1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
6  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22 
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
38 
39 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
40 				 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X)	\
42 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
47 
48 /* A. Checksumming of received packets by device.
49  *
50  *	NONE: device failed to checksum this packet.
51  *		skb->csum is undefined.
52  *
53  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
54  *		skb->csum is undefined.
55  *	      It is bad option, but, unfortunately, many of vendors do this.
56  *	      Apparently with secret goal to sell you new device, when you
57  *	      will add new protocol to your host. F.e. IPv6. 8)
58  *
59  *	COMPLETE: the most generic way. Device supplied checksum of _all_
60  *	    the packet as seen by netif_rx in skb->csum.
61  *	    NOTE: Even if device supports only some protocols, but
62  *	    is able to produce some skb->csum, it MUST use COMPLETE,
63  *	    not UNNECESSARY.
64  *
65  *	PARTIAL: identical to the case for output below.  This may occur
66  *	    on a packet received directly from another Linux OS, e.g.,
67  *	    a virtualised Linux kernel on the same host.  The packet can
68  *	    be treated in the same way as UNNECESSARY except that on
69  *	    output (i.e., forwarding) the checksum must be filled in
70  *	    by the OS or the hardware.
71  *
72  * B. Checksumming on output.
73  *
74  *	NONE: skb is checksummed by protocol or csum is not required.
75  *
76  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
77  *	from skb->csum_start to the end and to record the checksum
78  *	at skb->csum_start + skb->csum_offset.
79  *
80  *	Device must show its capabilities in dev->features, set
81  *	at device setup time.
82  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
83  *			  everything.
84  *	NETIF_F_NO_CSUM - loopback or reliable single hop media.
85  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86  *			  TCP/UDP over IPv4. Sigh. Vendors like this
87  *			  way by an unknown reason. Though, see comment above
88  *			  about CHECKSUM_UNNECESSARY. 8)
89  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90  *
91  *	Any questions? No questions, good. 		--ANK
92  */
93 
94 struct net_device;
95 struct scatterlist;
96 struct pipe_inode_info;
97 
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
99 struct nf_conntrack {
100 	atomic_t use;
101 };
102 #endif
103 
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info {
106 	atomic_t use;
107 	struct net_device *physindev;
108 	struct net_device *physoutdev;
109 	unsigned int mask;
110 	unsigned long data[32 / sizeof(unsigned long)];
111 };
112 #endif
113 
114 struct sk_buff_head {
115 	/* These two members must be first. */
116 	struct sk_buff	*next;
117 	struct sk_buff	*prev;
118 
119 	__u32		qlen;
120 	spinlock_t	lock;
121 };
122 
123 struct sk_buff;
124 
125 /* To allow 64K frame to be packed as single skb without frag_list. Since
126  * GRO uses frags we allocate at least 16 regardless of page size.
127  */
128 #if (65536/PAGE_SIZE + 2) < 16
129 #define MAX_SKB_FRAGS 16UL
130 #else
131 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
132 #endif
133 
134 typedef struct skb_frag_struct skb_frag_t;
135 
136 struct skb_frag_struct {
137 	struct page *page;
138 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
139 	__u32 page_offset;
140 	__u32 size;
141 #else
142 	__u16 page_offset;
143 	__u16 size;
144 #endif
145 };
146 
147 #define HAVE_HW_TIME_STAMP
148 
149 /**
150  * struct skb_shared_hwtstamps - hardware time stamps
151  * @hwtstamp:	hardware time stamp transformed into duration
152  *		since arbitrary point in time
153  * @syststamp:	hwtstamp transformed to system time base
154  *
155  * Software time stamps generated by ktime_get_real() are stored in
156  * skb->tstamp. The relation between the different kinds of time
157  * stamps is as follows:
158  *
159  * syststamp and tstamp can be compared against each other in
160  * arbitrary combinations.  The accuracy of a
161  * syststamp/tstamp/"syststamp from other device" comparison is
162  * limited by the accuracy of the transformation into system time
163  * base. This depends on the device driver and its underlying
164  * hardware.
165  *
166  * hwtstamps can only be compared against other hwtstamps from
167  * the same device.
168  *
169  * This structure is attached to packets as part of the
170  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
171  */
172 struct skb_shared_hwtstamps {
173 	ktime_t	hwtstamp;
174 	ktime_t	syststamp;
175 };
176 
177 /* Definitions for tx_flags in struct skb_shared_info */
178 enum {
179 	/* generate hardware time stamp */
180 	SKBTX_HW_TSTAMP = 1 << 0,
181 
182 	/* generate software time stamp */
183 	SKBTX_SW_TSTAMP = 1 << 1,
184 
185 	/* device driver is going to provide hardware time stamp */
186 	SKBTX_IN_PROGRESS = 1 << 2,
187 
188 	/* ensure the originating sk reference is available on driver level */
189 	SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
190 };
191 
192 /* This data is invariant across clones and lives at
193  * the end of the header data, ie. at skb->end.
194  */
195 struct skb_shared_info {
196 	unsigned short	nr_frags;
197 	unsigned short	gso_size;
198 	/* Warning: this field is not always filled in (UFO)! */
199 	unsigned short	gso_segs;
200 	unsigned short  gso_type;
201 	__be32          ip6_frag_id;
202 	__u8		tx_flags;
203 	struct sk_buff	*frag_list;
204 	struct skb_shared_hwtstamps hwtstamps;
205 
206 	/*
207 	 * Warning : all fields before dataref are cleared in __alloc_skb()
208 	 */
209 	atomic_t	dataref;
210 
211 	/* Intermediate layers must ensure that destructor_arg
212 	 * remains valid until skb destructor */
213 	void *		destructor_arg;
214 	/* must be last field, see pskb_expand_head() */
215 	skb_frag_t	frags[MAX_SKB_FRAGS];
216 };
217 
218 /* We divide dataref into two halves.  The higher 16 bits hold references
219  * to the payload part of skb->data.  The lower 16 bits hold references to
220  * the entire skb->data.  A clone of a headerless skb holds the length of
221  * the header in skb->hdr_len.
222  *
223  * All users must obey the rule that the skb->data reference count must be
224  * greater than or equal to the payload reference count.
225  *
226  * Holding a reference to the payload part means that the user does not
227  * care about modifications to the header part of skb->data.
228  */
229 #define SKB_DATAREF_SHIFT 16
230 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
231 
232 
233 enum {
234 	SKB_FCLONE_UNAVAILABLE,
235 	SKB_FCLONE_ORIG,
236 	SKB_FCLONE_CLONE,
237 };
238 
239 enum {
240 	SKB_GSO_TCPV4 = 1 << 0,
241 	SKB_GSO_UDP = 1 << 1,
242 
243 	/* This indicates the skb is from an untrusted source. */
244 	SKB_GSO_DODGY = 1 << 2,
245 
246 	/* This indicates the tcp segment has CWR set. */
247 	SKB_GSO_TCP_ECN = 1 << 3,
248 
249 	SKB_GSO_TCPV6 = 1 << 4,
250 
251 	SKB_GSO_FCOE = 1 << 5,
252 };
253 
254 #if BITS_PER_LONG > 32
255 #define NET_SKBUFF_DATA_USES_OFFSET 1
256 #endif
257 
258 #ifdef NET_SKBUFF_DATA_USES_OFFSET
259 typedef unsigned int sk_buff_data_t;
260 #else
261 typedef unsigned char *sk_buff_data_t;
262 #endif
263 
264 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
265     defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
266 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
267 #endif
268 
269 /**
270  *	struct sk_buff - socket buffer
271  *	@next: Next buffer in list
272  *	@prev: Previous buffer in list
273  *	@sk: Socket we are owned by
274  *	@tstamp: Time we arrived
275  *	@dev: Device we arrived on/are leaving by
276  *	@transport_header: Transport layer header
277  *	@network_header: Network layer header
278  *	@mac_header: Link layer header
279  *	@_skb_refdst: destination entry (with norefcount bit)
280  *	@sp: the security path, used for xfrm
281  *	@cb: Control buffer. Free for use by every layer. Put private vars here
282  *	@len: Length of actual data
283  *	@data_len: Data length
284  *	@mac_len: Length of link layer header
285  *	@hdr_len: writable header length of cloned skb
286  *	@csum: Checksum (must include start/offset pair)
287  *	@csum_start: Offset from skb->head where checksumming should start
288  *	@csum_offset: Offset from csum_start where checksum should be stored
289  *	@local_df: allow local fragmentation
290  *	@cloned: Head may be cloned (check refcnt to be sure)
291  *	@nohdr: Payload reference only, must not modify header
292  *	@pkt_type: Packet class
293  *	@fclone: skbuff clone status
294  *	@ip_summed: Driver fed us an IP checksum
295  *	@priority: Packet queueing priority
296  *	@users: User count - see {datagram,tcp}.c
297  *	@protocol: Packet protocol from driver
298  *	@truesize: Buffer size
299  *	@head: Head of buffer
300  *	@data: Data head pointer
301  *	@tail: Tail pointer
302  *	@end: End pointer
303  *	@destructor: Destruct function
304  *	@mark: Generic packet mark
305  *	@nfct: Associated connection, if any
306  *	@ipvs_property: skbuff is owned by ipvs
307  *	@peeked: this packet has been seen already, so stats have been
308  *		done for it, don't do them again
309  *	@nf_trace: netfilter packet trace flag
310  *	@nfctinfo: Relationship of this skb to the connection
311  *	@nfct_reasm: netfilter conntrack re-assembly pointer
312  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
313  *	@skb_iif: ifindex of device we arrived on
314  *	@rxhash: the packet hash computed on receive
315  *	@queue_mapping: Queue mapping for multiqueue devices
316  *	@tc_index: Traffic control index
317  *	@tc_verd: traffic control verdict
318  *	@ndisc_nodetype: router type (from link layer)
319  *	@dma_cookie: a cookie to one of several possible DMA operations
320  *		done by skb DMA functions
321  *	@secmark: security marking
322  *	@vlan_tci: vlan tag control information
323  */
324 
325 struct sk_buff {
326 	/* These two members must be first. */
327 	struct sk_buff		*next;
328 	struct sk_buff		*prev;
329 
330 	ktime_t			tstamp;
331 
332 	struct sock		*sk;
333 	struct net_device	*dev;
334 
335 	/*
336 	 * This is the control buffer. It is free to use for every
337 	 * layer. Please put your private variables there. If you
338 	 * want to keep them across layers you have to do a skb_clone()
339 	 * first. This is owned by whoever has the skb queued ATM.
