1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/config.h>
18 #include <linux/kernel.h>
19 #include <linux/sched.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28
29 #define HAVE_ALLOC_SKB /* For the drivers to know */
30 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
31 #define SLAB_SKB /* Slabified skbuffs */
32
33 #define CHECKSUM_NONE 0
34 #define CHECKSUM_HW 1
35 #define CHECKSUM_UNNECESSARY 2
36
37 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES-1)) & ~(SMP_CACHE_BYTES-1))
38 #define SKB_MAX_ORDER(X,ORDER) (((PAGE_SIZE<<(ORDER)) - (X) - sizeof(struct skb_shared_info))&~(SMP_CACHE_BYTES-1))
39 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X),0))
40 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0,2))
41
42 /* A. Checksumming of received packets by device.
43 *
44 * NONE: device failed to checksum this packet.
45 * skb->csum is undefined.
46 *
47 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
48 * skb->csum is undefined.
49 * It is bad option, but, unfortunately, many of vendors do this.
50 * Apparently with secret goal to sell you new device, when you
51 * will add new protocol to your host. F.e. IPv6. 8)
52 *
53 * HW: the most generic way. Device supplied checksum of _all_
54 * the packet as seen by netif_rx in skb->csum.
55 * NOTE: Even if device supports only some protocols, but
56 * is able to produce some skb->csum, it MUST use HW,
57 * not UNNECESSARY.
58 *
59 * B. Checksumming on output.
60 *
61 * NONE: skb is checksummed by protocol or csum is not required.
62 *
63 * HW: device is required to csum packet as seen by hard_start_xmit
64 * from skb->h.raw to the end and to record the checksum
65 * at skb->h.raw+skb->csum.
66 *
67 * Device must show its capabilities in dev->features, set
68 * at device setup time.
69 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
70 * everything.
71 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
72 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
73 * TCP/UDP over IPv4. Sigh. Vendors like this
74 * way by an unknown reason. Though, see comment above
75 * about CHECKSUM_UNNECESSARY. 8)
76 *
77 * Any questions? No questions, good. --ANK
78 */
79
80 #ifdef __i386__
81 #define NET_CALLER(arg) (*(((void**)&arg)-1))
82 #else
83 #define NET_CALLER(arg) __builtin_return_address(0)
84 #endif
85
86 #ifdef CONFIG_NETFILTER
87 struct nf_conntrack {
88 atomic_t use;
89 void (*destroy)(struct nf_conntrack *);
90 };
91
92 struct nf_ct_info {
93 struct nf_conntrack *master;
94 };
95 #endif
96
97 struct sk_buff_head {
98 /* These two members must be first. */
99 struct sk_buff * next;
100 struct sk_buff * prev;
101
102 __u32 qlen;
103 spinlock_t lock;
104 };
105
106 struct sk_buff;
107
108 #define MAX_SKB_FRAGS 6
109
110 typedef struct skb_frag_struct skb_frag_t;
111
112 struct skb_frag_struct
113 {
114 struct page *page;
115 __u16 page_offset;
116 __u16 size;
117 };
118
119 /* This data is invariant across clones and lives at
120 * the end of the header data, ie. at skb->end.
121 */
122 struct skb_shared_info {
123 atomic_t dataref;
124 unsigned int nr_frags;
125 struct sk_buff *frag_list;
126 skb_frag_t frags[MAX_SKB_FRAGS];
127 };
128
129 struct sk_buff {
130 /* These two members must be first. */
131 struct sk_buff * next; /* Next buffer in list */
132 struct sk_buff * prev; /* Previous buffer in list */
133
134 struct sk_buff_head * list; /* List we are on */
135 struct sock *sk; /* Socket we are owned by */
136 struct timeval stamp; /* Time we arrived */
137 struct net_device *dev; /* Device we arrived on/are leaving by */
138 struct net_device *real_dev; /* For support of point to point protocols
139 (e.g. 802.3ad) over bonding, we must save the
140 physical device that got the packet before
141 replacing skb->dev with the virtual device. */
142
143 /* Transport layer header */
144 union
145 {
146 struct tcphdr *th;
147 struct udphdr *uh;
148 struct icmphdr *icmph;
149 struct igmphdr *igmph;
150 struct iphdr *ipiph;
151 struct spxhdr *spxh;
152 unsigned char *raw;
153 } h;
154
155 /* Network layer header */
156 union
157 {
158 struct iphdr *iph;
159 struct ipv6hdr *ipv6h;
160 struct arphdr *arph;
161 struct ipxhdr *ipxh;
162 unsigned char *raw;
163 } nh;
164
165 /* Link layer header */
166 union
167 {
168 struct ethhdr *ethernet;
169 unsigned char *raw;
170 } mac;
171
172 struct dst_entry *dst;
173
174 /*
175 * This is the control buffer. It is free to use for every
176 * layer. Please put your private variables there. If you
177 * want to keep them across layers you have to do a skb_clone()
178 * first. This is owned by whoever has the skb queued ATM.
