1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /* -
3 * net/sched/act_ct.c Connection Tracking action
4 *
5 * Authors: Paul Blakey <paulb@mellanox.com>
6 * Yossi Kuperman <yossiku@mellanox.com>
7 * Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>
8 */
9
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/skbuff.h>
14 #include <linux/rtnetlink.h>
15 #include <linux/pkt_cls.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/rhashtable.h>
19 #include <net/netlink.h>
20 #include <net/pkt_sched.h>
21 #include <net/pkt_cls.h>
22 #include <net/act_api.h>
23 #include <net/ip.h>
24 #include <net/ipv6_frag.h>
25 #include <uapi/linux/tc_act/tc_ct.h>
26 #include <net/tc_act/tc_ct.h>
27
28 #include <net/netfilter/nf_flow_table.h>
29 #include <net/netfilter/nf_conntrack.h>
30 #include <net/netfilter/nf_conntrack_core.h>
31 #include <net/netfilter/nf_conntrack_zones.h>
32 #include <net/netfilter/nf_conntrack_helper.h>
33 #include <net/netfilter/nf_conntrack_acct.h>
34 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
35 #include <net/netfilter/nf_conntrack_act_ct.h>
36 #include <uapi/linux/netfilter/nf_nat.h>
37
38 static struct workqueue_struct *act_ct_wq;
39 static struct rhashtable zones_ht;
40 static DEFINE_MUTEX(zones_mutex);
41
42 struct tcf_ct_flow_table {
43 struct rhash_head node; /* In zones tables */
44
45 struct rcu_work rwork;
46 struct nf_flowtable nf_ft;
47 refcount_t ref;
48 u16 zone;
49
50 bool dying;
51 };
52
53 static const struct rhashtable_params zones_params = {
54 .head_offset = offsetof(struct tcf_ct_flow_table, node),
55 .key_offset = offsetof(struct tcf_ct_flow_table, zone),
56 .key_len = sizeof_field(struct tcf_ct_flow_table, zone),
57 .automatic_shrinking = true,
58 };
59
60 static struct flow_action_entry *
tcf_ct_flow_table_flow_action_get_next(struct flow_action * flow_action)61 tcf_ct_flow_table_flow_action_get_next(struct flow_action *flow_action)
62 {
63 int i = flow_action->num_entries++;
64
65 return &flow_action->entries[i];
66 }
67
tcf_ct_add_mangle_action(struct flow_action * action,enum flow_action_mangle_base htype,u32 offset,u32 mask,u32 val)68 static void tcf_ct_add_mangle_action(struct flow_action *action,
69 enum flow_action_mangle_base htype,
70 u32 offset,
71 u32 mask,
72 u32 val)
73 {
74 struct flow_action_entry *entry;
75
76 entry = tcf_ct_flow_table_flow_action_get_next(action);
77 entry->id = FLOW_ACTION_MANGLE;
78 entry->mangle.htype = htype;
79 entry->mangle.mask = ~mask;
80 entry->mangle.offset = offset;
81 entry->mangle.val = val;
82 }
83
84 /* The following nat helper functions check if the inverted reverse tuple
85 * (target) is different then the current dir tuple - meaning nat for ports
86 * and/or ip is needed, and add the relevant mangle actions.
87 */
88 static void
tcf_ct_flow_table_add_action_nat_ipv4(const struct nf_conntrack_tuple * tuple,struct nf_conntrack_tuple target,struct flow_action * action)89 tcf_ct_flow_table_add_action_nat_ipv4(const struct nf_conntrack_tuple *tuple,
90 struct nf_conntrack_tuple target,
91 struct flow_action *action)
92 {
93 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3)))
94 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4,
95 offsetof(struct iphdr, saddr),
96 0xFFFFFFFF,
97 be32_to_cpu(target.src.u3.ip));
98 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3)))
99 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4,
100 offsetof(struct iphdr, daddr),
101 0xFFFFFFFF,
102 be32_to_cpu(target.dst.u3.ip));
103 }
104
105 static void
tcf_ct_add_ipv6_addr_mangle_action(struct flow_action * action,union nf_inet_addr * addr,u32 offset)106 tcf_ct_add_ipv6_addr_mangle_action(struct flow_action *action,
107 union nf_inet_addr *addr,
108 u32 offset)
109 {
110 int i;
111
112 for (i = 0; i < sizeof(struct in6_addr) / sizeof(u32); i++)
113 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP6,
114 i * sizeof(u32) + offset,
115 0xFFFFFFFF, be32_to_cpu(addr->ip6[i]));
116 }
117
118 static void
tcf_ct_flow_table_add_action_nat_ipv6(const struct nf_conntrack_tuple * tuple,struct nf_conntrack_tuple target,struct flow_action * action)119 tcf_ct_flow_table_add_action_nat_ipv6(const struct nf_conntrack_tuple *tuple,
120 struct nf_conntrack_tuple target,
121 struct flow_action *action)
122 {
123 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3)))
124 tcf_ct_add_ipv6_addr_mangle_action(action, &target.src.u3,
125 offsetof(struct ipv6hdr,
126 saddr));
127 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3)))
128 tcf_ct_add_ipv6_addr_mangle_action(action, &target.dst.u3,
129 offsetof(struct ipv6hdr,
130 daddr));
131 }
132
133 static void
tcf_ct_flow_table_add_action_nat_tcp(const struct nf_conntrack_tuple * tuple,struct nf_conntrack_tuple target,struct flow_action * action)134 tcf_ct_flow_table_add_action_nat_tcp(const struct nf_conntrack_tuple *tuple,
135 struct nf_conntrack_tuple target,
136 struct flow_action *action)
137 {
138 __be16 target_src = target.src.u.tcp.port;
139 __be16 target_dst = target.dst.u.tcp.port;
140
141 if (target_src != tuple->src.u.tcp.port)
142 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP,
143 offsetof(struct tcphdr, source),
144 0xFFFF, be16_to_cpu(target_src));
145 if (target_dst != tuple->dst.u.tcp.port)
146 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP,
147 offsetof(struct tcphdr, dest),
148 0xFFFF, be16_to_cpu(target_dst));
149 }
150
151 static void
tcf_ct_flow_table_add_action_nat_udp(const struct nf_conntrack_tuple * tuple,struct nf_conntrack_tuple target,struct flow_action * action)152 tcf_ct_flow_table_add_action_nat_udp(const struct nf_conntrack_tuple *tuple,
153 struct nf_conntrack_tuple target,
154 struct flow_action *action)
155 {
156 __be16 target_src = target.src.u.udp.port;
157 __be16 target_dst = target.dst.u.udp.port;
158
159 if (target_src != tuple->src.u.udp.port)
160 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP,
161 offsetof(struct udphdr, source),
162 0xFFFF, be16_to_cpu(target_src));
163 if (target_dst != tuple->dst.u.udp.port)
164 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP,
165 offsetof(struct udphdr, dest),
166 0xFFFF, be16_to_cpu(target_dst));
167 }
168
tcf_ct_flow_table_add_action_meta(struct nf_conn * ct,enum ip_conntrack_dir dir,struct flow_action * action)169 static void tcf_ct_flow_table_add_action_meta(struct nf_conn *ct,