340 	 */
341 	char			cb[48] __aligned(8);
342 
343 	unsigned long		_skb_refdst;
344 #ifdef CONFIG_XFRM
345 	struct	sec_path	*sp;
346 #endif
347 	unsigned int		len,
348 				data_len;
349 	__u16			mac_len,
350 				hdr_len;
351 	union {
352 		__wsum		csum;
353 		struct {
354 			__u16	csum_start;
355 			__u16	csum_offset;
356 		};
357 	};
358 	__u32			priority;
359 	kmemcheck_bitfield_begin(flags1);
360 	__u8			local_df:1,
361 				cloned:1,
362 				ip_summed:2,
363 				nohdr:1,
364 				nfctinfo:3;
365 	__u8			pkt_type:3,
366 				fclone:2,
367 				ipvs_property:1,
368 				peeked:1,
369 				nf_trace:1;
370 	kmemcheck_bitfield_end(flags1);
371 	__be16			protocol;
372 
373 	void			(*destructor)(struct sk_buff *skb);
374 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
375 	struct nf_conntrack	*nfct;
376 #endif
377 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
378 	struct sk_buff		*nfct_reasm;
379 #endif
380 #ifdef CONFIG_BRIDGE_NETFILTER
381 	struct nf_bridge_info	*nf_bridge;
382 #endif
383 
384 	int			skb_iif;
385 #ifdef CONFIG_NET_SCHED
386 	__u16			tc_index;	/* traffic control index */
387 #ifdef CONFIG_NET_CLS_ACT
388 	__u16			tc_verd;	/* traffic control verdict */
389 #endif
390 #endif
391 
392 	__u32			rxhash;
393 
394 	kmemcheck_bitfield_begin(flags2);
395 	__u16			queue_mapping:16;
396 #ifdef CONFIG_IPV6_NDISC_NODETYPE
397 	__u8			ndisc_nodetype:2;
398 #endif
399 	__u8			ooo_okay:1;
400 	kmemcheck_bitfield_end(flags2);
401 
402 	/* 0/13 bit hole */
403 
404 #ifdef CONFIG_NET_DMA
405 	dma_cookie_t		dma_cookie;
406 #endif
407 #ifdef CONFIG_NETWORK_SECMARK
408 	__u32			secmark;
409 #endif
410 	union {
411 		__u32		mark;
412 		__u32		dropcount;
413 	};
414 
415 	__u16			vlan_tci;
416 
417 	sk_buff_data_t		transport_header;
418 	sk_buff_data_t		network_header;
419 	sk_buff_data_t		mac_header;
420 	/* These elements must be at the end, see alloc_skb() for details.  */
421 	sk_buff_data_t		tail;
422 	sk_buff_data_t		end;
423 	unsigned char		*head,
424 				*data;
425 	unsigned int		truesize;
426 	atomic_t		users;
427 };
428 
429 #ifdef __KERNEL__
430 /*
431  *	Handling routines are only of interest to the kernel
432  */
433 #include <linux/slab.h>
434 
435 #include <asm/system.h>
436 
437 /*
438  * skb might have a dst pointer attached, refcounted or not.
439  * _skb_refdst low order bit is set if refcount was _not_ taken
440  */
441 #define SKB_DST_NOREF	1UL
442 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
443 
444 /**
445  * skb_dst - returns skb dst_entry
446  * @skb: buffer
447  *
448  * Returns skb dst_entry, regardless of reference taken or not.
449  */
skb_dst(const struct sk_buff * skb)450 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
451 {
452 	/* If refdst was not refcounted, check we still are in a
453 	 * rcu_read_lock section
454 	 */
455 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
456 		!rcu_read_lock_held() &&
457 		!rcu_read_lock_bh_held());
458 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
459 }
460 
461 /**
462  * skb_dst_set - sets skb dst
463  * @skb: buffer
464  * @dst: dst entry
465  *
466  * Sets skb dst, assuming a reference was taken on dst and should
467  * be released by skb_dst_drop()
468  */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)469 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
470 {
471 	skb->_skb_refdst = (unsigned long)dst;
472 }
473 
474 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
475 
476 /**
477  * skb_dst_is_noref - Test if skb dst isn't refcounted
478  * @skb: buffer
479  */
skb_dst_is_noref(const struct sk_buff * skb)480 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
481 {
482 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
483 }
484 
skb_rtable(const struct sk_buff * skb)485 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
486 {
487 	return (struct rtable *)skb_dst(skb);
488 }
489 
490 extern void kfree_skb(struct sk_buff *skb);
491 extern void consume_skb(struct sk_buff *skb);
492 extern void	       __kfree_skb(struct sk_buff *skb);
493 extern struct sk_buff *__alloc_skb(unsigned int size,
494 				   gfp_t priority, int fclone, int node);
alloc_skb(unsigned int size,gfp_t priority)495 static inline struct sk_buff *alloc_skb(unsigned int size,
496 					gfp_t priority)
497 {
498 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
499 }
500 
alloc_skb_fclone(unsigned int size,gfp_t priority)501 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
502 					       gfp_t priority)
503 {
504 	return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
505 }
506 
507 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
508 
509 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
510 extern struct sk_buff *skb_clone(struct sk_buff *skb,
511 				 gfp_t priority);
512 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
513 				gfp_t priority);
514 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
515 				 gfp_t gfp_mask);
516 extern int	       pskb_expand_head(struct sk_buff *skb,
517 					int nhead, int ntail,
518 					gfp_t gfp_mask);
519 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
520 					    unsigned int headroom);
521 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
522 				       int newheadroom, int newtailroom,
523 				       gfp_t priority);
524 extern int	       skb_to_sgvec(struct sk_buff *skb,
525 				    struct scatterlist *sg, int offset,
526 				    int len);
527 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
528 				    struct sk_buff **trailer);
529 extern int	       skb_pad(struct sk_buff *skb, int pad);
530 #define dev_kfree_skb(a)	consume_skb(a)
531 
532 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
533 			int getfrag(void *from, char *to, int offset,
534 			int len,int odd, struct sk_buff *skb),
535 			void *from, int length);
536 
537 struct skb_seq_state {
538 	__u32		lower_offset;
539 	__u32		upper_offset;
540 	__u32		frag_idx;
541 	__u32		stepped_offset;
542 	struct sk_buff	*root_skb;
543 	struct sk_buff	*cur_skb;
544 	__u8		*frag_data;
545 };
546 
547 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
548 					   unsigned int from, unsigned int to,
549 					   struct skb_seq_state *st);
550 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
551 				   struct skb_seq_state *st);
552 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
553 
554 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
555 				    unsigned int to, struct ts_config *config,
556 				    struct ts_state *state);
557 
558 extern __u32 __skb_get_rxhash(struct sk_buff *skb);
skb_get_rxhash(struct sk_buff * skb)559 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
560 {
561 	if (!skb->rxhash)
562 		skb->rxhash = __skb_get_rxhash(skb);
563 
564 	return skb->rxhash;
565 }
566 
567 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)568 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
569 {
570 	return skb->head + skb->end;
571 }
572 #else
skb_end_pointer(const struct sk_buff * skb)573 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
574 {
575 	return skb->end;
576 }
577 #endif
578 
579 /* Internal */
580 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
581 
skb_hwtstamps(struct sk_buff * skb)582 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
583 {
584 	return &skb_shinfo(skb)->hwtstamps;
585 }
586 
587 /**
588  *	skb_queue_empty - check if a queue is empty
589  *	@list: queue head
590  *
591  *	Returns true if the queue is empty, false otherwise.
