target;
1560 info->max_send_size = smbd_max_send_size;
1561 info->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1562 info->max_receive_size = smbd_max_receive_size;
1563 info->keep_alive_interval = smbd_keep_alive_interval;
1564
1565 if (info->id->device->attrs.max_send_sge < SMBDIRECT_MAX_SGE) {
1566 log_rdma_event(ERR,
1567 "warning: device max_send_sge = %d too small\n",
1568 info->id->device->attrs.max_send_sge);
1569 log_rdma_event(ERR, "Queue Pair creation may fail\n");
1570 }
1571 if (info->id->device->attrs.max_recv_sge < SMBDIRECT_MAX_SGE) {
1572 log_rdma_event(ERR,
1573 "warning: device max_recv_sge = %d too small\n",
1574 info->id->device->attrs.max_recv_sge);
1575 log_rdma_event(ERR, "Queue Pair creation may fail\n");
1576 }
1577
1578 info->send_cq = NULL;
1579 info->recv_cq = NULL;
1580 info->send_cq =
1581 ib_alloc_cq_any(info->id->device, info,
1582 info->send_credit_target, IB_POLL_SOFTIRQ);
1583 if (IS_ERR(info->send_cq)) {
1584 info->send_cq = NULL;
1585 goto alloc_cq_failed;
1586 }
1587
1588 info->recv_cq =
1589 ib_alloc_cq_any(info->id->device, info,
1590 info->receive_credit_max, IB_POLL_SOFTIRQ);
1591 if (IS_ERR(info->recv_cq)) {
1592 info->recv_cq = NULL;
1593 goto alloc_cq_failed;
1594 }
1595
1596 memset(&qp_attr, 0, sizeof(qp_attr));
1597 qp_attr.event_handler = smbd_qp_async_error_upcall;
1598 qp_attr.qp_context = info;
1599 qp_attr.cap.max_send_wr = info->send_credit_target;
1600 qp_attr.cap.max_recv_wr = info->receive_credit_max;
1601 qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SGE;
1602 qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_SGE;
1603 qp_attr.cap.max_inline_data = 0;
1604 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1605 qp_attr.qp_type = IB_QPT_RC;
1606 qp_attr.send_cq = info->send_cq;
1607 qp_attr.recv_cq = info->recv_cq;
1608 qp_attr.port_num = ~0;
1609
1610 rc = rdma_create_qp(info->id, info->pd, &qp_attr);
1611 if (rc) {
1612 log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1613 goto create_qp_failed;
1614 }
1615
1616 memset(&conn_param, 0, sizeof(conn_param));
1617 conn_param.initiator_depth = 0;
1618
1619 conn_param.responder_resources =
1620 info->id->device->attrs.max_qp_rd_atom
1621 < SMBD_CM_RESPONDER_RESOURCES ?
1622 info->id->device->attrs.max_qp_rd_atom :
1623 SMBD_CM_RESPONDER_RESOURCES;
1624 info->responder_resources = conn_param.responder_resources;
1625 log_rdma_mr(INFO, "responder_resources=%d\n",
1626 info->responder_resources);
1627
1628 /* Need to send IRD/ORD in private data for iWARP */
1629 info->id->device->ops.get_port_immutable(
1630 info->id->device, info->id->port_num, &port_immutable);
1631 if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1632 ird_ord_hdr[0] = info->responder_resources;
1633 ird_ord_hdr[1] = 1;
1634 conn_param.private_data = ird_ord_hdr;
1635 conn_param.private_data_len = sizeof(ird_ord_hdr);
1636 } else {
1637 conn_param.private_data = NULL;
1638 conn_param.private_data_len = 0;
1639 }
1640
1641 conn_param.retry_count = SMBD_CM_RETRY;
1642 conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1643 conn_param.flow_control = 0;
1644
1645 log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1646 &addr_in->sin_addr, port);
1647
1648 init_waitqueue_head(&info->conn_wait);
1649 init_waitqueue_head(&info->disconn_wait);
1650 init_waitqueue_head(&info->wait_reassembly_queue);
1651 rc = rdma_connect(info->id, &conn_param);
1652 if (rc) {
1653 log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1654 goto rdma_connect_failed;