170 enum ip_conntrack_dir dir,
171 struct flow_action *action)
172 {
173 struct nf_conn_labels *ct_labels;
174 struct flow_action_entry *entry;
175 enum ip_conntrack_info ctinfo;
176 u32 *act_ct_labels;
177
178 entry = tcf_ct_flow_table_flow_action_get_next(action);
179 entry->id = FLOW_ACTION_CT_METADATA;
180 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
181 entry->ct_metadata.mark = READ_ONCE(ct->mark);
182 #endif
183 ctinfo = dir == IP_CT_DIR_ORIGINAL ? IP_CT_ESTABLISHED :
184 IP_CT_ESTABLISHED_REPLY;
185 /* aligns with the CT reference on the SKB nf_ct_set */
186 entry->ct_metadata.cookie = (unsigned long)ct | ctinfo;
187 entry->ct_metadata.orig_dir = dir == IP_CT_DIR_ORIGINAL;
188
189 act_ct_labels = entry->ct_metadata.labels;
190 ct_labels = nf_ct_labels_find(ct);
191 if (ct_labels)
192 memcpy(act_ct_labels, ct_labels->bits, NF_CT_LABELS_MAX_SIZE);
193 else
194 memset(act_ct_labels, 0, NF_CT_LABELS_MAX_SIZE);
195 }
196
tcf_ct_flow_table_add_action_nat(struct net * net,struct nf_conn * ct,enum ip_conntrack_dir dir,struct flow_action * action)197 static int tcf_ct_flow_table_add_action_nat(struct net *net,
198 struct nf_conn *ct,
199 enum ip_conntrack_dir dir,
200 struct flow_action *action)
201 {
202 const struct nf_conntrack_tuple *tuple = &ct->tuplehash[dir].tuple;
203 struct nf_conntrack_tuple target;
204
205 if (!(ct->status & IPS_NAT_MASK))
206 return 0;
207
208 nf_ct_invert_tuple(&target, &ct->tuplehash[!dir].tuple);
209
210 switch (tuple->src.l3num) {
211 case NFPROTO_IPV4:
212 tcf_ct_flow_table_add_action_nat_ipv4(tuple, target,
213 action);
214 break;
215 case NFPROTO_IPV6:
216 tcf_ct_flow_table_add_action_nat_ipv6(tuple, target,
217 action);
218 break;
219 default:
220 return -EOPNOTSUPP;
221 }
222
223 switch (nf_ct_protonum(ct)) {
224 case IPPROTO_TCP:
225 tcf_ct_flow_table_add_action_nat_tcp(tuple, target, action);
226 break;
227 case IPPROTO_UDP:
228 tcf_ct_flow_table_add_action_nat_udp(tuple, target, action);
229 break;
230 default:
231 return -EOPNOTSUPP;
232 }
233
234 return 0;
235 }
236
tcf_ct_flow_table_fill_actions(struct net * net,const struct flow_offload * flow,enum flow_offload_tuple_dir tdir,struct nf_flow_rule * flow_rule)237 static int tcf_ct_flow_table_fill_actions(struct net *net,
238 const struct flow_offload *flow,
239 enum flow_offload_tuple_dir tdir,
240 struct nf_flow_rule *flow_rule)
241 {
242 struct flow_action *action = &flow_rule->rule->action;
243 int num_entries = action->num_entries;
244 struct nf_conn *ct = flow->ct;
245 enum ip_conntrack_dir dir;
246 int i, err;
247
248 switch (tdir) {
249 case FLOW_OFFLOAD_DIR_ORIGINAL:
250 dir = IP_CT_DIR_ORIGINAL;
251 break;
252 case FLOW_OFFLOAD_DIR_REPLY:
253 dir = IP_CT_DIR_REPLY;
254 break;
255 default:
256 return -EOPNOTSUPP;
257 }
258
259 err = tcf_ct_flow_table_add_action_nat(net, ct, dir, action);
260 if (err)
261 goto err_nat;
262
263 tcf_ct_flow_table_add_action_meta(ct, dir, action);
264 return 0;
265
266 err_nat:
267 /* Clear filled actions */
268 for (i = num_entries; i < action->num_entries; i++)
269 memset(&action->entries[i], 0, sizeof(action->entries[i]));
270 action->num_entries = num_entries;
271
272 return err;
273 }
274
275 static struct nf_flowtable_type flowtable_ct = {
276 .action = tcf_ct_flow_table_fill_actions,
277 .owner = THIS_MODULE,
278 };
279
tcf_ct_flow_table_get(struct net * net,struct tcf_ct_params * params)280 static int tcf_ct_flow_table_get(struct net *net, struct tcf_ct_params *params)
281 {
282 struct tcf_ct_flow_table *ct_ft;
283 int err = -ENOMEM;
284
285 mutex_lock(&zones_mutex);
286 ct_ft = rhashtable_lookup_fast(&zones_ht, ¶ms->zone, zones_params);
287 if (ct_ft && refcount_inc_not_zero(&ct_ft->ref))
288 goto out_unlock;
289
290 ct_ft = kzalloc(sizeof(*ct_ft), GFP_KERNEL);
291 if (!ct_ft)
292 goto err_alloc;
293 refcount_set(&ct_ft->ref, 1);
294
295 ct_ft->zone = params->zone;
296 err = rhashtable_insert_fast(&zones_ht, &ct_ft->node, zones_params);
297 if (err)
298 goto err_insert;
299
300 ct_ft->nf_ft.type = &flowtable_ct;
301 ct_ft->nf_ft.flags |= NF_FLOWTABLE_HW_OFFLOAD |
302 NF_FLOWTABLE_COUNTER;
303 err = nf_flow_table_init(&ct_ft->nf_ft);
304 if (err)
305 goto err_init;
306 write_pnet(&ct_ft->nf_ft.net, net);
307
308 __module_get(THIS_MODULE);
309 out_unlock:
310 params->ct_ft = ct_ft;
311 params->nf_ft = &ct_ft->nf_ft;
312 mutex_unlock(&zones_mutex);
313
314 return 0;
315
316 err_init:
317 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params);
318 err_insert:
319 kfree(ct_ft);
320 err_alloc:
321 mutex_unlock(&zones_mutex);
322 return err;
323 }
324
tcf_ct_flow_table_cleanup_work(struct work_struct * work)325 static void tcf_ct_flow_table_cleanup_work(struct work_struct *work)
326 {
327 struct flow_block_cb *block_cb, *tmp_cb;
328 struct tcf_ct_flow_table *ct_ft;
329 struct flow_block *block;
330
331 ct_ft = container_of(to_rcu_work(work), struct tcf_ct_flow_table,
332 rwork);
333 nf_flow_table_free(&ct_ft->nf_ft);
334
335 /* Remove any remaining callbacks before cleanup */
336 block = &ct_ft->nf_ft.flow_block;
337 down_write(&ct_ft->nf_ft.flow_block_lock);
338 list_for_each_entry_safe(block_cb, tmp_cb, &block->cb_list, list) {
339 list_del(&block_cb->list);
340 flow_block_cb_free(block_cb);
341 }
342 up_write(&ct_ft->nf_ft.flow_block_lock);
343 kfree(ct_ft);
344
345 module_put(THIS_MODULE);
346 }
347
tcf_ct_flow_table_put(struct tcf_ct_params * params)348 static void tcf_ct_flow_table_put(struct tcf_ct_params *params)
349 {
350 struct tcf_ct_flow_table *ct_ft = params->ct_ft;
351
352 if (refcount_dec_and_test(¶ms->ct_ft->ref)) {
353 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params);
354 INIT_RCU_WORK(&ct_ft->rwork, tcf_ct_flow_table_cleanup_work);
355 queue_rcu_work(act_ct_wq, &ct_ft->rwork);
356 }
357 }
358
tcf_ct_flow_tc_ifidx(struct flow_offload * entry,struct nf_conn_act_ct_ext * act_ct_ext,u8 dir)359 static void tcf_ct_flow_tc_ifidx(struct flow_offload *entry,
360 struct nf_conn_act_ct_ext *act_ct_ext, u8 dir)
361 {
362 entry->tuplehash[dir].tuple.xmit_type = FLOW_OFFLOAD_XMIT_TC;
363 entry->tuplehash[dir].tuple.tc.iifidx = act_ct_ext->ifindex[dir];
364 }
365
tcf_ct_flow_table_add(struct tcf_ct_flow_table * ct_ft,struct nf_conn * ct,bool tcp)366 static void tcf_ct_flow_table_add(struct tcf_ct_flow_table *ct_ft,
