1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31 /*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/mctp.h>
74 #include <net/page_pool.h>
75
76 #include <linux/uaccess.h>
77 #include <trace/events/skb.h>
78 #include <linux/highmem.h>
79 #include <linux/capability.h>
80 #include <linux/user_namespace.h>
81 #include <linux/indirect_call_wrapper.h>
82
83 #include "dev.h"
84 #include "sock_destructor.h"
85
86 struct kmem_cache *skbuff_head_cache __ro_after_init;
87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88 #ifdef CONFIG_SKB_EXTENSIONS
89 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90 #endif
91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92 EXPORT_SYMBOL(sysctl_max_skb_frags);
93
94 /**
95 * skb_panic - private function for out-of-line support
96 * @skb: buffer
97 * @sz: size
98 * @addr: address
99 * @msg: skb_over_panic or skb_under_panic
100 *
101 * Out-of-line support for skb_put() and skb_push().
102 * Called via the wrapper skb_over_panic() or skb_under_panic().
103 * Keep out of line to prevent kernel bloat.
104 * __builtin_return_address is not used because it is not always reliable.
105 */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])106 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
107 const char msg[])
108 {
109 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
110 msg, addr, skb->len, sz, skb->head, skb->data,
111 (unsigned long)skb->tail, (unsigned long)skb->end,
112 skb->dev ? skb->dev->name : "<NULL>");
113 BUG();
114 }
115
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)116 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
117 {
118 skb_panic(skb, sz, addr, __func__);
119 }
120
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)121 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
122 {
123 skb_panic(skb, sz, addr, __func__);
124 }
125
126 #define NAPI_SKB_CACHE_SIZE 64
127 #define NAPI_SKB_CACHE_BULK 16
128 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
129
130 struct napi_alloc_cache {
131 struct page_frag_cache page;
132 unsigned int skb_count;
133 void *skb_cache[NAPI_SKB_CACHE_SIZE];
134 };
135
136 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
137 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
138
__napi_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)139 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
140 {
141 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
142
143 fragsz = SKB_DATA_ALIGN(fragsz);
144
145 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
146 }
147 EXPORT_SYMBOL(__napi_alloc_frag_align);
148
__netdev_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)149 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
150 {
151 void *data;
152
153 fragsz = SKB_DATA_ALIGN(fragsz);
154 if (in_hardirq() || irqs_disabled()) {
155 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
156
157 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
158 } else {
159 struct napi_alloc_cache *nc;
160
161 local_bh_disable();
162 nc = this_cpu_ptr(&napi_alloc_cache);
163 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
164 local_bh_enable();
165 }
166 return data;
167 }
168 EXPORT_SYMBOL(__netdev_alloc_frag_align);
169
napi_skb_cache_get(void)170 static struct sk_buff *napi_skb_cache_get(void)
171 {
172 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
173 struct sk_buff *skb;
174
175 if (unlikely(!nc->skb_count))
176 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
177 GFP_ATOMIC,
178 NAPI_SKB_CACHE_BULK,
179 nc->skb_cache);
180 if (unlikely(!nc->skb_count))
181 return NULL;
182
183 skb = nc->skb_cache[--nc->skb_count];
184 kasan_unpoison_object_data(skbuff_head_cache, skb);
185
186 return skb;
187 }
188
189 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)190 static void __build_skb_around(struct sk_buff *skb, void *data,
191 unsigned int frag_size)
192 {
193 struct skb_shared_info *shinfo;
194 unsigned int size = frag_size ? : ksize(data);
195
196 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
197
198 /* Assumes caller memset cleared SKB */
199 skb->truesize = SKB_TRUESIZE(size);
200 refcount_set(&skb->users, 1);
201 skb->head = data;
202 skb->data = data;
203 skb_reset_tail_pointer(skb);
204 skb_set_end_offset(skb, size);
205 skb->mac_header = (typeof(skb->mac_header))~0U;
206 skb->transport_header = (typeof(skb->transport_header))~0U;
207 skb->alloc_cpu = raw_smp_processor_id();
208 /* make sure we initialize shinfo sequentially */
209 shinfo = skb_shinfo(skb);
210 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
211 atomic_set(&shinfo->dataref, 1);
212
213 skb_set_kcov_handle(skb, kcov_common_handle());
214 }
215
216 /**
217 * __build_skb - build a network buffer
218 * @data: data buffer provided by caller
219 * @frag_size: size of data, or 0 if head was kmalloced
220 *
221 * Allocate a new &sk_buff. Caller provides space holding head and
222 * skb_shared_info. @data must have been allocated by kmalloc() only if
223 * @frag_size is 0, otherwise data should come from the page allocator
224 * or vmalloc()
225 * The return is the new skb buffer.