592  */
skb_queue_empty(const struct sk_buff_head * list)593 static inline int skb_queue_empty(const struct sk_buff_head *list)
594 {
595 	return list->next == (struct sk_buff *)list;
596 }
597 
598 /**
599  *	skb_queue_is_last - check if skb is the last entry in the queue
600  *	@list: queue head
601  *	@skb: buffer
602  *
603  *	Returns true if @skb is the last buffer on the list.
604  */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)605 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
606 				     const struct sk_buff *skb)
607 {
608 	return skb->next == (struct sk_buff *)list;
609 }
610 
611 /**
612  *	skb_queue_is_first - check if skb is the first entry in the queue
613  *	@list: queue head
614  *	@skb: buffer
615  *
616  *	Returns true if @skb is the first buffer on the list.
617  */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)618 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
619 				      const struct sk_buff *skb)
620 {
621 	return skb->prev == (struct sk_buff *)list;
622 }
623 
624 /**
625  *	skb_queue_next - return the next packet in the queue
626  *	@list: queue head
627  *	@skb: current buffer
628  *
629  *	Return the next packet in @list after @skb.  It is only valid to
630  *	call this if skb_queue_is_last() evaluates to false.
631  */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)632 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
633 					     const struct sk_buff *skb)
634 {
635 	/* This BUG_ON may seem severe, but if we just return then we
636 	 * are going to dereference garbage.
637 	 */
638 	BUG_ON(skb_queue_is_last(list, skb));
639 	return skb->next;
640 }
641 
642 /**
643  *	skb_queue_prev - return the prev packet in the queue
644  *	@list: queue head
645  *	@skb: current buffer
646  *
647  *	Return the prev packet in @list before @skb.  It is only valid to
648  *	call this if skb_queue_is_first() evaluates to false.
649  */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)650 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
651 					     const struct sk_buff *skb)
652 {
653 	/* This BUG_ON may seem severe, but if we just return then we
654 	 * are going to dereference garbage.
655 	 */
656 	BUG_ON(skb_queue_is_first(list, skb));
657 	return skb->prev;
658 }
659 
660 /**
661  *	skb_get - reference buffer
662  *	@skb: buffer to reference
663  *
664  *	Makes another reference to a socket buffer and returns a pointer
665  *	to the buffer.
666  */
skb_get(struct sk_buff * skb)667 static inline struct sk_buff *skb_get(struct sk_buff *skb)
668 {
669 	atomic_inc(&skb->users);
670 	return skb;
671 }
672 
673 /*
674  * If users == 1, we are the only owner and are can avoid redundant
675  * atomic change.
676  */
677 
678 /**
679  *	skb_cloned - is the buffer a clone
680  *	@skb: buffer to check
681  *
682  *	Returns true if the buffer was generated with skb_clone() and is
683  *	one of multiple shared copies of the buffer. Cloned buffers are
684  *	shared data so must not be written to under normal circumstances.
685  */
skb_cloned(const struct sk_buff * skb)686 static inline int skb_cloned(const struct sk_buff *skb)
687 {
688 	return skb->cloned &&
689 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
690 }
691 
692 /**
693  *	skb_header_cloned - is the header a clone
694  *	@skb: buffer to check
695  *
696  *	Returns true if modifying the header part of the buffer requires
697  *	the data to be copied.
698  */
skb_header_cloned(const struct sk_buff * skb)699 static inline int skb_header_cloned(const struct sk_buff *skb)
700 {
701 	int dataref;
702 
703 	if (!skb->cloned)
704 		return 0;
705 
706 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
707 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
708 	return dataref != 1;
709 }
710 
711 /**
712  *	skb_header_release - release reference to header
713  *	@skb: buffer to operate on
714  *
715  *	Drop a reference to the header part of the buffer.  This is done
716  *	by acquiring a payload reference.  You must not read from the header
717  *	part of skb->data after this.
718  */
skb_header_release(struct sk_buff * skb)719 static inline void skb_header_release(struct sk_buff *skb)
720 {
721 	BUG_ON(skb->nohdr);
722 	skb->nohdr = 1;
723 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
724 }
725 
726 /**
727  *	skb_shared - is the buffer shared
728  *	@skb: buffer to check
729  *
730  *	Returns true if more than one person has a reference to this
731  *	buffer.
732  */
skb_shared(const struct sk_buff * skb)733 static inline int skb_shared(const struct sk_buff *skb)
734 {
735 	return atomic_read(&skb->users) != 1;
736 }
737 
738 /**
739  *	skb_share_check - check if buffer is shared and if so clone it
740  *	@skb: buffer to check
741  *	@pri: priority for memory allocation
742  *
743  *	If the buffer is shared the buffer is cloned and the old copy
744  *	drops a reference. A new clone with a single reference is returned.
745  *	If the buffer is not shared the original buffer is returned. When
746  *	being called from interrupt status or with spinlocks held pri must
747  *	be GFP_ATOMIC.
748  *
749  *	NULL is returned on a memory allocation failure.
750  */
skb_share_check(struct sk_buff * skb,gfp_t pri)751 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
752 					      gfp_t pri)
753 {
754 	might_sleep_if(pri & __GFP_WAIT);
755 	if (skb_shared(skb)) {
756 		struct sk_buff *nskb = skb_clone(skb, pri);
757 		kfree_skb(skb);
758 		skb = nskb;
759 	}
760 	return skb;
761 }
762 
763 /*
764  *	Copy shared buffers into a new sk_buff. We effectively do COW on
765  *	packets to handle cases where we have a local reader and forward
766  *	and a couple of other messy ones. The normal one is tcpdumping
767  *	a packet thats being forwarded.
768  */
769 
770 /**
771  *	skb_unshare - make a copy of a shared buffer
772  *	@skb: buffer to check
773  *	@pri: priority for memory allocation
774  *
775  *	If the socket buffer is a clone then this function creates a new
776  *	copy of the data, drops a reference count on the old copy and returns
777  *	the new copy with the reference count at 1. If the buffer is not a clone
778  *	the original buffer is returned. When called with a spinlock held or
779  *	from interrupt state @pri must be %GFP_ATOMIC
780  *
781  *	%NULL is returned on a memory allocation failure.
782  */
skb_unshare(struct sk_buff * skb,gfp_t pri)783 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
784 					  gfp_t pri)
785 {
786 	might_sleep_if(pri & __GFP_WAIT);
787 	if (skb_cloned(skb)) {
788 		struct sk_buff *nskb = skb_copy(skb, pri);
789 		kfree_skb(skb);	/* Free our shared copy */
790 		skb = nskb;
791 	}
792 	return skb;
793 }
794 
795 /**
796  *	skb_peek - peek at the head of an &sk_buff_head
797  *	@list_: list to peek at
798  *
799  *	Peek an &sk_buff. Unlike most other operations you _MUST_
800  *	be careful with this one. A peek leaves the buffer on the
801  *	list and someone else may run off with it. You must hold
802  *	the appropriate locks or have a private queue to do this.
803  *
804  *	Returns %NULL for an empty list or a pointer to the head element.
805  *	The reference count is not incremented and the reference is therefore
806  *	volatile. Use with caution.
807  */
skb_peek(struct sk_buff_head * list_)808 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
809 {
810 	struct sk_buff *list = ((struct sk_buff *)list_)->next;
811 	if (list == (struct sk_buff *)list_)
812 		list = NULL;
813 	return list;
814 }
815 
816 /**
817  *	skb_peek_tail - peek at the tail of an &sk_buff_head
818  *	@list_: list to peek at
819  *
820  *	Peek an &sk_buff. Unlike most other operations you _MUST_
821  *	be careful with this one. A peek leaves the buffer on the
822  *	list and someone else may run off with it. You must hold
823  *	the appropriate locks or have a private queue to do this.
824  *
825  *	Returns %NULL for an empty list or a pointer to the tail element.
826  *	The reference count is not incremented and the reference is therefore
827  *	volatile. Use with caution.
828  */
skb_peek_tail(struct sk_buff_head * list_)829 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
830 {
831 	struct sk_buff *list = ((struct sk_buff *)list_)->prev;
832 	if (list == (struct sk_buff *)list_)
833 		list = NULL;
834 	return list;
835 }
836 
837 /**
838  *	skb_queue_len	- get queue length
839  *	@list_: list to measure
840  *
841  *	Return the length of an &sk_buff queue.
842  */
skb_queue_len(const struct sk_buff_head * list_)843 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
844 {
845 	return list_->qlen;
846 }
847 
848 /**
849  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
850  *	@list: queue to initialize
851  *
852  *	This initializes only the list and queue length aspects of
853  *	an sk_buff_head object.  This allows to initialize the list
854  *	aspects of an sk_buff_head without reinitializing things like
855  *	the spinlock.  It can also be used for on-stack sk_buff_head
856  *	objects where the spinlock is known to not be used.