367 struct nf_conn *ct,
368 bool tcp)
369 {
370 struct nf_conn_act_ct_ext *act_ct_ext;
371 struct flow_offload *entry;
372 int err;
373
374 if (test_and_set_bit(IPS_OFFLOAD_BIT, &ct->status))
375 return;
376
377 entry = flow_offload_alloc(ct);
378 if (!entry) {
379 WARN_ON_ONCE(1);
380 goto err_alloc;
381 }
382
383 if (tcp) {
384 ct->proto.tcp.seen[0].flags |= IP_CT_TCP_FLAG_BE_LIBERAL;
385 ct->proto.tcp.seen[1].flags |= IP_CT_TCP_FLAG_BE_LIBERAL;
386 }
387
388 act_ct_ext = nf_conn_act_ct_ext_find(ct);
389 if (act_ct_ext) {
390 tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_ORIGINAL);
391 tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_REPLY);
392 }
393
394 err = flow_offload_add(&ct_ft->nf_ft, entry);
395 if (err)
396 goto err_add;
397
398 return;
399
400 err_add:
401 flow_offload_free(entry);
402 err_alloc:
403 clear_bit(IPS_OFFLOAD_BIT, &ct->status);
404 }
405
tcf_ct_flow_table_process_conn(struct tcf_ct_flow_table * ct_ft,struct nf_conn * ct,enum ip_conntrack_info ctinfo)406 static void tcf_ct_flow_table_process_conn(struct tcf_ct_flow_table *ct_ft,
407 struct nf_conn *ct,
408 enum ip_conntrack_info ctinfo)
409 {
410 bool tcp = false;
411
412 if ((ctinfo != IP_CT_ESTABLISHED && ctinfo != IP_CT_ESTABLISHED_REPLY) ||
413 !test_bit(IPS_ASSURED_BIT, &ct->status))
414 return;
415
416 switch (nf_ct_protonum(ct)) {
417 case IPPROTO_TCP:
418 tcp = true;
419 if (ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED)
420 return;
421 break;
422 case IPPROTO_UDP:
423 break;
424 #ifdef CONFIG_NF_CT_PROTO_GRE
425 case IPPROTO_GRE: {
426 struct nf_conntrack_tuple *tuple;
427
428 if (ct->status & IPS_NAT_MASK)
429 return;
430 tuple = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
431 /* No support for GRE v1 */
432 if (tuple->src.u.gre.key || tuple->dst.u.gre.key)
433 return;
434 break;
435 }
436 #endif
437 default:
438 return;
439 }
440
441 if (nf_ct_ext_exist(ct, NF_CT_EXT_HELPER) ||
442 ct->status & IPS_SEQ_ADJUST)
443 return;
444
445 tcf_ct_flow_table_add(ct_ft, ct, tcp);
446 }
447
448 static bool
tcf_ct_flow_table_fill_tuple_ipv4(struct sk_buff * skb,struct flow_offload_tuple * tuple,struct tcphdr ** tcph)449 tcf_ct_flow_table_fill_tuple_ipv4(struct sk_buff *skb,
450 struct flow_offload_tuple *tuple,
451 struct tcphdr **tcph)
452 {
453 struct flow_ports *ports;
454 unsigned int thoff;
455 struct iphdr *iph;
456 size_t hdrsize;
457 u8 ipproto;
458
459 if (!pskb_network_may_pull(skb, sizeof(*iph)))
460 return false;
461
462 iph = ip_hdr(skb);
463 thoff = iph->ihl * 4;
464
465 if (ip_is_fragment(iph) ||
466 unlikely(thoff != sizeof(struct iphdr)))
467 return false;
468
469 ipproto = iph->protocol;
470 switch (ipproto) {
471 case IPPROTO_TCP:
472 hdrsize = sizeof(struct tcphdr);
473 break;
474 case IPPROTO_UDP:
475 hdrsize = sizeof(*ports);
476 break;
477 #ifdef CONFIG_NF_CT_PROTO_GRE
478 case IPPROTO_GRE:
479 hdrsize = sizeof(struct gre_base_hdr);
480 break;
481 #endif
482 default:
483 return false;
484 }
485
486 if (iph->ttl <= 1)
487 return false;
488
489 if (!pskb_network_may_pull(skb, thoff + hdrsize))
490 return false;
491
492 switch (ipproto) {
493 case IPPROTO_TCP:
494 *tcph = (void *)(skb_network_header(skb) + thoff);
495 fallthrough;
496 case IPPROTO_UDP:
497 ports = (struct flow_ports *)(skb_network_header(skb) + thoff);
498 tuple->src_port = ports->source;
499 tuple->dst_port = ports->dest;
500 break;
501 case IPPROTO_GRE: {
502 struct gre_base_hdr *greh;
503
504 greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff);
505 if ((greh->flags & GRE_VERSION) != GRE_VERSION_0)
506 return false;
507 break;
508 }
509 }
510
511 iph = ip_hdr(skb);
512
513 tuple->src_v4.s_addr = iph->saddr;
514 tuple->dst_v4.s_addr = iph->daddr;
515 tuple->l3proto = AF_INET;
516 tuple->l4proto = ipproto;
517
518 return true;
519 }
520
521 static bool
tcf_ct_flow_table_fill_tuple_ipv6(struct sk_buff * skb,struct flow_offload_tuple * tuple,struct tcphdr ** tcph)522 tcf_ct_flow_table_fill_tuple_ipv6(struct sk_buff *skb,
523 struct flow_offload_tuple *tuple,
524 struct tcphdr **tcph)
525 {
526 struct flow_ports *ports;
527 struct ipv6hdr *ip6h;
528 unsigned int thoff;
529 size_t hdrsize;
530 u8 nexthdr;
531
532 if (!pskb_network_may_pull(skb, sizeof(*ip6h)))
533 return false;
534
535 ip6h = ipv6_hdr(skb);
536 thoff = sizeof(*ip6h);
537
538 nexthdr = ip6h->nexthdr;
539 switch (nexthdr) {
540 case IPPROTO_TCP:
541 hdrsize = sizeof(struct tcphdr);
542 break;
543 case IPPROTO_UDP:
544 hdrsize = sizeof(*ports);
545 break;
546 #ifdef CONFIG_NF_CT_PROTO_GRE
547 case IPPROTO_GRE:
548 hdrsize = sizeof(struct gre_base_hdr);
549 break;
550 #endif
551 default:
552 return false;
553 }
554
555 if (ip6h->hop_limit <= 1)
556 return false;
557
558 if (!pskb_network_may_pull(skb, thoff + hdrsize))
559 return false;
560
561 switch (nexthdr) {
562 case IPPROTO_TCP:
563 *tcph = (void *)(skb_network_header(skb) + thoff);
564 fallthrough;
565 case IPPROTO_UDP:
566 ports = (struct flow_ports *)(skb_network_header(skb) + thoff);
567 tuple->src_port = ports->source;
568 tuple->dst_port = ports->dest;
569 break;
570 case IPPROTO_GRE: {
571 struct gre_base_hdr *greh;
572
573 greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff);
574 if ((greh->flags & GRE_VERSION) != GRE_VERSION_0)
575 return false;
576 break;
577 }
578 }
579
580 ip6h = ipv6_hdr(skb);
581
582 tuple->src_v6 = ip6h->saddr;
583 tuple->dst_v6 = ip6h->daddr;
584 tuple->l3proto = AF_INET6;
585 tuple->l4proto = nexthdr;
586
587 return true;
588 }
589
tcf_ct_flow_table_lookup(struct tcf_ct_params * p,struct sk_buff * skb,u8 family)590 static bool tcf_ct_flow_table_lookup(struct tcf_ct_params *p,
591 struct sk_buff *skb,
592 u8 family)
593 {
594 struct nf_flowtable *nf_ft = &p->ct_ft->nf_ft;
595 struct flow_offload_tuple_rhash *tuplehash;
596 struct flow_offload_tuple tuple = {};
597 enum ip_conntrack_info ctinfo;
598 struct tcphdr *tcph = NULL;
599 struct flow_offload *flow;
600 struct nf_conn *ct;
601 u8 dir;
602
603 switch (family) {
604 case NFPROTO_IPV4:
605 if (!tcf_ct_flow_table_fill_tuple_ipv4(skb, &tuple, &tcph))
606 return false;
607 break;
608 case NFPROTO_IPV6:
609 if (!tcf_ct_flow_table_fill_tuple_ipv6(skb, &tuple, &tcph))
610 return false;
611 break;
612 default:
613 return false;
614 }
615
616 tuplehash = flow_offload_lookup(nf_ft, &tuple);