226 * On a failure the return is %NULL, and @data is not freed.
227 * Notes :
228 * Before IO, driver allocates only data buffer where NIC put incoming frame
229 * Driver should add room at head (NET_SKB_PAD) and
230 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
231 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
232 * before giving packet to stack.
233 * RX rings only contains data buffers, not full skbs.
234 */
__build_skb(void * data,unsigned int frag_size)235 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
236 {
237 struct sk_buff *skb;
238
239 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
240 if (unlikely(!skb))
241 return NULL;
242
243 memset(skb, 0, offsetof(struct sk_buff, tail));
244 __build_skb_around(skb, data, frag_size);
245
246 return skb;
247 }
248
249 /* build_skb() is wrapper over __build_skb(), that specifically
250 * takes care of skb->head and skb->pfmemalloc
251 * This means that if @frag_size is not zero, then @data must be backed
252 * by a page fragment, not kmalloc() or vmalloc()
253 */
build_skb(void * data,unsigned int frag_size)254 struct sk_buff *build_skb(void *data, unsigned int frag_size)
255 {
256 struct sk_buff *skb = __build_skb(data, frag_size);
257
258 if (skb && frag_size) {
259 skb->head_frag = 1;
260 if (page_is_pfmemalloc(virt_to_head_page(data)))
261 skb->pfmemalloc = 1;
262 }
263 return skb;
264 }
265 EXPORT_SYMBOL(build_skb);
266
267 /**
268 * build_skb_around - build a network buffer around provided skb
269 * @skb: sk_buff provide by caller, must be memset cleared
270 * @data: data buffer provided by caller
271 * @frag_size: size of data, or 0 if head was kmalloced
272 */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)273 struct sk_buff *build_skb_around(struct sk_buff *skb,
274 void *data, unsigned int frag_size)
275 {
276 if (unlikely(!skb))
277 return NULL;
278
279 __build_skb_around(skb, data, frag_size);
280
281 if (frag_size) {
282 skb->head_frag = 1;
283 if (page_is_pfmemalloc(virt_to_head_page(data)))
284 skb->pfmemalloc = 1;
285 }
286 return skb;
287 }
288 EXPORT_SYMBOL(build_skb_around);
289
290 /**
291 * __napi_build_skb - build a network buffer
292 * @data: data buffer provided by caller
293 * @frag_size: size of data, or 0 if head was kmalloced
294 *
295 * Version of __build_skb() that uses NAPI percpu caches to obtain
296 * skbuff_head instead of inplace allocation.
297 *
298 * Returns a new &sk_buff on success, %NULL on allocation failure.
299 */
__napi_build_skb(void * data,unsigned int frag_size)300 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
301 {
302 struct sk_buff *skb;
303
304 skb = napi_skb_cache_get();
305 if (unlikely(!skb))
306 return NULL;
307
308 memset(skb, 0, offsetof(struct sk_buff, tail));
309 __build_skb_around(skb, data, frag_size);
310
311 return skb;
312 }
313
314 /**
315 * napi_build_skb - build a network buffer
316 * @data: data buffer provided by caller
317 * @frag_size: size of data, or 0 if head was kmalloced
318 *
319 * Version of __napi_build_skb() that takes care of skb->head_frag
320 * and skb->pfmemalloc when the data is a page or page fragment.
321 *
322 * Returns a new &sk_buff on success, %NULL on allocation failure.
323 */
napi_build_skb(void * data,unsigned int frag_size)324 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
325 {
326 struct sk_buff *skb = __napi_build_skb(data, frag_size);
327
328 if (likely(skb) && frag_size) {
329 skb->head_frag = 1;
330 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
331 }
332
333 return skb;
334 }
335 EXPORT_SYMBOL(napi_build_skb);
336
337 /*
338 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
339 * the caller if emergency pfmemalloc reserves are being used. If it is and
340 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
341 * may be used. Otherwise, the packet data may be discarded until enough
342 * memory is free
343 */
kmalloc_reserve(size_t size,gfp_t flags,int node,bool * pfmemalloc)344 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
345 bool *pfmemalloc)
346 {
347 void *obj;
348 bool ret_pfmemalloc = false;
349
350 /*
351 * Try a regular allocation, when that fails and we're not entitled
352 * to the reserves, fail.