857  */
__skb_queue_head_init(struct sk_buff_head * list)858 static inline void __skb_queue_head_init(struct sk_buff_head *list)
859 {
860 	list->prev = list->next = (struct sk_buff *)list;
861 	list->qlen = 0;
862 }
863 
864 /*
865  * This function creates a split out lock class for each invocation;
866  * this is needed for now since a whole lot of users of the skb-queue
867  * infrastructure in drivers have different locking usage (in hardirq)
868  * than the networking core (in softirq only). In the long run either the
869  * network layer or drivers should need annotation to consolidate the
870  * main types of usage into 3 classes.
871  */
skb_queue_head_init(struct sk_buff_head * list)872 static inline void skb_queue_head_init(struct sk_buff_head *list)
873 {
874 	spin_lock_init(&list->lock);
875 	__skb_queue_head_init(list);
876 }
877 
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)878 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
879 		struct lock_class_key *class)
880 {
881 	skb_queue_head_init(list);
882 	lockdep_set_class(&list->lock, class);
883 }
884 
885 /*
886  *	Insert an sk_buff on a list.
887  *
888  *	The "__skb_xxxx()" functions are the non-atomic ones that
889  *	can only be called with interrupts disabled.
890  */
891 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)892 static inline void __skb_insert(struct sk_buff *newsk,
893 				struct sk_buff *prev, struct sk_buff *next,
894 				struct sk_buff_head *list)
895 {
896 	newsk->next = next;
897 	newsk->prev = prev;
898 	next->prev  = prev->next = newsk;
899 	list->qlen++;
900 }
901 
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)902 static inline void __skb_queue_splice(const struct sk_buff_head *list,
903 				      struct sk_buff *prev,
904 				      struct sk_buff *next)
905 {
906 	struct sk_buff *first = list->next;
907 	struct sk_buff *last = list->prev;
908 
909 	first->prev = prev;
910 	prev->next = first;
911 
912 	last->next = next;
913 	next->prev = last;
914 }
915 
916 /**
917  *	skb_queue_splice - join two skb lists, this is designed for stacks
918  *	@list: the new list to add
919  *	@head: the place to add it in the first list
920  */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)921 static inline void skb_queue_splice(const struct sk_buff_head *list,
922 				    struct sk_buff_head *head)
923 {
924 	if (!skb_queue_empty(list)) {
925 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
926 		head->qlen += list->qlen;
927 	}
928 }
929 
930 /**
931  *	skb_queue_splice - join two skb lists and reinitialise the emptied list
932  *	@list: the new list to add
933  *	@head: the place to add it in the first list
934  *
935  *	The list at @list is reinitialised
936  */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)937 static inline void skb_queue_splice_init(struct sk_buff_head *list,
938 					 struct sk_buff_head *head)
939 {
940 	if (!skb_queue_empty(list)) {
941 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
942 		head->qlen += list->qlen;
943 		__skb_queue_head_init(list);
944 	}
945 }
946 
947 /**
948  *	skb_queue_splice_tail - join two skb lists, each list being a queue
949  *	@list: the new list to add
950  *	@head: the place to add it in the first list
951  */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)952 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
953 					 struct sk_buff_head *head)
954 {
955 	if (!skb_queue_empty(list)) {
956 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
957 		head->qlen += list->qlen;
958 	}
959 }
960 
961 /**
962  *	skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
963  *	@list: the new list to add
964  *	@head: the place to add it in the first list
965  *
966  *	Each of the lists is a queue.
967  *	The list at @list is reinitialised
968  */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)969 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
970 					      struct sk_buff_head *head)
971 {
972 	if (!skb_queue_empty(list)) {
973 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
974 		head->qlen += list->qlen;
975 		__skb_queue_head_init(list);
976 	}
977 }
978 
979 /**
980  *	__skb_queue_after - queue a buffer at the list head
981  *	@list: list to use
982  *	@prev: place after this buffer
983  *	@newsk: buffer to queue
984  *
985  *	Queue a buffer int the middle of a list. This function takes no locks
986  *	and you must therefore hold required locks before calling it.
987  *
988  *	A buffer cannot be placed on two lists at the same time.
989  */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)990 static inline void __skb_queue_after(struct sk_buff_head *list,
991 				     struct sk_buff *prev,
992 				     struct sk_buff *newsk)
993 {
994 	__skb_insert(newsk, prev, prev->next, list);
995 }
996 
997 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
998 		       struct sk_buff_head *list);
999 
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)1000 static inline void __skb_queue_before(struct sk_buff_head *list,
1001 				      struct sk_buff *next,
1002 				      struct sk_buff *newsk)
1003 {
1004 	__skb_insert(newsk, next->prev, next, list);
1005 }
1006 
1007 /**
1008  *	__skb_queue_head - queue a buffer at the list head
1009  *	@list: list to use
1010  *	@newsk: buffer to queue
1011  *
1012  *	Queue a buffer at the start of a list. This function takes no locks
1013  *	and you must therefore hold required locks before calling it.
1014  *
1015  *	A buffer cannot be placed on two lists at the same time.
1016  */
1017 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)1018 static inline void __skb_queue_head(struct sk_buff_head *list,
1019 				    struct sk_buff *newsk)
1020 {
1021 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1022 }
1023 
1024 /**
1025  *	__skb_queue_tail - queue a buffer at the list tail
1026  *	@list: list to use
1027  *	@newsk: buffer to queue
1028  *
1029  *	Queue a buffer at the end of a list. This function takes no locks
1030  *	and you must therefore hold required locks before calling it.
1031  *
1032  *	A buffer cannot be placed on two lists at the same time.
1033  */
1034 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)1035 static inline void __skb_queue_tail(struct sk_buff_head *list,
1036 				   struct sk_buff *newsk)
1037 {
1038 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1039 }
1040 
1041 /*
1042  * remove sk_buff from list. _Must_ be called atomically, and with
1043  * the list known..
1044  */
1045 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)1046 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1047 {
1048 	struct sk_buff *next, *prev;
1049 
1050 	list->qlen--;
1051 	next	   = skb->next;
1052 	prev	   = skb->prev;
1053 	skb->next  = skb->prev = NULL;
1054 	next->prev = prev;
1055 	prev->next = next;
1056 }
1057 
1058 /**
1059  *	__skb_dequeue - remove from the head of the queue
1060  *	@list: list to dequeue from
1061  *
1062  *	Remove the head of the list. This function does not take any locks
1063  *	so must be used with appropriate locks held only. The head item is
1064  *	returned or %NULL if the list is empty.
1065  */
1066 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
__skb_dequeue(struct sk_buff_head * list)1067 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1068 {
1069 	struct sk_buff *skb = skb_peek(list);
1070 	if (skb)
1071 		__skb_unlink(skb, list);
1072 	return skb;
1073 }
1074 
1075 /**
1076  *	__skb_dequeue_tail - remove from the tail of the queue
1077  *	@list: list to dequeue from
1078  *
1079  *	Remove the tail of the list. This function does not take any locks
1080  *	so must be used with appropriate locks held only. The tail item is
1081  *	returned or %NULL if the list is empty.