1655 }
1656
1657 wait_event_interruptible(
1658 info->conn_wait, info->transport_status != SMBD_CONNECTING);
1659
1660 if (info->transport_status != SMBD_CONNECTED) {
1661 log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1662 goto rdma_connect_failed;
1663 }
1664
1665 log_rdma_event(INFO, "rdma_connect connected\n");
1666
1667 rc = allocate_caches_and_workqueue(info);
1668 if (rc) {
1669 log_rdma_event(ERR, "cache allocation failed\n");
1670 goto allocate_cache_failed;
1671 }
1672
1673 init_waitqueue_head(&info->wait_send_queue);
1674 INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1675 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1676 info->keep_alive_interval*HZ);
1677
1678 init_waitqueue_head(&info->wait_send_pending);
1679 atomic_set(&info->send_pending, 0);
1680
1681 init_waitqueue_head(&info->wait_post_send);
1682
1683 INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1684 INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1685 info->new_credits_offered = 0;
1686 spin_lock_init(&info->lock_new_credits_offered);
1687
1688 rc = smbd_negotiate(info);
1689 if (rc) {
1690 log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1691 goto negotiation_failed;
1692 }
1693
1694 rc = allocate_mr_list(info);
1695 if (rc) {
1696 log_rdma_mr(ERR, "memory registration allocation failed\n");
1697 goto allocate_mr_failed;
1698 }
1699
1700 return info;
1701
1702 allocate_mr_failed:
1703 /* At this point, need to a full transport shutdown */
1704 smbd_destroy(server);
1705 return NULL;
1706
1707 negotiation_failed:
1708 cancel_delayed_work_sync(&info->idle_timer_work);
1709 destroy_caches_and_workqueue(info);
1710 info->transport_status = SMBD_NEGOTIATE_FAILED;
1711 init_waitqueue_head(&info->conn_wait);
1712 rdma_disconnect(info->id);
1713 wait_event(info->conn_wait,
1714 info->transport_status == SMBD_DISCONNECTED);
1715
1716 allocate_cache_failed:
1717 rdma_connect_failed:
1718 rdma_destroy_qp(info->id);
1719
1720 create_qp_failed:
1721 alloc_cq_failed:
1722 if (info->send_cq)
1723 ib_free_cq(info->send_cq);
1724 if (info->recv_cq)
1725 ib_free_cq(info->recv_cq);
1726
1727 config_failed:
1728 ib_dealloc_pd(info->pd);
1729 rdma_destroy_id(info->id);
1730
1731 create_id_failed:
1732 kfree(info);
1733 return NULL;
1734 }
1735
smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr)1736 struct smbd_connection *smbd_get_connection(
1737 struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1738 {
1739 struct smbd_connection *ret;
1740 int port = SMBD_PORT;
1741
1742 try_again:
1743 ret = _smbd_get_connection(server, dstaddr, port);
1744
1745 /* Try SMB_PORT if SMBD_PORT doesn't work */
1746 if (!ret && port == SMBD_PORT) {
1747 port = SMB_PORT;
1748 goto try_again;
1749 }
1750 return ret;
1751 }
1752
1753 /*
1754 * Receive data from receive reassembly queue
1755 * All the incoming data packets are placed in reassembly queue
1756 * buf: the buffer to read data into
1757 * size: the length of data to read
1758 * return value: actual data read
1759 * Note: this implementation copies the data from reassebmly queue to receive
1760 * buffers used by upper layer. This is not the optimal code path. A better way
1761 * to do it is to not have upper layer allocate its receive buffers but rather
1762 * borrow the buffer from reassembly queue, and return it after data is
1763 * consumed. But this will require more changes to upper layer code, and also
1764 * need to consider packet boundaries while they still being reassembled.