617 if (!tuplehash)
618 return false;
619
620 dir = tuplehash->tuple.dir;
621 flow = container_of(tuplehash, struct flow_offload, tuplehash[dir]);
622 ct = flow->ct;
623
624 if (tcph && (unlikely(tcph->fin || tcph->rst))) {
625 flow_offload_teardown(flow);
626 return false;
627 }
628
629 ctinfo = dir == FLOW_OFFLOAD_DIR_ORIGINAL ? IP_CT_ESTABLISHED :
630 IP_CT_ESTABLISHED_REPLY;
631
632 flow_offload_refresh(nf_ft, flow);
633 nf_conntrack_get(&ct->ct_general);
634 nf_ct_set(skb, ct, ctinfo);
635 if (nf_ft->flags & NF_FLOWTABLE_COUNTER)
636 nf_ct_acct_update(ct, dir, skb->len);
637
638 return true;
639 }
640
tcf_ct_flow_tables_init(void)641 static int tcf_ct_flow_tables_init(void)
642 {
643 return rhashtable_init(&zones_ht, &zones_params);
644 }
645
tcf_ct_flow_tables_uninit(void)646 static void tcf_ct_flow_tables_uninit(void)
647 {
648 rhashtable_destroy(&zones_ht);
649 }
650
651 static struct tc_action_ops act_ct_ops;
652
653 struct tc_ct_action_net {
654 struct tc_action_net tn; /* Must be first */
655 bool labels;
656 };
657
658 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
tcf_ct_skb_nfct_cached(struct net * net,struct sk_buff * skb,u16 zone_id,bool force)659 static bool tcf_ct_skb_nfct_cached(struct net *net, struct sk_buff *skb,
660 u16 zone_id, bool force)
661 {
662 enum ip_conntrack_info ctinfo;
663 struct nf_conn *ct;
664
665 ct = nf_ct_get(skb, &ctinfo);
666 if (!ct)
667 return false;
668 if (!net_eq(net, read_pnet(&ct->ct_net)))
669 goto drop_ct;
670 if (nf_ct_zone(ct)->id != zone_id)
671 goto drop_ct;
672
673 /* Force conntrack entry direction. */
674 if (force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
675 if (nf_ct_is_confirmed(ct))
676 nf_ct_kill(ct);
677
678 goto drop_ct;
679 }
680
681 return true;
682
683 drop_ct:
684 nf_ct_put(ct);
685 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
686
687 return false;
688 }
689
690 /* Trim the skb to the length specified by the IP/IPv6 header,
691 * removing any trailing lower-layer padding. This prepares the skb
692 * for higher-layer processing that assumes skb->len excludes padding
693 * (such as nf_ip_checksum). The caller needs to pull the skb to the
694 * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
695 */
tcf_ct_skb_network_trim(struct sk_buff * skb,int family)696 static int tcf_ct_skb_network_trim(struct sk_buff *skb, int family)
697 {
698 unsigned int len;
699
700 switch (family) {
701 case NFPROTO_IPV4:
702 len = ntohs(ip_hdr(skb)->tot_len);
703 break;
704 case NFPROTO_IPV6:
705 len = sizeof(struct ipv6hdr)
706 + ntohs(ipv6_hdr(skb)->payload_len);
707 break;
708 default:
709 len = skb->len;
710 }
711
712 return pskb_trim_rcsum(skb, len);
713 }
714
tcf_ct_skb_nf_family(struct sk_buff * skb)715 static u8 tcf_ct_skb_nf_family(struct sk_buff *skb)
716 {
717 u8 family = NFPROTO_UNSPEC;
718
719 switch (skb_protocol(skb, true)) {
720 case htons(ETH_P_IP):
721 family = NFPROTO_IPV4;
722 break;
723 case htons(ETH_P_IPV6):
724 family = NFPROTO_IPV6;
725 break;
726 default:
727 break;
728 }
729
730 return family;
731 }
732
tcf_ct_ipv4_is_fragment(struct sk_buff * skb,bool * frag)733 static int tcf_ct_ipv4_is_fragment(struct sk_buff *skb, bool *frag)
734 {
735 unsigned int len;
736
737 len = skb_network_offset(skb) + sizeof(struct iphdr);
738 if (unlikely(skb->len < len))
739 return -EINVAL;
740 if (unlikely(!pskb_may_pull(skb, len)))
741 return -ENOMEM;
742
743 *frag = ip_is_fragment(ip_hdr(skb));
744 return 0;
745 }
746
tcf_ct_ipv6_is_fragment(struct sk_buff * skb,bool * frag)747 static int tcf_ct_ipv6_is_fragment(struct sk_buff *skb, bool *frag)
748 {
749 unsigned int flags = 0, len, payload_ofs = 0;
750 unsigned short frag_off;
751 int nexthdr;
752
753 len = skb_network_offset(skb) + sizeof(struct ipv6hdr);
754 if (unlikely(skb->len < len))
755 return -EINVAL;
756 if (unlikely(!pskb_may_pull(skb, len)))
757 return -ENOMEM;
758
759 nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
760 if (unlikely(nexthdr < 0))
761 return -EPROTO;
762
763 *frag = flags & IP6_FH_F_FRAG;
764 return 0;
765 }
766
tcf_ct_handle_fragments(struct net * net,struct sk_buff * skb,u8 family,u16 zone,bool * defrag)767 static int tcf_ct_handle_fragments(struct net *net, struct sk_buff *skb,
768 u8 family, u16 zone, bool *defrag)
769 {
770 enum ip_conntrack_info ctinfo;
771 struct nf_conn *ct;
772 int err = 0;
773 bool frag;
774 u16 mru;
775
776 /* Previously seen (loopback)? Ignore. */
777 ct = nf_ct_get(skb, &ctinfo);
778 if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED)
779 return 0;
780
781 if (family == NFPROTO_IPV4)
782 err = tcf_ct_ipv4_is_fragment(skb, &frag);
783 else
784 err = tcf_ct_ipv6_is_fragment(skb, &frag);
785 if (err || !frag)
786 return err;
787
788 skb_get(skb);
789 mru = tc_skb_cb(skb)->mru;
790
791 if (family == NFPROTO_IPV4) {
792 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
793
794 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
795 local_bh_disable();
796 err = ip_defrag(net, skb, user);
797 local_bh_enable();
798 if (err && err != -EINPROGRESS)
799 return err;
800
801 if (!err) {
802 *defrag = true;
803 mru = IPCB(skb)->frag_max_size;
804 }
805 } else { /* NFPROTO_IPV6 */
806 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
807 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
808
809 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
810 err = nf_ct_frag6_gather(net, skb, user);
811 if (err && err != -EINPROGRESS)
812 goto out_free;
813
814 if (!err) {
815 *defrag = true;
816 mru = IP6CB(skb)->frag_max_size;
817 }
818 #else
819 err = -EOPNOTSUPP;
820 goto out_free;
821 #endif
822 }
823
824 if (err != -EINPROGRESS)
825 tc_skb_cb(skb)->mru = mru;
826 skb_clear_hash(skb);
827 skb->ignore_df = 1;
828 return err;
829
830 out_free:
831 kfree_skb(skb);
832 return err;
833 }
834
tcf_ct_params_free(struct rcu_head * head)835 static void tcf_ct_params_free(struct rcu_head *head)
836 {
837 struct tcf_ct_params *params = container_of(head,
838 struct tcf_ct_params, rcu);
839
840 tcf_ct_flow_table_put(params);
841
842 if (params->tmpl)
843 nf_ct_put(params->tmpl);
844 kfree(params);
845 }
846
847 #if IS_ENABLED(CONFIG_NF_NAT)
848 /* Modelled after nf_nat_ipv[46]_fn().
849 * range is only used for new, uninitialized NAT state.
850 * Returns either NF_ACCEPT or NF_DROP.