1082  */
1083 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
__skb_dequeue_tail(struct sk_buff_head * list)1084 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1085 {
1086 	struct sk_buff *skb = skb_peek_tail(list);
1087 	if (skb)
1088 		__skb_unlink(skb, list);
1089 	return skb;
1090 }
1091 
1092 
skb_is_nonlinear(const struct sk_buff * skb)1093 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1094 {
1095 	return skb->data_len;
1096 }
1097 
skb_headlen(const struct sk_buff * skb)1098 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1099 {
1100 	return skb->len - skb->data_len;
1101 }
1102 
skb_pagelen(const struct sk_buff * skb)1103 static inline int skb_pagelen(const struct sk_buff *skb)
1104 {
1105 	int i, len = 0;
1106 
1107 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1108 		len += skb_shinfo(skb)->frags[i].size;
1109 	return len + skb_headlen(skb);
1110 }
1111 
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1112 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1113 				      struct page *page, int off, int size)
1114 {
1115 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1116 
1117 	frag->page		  = page;
1118 	frag->page_offset	  = off;
1119 	frag->size		  = size;
1120 	skb_shinfo(skb)->nr_frags = i + 1;
1121 }
1122 
1123 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1124 			    int off, int size);
1125 
1126 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1127 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1128 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1129 
1130 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)1131 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1132 {
1133 	return skb->head + skb->tail;
1134 }
1135 
skb_reset_tail_pointer(struct sk_buff * skb)1136 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1137 {
1138 	skb->tail = skb->data - skb->head;
1139 }
1140 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)1141 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1142 {
1143 	skb_reset_tail_pointer(skb);
1144 	skb->tail += offset;
1145 }
1146 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)1147 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1148 {
1149 	return skb->tail;
1150 }
1151 
skb_reset_tail_pointer(struct sk_buff * skb)1152 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1153 {
1154 	skb->tail = skb->data;
1155 }
1156 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)1157 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1158 {
1159 	skb->tail = skb->data + offset;
1160 }
1161 
1162 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1163 
1164 /*
1165  *	Add data to an sk_buff
1166  */
1167 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)1168 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1169 {
1170 	unsigned char *tmp = skb_tail_pointer(skb);
1171 	SKB_LINEAR_ASSERT(skb);
1172 	skb->tail += len;
1173 	skb->len  += len;
1174 	return tmp;
1175 }
1176 
1177 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)1178 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1179 {
1180 	skb->data -= len;
1181 	skb->len  += len;
1182 	return skb->data;
1183 }
1184 
1185 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)1186 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1187 {
1188 	skb->len -= len;
1189 	BUG_ON(skb->len < skb->data_len);
1190 	return skb->data += len;
1191 }
1192 
skb_pull_inline(struct sk_buff * skb,unsigned int len)1193 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1194 {
1195 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1196 }
1197 
1198 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1199 
__pskb_pull(struct sk_buff * skb,unsigned int len)1200 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1201 {
1202 	if (len > skb_headlen(skb) &&
1203 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1204 		return NULL;
1205 	skb->len -= len;
1206 	return skb->data += len;
1207 }
1208 
pskb_pull(struct sk_buff * skb,unsigned int len)1209 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1210 {
1211 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1212 }
1213 
pskb_may_pull(struct sk_buff * skb,unsigned int len)1214 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1215 {
1216 	if (likely(len <= skb_headlen(skb)))
1217 		return 1;
1218 	if (unlikely(len > skb->len))
1219 		return 0;
1220 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1221 }
1222 
1223 /**
1224  *	skb_headroom - bytes at buffer head
1225  *	@skb: buffer to check
1226  *
1227  *	Return the number of bytes of free space at the head of an &sk_buff.
1228  */
skb_headroom(const struct sk_buff * skb)1229 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1230 {
1231 	return skb->data - skb->head;
1232 }
1233 
1234 /**
1235  *	skb_tailroom - bytes at buffer end
1236  *	@skb: buffer to check
1237  *
1238  *	Return the number of bytes of free space at the tail of an sk_buff
1239  */
skb_tailroom(const struct sk_buff * skb)1240 static inline int skb_tailroom(const struct sk_buff *skb)
1241 {
1242 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1243 }
1244 
1245 /**
1246  *	skb_reserve - adjust headroom
1247  *	@skb: buffer to alter
1248  *	@len: bytes to move
1249  *
1250  *	Increase the headroom of an empty &sk_buff by reducing the tail
1251  *	room. This is only allowed for an empty buffer.
1252  */
skb_reserve(struct sk_buff * skb,int len)1253 static inline void skb_reserve(struct sk_buff *skb, int len)
1254 {
1255 	skb->data += len;
1256 	skb->tail += len;
1257 }
1258 
1259 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_transport_header(const struct sk_buff * skb)1260 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1261 {
1262 	return skb->head + skb->transport_header;
1263 }
1264 
skb_reset_transport_header(struct sk_buff * skb)1265 static inline void skb_reset_transport_header(struct sk_buff *skb)
1266 {
1267 	skb->transport_header = skb->data - skb->head;
1268 }
1269 
skb_set_transport_header(struct sk_buff * skb,const int offset)1270 static inline void skb_set_transport_header(struct sk_buff *skb,
1271 					    const int offset)
1272 {
1273 	skb_reset_transport_header(skb);
1274 	skb->transport_header += offset;
1275 }
1276 
skb_network_header(const struct sk_buff * skb)1277 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1278 {
1279 	return skb->head + skb->network_header;
1280 }
1281 
skb_reset_network_header(struct sk_buff * skb)1282 static inline void skb_reset_network_header(struct sk_buff *skb)
1283 {
1284 	skb->network_header = skb->data - skb->head;
1285 }
1286 
skb_set_network_header(struct sk_buff * skb,const int offset)1287 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1288 {
1289 	skb_reset_network_header(skb);
1290 	skb->network_header += offset;
1291 }
1292 
skb_mac_header(const struct sk_buff * skb)1293 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1294 {
1295 	return skb->head + skb->mac_header;
1296 }
1297 
skb_mac_header_was_set(const struct sk_buff * skb)1298 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1299 {
1300 	return skb->mac_header != ~0U;
1301 }
1302 
skb_reset_mac_header(struct sk_buff * skb)1303 static inline void skb_reset_mac_header(struct sk_buff *skb)
1304 {
1305 	skb->mac_header = skb->data - skb->head;
1306 }
1307 
skb_set_mac_header(struct sk_buff * skb,const int offset)1308 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1309 {
1310 	skb_reset_mac_header(skb);
1311 	skb->mac_header += offset;
1312 }
1313 
1314 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1315 
skb_transport_header(const struct sk_buff * skb)1316 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1317 {
1318 	return skb->transport_header;
1319 }
1320 
skb_reset_transport_header(struct sk_buff * skb)1321 static inline void skb_reset_transport_header(struct sk_buff *skb)
1322 {
1323 	skb->transport_header = skb->data;
1324 }
1325 
skb_set_transport_header(struct sk_buff * skb,const int offset)1326 static inline void skb_set_transport_header(struct sk_buff *skb,
1327 					    const int offset)
1328 {
1329 	skb->transport_header = skb->data + offset;
1330 }
1331 
skb_network_header(const struct sk_buff * skb)1332 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1333 {
1334 	return skb->network_header;
1335 }
1336 
skb_reset_network_header(struct sk_buff * skb)1337 static inline void skb_reset_network_header(struct sk_buff *skb)
1338 {
1339 	skb->network_header = skb->data;
1340 }
1341 
skb_set_network_header(struct sk_buff * skb,const int offset)1342 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1343 {
1344 	skb->network_header = skb->data + offset;
1345 }
1346 
skb_mac_header(const struct sk_buff * skb)1347 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1348 {
1349 	return skb->mac_header;
1350 }
1351 
skb_mac_header_was_set(const struct sk_buff * skb)1352 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1353 {
1354 	return skb->mac_header != NULL;
1355 }
1356 
skb_reset_mac_header(struct sk_buff * skb)1357 static inline void skb_reset_mac_header(struct sk_buff *skb)
1358 {
1359 	skb->mac_header = skb->data;
1360 }
1361 
skb_set_mac_header(struct sk_buff * skb,const int offset)1362 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1363 {
1364 	skb->mac_header = skb->data + offset;
1365 }
1366 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1367 
skb_checksum_start_offset(const struct sk_buff * skb)1368 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1369 {
1370 	return skb->csum_start - skb_headroom(skb);
1371 }
1372 
skb_transport_offset(const struct sk_buff * skb)1373 static inline int skb_transport_offset(const struct sk_buff *skb)
1374 {
1375 	return skb_transport_header(skb) - skb->data;
1376 }
1377 
skb_network_header_len(const struct sk_buff * skb)1378 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1379 {
1380 	return skb->transport_header - skb->network_header;
1381 }
1382 
skb_network_offset(const struct sk_buff * skb)1383 static inline int skb_network_offset(const struct sk_buff *skb)
1384 {
1385 	return skb_network_header(skb) - skb->data;
1386 }
1387 
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)1388 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1389 {
1390 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1391 }
1392 
1393 /*
1394  * CPUs often take a performance hit when accessing unaligned memory
1395  * locations. The actual performance hit varies, it can be small if the
1396  * hardware handles it or large if we have to take an exception and fix it
1397  * in software.
1398  *
1399  * Since an ethernet header is 14 bytes network drivers often end up with
1400  * the IP header at an unaligned offset. The IP header can be aligned by
1401  * shifting the start of the packet by 2 bytes. Drivers should do this
1402  * with:
1403  *
1404  * skb_reserve(skb, NET_IP_ALIGN);
1405  *
1406  * The downside to this alignment of the IP header is that the DMA is now
1407  * unaligned. On some architectures the cost of an unaligned DMA is high
1408  * and this cost outweighs the gains made by aligning the IP header.
1409  *
1410  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1411  * to be overridden.
1412  */
1413 #ifndef NET_IP_ALIGN
1414 #define NET_IP_ALIGN	2
1415 #endif
1416 
1417 /*
1418  * The networking layer reserves some headroom in skb data (via
1419  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1420  * the header has to grow. In the default case, if the header has to grow
1421  * 32 bytes or less we avoid the reallocation.
1422  *
1423  * Unfortunately this headroom changes the DMA alignment of the resulting
1424  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1425  * on some architectures. An architecture can override this value,
1426  * perhaps setting it to a cacheline in size (since that will maintain
1427  * cacheline alignment of the DMA). It must be a power of 2.
1428  *
1429  * Various parts of the networking layer expect at least 32 bytes of
1430  * headroom, you should not reduce this.
1431  *
1432  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1433  * to reduce average number of cache lines per packet.