1765 */
smbd_recv_buf(struct smbd_connection * info,char * buf,unsigned int size)1766 static int smbd_recv_buf(struct smbd_connection *info, char *buf,
1767 unsigned int size)
1768 {
1769 struct smbd_response *response;
1770 struct smbd_data_transfer *data_transfer;
1771 int to_copy, to_read, data_read, offset;
1772 u32 data_length, remaining_data_length, data_offset;
1773 int rc;
1774
1775 again:
1776 /*
1777 * No need to hold the reassembly queue lock all the time as we are
1778 * the only one reading from the front of the queue. The transport
1779 * may add more entries to the back of the queue at the same time
1780 */
1781 log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size,
1782 info->reassembly_data_length);
1783 if (info->reassembly_data_length >= size) {
1784 int queue_length;
1785 int queue_removed = 0;
1786
1787 /*
1788 * Need to make sure reassembly_data_length is read before
1789 * reading reassembly_queue_length and calling
1790 * _get_first_reassembly. This call is lock free
1791 * as we never read at the end of the queue which are being
1792 * updated in SOFTIRQ as more data is received
1793 */
1794 virt_rmb();
1795 queue_length = info->reassembly_queue_length;
1796 data_read = 0;
1797 to_read = size;
1798 offset = info->first_entry_offset;
1799 while (data_read < size) {
1800 response = _get_first_reassembly(info);
1801 data_transfer = smbd_response_payload(response);
1802 data_length = le32_to_cpu(data_transfer->data_length);
1803 remaining_data_length =
1804 le32_to_cpu(
1805 data_transfer->remaining_data_length);
1806 data_offset = le32_to_cpu(data_transfer->data_offset);
1807
1808 /*
1809 * The upper layer expects RFC1002 length at the
1810 * beginning of the payload. Return it to indicate
1811 * the total length of the packet. This minimize the
1812 * change to upper layer packet processing logic. This
1813 * will be eventually remove when an intermediate
1814 * transport layer is added
1815 */
1816 if (response->first_segment && size == 4) {
1817 unsigned int rfc1002_len =
1818 data_length + remaining_data_length;
1819 *((__be32 *)buf) = cpu_to_be32(rfc1002_len);
1820 data_read = 4;
1821 response->first_segment = false;
1822 log_read(INFO, "returning rfc1002 length %d\n",
1823 rfc1002_len);
1824 goto read_rfc1002_done;
1825 }
1826
1827 to_copy = min_t(int, data_length - offset, to_read);
1828 memcpy(
1829 buf + data_read,
1830 (char *)data_transfer + data_offset + offset,
1831 to_copy);
1832
1833 /* move on to the next buffer? */
1834 if (to_copy == data_length - offset) {
1835 queue_length--;
1836 /*
1837 * No need to lock if we are not at the
1838 * end of the queue
1839 */
1840 if (queue_length)
1841 list_del(&response->list);
1842 else {
1843 spin_lock_irq(
1844 &info->reassembly_queue_lock);
1845 list_del(&response->list);
1846 spin_unlock_irq(
1847 &info->reassembly_queue_lock);
1848 }
1849 queue_removed++;
1850 info->count_reassembly_queue--;
1851 info->count_dequeue_reassembly_queue++;
1852 put_receive_buffer(info, response);
1853 offset = 0;
1854 log_read(INFO, "put_receive_buffer offset=0\n");
1855 } else
1856 offset += to_copy;
1857
1858 to_read -= to_copy;
1859 data_read += to_copy;
1860
1861 log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n",
1862 to_copy, data_length - offset,
1863 to_read, data_read, offset);
1864 }
1865
1866 spin_lock_irq(&info->reassembly_queue_lock);
1867 info->reassembly_data_length -= data_read;
1868 info->reassembly_queue_length -= queue_removed;
1869 spin_unlock_irq(&info->reassembly_queue_lock);
1870
1871 info->first_entry_offset = offset;
1872 log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n",
1873 data_read, info->reassembly_data_length,
1874 info->first_entry_offset);
1875 read_rfc1002_done:
1876 return data_read;
1877 }
1878
1879 log_read(INFO, "wait_event on more data\n");
1880 rc = wait_event_interruptible(
1881 info->wait_reassembly_queue,
1882 info->reassembly_data_length >= size ||
1883 info->transport_status != SMBD_CONNECTED);
1884 /* Don't return any data if interrupted */
1885 if (rc)
1886 return rc;
1887
1888 if (info->transport_status != SMBD_CONNECTED) {
1889 log_read(ERR, "disconnected\n");
1890 return -ECONNABORTED;
1891 }
1892
1893 goto again;
1894 }
1895
1896 /*
1897 * Receive a page from receive reassembly queue
1898 * page: the page to read data into
1899 * to_read: the length of data to read
1900 * return value: actual data read
1901 */
smbd_recv_page(struct smbd_connection * info,struct page * page,unsigned int page_offset,unsigned int to_read)1902 static int smbd_recv_page(struct smbd_connection *info,
1903 struct page *page, unsigned int page_offset,
1904 unsigned int to_read)
1905 {
1906 int ret;
1907 char *to_address;
1908 void *page_address;
1909
1910 /* make sure we have the page ready for read */
1911 ret = wait_event_interruptible(
1912 info->wait_reassembly_queue,
1913 info->reassembly_data_length >= to_read ||
1914 info->transport_status != SMBD_CONNECTED);
1915 if (ret)
1916 return ret;
1917
1918 /* now we can read from reassembly queue and not sleep */
1919 page_address = kmap_atomic(page);
1920 to_address = (char *) page_address + page_offset;
1921
1922 log_read(INFO, "reading from page=%p address=%p to_read=%d\n",
1923 page, to_address, to_read);
1924
1925 ret = smbd_recv_buf(info, to_address, to_read);
1926 kunmap_atomic(page_address);
1927
1928 return ret;
1929 }
1930
1931 /*
1932 * Receive data from transport
1933 * msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC
1934 * return: total bytes read, or 0. SMB Direct will not do partial read.