851 */
ct_nat_execute(struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct nf_nat_range2 * range,enum nf_nat_manip_type maniptype)852 static int ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
853 enum ip_conntrack_info ctinfo,
854 const struct nf_nat_range2 *range,
855 enum nf_nat_manip_type maniptype)
856 {
857 __be16 proto = skb_protocol(skb, true);
858 int hooknum, err = NF_ACCEPT;
859
860 /* See HOOK2MANIP(). */
861 if (maniptype == NF_NAT_MANIP_SRC)
862 hooknum = NF_INET_LOCAL_IN; /* Source NAT */
863 else
864 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
865
866 switch (ctinfo) {
867 case IP_CT_RELATED:
868 case IP_CT_RELATED_REPLY:
869 if (proto == htons(ETH_P_IP) &&
870 ip_hdr(skb)->protocol == IPPROTO_ICMP) {
871 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
872 hooknum))
873 err = NF_DROP;
874 goto out;
875 } else if (IS_ENABLED(CONFIG_IPV6) && proto == htons(ETH_P_IPV6)) {
876 __be16 frag_off;
877 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
878 int hdrlen = ipv6_skip_exthdr(skb,
879 sizeof(struct ipv6hdr),
880 &nexthdr, &frag_off);
881
882 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
883 if (!nf_nat_icmpv6_reply_translation(skb, ct,
884 ctinfo,
885 hooknum,
886 hdrlen))
887 err = NF_DROP;
888 goto out;
889 }
890 }
891 /* Non-ICMP, fall thru to initialize if needed. */
892 fallthrough;
893 case IP_CT_NEW:
894 /* Seen it before? This can happen for loopback, retrans,
895 * or local packets.
896 */
897 if (!nf_nat_initialized(ct, maniptype)) {
898 /* Initialize according to the NAT action. */
899 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
900 /* Action is set up to establish a new
901 * mapping.
902 */
903 ? nf_nat_setup_info(ct, range, maniptype)
904 : nf_nat_alloc_null_binding(ct, hooknum);
905 if (err != NF_ACCEPT)
906 goto out;
907 }
908 break;
909
910 case IP_CT_ESTABLISHED:
911 case IP_CT_ESTABLISHED_REPLY:
912 break;
913
914 default:
915 err = NF_DROP;
916 goto out;
917 }
918
919 err = nf_nat_packet(ct, ctinfo, hooknum, skb);
920 if (err == NF_ACCEPT) {
921 if (maniptype == NF_NAT_MANIP_SRC)
922 tc_skb_cb(skb)->post_ct_snat = 1;
923 if (maniptype == NF_NAT_MANIP_DST)
924 tc_skb_cb(skb)->post_ct_dnat = 1;
925 }
926 out:
927 return err;
928 }
929 #endif /* CONFIG_NF_NAT */
930
tcf_ct_act_set_mark(struct nf_conn * ct,u32 mark,u32 mask)931 static void tcf_ct_act_set_mark(struct nf_conn *ct, u32 mark, u32 mask)
932 {
933 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
934 u32 new_mark;
935
936 if (!mask)
937 return;
938
939 new_mark = mark | (READ_ONCE(ct->mark) & ~(mask));
940 if (READ_ONCE(ct->mark) != new_mark) {
941 WRITE_ONCE(ct->mark, new_mark);
942 if (nf_ct_is_confirmed(ct))
943 nf_conntrack_event_cache(IPCT_MARK, ct);
944 }
945 #endif
946 }
947
tcf_ct_act_set_labels(struct nf_conn * ct,u32 * labels,u32 * labels_m)948 static void tcf_ct_act_set_labels(struct nf_conn *ct,
949 u32 *labels,
950 u32 *labels_m)
951 {
952 #if IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)
953 size_t labels_sz = sizeof_field(struct tcf_ct_params, labels);
954
955 if (!memchr_inv(labels_m, 0, labels_sz))
956 return;
957
958 nf_connlabels_replace(ct, labels, labels_m, 4);
959 #endif
960 }
961
tcf_ct_act_nat(struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo,int ct_action,struct nf_nat_range2 * range,bool commit)962 static int tcf_ct_act_nat(struct sk_buff *skb,
963 struct nf_conn *ct,
964 enum ip_conntrack_info ctinfo,
965 int ct_action,
966 struct nf_nat_range2 *range,
967 bool commit)
968 {
969 #if IS_ENABLED(CONFIG_NF_NAT)
970 int err;
971 enum nf_nat_manip_type maniptype;
972
973 if (!(ct_action & TCA_CT_ACT_NAT))
974 return NF_ACCEPT;
975
976 /* Add NAT extension if not confirmed yet. */
977 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
978 return NF_DROP; /* Can't NAT. */
979
980 if (ctinfo != IP_CT_NEW && (ct->status & IPS_NAT_MASK) &&
981 (ctinfo != IP_CT_RELATED || commit)) {
982 /* NAT an established or related connection like before. */
983 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
984 /* This is the REPLY direction for a connection
985 * for which NAT was applied in the forward
986 * direction. Do the reverse NAT.
987 */
988 maniptype = ct->status & IPS_SRC_NAT
989 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
990 else
991 maniptype = ct->status & IPS_SRC_NAT
992 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
993 } else if (ct_action & TCA_CT_ACT_NAT_SRC) {
994 maniptype = NF_NAT_MANIP_SRC;
995 } else if (ct_action & TCA_CT_ACT_NAT_DST) {
996 maniptype = NF_NAT_MANIP_DST;
997 } else {
998 return NF_ACCEPT;
999 }
1000
1001 err = ct_nat_execute(skb, ct, ctinfo, range, maniptype);
1002 if (err == NF_ACCEPT && ct->status & IPS_DST_NAT) {
1003 if (ct->status & IPS_SRC_NAT) {
1004 if (maniptype == NF_NAT_MANIP_SRC)
1005 maniptype = NF_NAT_MANIP_DST;
1006 else
1007 maniptype = NF_NAT_MANIP_SRC;
1008
1009 err = ct_nat_execute(skb, ct, ctinfo, range,
1010 maniptype);
1011 } else if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL) {
1012 err = ct_nat_execute(skb, ct, ctinfo, NULL,
1013 NF_NAT_MANIP_SRC);
1014 }
1015 }
1016 return err;
1017 #else
1018 return NF_ACCEPT;
1019 #endif
1020 }
1021
tcf_ct_act(struct sk_buff * skb,const struct tc_action * a,struct tcf_result * res)1022 static int tcf_ct_act(struct sk_buff *skb, const struct tc_action *a,
1023 struct tcf_result *res)
1024 {
1025 struct net *net = dev_net(skb->dev);
1026 bool cached, commit, clear, force;
1027 enum ip_conntrack_info ctinfo;
1028 struct tcf_ct *c = to_ct(a);
1029 struct nf_conn *tmpl = NULL;
1030 struct nf_hook_state state;
1031 int nh_ofs, err, retval;
1032 struct tcf_ct_params *p;
1033 bool skip_add = false;
1034 bool defrag = false;
1035 struct nf_conn *ct;
1036 u8 family;
1037
1038 p = rcu_dereference_bh(c->params);
1039
1040 retval = READ_ONCE(c->tcf_action);
1041 commit = p->ct_action & TCA_CT_ACT_COMMIT;
1042 clear = p->ct_action & TCA_CT_ACT_CLEAR;
1043 force = p->ct_action & TCA_CT_ACT_FORCE;
1044 tmpl = p->tmpl;
1045
1046 tcf_lastuse_update(&c->tcf_tm);
1047 tcf_action_update_bstats(&c->common, skb);
1048
1049 if (clear) {
1050 tc_skb_cb(skb)->post_ct = false;
1051 ct = nf_ct_get(skb, &ctinfo);
1052 if (ct) {
1053 nf_ct_put(ct);
1054 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1055 }
1056
1057 goto out_clear;
1058 }
1059
1060 family = tcf_ct_skb_nf_family(skb);
1061 if (family == NFPROTO_UNSPEC)
1062 goto drop;
1063
1064 /* The conntrack module expects to be working at L3.