179 */
180 char cb[48];
181
182 unsigned int len; /* Length of actual data */
183 unsigned int data_len;
184 unsigned int csum; /* Checksum */
185 unsigned char __unused, /* Dead field, may be reused */
186 cloned, /* head may be cloned (check refcnt to be sure). */
187 pkt_type, /* Packet class */
188 ip_summed; /* Driver fed us an IP checksum */
189 __u32 priority; /* Packet queueing priority */
190 atomic_t users; /* User count - see datagram.c,tcp.c */
191 unsigned short protocol; /* Packet protocol from driver. */
192 unsigned short security; /* Security level of packet */
193 unsigned int truesize; /* Buffer size */
194
195 unsigned char *head; /* Head of buffer */
196 unsigned char *data; /* Data head pointer */
197 unsigned char *tail; /* Tail pointer */
198 unsigned char *end; /* End pointer */
199
200 void (*destructor)(struct sk_buff *); /* Destruct function */
201 #ifdef CONFIG_NETFILTER
202 /* Can be used for communication between hooks. */
203 unsigned long nfmark;
204 /* Cache info */
205 __u32 nfcache;
206 /* Associated connection, if any */
207 struct nf_ct_info *nfct;
208 #ifdef CONFIG_NETFILTER_DEBUG
209 unsigned int nf_debug;
210 #endif
211 #endif /*CONFIG_NETFILTER*/
212
213 #if defined(CONFIG_HIPPI)
214 union{
215 __u32 ifield;
216 } private;
217 #endif
218
219 #ifdef CONFIG_NET_SCHED
220 __u32 tc_index; /* traffic control index */
221 #endif
222 };
223
224 #ifdef __KERNEL__
225 /*
226 * Handling routines are only of interest to the kernel
227 */
228 #include <linux/slab.h>
229
230 #include <asm/system.h>
231
232 extern void __kfree_skb(struct sk_buff *skb);
233 extern struct sk_buff * alloc_skb(unsigned int size, int priority);
234 extern void kfree_skbmem(struct sk_buff *skb);
235 extern struct sk_buff * skb_clone(struct sk_buff *skb, int priority);
236 extern struct sk_buff * skb_copy(const struct sk_buff *skb, int priority);
237 extern struct sk_buff * pskb_copy(struct sk_buff *skb, int gfp_mask);
238 extern int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, int gfp_mask);
239 extern struct sk_buff * skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom);
240 extern struct sk_buff * skb_copy_expand(const struct sk_buff *skb,
241 int newheadroom,
242 int newtailroom,
243 int priority);
244 extern struct sk_buff * skb_pad(struct sk_buff *skb, int pad);
245 #define dev_kfree_skb(a) kfree_skb(a)
246 extern void skb_over_panic(struct sk_buff *skb, int len, void *here);
247 extern void skb_under_panic(struct sk_buff *skb, int len, void *here);
248
249 /* Internal */
250 #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
251
252 /**
253 * skb_queue_empty - check if a queue is empty
254 * @list: queue head
255 *
256 * Returns true if the queue is empty, false otherwise.
257 */
258
skb_queue_empty(struct sk_buff_head * list)259 static inline int skb_queue_empty(struct sk_buff_head *list)
260 {
261 return (list->next == (struct sk_buff *) list);
262 }
263
264 /**
265 * skb_get - reference buffer
266 * @skb: buffer to reference
267 *
268 * Makes another reference to a socket buffer and returns a pointer
269 * to the buffer.
270 */
271
skb_get(struct sk_buff * skb)272 static inline struct sk_buff *skb_get(struct sk_buff *skb)
273 {
274 atomic_inc(&skb->users);
275 return skb;
276 }
277
278 /*
279 * If users==1, we are the only owner and are can avoid redundant
280 * atomic change.
281 */
282
283 /**
284 * kfree_skb - free an sk_buff
285 * @skb: buffer to free
286 *
287 * Drop a reference to the buffer and free it if the usage count has
288 * hit zero.
289 */
290
kfree_skb(struct sk_buff * skb)291 static inline void kfree_skb(struct sk_buff *skb)
292 {
293 if (likely(atomic_read(&skb->users) == 1))
294 smp_rmb();
295 else if (likely(!atomic_dec_and_test(&skb->users)))
296 return;
297 __kfree_skb(skb);
298 }
299
300 /**
301 * skb_cloned - is the buffer a clone
302 * @skb: buffer to check
303 *
304 * Returns true if the buffer was generated with skb_clone() and is
305 * one of multiple shared copies of the buffer. Cloned buffers are
306 * shared data so must not be written to under normal circumstances.