1935 */
smbd_recv(struct smbd_connection * info,struct msghdr * msg)1936 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
1937 {
1938 char *buf;
1939 struct page *page;
1940 unsigned int to_read, page_offset;
1941 int rc;
1942
1943 if (iov_iter_rw(&msg->msg_iter) == WRITE) {
1944 /* It's a bug in upper layer to get there */
1945 cifs_dbg(VFS, "Invalid msg iter dir %u\n",
1946 iov_iter_rw(&msg->msg_iter));
1947 rc = -EINVAL;
1948 goto out;
1949 }
1950
1951 switch (iov_iter_type(&msg->msg_iter)) {
1952 case ITER_KVEC:
1953 buf = msg->msg_iter.kvec->iov_base;
1954 to_read = msg->msg_iter.kvec->iov_len;
1955 rc = smbd_recv_buf(info, buf, to_read);
1956 break;
1957
1958 case ITER_BVEC:
1959 page = msg->msg_iter.bvec->bv_page;
1960 page_offset = msg->msg_iter.bvec->bv_offset;
1961 to_read = msg->msg_iter.bvec->bv_len;
1962 rc = smbd_recv_page(info, page, page_offset, to_read);
1963 break;
1964
1965 default:
1966 /* It's a bug in upper layer to get there */
1967 cifs_dbg(VFS, "Invalid msg type %d\n",
1968 iov_iter_type(&msg->msg_iter));
1969 rc = -EINVAL;
1970 }
1971
1972 out:
1973 /* SMBDirect will read it all or nothing */
1974 if (rc > 0)
1975 msg->msg_iter.count = 0;
1976 return rc;
1977 }
1978
1979 /*
1980 * Send data to transport
1981 * Each rqst is transported as a SMBDirect payload
1982 * rqst: the data to write
1983 * return value: 0 if successfully write, otherwise error code
1984 */
smbd_send(struct TCP_Server_Info * server,int num_rqst,struct smb_rqst * rqst_array)1985 int smbd_send(struct TCP_Server_Info *server,
1986 int num_rqst, struct smb_rqst *rqst_array)
1987 {
1988 struct smbd_connection *info = server->smbd_conn;
1989 struct kvec vec;
1990 int nvecs;
1991 int size;
1992 unsigned int buflen, remaining_data_length;
1993 int start, i, j;
1994 int max_iov_size =
1995 info->max_send_size - sizeof(struct smbd_data_transfer);
1996 struct kvec *iov;
1997 int rc;
1998 struct smb_rqst *rqst;
1999 int rqst_idx;
2000
2001 if (info->transport_status != SMBD_CONNECTED) {
2002 rc = -EAGAIN;
2003 goto done;
2004 }
2005
2006 /*
2007 * Add in the page array if there is one. The caller needs to set
2008 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
2009 * ends at page boundary
2010 */
2011 remaining_data_length = 0;
2012 for (i = 0; i < num_rqst; i++)
2013 remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
2014
2015 if (remaining_data_length > info->max_fragmented_send_size) {
2016 log_write(ERR, "payload size %d > max size %d\n",
2017 remaining_data_length, info->max_fragmented_send_size);
2018 rc = -EINVAL;
2019 goto done;
2020 }
2021
2022 log_write(INFO, "num_rqst=%d total length=%u\n",
2023 num_rqst, remaining_data_length);
2024
2025 rqst_idx = 0;
2026 next_rqst:
2027 rqst = &rqst_array[rqst_idx];
2028 iov = rqst->rq_iov;
2029
2030 cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
2031 rqst_idx, smb_rqst_len(server, rqst));
2032 for (i = 0; i < rqst->rq_nvec; i++)
2033 dump_smb(iov[i].iov_base, iov[i].iov_len);
2034
2035
2036 log_write(INFO, "rqst_idx=%d nvec=%d rqst->rq_npages=%d rq_pagesz=%d rq_tailsz=%d buflen=%lu\n",
2037 rqst_idx, rqst->rq_nvec, rqst->rq_npages, rqst->rq_pagesz,
2038 rqst->rq_tailsz, smb_rqst_len(server, rqst));
2039
2040 start = i = 0;
2041 buflen = 0;
2042 while (true) {
2043 buflen += iov[i].iov_len;
2044 if (buflen > max_iov_size) {
2045 if (i > start) {
2046 remaining_data_length -=
2047 (buflen-iov[i].iov_len);
2048 log_write(INFO, "sending iov[] from start=%d i=%d nvecs=%d remaining_data_length=%d\n",
2049 start, i, i - start,
2050 remaining_data_length);