1065 * We also try to pull the IPv4/6 header to linear area
1066 */
1067 nh_ofs = skb_network_offset(skb);
1068 skb_pull_rcsum(skb, nh_ofs);
1069 err = tcf_ct_handle_fragments(net, skb, family, p->zone, &defrag);
1070 if (err == -EINPROGRESS) {
1071 retval = TC_ACT_STOLEN;
1072 goto out_clear;
1073 }
1074 if (err)
1075 goto drop;
1076
1077 err = tcf_ct_skb_network_trim(skb, family);
1078 if (err)
1079 goto drop;
1080
1081 /* If we are recirculating packets to match on ct fields and
1082 * committing with a separate ct action, then we don't need to
1083 * actually run the packet through conntrack twice unless it's for a
1084 * different zone.
1085 */
1086 cached = tcf_ct_skb_nfct_cached(net, skb, p->zone, force);
1087 if (!cached) {
1088 if (tcf_ct_flow_table_lookup(p, skb, family)) {
1089 skip_add = true;
1090 goto do_nat;
1091 }
1092
1093 /* Associate skb with specified zone. */
1094 if (tmpl) {
1095 nf_conntrack_put(skb_nfct(skb));
1096 nf_conntrack_get(&tmpl->ct_general);
1097 nf_ct_set(skb, tmpl, IP_CT_NEW);
1098 }
1099
1100 state.hook = NF_INET_PRE_ROUTING;
1101 state.net = net;
1102 state.pf = family;
1103 err = nf_conntrack_in(skb, &state);
1104 if (err != NF_ACCEPT)
1105 goto out_push;
1106 }
1107
1108 do_nat:
1109 ct = nf_ct_get(skb, &ctinfo);
1110 if (!ct)
1111 goto out_push;
1112 nf_ct_deliver_cached_events(ct);
1113 nf_conn_act_ct_ext_fill(skb, ct, ctinfo);
1114
1115 err = tcf_ct_act_nat(skb, ct, ctinfo, p->ct_action, &p->range, commit);
1116 if (err != NF_ACCEPT)
1117 goto drop;
1118
1119 if (commit) {
1120 tcf_ct_act_set_mark(ct, p->mark, p->mark_mask);
1121 tcf_ct_act_set_labels(ct, p->labels, p->labels_mask);
1122
1123 if (!nf_ct_is_confirmed(ct))
1124 nf_conn_act_ct_ext_add(ct);
1125
1126 /* This will take care of sending queued events
1127 * even if the connection is already confirmed.
1128 */
1129 if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1130 goto drop;
1131 }
1132
1133 if (!skip_add)
1134 tcf_ct_flow_table_process_conn(p->ct_ft, ct, ctinfo);
1135
1136 out_push:
1137 skb_push_rcsum(skb, nh_ofs);
1138
1139 tc_skb_cb(skb)->post_ct = true;
1140 tc_skb_cb(skb)->zone = p->zone;
1141 out_clear:
1142 if (defrag)
1143 qdisc_skb_cb(skb)->pkt_len = skb->len;
1144 return retval;
1145
1146 drop:
1147 tcf_action_inc_drop_qstats(&c->common);
1148 return TC_ACT_SHOT;
1149 }
1150
1151 static const struct nla_policy ct_policy[TCA_CT_MAX + 1] = {
1152 [TCA_CT_ACTION] = { .type = NLA_U16 },
1153 [TCA_CT_PARMS] = NLA_POLICY_EXACT_LEN(sizeof(struct tc_ct)),
1154 [TCA_CT_ZONE] = { .type = NLA_U16 },
1155 [TCA_CT_MARK] = { .type = NLA_U32 },
1156 [TCA_CT_MARK_MASK] = { .type = NLA_U32 },
1157 [TCA_CT_LABELS] = { .type = NLA_BINARY,
1158 .len = 128 / BITS_PER_BYTE },
1159 [TCA_CT_LABELS_MASK] = { .type = NLA_BINARY,
1160 .len = 128 / BITS_PER_BYTE },
1161 [TCA_CT_NAT_IPV4_MIN] = { .type = NLA_U32 },
1162 [TCA_CT_NAT_IPV4_MAX] = { .type = NLA_U32 },
1163 [TCA_CT_NAT_IPV6_MIN] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)),
1164 [TCA_CT_NAT_IPV6_MAX] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)),
1165 [TCA_CT_NAT_PORT_MIN] = { .type = NLA_U16 },
1166 [TCA_CT_NAT_PORT_MAX] = { .type = NLA_U16 },
1167 };
1168
tcf_ct_fill_params_nat(struct tcf_ct_params * p,struct tc_ct * parm,struct nlattr ** tb,struct netlink_ext_ack * extack)1169 static int tcf_ct_fill_params_nat(struct tcf_ct_params *p,
1170 struct tc_ct *parm,
1171 struct nlattr **tb,
1172 struct netlink_ext_ack *extack)
1173 {
1174 struct nf_nat_range2 *range;
1175
1176 if (!(p->ct_action & TCA_CT_ACT_NAT))
1177 return 0;
1178
1179 if (!IS_ENABLED(CONFIG_NF_NAT)) {
1180 NL_SET_ERR_MSG_MOD(extack, "Netfilter nat isn't enabled in kernel");
1181 return -EOPNOTSUPP;
1182 }
1183
1184 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST)))
1185 return 0;
1186
1187 if ((p->ct_action & TCA_CT_ACT_NAT_SRC) &&
1188 (p->ct_action & TCA_CT_ACT_NAT_DST)) {
1189 NL_SET_ERR_MSG_MOD(extack, "dnat and snat can't be enabled at the same time");
1190 return -EOPNOTSUPP;
1191 }
1192
1193 range = &p->range;
1194 if (tb[TCA_CT_NAT_IPV4_MIN]) {
1195 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV4_MAX];
1196
1197 p->ipv4_range = true;
1198 range->flags |= NF_NAT_RANGE_MAP_IPS;
1199 range->min_addr.ip =
1200 nla_get_in_addr(tb[TCA_CT_NAT_IPV4_MIN]);
1201
1202 range->max_addr.ip = max_attr ?
1203 nla_get_in_addr(max_attr) :
1204 range->min_addr.ip;
1205 } else if (tb[TCA_CT_NAT_IPV6_MIN]) {
1206 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV6_MAX];
1207
1208 p->ipv4_range = false;
1209 range->flags |= NF_NAT_RANGE_MAP_IPS;
1210 range->min_addr.in6 =
1211 nla_get_in6_addr(tb[TCA_CT_NAT_IPV6_MIN]);
1212
1213 range->max_addr.in6 = max_attr ?
1214 nla_get_in6_addr(max_attr) :
1215 range->min_addr.in6;
1216 }
1217
1218 if (tb[TCA_CT_NAT_PORT_MIN]) {
1219 range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1220 range->min_proto.all = nla_get_be16(tb[TCA_CT_NAT_PORT_MIN]);
1221
1222 range->max_proto.all = tb[TCA_CT_NAT_PORT_MAX] ?