307 */
308
skb_cloned(struct sk_buff * skb)309 static inline int skb_cloned(struct sk_buff *skb)
310 {
311 return skb->cloned && atomic_read(&skb_shinfo(skb)->dataref) != 1;
312 }
313
314 /**
315 * skb_shared - is the buffer shared
316 * @skb: buffer to check
317 *
318 * Returns true if more than one person has a reference to this
319 * buffer.
320 */
321
skb_shared(struct sk_buff * skb)322 static inline int skb_shared(struct sk_buff *skb)
323 {
324 return (atomic_read(&skb->users) != 1);
325 }
326
327 /**
328 * skb_share_check - check if buffer is shared and if so clone it
329 * @skb: buffer to check
330 * @pri: priority for memory allocation
331 *
332 * If the buffer is shared the buffer is cloned and the old copy
333 * drops a reference. A new clone with a single reference is returned.
334 * If the buffer is not shared the original buffer is returned. When
335 * being called from interrupt status or with spinlocks held pri must
336 * be GFP_ATOMIC.
337 *
338 * NULL is returned on a memory allocation failure.
339 */
340
skb_share_check(struct sk_buff * skb,int pri)341 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, int pri)
342 {
343 if (skb_shared(skb)) {
344 struct sk_buff *nskb;
345 nskb = skb_clone(skb, pri);
346 kfree_skb(skb);
347 return nskb;
348 }
349 return skb;
350 }
351
352
353 /*
354 * Copy shared buffers into a new sk_buff. We effectively do COW on
355 * packets to handle cases where we have a local reader and forward
356 * and a couple of other messy ones. The normal one is tcpdumping
357 * a packet thats being forwarded.
358 */
359
360 /**
361 * skb_unshare - make a copy of a shared buffer
362 * @skb: buffer to check
363 * @pri: priority for memory allocation
364 *
365 * If the socket buffer is a clone then this function creates a new
366 * copy of the data, drops a reference count on the old copy and returns
367 * the new copy with the reference count at 1. If the buffer is not a clone
368 * the original buffer is returned. When called with a spinlock held or
369 * from interrupt state @pri must be %GFP_ATOMIC
370 *
371 * %NULL is returned on a memory allocation failure.
372 */
373
skb_unshare(struct sk_buff * skb,int pri)374 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, int pri)
375 {
376 struct sk_buff *nskb;
377 if(!skb_cloned(skb))
378 return skb;
379 nskb=skb_copy(skb, pri);
380 kfree_skb(skb); /* Free our shared copy */
381 return nskb;
382 }
383
384 /**
385 * skb_peek
386 * @list_: list to peek at
387 *
388 * Peek an &sk_buff. Unlike most other operations you _MUST_
389 * be careful with this one. A peek leaves the buffer on the
390 * list and someone else may run off with it. You must hold
391 * the appropriate locks or have a private queue to do this.
392 *
393 * Returns %NULL for an empty list or a pointer to the head element.
394 * The reference count is not incremented and the reference is therefore
395 * volatile. Use with caution.
396 */
397
skb_peek(struct sk_buff_head * list_)398 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
399 {
400 struct sk_buff *list = ((struct sk_buff *)list_)->next;
401 if (list == (struct sk_buff *)list_)
402 list = NULL;
403 return list;
404 }
405
406 /**
407 * skb_peek_tail
408 * @list_: list to peek at
409 *
410 * Peek an &sk_buff. Unlike most other operations you _MUST_
411 * be careful with this one. A peek leaves the buffer on the
412 * list and someone else may run off with it. You must hold
413 * the appropriate locks or have a private queue to do this.
414 *
415 * Returns %NULL for an empty list or a pointer to the tail element.
416 * The reference count is not incremented and the reference is therefore
417 * volatile. Use with caution.
418 */
419
skb_peek_tail(struct sk_buff_head * list_)420 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
421 {
422 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
423 if (list == (struct sk_buff *)list_)
424 list = NULL;
425 return list;
426 }
427
428 /**
429 * skb_queue_len - get queue length
430 * @list_: list to measure
431 *
432 * Return the length of an &sk_buff queue.
433 */
434
skb_queue_len(struct sk_buff_head * list_)435 static inline __u32 skb_queue_len(struct sk_buff_head *list_)
436 {
437 return(list_->qlen);
438 }
439
skb_queue_head_init(struct sk_buff_head * list)440 static inline void skb_queue_head_init(struct sk_buff_head *list)
441 {
442 spin_lock_init(&list->lock);
443 list->prev = (struct sk_buff *)list;
444 list->next = (struct sk_buff *)list;
445 list->qlen = 0;
446 }
447
448 /*
449 * Insert an sk_buff at the start of a list.
450 *
451 * The "__skb_xxxx()" functions are the non-atomic ones that
452 * can only be called with interrupts disabled.