2051 rc = smbd_post_send_data(
2052 info, &iov[start], i-start,
2053 remaining_data_length);
2054 if (rc)
2055 goto done;
2056 } else {
2057 /* iov[start] is too big, break it */
2058 nvecs = (buflen+max_iov_size-1)/max_iov_size;
2059 log_write(INFO, "iov[%d] iov_base=%p buflen=%d break to %d vectors\n",
2060 start, iov[start].iov_base,
2061 buflen, nvecs);
2062 for (j = 0; j < nvecs; j++) {
2063 vec.iov_base =
2064 (char *)iov[start].iov_base +
2065 j*max_iov_size;
2066 vec.iov_len = max_iov_size;
2067 if (j == nvecs-1)
2068 vec.iov_len =
2069 buflen -
2070 max_iov_size*(nvecs-1);
2071 remaining_data_length -= vec.iov_len;
2072 log_write(INFO,
2073 "sending vec j=%d iov_base=%p iov_len=%zu remaining_data_length=%d\n",
2074 j, vec.iov_base, vec.iov_len,
2075 remaining_data_length);
2076 rc = smbd_post_send_data(
2077 info, &vec, 1,
2078 remaining_data_length);
2079 if (rc)
2080 goto done;
2081 }
2082 i++;
2083 if (i == rqst->rq_nvec)
2084 break;
2085 }
2086 start = i;
2087 buflen = 0;
2088 } else {
2089 i++;
2090 if (i == rqst->rq_nvec) {
2091 /* send out all remaining vecs */
2092 remaining_data_length -= buflen;
2093 log_write(INFO, "sending iov[] from start=%d i=%d nvecs=%d remaining_data_length=%d\n",
2094 start, i, i - start,
2095 remaining_data_length);
2096 rc = smbd_post_send_data(info, &iov[start],
2097 i-start, remaining_data_length);
2098 if (rc)
2099 goto done;
2100 break;
2101 }
2102 }
2103 log_write(INFO, "looping i=%d buflen=%d\n", i, buflen);
2104 }
2105
2106 /* now sending pages if there are any */
2107 for (i = 0; i < rqst->rq_npages; i++) {
2108 unsigned int offset;
2109
2110 rqst_page_get_length(rqst, i, &buflen, &offset);
2111 nvecs = (buflen + max_iov_size - 1) / max_iov_size;
2112 log_write(INFO, "sending pages buflen=%d nvecs=%d\n",
2113 buflen, nvecs);
2114 for (j = 0; j < nvecs; j++) {
2115 size = max_iov_size;
2116 if (j == nvecs-1)
2117 size = buflen - j*max_iov_size;
2118 remaining_data_length -= size;
2119 log_write(INFO, "sending pages i=%d offset=%d size=%d remaining_data_length=%d\n",
2120 i, j * max_iov_size + offset, size,
2121 remaining_data_length);
2122 rc = smbd_post_send_page(
2123 info, rqst->rq_pages[i],
2124 j*max_iov_size + offset,
2125 size, remaining_data_length);
2126 if (rc)
2127 goto done;
2128 }
2129 }
2130
2131 rqst_idx++;
2132 if (rqst_idx < num_rqst)
2133 goto next_rqst;
2134
2135 done:
2136 /*
2137 * As an optimization, we don't wait for individual I/O to finish
2138 * before sending the next one.
2139 * Send them all and wait for pending send count to get to 0
2140 * that means all the I/Os have been out and we are good to return
2141 */
2142
2143 wait_event(info->wait_send_pending,
2144 atomic_read(&info->send_pending) == 0);
2145
2146 return rc;
2147 }
2148
register_mr_done(struct ib_cq * cq,struct ib_wc * wc)2149 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2150 {
2151 struct smbd_mr *mr;
2152 struct ib_cqe *cqe;
2153
2154 if (wc->status) {
2155 log_rdma_mr(ERR, "status=%d\n", wc->status);
2156 cqe = wc->wr_cqe;
2157 mr = container_of(cqe, struct smbd_mr, cqe);
2158 smbd_disconnect_rdma_connection(mr->conn);
2159 }
2160 }
2161
2162 /*
2163 * The work queue function that recovers MRs
2164 * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2165 * again. Both calls are slow, so finish them in a workqueue. This will not
2166 * block I/O path.
2167 * There is one workqueue that recovers MRs, there is no need to lock as the
2168 * I/O requests calling smbd_register_mr will never update the links in the
2169 * mr_list.