1223 nla_get_be16(tb[TCA_CT_NAT_PORT_MAX]) :
1224 range->min_proto.all;
1225 }
1226
1227 return 0;
1228 }
1229
tcf_ct_set_key_val(struct nlattr ** tb,void * val,int val_type,void * mask,int mask_type,int len)1230 static void tcf_ct_set_key_val(struct nlattr **tb,
1231 void *val, int val_type,
1232 void *mask, int mask_type,
1233 int len)
1234 {
1235 if (!tb[val_type])
1236 return;
1237 nla_memcpy(val, tb[val_type], len);
1238
1239 if (!mask)
1240 return;
1241
1242 if (mask_type == TCA_CT_UNSPEC || !tb[mask_type])
1243 memset(mask, 0xff, len);
1244 else
1245 nla_memcpy(mask, tb[mask_type], len);
1246 }
1247
tcf_ct_fill_params(struct net * net,struct tcf_ct_params * p,struct tc_ct * parm,struct nlattr ** tb,struct netlink_ext_ack * extack)1248 static int tcf_ct_fill_params(struct net *net,
1249 struct tcf_ct_params *p,
1250 struct tc_ct *parm,
1251 struct nlattr **tb,
1252 struct netlink_ext_ack *extack)
1253 {
1254 struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id);
1255 struct nf_conntrack_zone zone;
1256 struct nf_conn *tmpl;
1257 int err;
1258
1259 p->zone = NF_CT_DEFAULT_ZONE_ID;
1260
1261 tcf_ct_set_key_val(tb,
1262 &p->ct_action, TCA_CT_ACTION,
1263 NULL, TCA_CT_UNSPEC,
1264 sizeof(p->ct_action));
1265
1266 if (p->ct_action & TCA_CT_ACT_CLEAR)
1267 return 0;
1268
1269 err = tcf_ct_fill_params_nat(p, parm, tb, extack);
1270 if (err)
1271 return err;
1272
1273 if (tb[TCA_CT_MARK]) {
1274 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)) {
1275 NL_SET_ERR_MSG_MOD(extack, "Conntrack mark isn't enabled.");
1276 return -EOPNOTSUPP;
1277 }
1278 tcf_ct_set_key_val(tb,
1279 &p->mark, TCA_CT_MARK,
1280 &p->mark_mask, TCA_CT_MARK_MASK,
1281 sizeof(p->mark));
1282 }
1283
1284 if (tb[TCA_CT_LABELS]) {
1285 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)) {
1286 NL_SET_ERR_MSG_MOD(extack, "Conntrack labels isn't enabled.");
1287 return -EOPNOTSUPP;
1288 }
1289
1290 if (!tn->labels) {
1291 NL_SET_ERR_MSG_MOD(extack, "Failed to set connlabel length");
1292 return -EOPNOTSUPP;
1293 }
1294 tcf_ct_set_key_val(tb,
1295 p->labels, TCA_CT_LABELS,
1296 p->labels_mask, TCA_CT_LABELS_MASK,
1297 sizeof(p->labels));
1298 }
1299
1300 if (tb[TCA_CT_ZONE]) {
1301 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)) {
1302 NL_SET_ERR_MSG_MOD(extack, "Conntrack zones isn't enabled.");
1303 return -EOPNOTSUPP;
1304 }
1305
1306 tcf_ct_set_key_val(tb,
1307 &p->zone, TCA_CT_ZONE,
1308 NULL, TCA_CT_UNSPEC,
1309 sizeof(p->zone));
1310 }
1311
1312 nf_ct_zone_init(&zone, p->zone, NF_CT_DEFAULT_ZONE_DIR, 0);
1313 tmpl = nf_ct_tmpl_alloc(net, &zone, GFP_KERNEL);
1314 if (!tmpl) {
1315 NL_SET_ERR_MSG_MOD(extack, "Failed to allocate conntrack template");
1316 return -ENOMEM;
1317 }
1318 __set_bit(IPS_CONFIRMED_BIT, &tmpl->status);
1319 p->tmpl = tmpl;
1320
1321 return 0;
1322 }
1323
tcf_ct_init(struct net * net,struct nlattr * nla,struct nlattr * est,struct tc_action ** a,struct tcf_proto * tp,u32 flags,struct netlink_ext_ack * extack)1324 static int tcf_ct_init(struct net *net, struct nlattr *nla,
1325 struct nlattr *est, struct tc_action **a,
1326 struct tcf_proto *tp, u32 flags,
1327 struct netlink_ext_ack *extack)
1328 {
1329 struct tc_action_net *tn = net_generic(net, act_ct_ops.net_id);
1330 bool bind = flags & TCA_ACT_FLAGS_BIND;
1331 struct tcf_ct_params *params = NULL;
1332 struct nlattr *tb[TCA_CT_MAX + 1];
1333 struct tcf_chain *goto_ch = NULL;
1334 struct tc_ct *parm;
1335 struct tcf_ct *c;
1336 int err, res = 0;
1337 u32 index;
1338
1339 if (!nla) {
1340 NL_SET_ERR_MSG_MOD(extack, "Ct requires attributes to be passed");
1341 return -EINVAL;
1342 }
1343
1344 err = nla_parse_nested(tb, TCA_CT_MAX, nla, ct_policy, extack);
1345 if (err < 0)
1346 return err;
1347
1348 if (!tb[TCA_CT_PARMS]) {
1349 NL_SET_ERR_MSG_MOD(extack, "Missing required ct parameters");
1350 return -EINVAL;
1351 }
1352 parm = nla_data(tb[TCA_CT_PARMS]);
1353 index = parm->index;
1354 err = tcf_idr_check_alloc(tn, &index, a, bind);
1355 if (err < 0)
1356 return err;
1357
1358 if (!err) {
1359 err = tcf_idr_create_from_flags(tn, index, est, a,
1360 &act_ct_ops, bind, flags);
1361 if (err) {
1362 tcf_idr_cleanup(tn, index);
1363 return err;
1364 }
1365 res = ACT_P_CREATED;
1366 } else {
1367 if (bind)
1368 return 0;
1369
1370 if (!(flags & TCA_ACT_FLAGS_REPLACE)) {
1371 tcf_idr_release(*a, bind);
1372 return -EEXIST;
1373 }
1374 }
1375 err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack);
1376 if (err < 0)
1377 goto cleanup;
1378
1379 c = to_ct(*a);
1380
1381 params = kzalloc(sizeof(*params), GFP_KERNEL);
1382 if (unlikely(!params)) {
1383 err = -ENOMEM;
1384 goto cleanup;
1385 }
1386
1387 err = tcf_ct_fill_params(net, params, parm, tb, extack);
1388 if (err)
1389 goto cleanup;
1390
1391 err = tcf_ct_flow_table_get(net, params);
1392 if (err)
1393 goto cleanup_params;
1394
1395 spin_lock_bh(&c->tcf_lock);
1396 goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
1397 params = rcu_replace_pointer(c->params, params,
1398 lockdep_is_held(&c->tcf_lock));
1399 spin_unlock_bh(&c->tcf_lock);
1400
1401 if (goto_ch)
1402 tcf_chain_put_by_act(goto_ch);
1403 if (params)
1404 call_rcu(¶ms->rcu, tcf_ct_params_free);
1405
1406 return res;
1407
1408 cleanup_params:
1409 if (params->tmpl)
1410 nf_ct_put(params->tmpl);
1411 cleanup:
1412 if (goto_ch)
1413 tcf_chain_put_by_act(goto_ch);
1414 kfree(params);
1415 tcf_idr_release(*a, bind);
1416 return err;
1417 }
1418
tcf_ct_cleanup(struct tc_action * a)1419 static void tcf_ct_cleanup(struct tc_action *a)
1420 {
1421 struct tcf_ct_params *params;
1422 struct tcf_ct *c = to_ct(a);
1423
1424 params = rcu_dereference_protected(c->params, 1);
1425 if (params)
1426 call_rcu(¶ms->rcu, tcf_ct_params_free);
1427 }
1428
tcf_ct_dump_key_val(struct sk_buff * skb,void * val,int val_type,void * mask,int mask_type,int len)1429 static int tcf_ct_dump_key_val(struct sk_buff *skb,
1430 void *val, int val_type,
1431 void *mask, int mask_type,
1432 int len)
1433 {
1434 int err;
1435
1436 if (mask && !memchr_inv(mask, 0, len))
1437 return 0;
1438
1439 err = nla_put(skb, val_type, len, val);
1440 if (err)
1441 return err;
1442
1443 if (mask_type != TCA_CT_UNSPEC) {
1444 err = nla_put(skb, mask_type, len, mask);
1445 if (err)
1446 return err;
1447 }
1448
1449 return 0;
1450 }
1451
tcf_ct_dump_nat(struct sk_buff * skb,struct tcf_ct_params * p)1452 static int tcf_ct_dump_nat(struct sk_buff *skb, struct tcf_ct_params *p)
1453 {
1454 struct nf_nat_range2 *range = &p->range;
1455
1456 if (!(p->ct_action & TCA_CT_ACT_NAT))
1457 return 0;
1458
1459 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST)))