453 */
454
455 /**
456 * __skb_queue_head - queue a buffer at the list head
457 * @list: list to use
458 * @newsk: buffer to queue
459 *
460 * Queue a buffer at the start of a list. This function takes no locks
461 * and you must therefore hold required locks before calling it.
462 *
463 * A buffer cannot be placed on two lists at the same time.
464 */
465
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)466 static inline void __skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
467 {
468 struct sk_buff *prev, *next;
469
470 newsk->list = list;
471 list->qlen++;
472 prev = (struct sk_buff *)list;
473 next = prev->next;
474 newsk->next = next;
475 newsk->prev = prev;
476 next->prev = newsk;
477 prev->next = newsk;
478 }
479
480
481 /**
482 * skb_queue_head - queue a buffer at the list head
483 * @list: list to use
484 * @newsk: buffer to queue
485 *
486 * Queue a buffer at the start of the list. This function takes the
487 * list lock and can be used safely with other locking &sk_buff functions
488 * safely.
489 *
490 * A buffer cannot be placed on two lists at the same time.
491 */
492
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)493 static inline void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
494 {
495 unsigned long flags;
496
497 spin_lock_irqsave(&list->lock, flags);
498 __skb_queue_head(list, newsk);
499 spin_unlock_irqrestore(&list->lock, flags);
500 }
501
502 /**
503 * __skb_queue_tail - queue a buffer at the list tail
504 * @list: list to use
505 * @newsk: buffer to queue
506 *
507 * Queue a buffer at the end of a list. This function takes no locks
508 * and you must therefore hold required locks before calling it.
509 *
510 * A buffer cannot be placed on two lists at the same time.
511 */
512
513
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)514 static inline void __skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
515 {
516 struct sk_buff *prev, *next;
517
518 newsk->list = list;
519 list->qlen++;
520 next = (struct sk_buff *)list;
521 prev = next->prev;
522 newsk->next = next;
523 newsk->prev = prev;
524 next->prev = newsk;
525 prev->next = newsk;
526 }
527
528 /**
529 * skb_queue_tail - queue a buffer at the list tail
530 * @list: list to use
531 * @newsk: buffer to queue
532 *
533 * Queue a buffer at the tail of the list. This function takes the
534 * list lock and can be used safely with other locking &sk_buff functions
535 * safely.
536 *
537 * A buffer cannot be placed on two lists at the same time.
538 */
539
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)540 static inline void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
541 {
542 unsigned long flags;
543
544 spin_lock_irqsave(&list->lock, flags);
545 __skb_queue_tail(list, newsk);
546 spin_unlock_irqrestore(&list->lock, flags);
547 }
548
549 /**
550 * __skb_dequeue - remove from the head of the queue
551 * @list: list to dequeue from
552 *
553 * Remove the head of the list. This function does not take any locks
554 * so must be used with appropriate locks held only. The head item is
555 * returned or %NULL if the list is empty.
556 */
557
__skb_dequeue(struct sk_buff_head * list)558 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
559 {
560 struct sk_buff *next, *prev, *result;
561
562 prev = (struct sk_buff *) list;
563 next = prev->next;
564 result = NULL;
565 if (next != prev) {
566 result = next;
567 next = next->next;
568 list->qlen--;
569 next->prev = prev;
570 prev->next = next;
571 result->next = NULL;
572 result->prev = NULL;
573 result->list = NULL;
574 }
575 return result;
576 }
577
578 /**
579 * skb_dequeue - remove from the head of the queue
580 * @list: list to dequeue from
581 *
582 * Remove the head of the list. The list lock is taken so the function
583 * may be used safely with other locking list functions. The head item is
584 * returned or %NULL if the list is empty.
585 */
586
skb_dequeue(struct sk_buff_head * list)587 static inline struct sk_buff *skb_dequeue(struct sk_buff_head *list)
588 {
589 unsigned long flags;
590 struct sk_buff *result;
591
592 spin_lock_irqsave(&list->lock, flags);
593 result = __skb_dequeue(list);
594 spin_unlock_irqrestore(&list->lock, flags);
595 return result;
596 }
597
598 /*
599 * Insert a packet on a list.
600 */
601
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)602 static inline void __skb_insert(struct sk_buff *newsk,
603 struct sk_buff * prev, struct sk_buff *next,
604 struct sk_buff_head * list)
605 {
606 newsk->next = next;
607 newsk->prev = prev;
608 next->prev = newsk;
609 prev->next = newsk;
610 newsk->list = list;
611 list->qlen++;
612 }
613
614 /**
615 * skb_insert - insert a buffer
616 * @old: buffer to insert before
617 * @newsk: buffer to insert
618 *
619 * Place a packet before a given packet in a list. The list locks are taken
620 * and this function is atomic with respect to other list locked calls
621 * A buffer cannot be placed on two lists at the same time.