2170 */
smbd_mr_recovery_work(struct work_struct * work)2171 static void smbd_mr_recovery_work(struct work_struct *work)
2172 {
2173 struct smbd_connection *info =
2174 container_of(work, struct smbd_connection, mr_recovery_work);
2175 struct smbd_mr *smbdirect_mr;
2176 int rc;
2177
2178 list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2179 if (smbdirect_mr->state == MR_ERROR) {
2180
2181 /* recover this MR entry */
2182 rc = ib_dereg_mr(smbdirect_mr->mr);
2183 if (rc) {
2184 log_rdma_mr(ERR,
2185 "ib_dereg_mr failed rc=%x\n",
2186 rc);
2187 smbd_disconnect_rdma_connection(info);
2188 continue;
2189 }
2190
2191 smbdirect_mr->mr = ib_alloc_mr(
2192 info->pd, info->mr_type,
2193 info->max_frmr_depth);
2194 if (IS_ERR(smbdirect_mr->mr)) {
2195 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2196 info->mr_type,
2197 info->max_frmr_depth);
2198 smbd_disconnect_rdma_connection(info);
2199 continue;
2200 }
2201 } else
2202 /* This MR is being used, don't recover it */
2203 continue;
2204
2205 smbdirect_mr->state = MR_READY;
2206
2207 /* smbdirect_mr->state is updated by this function
2208 * and is read and updated by I/O issuing CPUs trying
2209 * to get a MR, the call to atomic_inc_return
2210 * implicates a memory barrier and guarantees this
2211 * value is updated before waking up any calls to
2212 * get_mr() from the I/O issuing CPUs
2213 */
2214 if (atomic_inc_return(&info->mr_ready_count) == 1)
2215 wake_up_interruptible(&info->wait_mr);
2216 }
2217 }
2218
destroy_mr_list(struct smbd_connection * info)2219 static void destroy_mr_list(struct smbd_connection *info)
2220 {
2221 struct smbd_mr *mr, *tmp;
2222
2223 cancel_work_sync(&info->mr_recovery_work);
2224 list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2225 if (mr->state == MR_INVALIDATED)
2226 ib_dma_unmap_sg(info->id->device, mr->sgl,
2227 mr->sgl_count, mr->dir);
2228 ib_dereg_mr(mr->mr);
2229 kfree(mr->sgl);
2230 kfree(mr);
2231 }
2232 }
2233
2234 /*
2235 * Allocate MRs used for RDMA read/write
2236 * The number of MRs will not exceed hardware capability in responder_resources
2237 * All MRs are kept in mr_list. The MR can be recovered after it's used
2238 * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2239 * as MRs are used and recovered for I/O, but the list links will not change
2240 */
allocate_mr_list(struct smbd_connection * info)2241 static int allocate_mr_list(struct smbd_connection *info)
2242 {
2243 int i;
2244 struct smbd_mr *smbdirect_mr, *tmp;
2245
2246 INIT_LIST_HEAD(&info->mr_list);
2247 init_waitqueue_head(&info->wait_mr);
2248 spin_lock_init(&info->mr_list_lock);
2249 atomic_set(&info->mr_ready_count, 0);
2250 atomic_set(&info->mr_used_count, 0);
2251 init_waitqueue_head(&info->wait_for_mr_cleanup);
2252 /* Allocate more MRs (2x) than hardware responder_resources */
2253 for (i = 0; i < info->responder_resources * 2; i++) {
2254 smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2255 if (!smbdirect_mr)
2256 goto out;
2257 smbdirect_mr->mr = ib_alloc_mr(info->pd, info->mr_type,
2258 info->max_frmr_depth);
2259 if (IS_ERR(smbdirect_mr->mr)) {
2260 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2261 info->mr_type, info->max_frmr_depth);
2262 goto out;
2263 }
2264 smbdirect_mr->sgl = kcalloc(
2265 info->max_frmr_depth,
2266 sizeof(struct scatterlist),
2267 GFP_KERNEL);
2268 if (!smbdirect_mr->sgl) {
2269 log_rdma_mr(ERR, "failed to allocate sgl\n");
2270 ib_dereg_mr(smbdirect_mr->mr);
2271 goto out;
2272 }
2273 smbdirect_mr->state = MR_READY;
2274 smbdirect_mr->conn = info;
2275
2276 list_add_tail(&smbdirect_mr->list, &info->mr_list);
2277 atomic_inc(&info->mr_ready_count);
2278 }
2279 INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2280 return 0;
2281
2282 out:
2283 kfree(smbdirect_mr);
2284
2285 list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2286 ib_dereg_mr(smbdirect_mr->mr);
2287 kfree(smbdirect_mr->sgl);
2288 kfree(smbdirect_mr);
2289 }
2290 return -ENOMEM;
2291 }
2292
2293 /*
2294 * Get a MR from mr_list. This function waits until there is at least one
2295 * MR available in the list. It may access the list while the
2296 * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2297 * as they never modify the same places. However, there may be several CPUs
2298 * issueing I/O trying to get MR at the same time, mr_list_lock is used to
2299 * protect this situation.