1434  * get_rps_cpus() for example only access one 64 bytes aligned block :
1435  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1436  */
1437 #ifndef NET_SKB_PAD
1438 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
1439 #endif
1440 
1441 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1442 
__skb_trim(struct sk_buff * skb,unsigned int len)1443 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1444 {
1445 	if (unlikely(skb->data_len)) {
1446 		WARN_ON(1);
1447 		return;
1448 	}
1449 	skb->len = len;
1450 	skb_set_tail_pointer(skb, len);
1451 }
1452 
1453 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1454 
__pskb_trim(struct sk_buff * skb,unsigned int len)1455 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1456 {
1457 	if (skb->data_len)
1458 		return ___pskb_trim(skb, len);
1459 	__skb_trim(skb, len);
1460 	return 0;
1461 }
1462 
pskb_trim(struct sk_buff * skb,unsigned int len)1463 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1464 {
1465 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1466 }
1467 
1468 /**
1469  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1470  *	@skb: buffer to alter
1471  *	@len: new length
1472  *
1473  *	This is identical to pskb_trim except that the caller knows that
1474  *	the skb is not cloned so we should never get an error due to out-
1475  *	of-memory.
1476  */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)1477 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1478 {
1479 	int err = pskb_trim(skb, len);
1480 	BUG_ON(err);
1481 }
1482 
1483 /**
1484  *	skb_orphan - orphan a buffer
1485  *	@skb: buffer to orphan
1486  *
1487  *	If a buffer currently has an owner then we call the owner's
1488  *	destructor function and make the @skb unowned. The buffer continues
1489  *	to exist but is no longer charged to its former owner.
1490  */
skb_orphan(struct sk_buff * skb)1491 static inline void skb_orphan(struct sk_buff *skb)
1492 {
1493 	if (skb->destructor)
1494 		skb->destructor(skb);
1495 	skb->destructor = NULL;
1496 	skb->sk		= NULL;
1497 }
1498 
1499 /**
1500  *	__skb_queue_purge - empty a list
1501  *	@list: list to empty
1502  *
1503  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1504  *	the list and one reference dropped. This function does not take the
1505  *	list lock and the caller must hold the relevant locks to use it.
1506  */
1507 extern void skb_queue_purge(struct sk_buff_head *list);
__skb_queue_purge(struct sk_buff_head * list)1508 static inline void __skb_queue_purge(struct sk_buff_head *list)
1509 {
1510 	struct sk_buff *skb;
1511 	while ((skb = __skb_dequeue(list)) != NULL)
1512 		kfree_skb(skb);
1513 }
1514 
1515 /**
1516  *	__dev_alloc_skb - allocate an skbuff for receiving
1517  *	@length: length to allocate
1518  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1519  *
1520  *	Allocate a new &sk_buff and assign it a usage count of one. The
1521  *	buffer has unspecified headroom built in. Users should allocate
1522  *	the headroom they think they need without accounting for the
1523  *	built in space. The built in space is used for optimisations.
1524  *
1525  *	%NULL is returned if there is no free memory.
1526  */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)1527 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1528 					      gfp_t gfp_mask)
1529 {
1530 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1531 	if (likely(skb))
1532 		skb_reserve(skb, NET_SKB_PAD);
1533 	return skb;
1534 }
1535 
1536 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1537 
1538 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1539 		unsigned int length, gfp_t gfp_mask);
1540 
1541 /**
1542  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1543  *	@dev: network device to receive on
1544  *	@length: length to allocate
1545  *
1546  *	Allocate a new &sk_buff and assign it a usage count of one. The
1547  *	buffer has unspecified headroom built in. Users should allocate
1548  *	the headroom they think they need without accounting for the
1549  *	built in space. The built in space is used for optimisations.
1550  *
1551  *	%NULL is returned if there is no free memory. Although this function
1552  *	allocates memory it can be called from an interrupt.
1553  */
netdev_alloc_skb(struct net_device * dev,unsigned int length)1554 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1555 		unsigned int length)
1556 {
1557 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1558 }
1559 
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)1560 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1561 		unsigned int length)
1562 {
1563 	struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN);
1564 
1565 	if (NET_IP_ALIGN && skb)
1566 		skb_reserve(skb, NET_IP_ALIGN);
1567 	return skb;
1568 }
1569 
1570 /**
1571  *	__netdev_alloc_page - allocate a page for ps-rx on a specific device
1572  *	@dev: network device to receive on
1573  *	@gfp_mask: alloc_pages_node mask
1574  *
1575  * 	Allocate a new page. dev currently unused.
1576  *
1577  * 	%NULL is returned if there is no free memory.
1578  */
__netdev_alloc_page(struct net_device * dev,gfp_t gfp_mask)1579 static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
1580 {
1581 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0);
1582 }
1583 
1584 /**
1585  *	netdev_alloc_page - allocate a page for ps-rx on a specific device
1586  *	@dev: network device to receive on
1587  *
1588  * 	Allocate a new page. dev currently unused.
1589  *
1590  * 	%NULL is returned if there is no free memory.
1591  */
netdev_alloc_page(struct net_device * dev)1592 static inline struct page *netdev_alloc_page(struct net_device *dev)
1593 {
1594 	return __netdev_alloc_page(dev, GFP_ATOMIC);
1595 }
1596 
netdev_free_page(struct net_device * dev,struct page * page)1597 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1598 {
1599 	__free_page(page);
1600 }
1601 
1602 /**
1603  *	skb_clone_writable - is the header of a clone writable
1604  *	@skb: buffer to check
1605  *	@len: length up to which to write
1606  *
1607  *	Returns true if modifying the header part of the cloned buffer
1608  *	does not requires the data to be copied.
1609  */
skb_clone_writable(struct sk_buff * skb,unsigned int len)1610 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1611 {
1612 	return !skb_header_cloned(skb) &&
1613 	       skb_headroom(skb) + len <= skb->hdr_len;
1614 }
1615 
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)1616 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1617 			    int cloned)
1618 {
1619 	int delta = 0;
1620 
1621 	if (headroom < NET_SKB_PAD)
1622 		headroom = NET_SKB_PAD;
1623 	if (headroom > skb_headroom(skb))
1624 		delta = headroom - skb_headroom(skb);
1625 
1626 	if (delta || cloned)
1627 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1628 					GFP_ATOMIC);
1629 	return 0;
1630 }
1631 
1632 /**
1633  *	skb_cow - copy header of skb when it is required
1634  *	@skb: buffer to cow
1635  *	@headroom: needed headroom
1636  *
1637  *	If the skb passed lacks sufficient headroom or its data part
1638  *	is shared, data is reallocated. If reallocation fails, an error
1639  *	is returned and original skb is not changed.
1640  *
1641  *	The result is skb with writable area skb->head...skb->tail
1642  *	and at least @headroom of space at head.
1643  */
skb_cow(struct sk_buff * skb,unsigned int headroom)1644 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1645 {
1646 	return __skb_cow(skb, headroom, skb_cloned(skb));
1647 }
1648 
1649 /**
1650  *	skb_cow_head - skb_cow but only making the head writable
1651  *	@skb: buffer to cow
1652  *	@headroom: needed headroom
1653  *
1654  *	This function is identical to skb_cow except that we replace the
1655  *	skb_cloned check by skb_header_cloned.  It should be used when
1656  *	you only need to push on some header and do not need to modify
1657  *	the data.
1658  */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)1659 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1660 {
1661 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1662 }
1663 
1664 /**
1665  *	skb_padto	- pad an skbuff up to a minimal size
1666  *	@skb: buffer to pad
1667  *	@len: minimal length
1668  *
1669  *	Pads up a buffer to ensure the trailing bytes exist and are
1670  *	blanked. If the buffer already contains sufficient data it
1671  *	is untouched. Otherwise it is extended. Returns zero on
1672  *	success. The skb is freed on error.
1673  */
1674 
skb_padto(struct sk_buff * skb,unsigned int len)1675 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1676 {
1677 	unsigned int size = skb->len;
1678 	if (likely(size >= len))
1679 		return 0;
1680 	return skb_pad(skb, len - size);
1681 }
1682 
skb_add_data(struct sk_buff * skb,char __user * from,int copy)1683 static inline int skb_add_data(struct sk_buff *skb,
1684 			       char __user *from, int copy)
1685 {
1686 	const int off = skb->len;
1687 
1688 	if (skb->ip_summed == CHECKSUM_NONE) {
1689 		int err = 0;
1690 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1691 							    copy, 0, &err);
1692 		if (!err) {
1693 			skb->csum = csum_block_add(skb->csum, csum, off);
1694 			return 0;
1695 		}
1696 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1697 		return 0;
1698 
1699 	__skb_trim(skb, off);
1700 	return -EFAULT;
1701 }
1702 
skb_can_coalesce(struct sk_buff * skb,int i,struct page * page,int off)1703 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1704 				   struct page *page, int off)
1705 {
1706 	if (i) {
1707 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1708 
1709 		return page == frag->page &&
1710 		       off == frag->page_offset + frag->size;
1711 	}
1712 	return 0;
1713 }
1714 
__skb_linearize(struct sk_buff * skb)1715 static inline int __skb_linearize(struct sk_buff *skb)
1716 {
1717 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1718 }
1719 
1720 /**
1721  *	skb_linearize - convert paged skb to linear one
1722  *	@skb: buffer to linarize
1723  *
1724  *	If there is no free memory -ENOMEM is returned, otherwise zero
1725  *	is returned and the old skb data released.