622 */
623
skb_insert(struct sk_buff * old,struct sk_buff * newsk)624 static inline void skb_insert(struct sk_buff *old, struct sk_buff *newsk)
625 {
626 unsigned long flags;
627
628 spin_lock_irqsave(&old->list->lock, flags);
629 __skb_insert(newsk, old->prev, old, old->list);
630 spin_unlock_irqrestore(&old->list->lock, flags);
631 }
632
633 /*
634 * Place a packet after a given packet in a list.
635 */
636
__skb_append(struct sk_buff * old,struct sk_buff * newsk)637 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk)
638 {
639 __skb_insert(newsk, old, old->next, old->list);
640 }
641
642 /**
643 * skb_append - append a buffer
644 * @old: buffer to insert after
645 * @newsk: buffer to insert
646 *
647 * Place a packet after a given packet in a list. The list locks are taken
648 * and this function is atomic with respect to other list locked calls.
649 * A buffer cannot be placed on two lists at the same time.
650 */
651
652
skb_append(struct sk_buff * old,struct sk_buff * newsk)653 static inline void skb_append(struct sk_buff *old, struct sk_buff *newsk)
654 {
655 unsigned long flags;
656
657 spin_lock_irqsave(&old->list->lock, flags);
658 __skb_append(old, newsk);
659 spin_unlock_irqrestore(&old->list->lock, flags);
660 }
661
662 /*
663 * remove sk_buff from list. _Must_ be called atomically, and with
664 * the list known..
665 */
666
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)667 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
668 {
669 struct sk_buff * next, * prev;
670
671 list->qlen--;
672 next = skb->next;
673 prev = skb->prev;
674 skb->next = NULL;
675 skb->prev = NULL;
676 skb->list = NULL;
677 next->prev = prev;
678 prev->next = next;
679 }
680
681 /**
682 * skb_unlink - remove a buffer from a list
683 * @skb: buffer to remove
684 *
685 * Place a packet after a given packet in a list. The list locks are taken
686 * and this function is atomic with respect to other list locked calls
687 *
688 * Works even without knowing the list it is sitting on, which can be
689 * handy at times. It also means that THE LIST MUST EXIST when you
690 * unlink. Thus a list must have its contents unlinked before it is
691 * destroyed.
692 */
693
skb_unlink(struct sk_buff * skb)694 static inline void skb_unlink(struct sk_buff *skb)
695 {
696 struct sk_buff_head *list = skb->list;
697
698 if(list) {
699 unsigned long flags;
700
701 spin_lock_irqsave(&list->lock, flags);
702 if(skb->list == list)
703 __skb_unlink(skb, skb->list);
704 spin_unlock_irqrestore(&list->lock, flags);
705 }
706 }
707
708 /* XXX: more streamlined implementation */
709
710 /**
711 * __skb_dequeue_tail - remove from the tail of the queue
712 * @list: list to dequeue from
713 *
714 * Remove the tail of the list. This function does not take any locks
715 * so must be used with appropriate locks held only. The tail item is
716 * returned or %NULL if the list is empty.
717 */
718
__skb_dequeue_tail(struct sk_buff_head * list)719 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
720 {
721 struct sk_buff *skb = skb_peek_tail(list);
722 if (skb)
723 __skb_unlink(skb, list);
724 return skb;
725 }
726
727 /**
728 * skb_dequeue - remove from the head of the queue
729 * @list: list to dequeue from
730 *
731 * Remove the head of the list. The list lock is taken so the function
732 * may be used safely with other locking list functions. The tail item is
733 * returned or %NULL if the list is empty.
734 */
735
skb_dequeue_tail(struct sk_buff_head * list)736 static inline struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
737 {
738 unsigned long flags;
739 struct sk_buff *result;
740
741 spin_lock_irqsave(&list->lock, flags);
742 result = __skb_dequeue_tail(list);
743 spin_unlock_irqrestore(&list->lock, flags);
744 return result;
745 }
746
skb_is_nonlinear(const struct sk_buff * skb)747 static inline int skb_is_nonlinear(const struct sk_buff *skb)
748 {
749 return skb->data_len;
750 }
751
skb_headlen(const struct sk_buff * skb)752 static inline unsigned int skb_headlen(const struct sk_buff *skb)
753 {
754 return skb->len - skb->data_len;
755 }
756
757 #define SKB_PAGE_ASSERT(skb) do { if (skb_shinfo(skb)->nr_frags) out_of_line_bug(); } while (0)
758 #define SKB_FRAG_ASSERT(skb) do { if (skb_shinfo(skb)->frag_list) out_of_line_bug(); } while (0)
759 #define SKB_LINEAR_ASSERT(skb) do { if (skb_is_nonlinear(skb)) out_of_line_bug(); } while (0)
760
761 /*
762 * Add data to an sk_buff
763 */
764
__skb_put(struct sk_buff * skb,unsigned int len)765 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
766 {
767 unsigned char *tmp=skb->tail;
768 SKB_LINEAR_ASSERT(skb);
769 skb->tail+=len;
770 skb->len+=len;
771 return tmp;
772 }
773
774 /**
775 * skb_put - add data to a buffer
776 * @skb: buffer to use
777 * @len: amount of data to add
778 *
779 * This function extends the used data area of the buffer. If this would
780 * exceed the total buffer size the kernel will panic. A pointer to the
781 * first byte of the extra data is returned.