2300 */
get_mr(struct smbd_connection * info)2301 static struct smbd_mr *get_mr(struct smbd_connection *info)
2302 {
2303 struct smbd_mr *ret;
2304 int rc;
2305 again:
2306 rc = wait_event_interruptible(info->wait_mr,
2307 atomic_read(&info->mr_ready_count) ||
2308 info->transport_status != SMBD_CONNECTED);
2309 if (rc) {
2310 log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2311 return NULL;
2312 }
2313
2314 if (info->transport_status != SMBD_CONNECTED) {
2315 log_rdma_mr(ERR, "info->transport_status=%x\n",
2316 info->transport_status);
2317 return NULL;
2318 }
2319
2320 spin_lock(&info->mr_list_lock);
2321 list_for_each_entry(ret, &info->mr_list, list) {
2322 if (ret->state == MR_READY) {
2323 ret->state = MR_REGISTERED;
2324 spin_unlock(&info->mr_list_lock);
2325 atomic_dec(&info->mr_ready_count);
2326 atomic_inc(&info->mr_used_count);
2327 return ret;
2328 }
2329 }
2330
2331 spin_unlock(&info->mr_list_lock);
2332 /*
2333 * It is possible that we could fail to get MR because other processes may
2334 * try to acquire a MR at the same time. If this is the case, retry it.
2335 */
2336 goto again;
2337 }
2338
2339 /*
2340 * Register memory for RDMA read/write
2341 * pages[]: the list of pages to register memory with
2342 * num_pages: the number of pages to register
2343 * tailsz: if non-zero, the bytes to register in the last page
2344 * writing: true if this is a RDMA write (SMB read), false for RDMA read
2345 * need_invalidate: true if this MR needs to be locally invalidated after I/O
2346 * return value: the MR registered, NULL if failed.
2347 */
smbd_register_mr(struct smbd_connection * info,struct page * pages[],int num_pages,int offset,int tailsz,bool writing,bool need_invalidate)2348 struct smbd_mr *smbd_register_mr(
2349 struct smbd_connection *info, struct page *pages[], int num_pages,
2350 int offset, int tailsz, bool writing, bool need_invalidate)
2351 {
2352 struct smbd_mr *smbdirect_mr;
2353 int rc, i;
2354 enum dma_data_direction dir;
2355 struct ib_reg_wr *reg_wr;
2356
2357 if (num_pages > info->max_frmr_depth) {
2358 log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2359 num_pages, info->max_frmr_depth);
2360 return NULL;
2361 }
2362
2363 smbdirect_mr = get_mr(info);
2364 if (!smbdirect_mr) {
2365 log_rdma_mr(ERR, "get_mr returning NULL\n");
2366 return NULL;
2367 }
2368 smbdirect_mr->need_invalidate = need_invalidate;
2369 smbdirect_mr->sgl_count = num_pages;
2370 sg_init_table(smbdirect_mr->sgl, num_pages);
2371
2372 log_rdma_mr(INFO, "num_pages=0x%x offset=0x%x tailsz=0x%x\n",
2373 num_pages, offset, tailsz);
2374
2375 if (num_pages == 1) {
2376 sg_set_page(&smbdirect_mr->sgl[0], pages[0], tailsz, offset);
2377 goto skip_multiple_pages;
2378 }
2379
2380 /* We have at least two pages to register */
2381 sg_set_page(
2382 &smbdirect_mr->sgl[0], pages[0], PAGE_SIZE - offset, offset);
2383 i = 1;
2384 while (i < num_pages - 1) {
2385 sg_set_page(&smbdirect_mr->sgl[i], pages[i], PAGE_SIZE, 0);
2386 i++;
2387 }
2388 sg_set_page(&smbdirect_mr->sgl[i], pages[i],
2389 tailsz ? tailsz : PAGE_SIZE, 0);
2390
2391 skip_multiple_pages:
2392 dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2393 smbdirect_mr->dir = dir;
2394 rc = ib_dma_map_sg(info->id->device, smbdirect_mr->sgl, num_pages, dir);
2395 if (!rc) {
2396 log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2397 num_pages, dir, rc);
2398 goto dma_map_error;
2399 }
2400
2401 rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgl, num_pages,
2402 NULL, PAGE_SIZE);
2403 if (rc != num_pages) {
2404 log_rdma_mr(ERR,
2405 "ib_map_mr_sg failed rc = %d num_pages = %x\n",
2406 rc, num_pages);
2407 goto map_mr_error;
2408 }
2409
2410 ib_update_fast_reg_key(smbdirect_mr->mr,
2411 ib_inc_rkey(smbdirect_mr->mr->rkey));
2412 reg_wr = &smbdirect_mr->wr;
2413 reg_wr->wr.opcode = IB_WR_REG_MR;
2414 smbdirect_mr->cqe.done = register_mr_done;
2415 reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2416 reg_wr->wr.num_sge = 0;
2417 reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2418 reg_wr->mr = smbdirect_mr->mr;
2419 reg_wr->key = smbdirect_mr->mr->rkey;
2420 reg_wr->access = writing ?