353 */
354 obj = kmalloc_node_track_caller(size,
355 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
356 node);
357 if (obj || !(gfp_pfmemalloc_allowed(flags)))
358 goto out;
359
360 /* Try again but now we are using pfmemalloc reserves */
361 ret_pfmemalloc = true;
362 obj = kmalloc_node_track_caller(size, flags, node);
363
364 out:
365 if (pfmemalloc)
366 *pfmemalloc = ret_pfmemalloc;
367
368 return obj;
369 }
370
371 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
372 * 'private' fields and also do memory statistics to find all the
373 * [BEEP] leaks.
374 *
375 */
376
377 /**
378 * __alloc_skb - allocate a network buffer
379 * @size: size to allocate
380 * @gfp_mask: allocation mask
381 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
382 * instead of head cache and allocate a cloned (child) skb.
383 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
384 * allocations in case the data is required for writeback
385 * @node: numa node to allocate memory on
386 *
387 * Allocate a new &sk_buff. The returned buffer has no headroom and a
388 * tail room of at least size bytes. The object has a reference count
389 * of one. The return is the buffer. On a failure the return is %NULL.
390 *
391 * Buffers may only be allocated from interrupts using a @gfp_mask of
392 * %GFP_ATOMIC.
393 */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)394 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
395 int flags, int node)
396 {
397 struct kmem_cache *cache;
398 struct sk_buff *skb;
399 unsigned int osize;
400 bool pfmemalloc;
401 u8 *data;
402
403 cache = (flags & SKB_ALLOC_FCLONE)
404 ? skbuff_fclone_cache : skbuff_head_cache;
405
406 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
407 gfp_mask |= __GFP_MEMALLOC;
408
409 /* Get the HEAD */
410 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
411 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
412 skb = napi_skb_cache_get();
413 else
414 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
415 if (unlikely(!skb))
416 return NULL;
417 prefetchw(skb);
418
419 /* We do our best to align skb_shared_info on a separate cache
420 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
421 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
422 * Both skb->head and skb_shared_info are cache line aligned.
423 */
424 size = SKB_DATA_ALIGN(size);
425 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
426 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
427 if (unlikely(!data))
428 goto nodata;
429 /* kmalloc(size) might give us more room than requested.
430 * Put skb_shared_info exactly at the end of allocated zone,
431 * to allow max possible filling before reallocation.
432 */
433 osize = ksize(data);
434 size = SKB_WITH_OVERHEAD(osize);
435 prefetchw(data + size);
436
437 /*
438 * Only clear those fields we need to clear, not those that we will
439 * actually initialise below. Hence, don't put any more fields after
440 * the tail pointer in struct sk_buff!
441 */
442 memset(skb, 0, offsetof(struct sk_buff, tail));
443 __build_skb_around(skb, data, osize);
444 skb->pfmemalloc = pfmemalloc;
445
446 if (flags & SKB_ALLOC_FCLONE) {
447 struct sk_buff_fclones *fclones;
448
449 fclones = container_of(skb, struct sk_buff_fclones, skb1);
450
451 skb->fclone = SKB_FCLONE_ORIG;
452 refcount_set(&fclones->fclone_ref, 1);
453
454 fclones->skb2.fclone = SKB_FCLONE_CLONE;
455 }
456
457 return skb;
458
459 nodata:
460 kmem_cache_free(cache, skb);
461 return NULL;
462 }
463 EXPORT_SYMBOL(__alloc_skb);
464
465 /**
466 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
467 * @dev: network device to receive on
468 * @len: length to allocate
469 * @gfp_mask: get_free_pages mask, passed to alloc_skb
470 *
471 * Allocate a new &sk_buff and assign it a usage count of one. The
472 * buffer has NET_SKB_PAD headroom built in. Users should allocate
473 * the headroom they think they need without accounting for the
474 * built in space. The built in space is used for optimisations.
475 *
476 * %NULL is returned if there is no free memory.
477 */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)478 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
479 gfp_t gfp_mask)
480 {
481 struct page_frag_cache *nc;
482 struct sk_buff *skb;
483 bool pfmemalloc;
484 void *data;
485
486 len += NET_SKB_PAD;
487
488 /* If requested length is either too small or too big,
489 * we use kmalloc() for skb->head allocation.