782 */
783
skb_put(struct sk_buff * skb,unsigned int len)784 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
785 {
786 unsigned char *tmp=skb->tail;
787 SKB_LINEAR_ASSERT(skb);
788 skb->tail+=len;
789 skb->len+=len;
790 if(skb->tail>skb->end) {
791 skb_over_panic(skb, len, current_text_addr());
792 }
793 return tmp;
794 }
795
__skb_push(struct sk_buff * skb,unsigned int len)796 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
797 {
798 skb->data-=len;
799 skb->len+=len;
800 return skb->data;
801 }
802
803 /**
804 * skb_push - add data to the start of a buffer
805 * @skb: buffer to use
806 * @len: amount of data to add
807 *
808 * This function extends the used data area of the buffer at the buffer
809 * start. If this would exceed the total buffer headroom the kernel will
810 * panic. A pointer to the first byte of the extra data is returned.
811 */
812
skb_push(struct sk_buff * skb,unsigned int len)813 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
814 {
815 skb->data-=len;
816 skb->len+=len;
817 if(skb->data<skb->head) {
818 skb_under_panic(skb, len, current_text_addr());
819 }
820 return skb->data;
821 }
822
__skb_pull(struct sk_buff * skb,unsigned int len)823 static inline char *__skb_pull(struct sk_buff *skb, unsigned int len)
824 {
825 skb->len-=len;
826 if (skb->len < skb->data_len)
827 out_of_line_bug();
828 return skb->data+=len;
829 }
830
831 /**
832 * skb_pull - remove data from the start of a buffer
833 * @skb: buffer to use
834 * @len: amount of data to remove
835 *
836 * This function removes data from the start of a buffer, returning
837 * the memory to the headroom. A pointer to the next data in the buffer
838 * is returned. Once the data has been pulled future pushes will overwrite
839 * the old data.
840 */
841
skb_pull(struct sk_buff * skb,unsigned int len)842 static inline unsigned char * skb_pull(struct sk_buff *skb, unsigned int len)
843 {
844 if (len > skb->len)
845 return NULL;
846 return __skb_pull(skb,len);
847 }
848
849 extern unsigned char * __pskb_pull_tail(struct sk_buff *skb, int delta);
850
__pskb_pull(struct sk_buff * skb,unsigned int len)851 static inline char *__pskb_pull(struct sk_buff *skb, unsigned int len)
852 {
853 if (len > skb_headlen(skb) &&
854 __pskb_pull_tail(skb, len-skb_headlen(skb)) == NULL)
855 return NULL;
856 skb->len -= len;
857 return skb->data += len;
858 }
859
pskb_pull(struct sk_buff * skb,unsigned int len)860 static inline unsigned char * pskb_pull(struct sk_buff *skb, unsigned int len)
861 {
862 if (len > skb->len)
863 return NULL;
864 return __pskb_pull(skb,len);
865 }
866
pskb_may_pull(struct sk_buff * skb,unsigned int len)867 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
868 {
869 if (len <= skb_headlen(skb))
870 return 1;
871 if (len > skb->len)
872 return 0;
873 return (__pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL);
874 }
875
876 /**
877 * skb_headroom - bytes at buffer head
878 * @skb: buffer to check
879 *
880 * Return the number of bytes of free space at the head of an &sk_buff.
881 */
882
skb_headroom(const struct sk_buff * skb)883 static inline int skb_headroom(const struct sk_buff *skb)
884 {
885 return skb->data-skb->head;
886 }
887
888 /**
889 * skb_tailroom - bytes at buffer end
890 * @skb: buffer to check
891 *
892 * Return the number of bytes of free space at the tail of an sk_buff
893 */
894
skb_tailroom(const struct sk_buff * skb)895 static inline int skb_tailroom(const struct sk_buff *skb)
896 {
897 return skb_is_nonlinear(skb) ? 0 : skb->end-skb->tail;
898 }
899
900 /**
901 * skb_reserve - adjust headroom
902 * @skb: buffer to alter
903 * @len: bytes to move
904 *
905 * Increase the headroom of an empty &sk_buff by reducing the tail
906 * room. This is only allowed for an empty buffer.