1726  */
skb_linearize(struct sk_buff * skb)1727 static inline int skb_linearize(struct sk_buff *skb)
1728 {
1729 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1730 }
1731 
1732 /**
1733  *	skb_linearize_cow - make sure skb is linear and writable
1734  *	@skb: buffer to process
1735  *
1736  *	If there is no free memory -ENOMEM is returned, otherwise zero
1737  *	is returned and the old skb data released.
1738  */
skb_linearize_cow(struct sk_buff * skb)1739 static inline int skb_linearize_cow(struct sk_buff *skb)
1740 {
1741 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1742 	       __skb_linearize(skb) : 0;
1743 }
1744 
1745 /**
1746  *	skb_postpull_rcsum - update checksum for received skb after pull
1747  *	@skb: buffer to update
1748  *	@start: start of data before pull
1749  *	@len: length of data pulled
1750  *
1751  *	After doing a pull on a received packet, you need to call this to
1752  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1753  *	CHECKSUM_NONE so that it can be recomputed from scratch.
1754  */
1755 
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)1756 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1757 				      const void *start, unsigned int len)
1758 {
1759 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1760 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1761 }
1762 
1763 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1764 
1765 /**
1766  *	pskb_trim_rcsum - trim received skb and update checksum
1767  *	@skb: buffer to trim
1768  *	@len: new length
1769  *
1770  *	This is exactly the same as pskb_trim except that it ensures the
1771  *	checksum of received packets are still valid after the operation.
1772  */
1773 
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)1774 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1775 {
1776 	if (likely(len >= skb->len))
1777 		return 0;
1778 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1779 		skb->ip_summed = CHECKSUM_NONE;
1780 	return __pskb_trim(skb, len);
1781 }
1782 
1783 #define skb_queue_walk(queue, skb) \
1784 		for (skb = (queue)->next;					\
1785 		     prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1786 		     skb = skb->next)
1787 
1788 #define skb_queue_walk_safe(queue, skb, tmp)					\
1789 		for (skb = (queue)->next, tmp = skb->next;			\
1790 		     skb != (struct sk_buff *)(queue);				\
1791 		     skb = tmp, tmp = skb->next)
1792 
1793 #define skb_queue_walk_from(queue, skb)						\
1794 		for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue));	\
1795 		     skb = skb->next)
1796 
1797 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
1798 		for (tmp = skb->next;						\
1799 		     skb != (struct sk_buff *)(queue);				\
1800 		     skb = tmp, tmp = skb->next)
1801 
1802 #define skb_queue_reverse_walk(queue, skb) \
1803 		for (skb = (queue)->prev;					\
1804 		     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));	\
1805 		     skb = skb->prev)
1806 
1807 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
1808 		for (skb = (queue)->prev, tmp = skb->prev;			\
1809 		     skb != (struct sk_buff *)(queue);				\
1810 		     skb = tmp, tmp = skb->prev)
1811 
1812 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
1813 		for (tmp = skb->prev;						\
1814 		     skb != (struct sk_buff *)(queue);				\
1815 		     skb = tmp, tmp = skb->prev)
1816 
skb_has_frag_list(const struct sk_buff * skb)1817 static inline bool skb_has_frag_list(const struct sk_buff *skb)
1818 {
1819 	return skb_shinfo(skb)->frag_list != NULL;
1820 }
1821 
skb_frag_list_init(struct sk_buff * skb)1822 static inline void skb_frag_list_init(struct sk_buff *skb)
1823 {
1824 	skb_shinfo(skb)->frag_list = NULL;
1825 }
1826 
skb_frag_add_head(struct sk_buff * skb,struct sk_buff * frag)1827 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1828 {
1829 	frag->next = skb_shinfo(skb)->frag_list;
1830 	skb_shinfo(skb)->frag_list = frag;
1831 }
1832 
1833 #define skb_walk_frags(skb, iter)	\
1834 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1835 
1836 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1837 					   int *peeked, int *err);
1838 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1839 					 int noblock, int *err);
1840 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1841 				     struct poll_table_struct *wait);
1842 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
1843 					       int offset, struct iovec *to,
1844 					       int size);
1845 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1846 							int hlen,
1847 							struct iovec *iov);
1848 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
1849 						    int offset,
1850 						    const struct iovec *from,
1851 						    int from_offset,
1852 						    int len);
1853 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
1854 						     int offset,
1855 						     const struct iovec *to,
1856 						     int to_offset,
1857 						     int size);
1858 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1859 extern void	       skb_free_datagram_locked(struct sock *sk,
1860 						struct sk_buff *skb);
1861 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1862 					 unsigned int flags);
1863 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
1864 				    int len, __wsum csum);
1865 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
1866 				     void *to, int len);
1867 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
1868 				      const void *from, int len);
1869 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
1870 					      int offset, u8 *to, int len,
1871 					      __wsum csum);
1872 extern int             skb_splice_bits(struct sk_buff *skb,
1873 						unsigned int offset,
1874 						struct pipe_inode_info *pipe,
1875 						unsigned int len,
1876 						unsigned int flags);
1877 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1878 extern void	       skb_split(struct sk_buff *skb,
1879 				 struct sk_buff *skb1, const u32 len);
1880 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1881 				 int shiftlen);
1882 
1883 extern struct sk_buff *skb_segment(struct sk_buff *skb, u32 features);
1884 
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)1885 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1886 				       int len, void *buffer)
1887 {
1888 	int hlen = skb_headlen(skb);
1889 
1890 	if (hlen - offset >= len)
1891 		return skb->data + offset;
1892 
1893 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
1894 		return NULL;
1895 
1896 	return buffer;
1897 }
1898 
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)1899 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1900 					     void *to,
1901 					     const unsigned int len)
1902 {
1903 	memcpy(to, skb->data, len);
1904 }
1905 
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)1906 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1907 						    const int offset, void *to,
1908 						    const unsigned int len)
1909 {
1910 	memcpy(to, skb->data + offset, len);
1911 }
1912 
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)1913 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1914 					   const void *from,
1915 					   const unsigned int len)
1916 {
1917 	memcpy(skb->data, from, len);
1918 }
1919 
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)1920 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1921 						  const int offset,
1922 						  const void *from,
1923 						  const unsigned int len)
1924 {
1925 	memcpy(skb->data + offset, from, len);
1926 }
1927 
1928 extern void skb_init(void);
1929 
skb_get_ktime(const struct sk_buff * skb)1930 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1931 {
1932 	return skb->tstamp;
1933 }
1934 
1935 /**
1936  *	skb_get_timestamp - get timestamp from a skb
1937  *	@skb: skb to get stamp from
1938  *	@stamp: pointer to struct timeval to store stamp in
1939  *
1940  *	Timestamps are stored in the skb as offsets to a base timestamp.
1941  *	This function converts the offset back to a struct timeval and stores
1942  *	it in stamp.
1943  */
skb_get_timestamp(const struct sk_buff * skb,struct timeval * stamp)1944 static inline void skb_get_timestamp(const struct sk_buff *skb,
1945 				     struct timeval *stamp)
1946 {
1947 	*stamp = ktime_to_timeval(skb->tstamp);
1948 }
1949 
skb_get_timestampns(const struct sk_buff * skb,struct timespec * stamp)1950 static inline void skb_get_timestampns(const struct sk_buff *skb,
1951 				       struct timespec *stamp)
1952 {
1953 	*stamp = ktime_to_timespec(skb->tstamp);
1954 }
1955 
__net_timestamp(struct sk_buff * skb)1956 static inline void __net_timestamp(struct sk_buff *skb)
1957 {
1958 	skb->tstamp = ktime_get_real();
1959 }
1960 
net_timedelta(ktime_t t)1961 static inline ktime_t net_timedelta(ktime_t t)
1962 {
1963 	return ktime_sub(ktime_get_real(), t);
1964 }
1965 
net_invalid_timestamp(void)1966 static inline ktime_t net_invalid_timestamp(void)
1967 {
1968 	return ktime_set(0, 0);
1969 }
1970 
1971 extern void skb_timestamping_init(void);
1972 
1973 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
1974 
1975 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
1976 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
1977 
1978 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
1979 
skb_clone_tx_timestamp(struct sk_buff * skb)1980 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
1981 {
1982 }
1983 
skb_defer_rx_timestamp(struct sk_buff * skb)1984 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
1985 {
1986 	return false;
1987 }
1988 
1989 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
1990 
1991 /**
1992  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
1993  *
1994  * @skb: clone of the the original outgoing packet
1995  * @hwtstamps: hardware time stamps
1996  *
1997  */
1998 void skb_complete_tx_timestamp(struct sk_buff *skb,
1999 			       struct skb_shared_hwtstamps *hwtstamps);
2000 
2001 /**
2002  * skb_tstamp_tx - queue clone of skb with send time stamps
2003  * @orig_skb:	the original outgoing packet
2004  * @hwtstamps:	hardware time stamps, may be NULL if not available
2005  *
2006  * If the skb has a socket associated, then this function clones the
2007  * skb (thus sharing the actual data and optional structures), stores
2008  * the optional hardware time stamping information (if non NULL) or
2009  * generates a software time stamp (otherwise), then queues the clone
2010  * to the error queue of the socket.  Errors are silently ignored.