1460 return 0;
1461
1462 if (range->flags & NF_NAT_RANGE_MAP_IPS) {
1463 if (p->ipv4_range) {
1464 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MIN,
1465 range->min_addr.ip))
1466 return -1;
1467 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MAX,
1468 range->max_addr.ip))
1469 return -1;
1470 } else {
1471 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MIN,
1472 &range->min_addr.in6))
1473 return -1;
1474 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MAX,
1475 &range->max_addr.in6))
1476 return -1;
1477 }
1478 }
1479
1480 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
1481 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MIN,
1482 range->min_proto.all))
1483 return -1;
1484 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MAX,
1485 range->max_proto.all))
1486 return -1;
1487 }
1488
1489 return 0;
1490 }
1491
tcf_ct_dump(struct sk_buff * skb,struct tc_action * a,int bind,int ref)1492 static inline int tcf_ct_dump(struct sk_buff *skb, struct tc_action *a,
1493 int bind, int ref)
1494 {
1495 unsigned char *b = skb_tail_pointer(skb);
1496 struct tcf_ct *c = to_ct(a);
1497 struct tcf_ct_params *p;
1498
1499 struct tc_ct opt = {
1500 .index = c->tcf_index,
1501 .refcnt = refcount_read(&c->tcf_refcnt) - ref,
1502 .bindcnt = atomic_read(&c->tcf_bindcnt) - bind,
1503 };
1504 struct tcf_t t;
1505
1506 spin_lock_bh(&c->tcf_lock);
1507 p = rcu_dereference_protected(c->params,
1508 lockdep_is_held(&c->tcf_lock));
1509 opt.action = c->tcf_action;
1510
1511 if (tcf_ct_dump_key_val(skb,
1512 &p->ct_action, TCA_CT_ACTION,
1513 NULL, TCA_CT_UNSPEC,
1514 sizeof(p->ct_action)))
1515 goto nla_put_failure;
1516
1517 if (p->ct_action & TCA_CT_ACT_CLEAR)
1518 goto skip_dump;
1519
1520 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1521 tcf_ct_dump_key_val(skb,
1522 &p->mark, TCA_CT_MARK,
1523 &p->mark_mask, TCA_CT_MARK_MASK,
1524 sizeof(p->mark)))
1525 goto nla_put_failure;
1526
1527 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1528 tcf_ct_dump_key_val(skb,
1529 p->labels, TCA_CT_LABELS,
1530 p->labels_mask, TCA_CT_LABELS_MASK,
1531 sizeof(p->labels)))
1532 goto nla_put_failure;
1533
1534 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1535 tcf_ct_dump_key_val(skb,
1536 &p->zone, TCA_CT_ZONE,
1537 NULL, TCA_CT_UNSPEC,
1538 sizeof(p->zone)))
1539 goto nla_put_failure;
1540
1541 if (tcf_ct_dump_nat(skb, p))
1542 goto nla_put_failure;
1543
1544 skip_dump:
1545 if (nla_put(skb, TCA_CT_PARMS, sizeof(opt), &opt))
1546 goto nla_put_failure;
1547
1548 tcf_tm_dump(&t, &c->tcf_tm);
1549 if (nla_put_64bit(skb, TCA_CT_TM, sizeof(t), &t, TCA_CT_PAD))
1550 goto nla_put_failure;
1551 spin_unlock_bh(&c->tcf_lock);
1552
1553 return skb->len;
1554 nla_put_failure:
1555 spin_unlock_bh(&c->tcf_lock);
1556 nlmsg_trim(skb, b);
1557 return -1;
1558 }
1559
tcf_stats_update(struct tc_action * a,u64 bytes,u64 packets,u64 drops,u64 lastuse,bool hw)1560 static void tcf_stats_update(struct tc_action *a, u64 bytes, u64 packets,
1561 u64 drops, u64 lastuse, bool hw)
1562 {
1563 struct tcf_ct *c = to_ct(a);
1564
1565 tcf_action_update_stats(a, bytes, packets, drops, hw);
1566 c->tcf_tm.lastuse = max_t(u64, c->tcf_tm.lastuse, lastuse);
1567 }
1568
tcf_ct_offload_act_setup(struct tc_action * act,void * entry_data,u32 * index_inc,bool bind,struct netlink_ext_ack * extack)1569 static int tcf_ct_offload_act_setup(struct tc_action *act, void *entry_data,
1570 u32 *index_inc, bool bind,
1571 struct netlink_ext_ack *extack)
1572 {
1573 if (bind) {
1574 struct flow_action_entry *entry = entry_data;
1575
1576 entry->id = FLOW_ACTION_CT;
1577 entry->ct.action = tcf_ct_action(act);
1578 entry->ct.zone = tcf_ct_zone(act);
1579 entry->ct.flow_table = tcf_ct_ft(act);
1580 *index_inc = 1;
1581 } else {
1582 struct flow_offload_action *fl_action = entry_data;
1583
1584 fl_action->id = FLOW_ACTION_CT;
1585 }
1586
1587 return 0;
1588 }
1589
1590 static struct tc_action_ops act_ct_ops = {
1591 .kind = "ct",
1592 .id = TCA_ID_CT,
1593 .owner = THIS_MODULE,
1594 .act = tcf_ct_act,
1595 .dump = tcf_ct_dump,
1596 .init = tcf_ct_init,
1597 .cleanup = tcf_ct_cleanup,
1598 .stats_update = tcf_stats_update,
1599 .offload_act_setup = tcf_ct_offload_act_setup,
1600 .size = sizeof(struct tcf_ct),
1601 };
1602
ct_init_net(struct net * net)1603 static __net_init int ct_init_net(struct net *net)
1604 {
1605 unsigned int n_bits = sizeof_field(struct tcf_ct_params, labels) * 8;
1606 struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id);
1607
1608 if (nf_connlabels_get(net, n_bits - 1)) {
1609 tn->labels = false;
1610 pr_err("act_ct: Failed to set connlabels length");
1611 } else {
1612 tn->labels = true;
1613 }
1614
1615 return tc_action_net_init(net, &tn->tn, &act_ct_ops);
1616 }
1617
ct_exit_net(struct list_head * net_list)1618 static void __net_exit ct_exit_net(struct list_head *net_list)
1619 {
1620 struct net *net;
1621
1622 rtnl_lock();
1623 list_for_each_entry(net, net_list, exit_list) {
1624 struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id);
1625
1626 if (tn->labels)
1627 nf_connlabels_put(net);
1628 }
1629 rtnl_unlock();
1630
1631 tc_action_net_exit(net_list, act_ct_ops.net_id);
1632 }
1633
1634 static struct pernet_operations ct_net_ops = {
1635 .init = ct_init_net,
1636 .exit_batch = ct_exit_net,
1637 .id = &act_ct_ops.net_id,
1638 .size = sizeof(struct tc_ct_action_net),
1639 };
1640
ct_init_module(void)1641 static int __init ct_init_module(void)
1642 {
1643 int err;
1644
1645 act_ct_wq = alloc_ordered_workqueue("act_ct_workqueue", 0);
1646 if (!act_ct_wq)
1647 return -ENOMEM;
1648
1649 err = tcf_ct_flow_tables_init();
1650 if (err)
1651 goto err_tbl_init;
1652
1653 err = tcf_register_action(&act_ct_ops, &ct_net_ops);
1654 if (err)
1655 goto err_register;
1656
1657 static_branch_inc(&tcf_frag_xmit_count);
1658
1659 return 0;
1660
1661 err_register:
1662 tcf_ct_flow_tables_uninit();
1663 err_tbl_init:
1664 destroy_workqueue(act_ct_wq);
1665 return err;
1666 }
1667
ct_cleanup_module(void)1668 static void __exit ct_cleanup_module(void)
1669 {
1670 static_branch_dec(&tcf_frag_xmit_count);
1671 tcf_unregister_action(&act_ct_ops, &ct_net_ops);
1672 tcf_ct_flow_tables_uninit();
1673 destroy_workqueue(act_ct_wq);
1674 }
1675
1676 module_init(ct_init_module);
1677 module_exit(ct_cleanup_module);
1678 MODULE_AUTHOR("Paul Blakey <paulb@mellanox.com>");
1679 MODULE_AUTHOR("Yossi Kuperman <yossiku@mellanox.com>");
1680 MODULE_AUTHOR("Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>");
1681 MODULE_DESCRIPTION("Connection tracking action");
1682 MODULE_LICENSE("GPL v2");
1683