490 */
491 if (len <= SKB_WITH_OVERHEAD(1024) ||
492 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
493 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
494 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
495 if (!skb)
496 goto skb_fail;
497 goto skb_success;
498 }
499
500 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
501 len = SKB_DATA_ALIGN(len);
502
503 if (sk_memalloc_socks())
504 gfp_mask |= __GFP_MEMALLOC;
505
506 if (in_hardirq() || irqs_disabled()) {
507 nc = this_cpu_ptr(&netdev_alloc_cache);
508 data = page_frag_alloc(nc, len, gfp_mask);
509 pfmemalloc = nc->pfmemalloc;
510 } else {
511 local_bh_disable();
512 nc = this_cpu_ptr(&napi_alloc_cache.page);
513 data = page_frag_alloc(nc, len, gfp_mask);
514 pfmemalloc = nc->pfmemalloc;
515 local_bh_enable();
516 }
517
518 if (unlikely(!data))
519 return NULL;
520
521 skb = __build_skb(data, len);
522 if (unlikely(!skb)) {
523 skb_free_frag(data);
524 return NULL;
525 }
526
527 if (pfmemalloc)
528 skb->pfmemalloc = 1;
529 skb->head_frag = 1;
530
531 skb_success:
532 skb_reserve(skb, NET_SKB_PAD);
533 skb->dev = dev;
534
535 skb_fail:
536 return skb;
537 }
538 EXPORT_SYMBOL(__netdev_alloc_skb);
539
540 /**
541 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
542 * @napi: napi instance this buffer was allocated for
543 * @len: length to allocate
544 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
545 *
546 * Allocate a new sk_buff for use in NAPI receive. This buffer will
547 * attempt to allocate the head from a special reserved region used
548 * only for NAPI Rx allocation. By doing this we can save several
549 * CPU cycles by avoiding having to disable and re-enable IRQs.
550 *
551 * %NULL is returned if there is no free memory.
552 */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)553 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
554 gfp_t gfp_mask)
555 {
556 struct napi_alloc_cache *nc;
557 struct sk_buff *skb;
558 void *data;
559
560 len += NET_SKB_PAD + NET_IP_ALIGN;
561
562 /* If requested length is either too small or too big,
563 * we use kmalloc() for skb->head allocation.
564 */
565 if (len <= SKB_WITH_OVERHEAD(1024) ||
566 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
567 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
568 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
569 NUMA_NO_NODE);
570 if (!skb)
571 goto skb_fail;
572 goto skb_success;
573 }
574
575 nc = this_cpu_ptr(&napi_alloc_cache);
576 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
577 len = SKB_DATA_ALIGN(len);
578
579 if (sk_memalloc_socks())
580 gfp_mask |= __GFP_MEMALLOC;
581
582 data = page_frag_alloc(&nc->page, len, gfp_mask);
583 if (unlikely(!data))
584 return NULL;
585
586 skb = __napi_build_skb(data, len);
587 if (unlikely(!skb)) {
588 skb_free_frag(data);
589 return NULL;
590 }
591
592 if (nc->page.pfmemalloc)
593 skb->pfmemalloc = 1;
594 skb->head_frag = 1;
595
596 skb_success:
597 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
598 skb->dev = napi->dev;
599
600 skb_fail:
601 return skb;
602 }
603 EXPORT_SYMBOL(__napi_alloc_skb);
604
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)605 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
606 int size, unsigned int truesize)
607 {
608 skb_fill_page_desc(skb, i, page, off, size);
609 skb->len += size;
610 skb->data_len += size;
611 skb->truesize += truesize;
612 }
613 EXPORT_SYMBOL(skb_add_rx_frag);
614
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)615 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
616 unsigned int truesize)
617 {
618 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
619
620 skb_frag_size_add(frag, size);
621 skb->len += size;
622 skb->data_len += size;
623 skb->truesize += truesize;
624 }
625 EXPORT_SYMBOL(skb_coalesce_rx_frag);
626
skb_drop_list(struct sk_buff ** listp)627 static void skb_drop_list(struct sk_buff **listp)
628 {
629 kfree_skb_list(*listp);
630 *listp = NULL;
631 }
632
skb_drop_fraglist(struct sk_buff * skb)633 static inline void skb_drop_fraglist(struct sk_buff *skb)
634 {
635 skb_drop_list(&skb_shinfo(skb)->frag_list);
636 }
637
skb_clone_fraglist(struct sk_buff * skb)638 static void skb_clone_fraglist(struct sk_buff *skb)
639 {
640 struct sk_buff *list;
641
642 skb_walk_frags(skb, list)
643 skb_get(list);
644 }
645
skb_free_head(struct sk_buff * skb)646 static void skb_free_head(struct sk_buff *skb)
647 {
648 unsigned char *head = skb->head;
649
650 if (skb->head_frag) {
651 if (skb_pp_recycle(skb, head))
652 return;
653 skb_free_frag(head);
654 } else {
655 kfree(head);
656 }
657 }
658
skb_release_data(struct sk_buff * skb)659 static void skb_release_data(struct sk_buff *skb)
660 {
661 struct skb_shared_info *shinfo = skb_shinfo(skb);
662 int i;
663
664 if (skb->cloned &&
665 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
666 &shinfo->dataref))
667 goto exit;
668
669 skb_zcopy_clear(skb, true);
670
671 for (i = 0; i < shinfo->nr_frags; i++)
672 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
673
674 if (shinfo->frag_list)
675 kfree_skb_list(shinfo->frag_list);
676
677 skb_free_head(skb);
678 exit:
679 /* When we clone an SKB we copy the reycling bit. The pp_recycle
680 * bit is only set on the head though, so in order to avoid races
681 * while trying to recycle fragments on __skb_frag_unref() we need
682 * to make one SKB responsible for triggering the recycle path.