2421 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2422 IB_ACCESS_REMOTE_READ;
2423
2424 /*
2425 * There is no need for waiting for complemtion on ib_post_send
2426 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2427 * on the next ib_post_send when we actaully send I/O to remote peer
2428 */
2429 rc = ib_post_send(info->id->qp, ®_wr->wr, NULL);
2430 if (!rc)
2431 return smbdirect_mr;
2432
2433 log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2434 rc, reg_wr->key);
2435
2436 /* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2437 map_mr_error:
2438 ib_dma_unmap_sg(info->id->device, smbdirect_mr->sgl,
2439 smbdirect_mr->sgl_count, smbdirect_mr->dir);
2440
2441 dma_map_error:
2442 smbdirect_mr->state = MR_ERROR;
2443 if (atomic_dec_and_test(&info->mr_used_count))
2444 wake_up(&info->wait_for_mr_cleanup);
2445
2446 smbd_disconnect_rdma_connection(info);
2447
2448 return NULL;
2449 }
2450
local_inv_done(struct ib_cq * cq,struct ib_wc * wc)2451 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2452 {
2453 struct smbd_mr *smbdirect_mr;
2454 struct ib_cqe *cqe;
2455
2456 cqe = wc->wr_cqe;
2457 smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2458 smbdirect_mr->state = MR_INVALIDATED;
2459 if (wc->status != IB_WC_SUCCESS) {
2460 log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2461 smbdirect_mr->state = MR_ERROR;
2462 }
2463 complete(&smbdirect_mr->invalidate_done);
2464 }
2465
2466 /*
2467 * Deregister a MR after I/O is done
2468 * This function may wait if remote invalidation is not used
2469 * and we have to locally invalidate the buffer to prevent data is being
2470 * modified by remote peer after upper layer consumes it
2471 */
smbd_deregister_mr(struct smbd_mr * smbdirect_mr)2472 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2473 {
2474 struct ib_send_wr *wr;
2475 struct smbd_connection *info = smbdirect_mr->conn;
2476 int rc = 0;
2477
2478 if (smbdirect_mr->need_invalidate) {
2479 /* Need to finish local invalidation before returning */
2480 wr = &smbdirect_mr->inv_wr;
2481 wr->opcode = IB_WR_LOCAL_INV;
2482 smbdirect_mr->cqe.done = local_inv_done;
2483 wr->wr_cqe = &smbdirect_mr->cqe;
2484 wr->num_sge = 0;
2485 wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2486 wr->send_flags = IB_SEND_SIGNALED;
2487
2488 init_completion(&smbdirect_mr->invalidate_done);
2489 rc = ib_post_send(info->id->qp, wr, NULL);
2490 if (rc) {
2491 log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2492 smbd_disconnect_rdma_connection(info);
2493 goto done;
2494 }
2495 wait_for_completion(&smbdirect_mr->invalidate_done);
2496 smbdirect_mr->need_invalidate = false;
2497 } else
2498 /*
2499 * For remote invalidation, just set it to MR_INVALIDATED
2500 * and defer to mr_recovery_work to recover the MR for next use
2501 */
2502 smbdirect_mr->state = MR_INVALIDATED;
2503
2504 if (smbdirect_mr->state == MR_INVALIDATED) {
2505 ib_dma_unmap_sg(
2506 info->id->device, smbdirect_mr->sgl,
2507 smbdirect_mr->sgl_count,
2508 smbdirect_mr->dir);
2509 smbdirect_mr->state = MR_READY;
2510 if (atomic_inc_return(&info->mr_ready_count) == 1)
2511 wake_up_interruptible(&info->wait_mr);
2512 } else
2513 /*
2514 * Schedule the work to do MR recovery for future I/Os MR
2515 * recovery is slow and don't want it to block current I/O
2516 */
2517 queue_work(info->workqueue, &info->mr_recovery_work);
2518
2519 done:
2520 if (atomic_dec_and_test(&info->mr_used_count))
2521 wake_up(&info->wait_for_mr_cleanup);
2522
2523 return rc;
2524 }
2525