907 */
908
skb_reserve(struct sk_buff * skb,unsigned int len)909 static inline void skb_reserve(struct sk_buff *skb, unsigned int len)
910 {
911 skb->data+=len;
912 skb->tail+=len;
913 }
914
915 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc);
916
__skb_trim(struct sk_buff * skb,unsigned int len)917 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
918 {
919 if (!skb->data_len) {
920 skb->len = len;
921 skb->tail = skb->data+len;
922 } else {
923 ___pskb_trim(skb, len, 0);
924 }
925 }
926
927 /**
928 * skb_trim - remove end from a buffer
929 * @skb: buffer to alter
930 * @len: new length
931 *
932 * Cut the length of a buffer down by removing data from the tail. If
933 * the buffer is already under the length specified it is not modified.
934 */
935
skb_trim(struct sk_buff * skb,unsigned int len)936 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
937 {
938 if (skb->len > len) {
939 __skb_trim(skb, len);
940 }
941 }
942
943
__pskb_trim(struct sk_buff * skb,unsigned int len)944 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
945 {
946 if (!skb->data_len) {
947 skb->len = len;
948 skb->tail = skb->data+len;
949 return 0;
950 } else {
951 return ___pskb_trim(skb, len, 1);
952 }
953 }
954
pskb_trim(struct sk_buff * skb,unsigned int len)955 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
956 {
957 if (len < skb->len)
958 return __pskb_trim(skb, len);
959 return 0;
960 }
961
962 /**
963 * skb_orphan - orphan a buffer
964 * @skb: buffer to orphan
965 *
966 * If a buffer currently has an owner then we call the owner's
967 * destructor function and make the @skb unowned. The buffer continues
968 * to exist but is no longer charged to its former owner.
969 */
970
971
skb_orphan(struct sk_buff * skb)972 static inline void skb_orphan(struct sk_buff *skb)
973 {
974 if (skb->destructor)
975 skb->destructor(skb);
976 skb->destructor = NULL;
977 skb->sk = NULL;
978 }
979
980 /**
981 * skb_purge - empty a list
982 * @list: list to empty
983 *
984 * Delete all buffers on an &sk_buff list. Each buffer is removed from
985 * the list and one reference dropped. This function takes the list
986 * lock and is atomic with respect to other list locking functions.
987 */
988
989
skb_queue_purge(struct sk_buff_head * list)990 static inline void skb_queue_purge(struct sk_buff_head *list)
991 {
992 struct sk_buff *skb;
993 while ((skb=skb_dequeue(list))!=NULL)
994 kfree_skb(skb);
995 }
996
997 /**
998 * __skb_purge - empty a list
999 * @list: list to empty
1000 *
1001 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1002 * the list and one reference dropped. This function does not take the
1003 * list lock and the caller must hold the relevant locks to use it.
1004 */
1005
1006
__skb_queue_purge(struct sk_buff_head * list)1007 static inline void __skb_queue_purge(struct sk_buff_head *list)
1008 {
1009 struct sk_buff *skb;
1010 while ((skb=__skb_dequeue(list))!=NULL)
1011 kfree_skb(skb);
1012 }
1013
1014 /**
1015 * __dev_alloc_skb - allocate an skbuff for sending
1016 * @length: length to allocate
1017 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1018 *
1019 * Allocate a new &sk_buff and assign it a usage count of one. The
1020 * buffer has unspecified headroom built in. Users should allocate
1021 * the headroom they think they need without accounting for the
1022 * built in space. The built in space is used for optimisations.
1023 *
1024 * %NULL is returned in there is no free memory.
1025 */
1026
__dev_alloc_skb(unsigned int length,int gfp_mask)1027 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1028 int gfp_mask)
1029 {
1030 struct sk_buff *skb;
1031
1032 skb = alloc_skb(length+16, gfp_mask);
1033 if (skb)
1034 skb_reserve(skb,16);
1035 return skb;
1036 }
1037
1038 /**
1039 * dev_alloc_skb - allocate an skbuff for sending
1040 * @length: length to allocate
1041 *
1042 * Allocate a new &sk_buff and assign it a usage count of one. The
1043 * buffer has unspecified headroom built in. Users should allocate
1044 * the headroom they think they need without accounting for the
1045 * built in space. The built in space is used for optimisations.
1046 *
1047 * %NULL is returned in there is no free memory. Although this function
1048 * allocates memory it can be called from an interrupt.
1049 */
1050
dev_alloc_skb(unsigned int length)1051 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1052 {
1053 return __dev_alloc_skb(length, GFP_ATOMIC);
1054 }
1055
1056 /**
1057 * skb_cow - copy header of skb when it is required
1058 * @skb: buffer to cow
1059 * @headroom: needed headroom
1060 *
1061 * If the skb passed lacks sufficient headroom or its data part
1062 * is shared, data is reallocated. If reallocation fails, an error
1063 * is returned and original skb is not changed.
1064 *
1065 * The result is skb with writable area skb->head...skb->tail
1066 * and at least @headroom of space at head.