2011  */
2012 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2013 			struct skb_shared_hwtstamps *hwtstamps);
2014 
sw_tx_timestamp(struct sk_buff * skb)2015 static inline void sw_tx_timestamp(struct sk_buff *skb)
2016 {
2017 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2018 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2019 		skb_tstamp_tx(skb, NULL);
2020 }
2021 
2022 /**
2023  * skb_tx_timestamp() - Driver hook for transmit timestamping
2024  *
2025  * Ethernet MAC Drivers should call this function in their hard_xmit()
2026  * function as soon as possible after giving the sk_buff to the MAC
2027  * hardware, but before freeing the sk_buff.
2028  *
2029  * @skb: A socket buffer.
2030  */
skb_tx_timestamp(struct sk_buff * skb)2031 static inline void skb_tx_timestamp(struct sk_buff *skb)
2032 {
2033 	skb_clone_tx_timestamp(skb);
2034 	sw_tx_timestamp(skb);
2035 }
2036 
2037 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2038 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2039 
skb_csum_unnecessary(const struct sk_buff * skb)2040 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2041 {
2042 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
2043 }
2044 
2045 /**
2046  *	skb_checksum_complete - Calculate checksum of an entire packet
2047  *	@skb: packet to process
2048  *
2049  *	This function calculates the checksum over the entire packet plus
2050  *	the value of skb->csum.  The latter can be used to supply the
2051  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2052  *	checksum.
2053  *
2054  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2055  *	this function can be used to verify that checksum on received
2056  *	packets.  In that case the function should return zero if the
2057  *	checksum is correct.  In particular, this function will return zero
2058  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2059  *	hardware has already verified the correctness of the checksum.
2060  */
skb_checksum_complete(struct sk_buff * skb)2061 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2062 {
2063 	return skb_csum_unnecessary(skb) ?
2064 	       0 : __skb_checksum_complete(skb);
2065 }
2066 
2067 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2068 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
nf_conntrack_put(struct nf_conntrack * nfct)2069 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2070 {
2071 	if (nfct && atomic_dec_and_test(&nfct->use))
2072 		nf_conntrack_destroy(nfct);
2073 }
nf_conntrack_get(struct nf_conntrack * nfct)2074 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2075 {
2076 	if (nfct)
2077 		atomic_inc(&nfct->use);
2078 }
2079 #endif
2080 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
nf_conntrack_get_reasm(struct sk_buff * skb)2081 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2082 {
2083 	if (skb)
2084 		atomic_inc(&skb->users);
2085 }
nf_conntrack_put_reasm(struct sk_buff * skb)2086 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2087 {
2088 	if (skb)
2089 		kfree_skb(skb);
2090 }
2091 #endif
2092 #ifdef CONFIG_BRIDGE_NETFILTER
nf_bridge_put(struct nf_bridge_info * nf_bridge)2093 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2094 {
2095 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2096 		kfree(nf_bridge);
2097 }
nf_bridge_get(struct nf_bridge_info * nf_bridge)2098 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2099 {
2100 	if (nf_bridge)
2101 		atomic_inc(&nf_bridge->use);
2102 }
2103 #endif /* CONFIG_BRIDGE_NETFILTER */
nf_reset(struct sk_buff * skb)2104 static inline void nf_reset(struct sk_buff *skb)
2105 {
2106 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2107 	nf_conntrack_put(skb->nfct);
2108 	skb->nfct = NULL;
2109 #endif
2110 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2111 	nf_conntrack_put_reasm(skb->nfct_reasm);
2112 	skb->nfct_reasm = NULL;
2113 #endif
2114 #ifdef CONFIG_BRIDGE_NETFILTER
2115 	nf_bridge_put(skb->nf_bridge);
2116 	skb->nf_bridge = NULL;
2117 #endif
2118 }
2119 
2120 /* Note: This doesn't put any conntrack and bridge info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src)2121 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2122 {
2123 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2124 	dst->nfct = src->nfct;
2125 	nf_conntrack_get(src->nfct);
2126 	dst->nfctinfo = src->nfctinfo;
2127 #endif
2128 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2129 	dst->nfct_reasm = src->nfct_reasm;
2130 	nf_conntrack_get_reasm(src->nfct_reasm);
2131 #endif
2132 #ifdef CONFIG_BRIDGE_NETFILTER
2133 	dst->nf_bridge  = src->nf_bridge;
2134 	nf_bridge_get(src->nf_bridge);
2135 #endif
2136 }
2137 
nf_copy(struct sk_buff * dst,const struct sk_buff * src)2138 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2139 {
2140 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2141 	nf_conntrack_put(dst->nfct);
2142 #endif
2143 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2144 	nf_conntrack_put_reasm(dst->nfct_reasm);
2145 #endif
2146 #ifdef CONFIG_BRIDGE_NETFILTER
2147 	nf_bridge_put(dst->nf_bridge);
2148 #endif
2149 	__nf_copy(dst, src);
2150 }
2151 
2152 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)2153 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2154 {
2155 	to->secmark = from->secmark;
2156 }
2157 
skb_init_secmark(struct sk_buff * skb)2158 static inline void skb_init_secmark(struct sk_buff *skb)
2159 {
2160 	skb->secmark = 0;
2161 }
2162 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)2163 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2164 { }
2165 
skb_init_secmark(struct sk_buff * skb)2166 static inline void skb_init_secmark(struct sk_buff *skb)
2167 { }
2168 #endif
2169 
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)2170 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2171 {
2172 	skb->queue_mapping = queue_mapping;
2173 }
2174 
skb_get_queue_mapping(const struct sk_buff * skb)2175 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2176 {
2177 	return skb->queue_mapping;
2178 }
2179 
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)2180 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2181 {
2182 	to->queue_mapping = from->queue_mapping;
2183 }
2184 
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)2185 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2186 {
2187 	skb->queue_mapping = rx_queue + 1;
2188 }
2189 
skb_get_rx_queue(const struct sk_buff * skb)2190 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2191 {
2192 	return skb->queue_mapping - 1;
2193 }
2194 
skb_rx_queue_recorded(const struct sk_buff * skb)2195 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2196 {
2197 	return skb->queue_mapping != 0;
2198 }
2199 
2200 extern u16 __skb_tx_hash(const struct net_device *dev,
2201 			 const struct sk_buff *skb,
2202 			 unsigned int num_tx_queues);
2203 
2204 #ifdef CONFIG_XFRM
skb_sec_path(struct sk_buff * skb)2205 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2206 {
2207 	return skb->sp;
2208 }
2209 #else
skb_sec_path(struct sk_buff * skb)2210 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2211 {
2212 	return NULL;
2213 }
2214 #endif
2215 
skb_is_gso(const struct sk_buff * skb)2216 static inline int skb_is_gso(const struct sk_buff *skb)
2217 {
2218 	return skb_shinfo(skb)->gso_size;
2219 }
2220 
skb_is_gso_v6(const struct sk_buff * skb)2221 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2222 {
2223 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2224 }
2225 
2226 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2227 
skb_warn_if_lro(const struct sk_buff * skb)2228 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2229 {
2230 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2231 	 * wanted then gso_type will be set. */
2232 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2233 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2234 	    unlikely(shinfo->gso_type == 0)) {
2235 		__skb_warn_lro_forwarding(skb);
2236 		return true;
2237 	}
2238 	return false;
2239 }
2240 
skb_forward_csum(struct sk_buff * skb)2241 static inline void skb_forward_csum(struct sk_buff *skb)
2242 {
2243 	/* Unfortunately we don't support this one.  Any brave souls? */
2244 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2245 		skb->ip_summed = CHECKSUM_NONE;
2246 }
2247 
2248 /**
2249  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2250  * @skb: skb to check
2251  *
2252  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2253  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2254  * use this helper, to document places where we make this assertion.
2255  */
skb_checksum_none_assert(struct sk_buff * skb)2256 static inline void skb_checksum_none_assert(struct sk_buff *skb)
2257 {
2258 #ifdef DEBUG
2259 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2260 #endif
2261 }
2262 
2263 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2264 #endif	/* __KERNEL__ */
2265 #endif	/* _LINUX_SKBUFF_H */
2266