1067 */
1068
1069 static inline int
skb_cow(struct sk_buff * skb,unsigned int headroom)1070 skb_cow(struct sk_buff *skb, unsigned int headroom)
1071 {
1072 int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb);
1073
1074 if (delta < 0)
1075 delta = 0;
1076
1077 if (delta || skb_cloned(skb))
1078 return pskb_expand_head(skb, (delta+15)&~15, 0, GFP_ATOMIC);
1079 return 0;
1080 }
1081
1082 /**
1083 * skb_padto - pad an skbuff up to a minimal size
1084 * @skb: buffer to pad
1085 * @len: minimal length
1086 *
1087 * Pads up a buffer to ensure the trailing bytes exist and are
1088 * blanked. If the buffer already contains sufficient data it
1089 * is untouched. Returns the buffer, which may be a replacement
1090 * for the original, or NULL for out of memory - in which case
1091 * the original buffer is still freed.
1092 */
1093
skb_padto(struct sk_buff * skb,unsigned int len)1094 static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len)
1095 {
1096 unsigned int size = skb->len;
1097 if(likely(size >= len))
1098 return skb;
1099 return skb_pad(skb, len-size);
1100 }
1101
1102 /**
1103 * skb_linearize - convert paged skb to linear one
1104 * @skb: buffer to linarize
1105 * @gfp: allocation mode
1106 *
1107 * If there is no free memory -ENOMEM is returned, otherwise zero
1108 * is returned and the old skb data released. */
1109 int skb_linearize(struct sk_buff *skb, int gfp);
1110
kmap_skb_frag(const skb_frag_t * frag)1111 static inline void *kmap_skb_frag(const skb_frag_t *frag)
1112 {
1113 #ifdef CONFIG_HIGHMEM
1114 if (in_irq())
1115 out_of_line_bug();
1116
1117 local_bh_disable();
1118 #endif
1119 return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1120 }
1121
kunmap_skb_frag(void * vaddr)1122 static inline void kunmap_skb_frag(void *vaddr)
1123 {
1124 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1125 #ifdef CONFIG_HIGHMEM
1126 local_bh_enable();
1127 #endif
1128 }
1129
1130 #define skb_queue_walk(queue, skb) \
1131 for (skb = (queue)->next; \
1132 (skb != (struct sk_buff *)(queue)); \
1133 skb=skb->next)
1134
1135
1136 extern struct sk_buff * skb_recv_datagram(struct sock *sk,unsigned flags,int noblock, int *err);
1137 extern unsigned int datagram_poll(struct file *file, struct socket *sock, struct poll_table_struct *wait);
1138 extern int skb_copy_datagram(const struct sk_buff *from, int offset, char *to,int size);
1139 extern int skb_copy_datagram_iovec(const struct sk_buff *from, int offset, struct iovec *to,int size);
1140 extern int skb_copy_and_csum_datagram(const struct sk_buff *skb, int offset, u8 *to, int len, unsigned int *csump);
1141 extern int skb_copy_and_csum_datagram_iovec(const struct sk_buff *skb, int hlen, struct iovec *iov);
1142 extern void skb_free_datagram(struct sock * sk, struct sk_buff *skb);
1143
1144 extern unsigned int skb_checksum(const struct sk_buff *skb, int offset, int len, unsigned int csum);
1145 extern int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
1146 extern unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, int len, unsigned int csum);
1147 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1148
1149 extern void skb_init(void);
1150 extern void skb_add_mtu(int mtu);
1151
1152 #ifdef CONFIG_NETFILTER
1153 static inline void
nf_conntrack_put(struct nf_ct_info * nfct)1154 nf_conntrack_put(struct nf_ct_info *nfct)
1155 {
1156 if (nfct && atomic_dec_and_test(&nfct->master->use))
1157 nfct->master->destroy(nfct->master);
1158 }
1159 static inline void
nf_conntrack_get(struct nf_ct_info * nfct)1160 nf_conntrack_get(struct nf_ct_info *nfct)
1161 {
1162 if (nfct)
1163 atomic_inc(&nfct->master->use);
1164 }
1165 static inline void
nf_reset(struct sk_buff * skb)1166 nf_reset(struct sk_buff *skb)
1167 {
1168 nf_conntrack_put(skb->nfct);
1169 skb->nfct = NULL;
1170 #ifdef CONFIG_NETFILTER_DEBUG
1171 skb->nf_debug = 0;
1172 #endif
1173 }
1174 #else /* CONFIG_NETFILTER */
nf_reset(struct sk_buff * skb)1175 static inline void nf_reset(struct sk_buff *skb) {}
1176 #endif /* CONFIG_NETFILTER */
1177
1178 #endif /* __KERNEL__ */
1179 #endif /* _LINUX_SKBUFF_H */
1180