683 * So disable the recycling bit if an SKB is cloned and we have
684 * additional references to the fragmented part of the SKB.
685 * Eventually the last SKB will have the recycling bit set and it's
686 * dataref set to 0, which will trigger the recycling
687 */
688 skb->pp_recycle = 0;
689 }
690
691 /*
692 * Free an skbuff by memory without cleaning the state.
693 */
kfree_skbmem(struct sk_buff * skb)694 static void kfree_skbmem(struct sk_buff *skb)
695 {
696 struct sk_buff_fclones *fclones;
697
698 switch (skb->fclone) {
699 case SKB_FCLONE_UNAVAILABLE:
700 kmem_cache_free(skbuff_head_cache, skb);
701 return;
702
703 case SKB_FCLONE_ORIG:
704 fclones = container_of(skb, struct sk_buff_fclones, skb1);
705
706 /* We usually free the clone (TX completion) before original skb
707 * This test would have no chance to be true for the clone,
708 * while here, branch prediction will be good.
709 */
710 if (refcount_read(&fclones->fclone_ref) == 1)
711 goto fastpath;
712 break;
713
714 default: /* SKB_FCLONE_CLONE */
715 fclones = container_of(skb, struct sk_buff_fclones, skb2);
716 break;
717 }
718 if (!refcount_dec_and_test(&fclones->fclone_ref))
719 return;
720 fastpath:
721 kmem_cache_free(skbuff_fclone_cache, fclones);
722 }
723
skb_release_head_state(struct sk_buff * skb)724 void skb_release_head_state(struct sk_buff *skb)
725 {
726 skb_dst_drop(skb);
727 if (skb->destructor) {
728 WARN_ON(in_hardirq());
729 skb->destructor(skb);
730 }
731 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
732 nf_conntrack_put(skb_nfct(skb));
733 #endif
734 skb_ext_put(skb);
735 }
736
737 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)738 static void skb_release_all(struct sk_buff *skb)
739 {
740 skb_release_head_state(skb);
741 if (likely(skb->head))
742 skb_release_data(skb);
743 }
744
745 /**
746 * __kfree_skb - private function
747 * @skb: buffer
748 *
749 * Free an sk_buff. Release anything attached to the buffer.
750 * Clean the state. This is an internal helper function. Users should
751 * always call kfree_skb
752 */
753
__kfree_skb(struct sk_buff * skb)754 void __kfree_skb(struct sk_buff *skb)
755 {
756 skb_release_all(skb);
757 kfree_skbmem(skb);
758 }
759 EXPORT_SYMBOL(__kfree_skb);
760
761 /**
762 * kfree_skb_reason - free an sk_buff with special reason
763 * @skb: buffer to free
764 * @reason: reason why this skb is dropped
765 *
766 * Drop a reference to the buffer and free it if the usage count has
767 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
768 * tracepoint.
769 */
kfree_skb_reason(struct sk_buff * skb,enum skb_drop_reason reason)770 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
771 {
772 if (!skb_unref(skb))
773 return;
774
775 DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX);
776
777 trace_kfree_skb(skb, __builtin_return_address(0), reason);
778 __kfree_skb(skb);
779 }
780 EXPORT_SYMBOL(kfree_skb_reason);
781
kfree_skb_list_reason(struct sk_buff * segs,enum skb_drop_reason reason)782 void kfree_skb_list_reason(struct sk_buff *segs,
783 enum skb_drop_reason reason)
784 {
785 while (segs) {
786 struct sk_buff *next = segs->next;
787
788 kfree_skb_reason(segs, reason);
789 segs = next;
790 }
791 }
792 EXPORT_SYMBOL(kfree_skb_list_reason);
793
794 /* Dump skb information and contents.
795 *
796 * Must only be called from net_ratelimit()-ed paths.
797 *
798 * Dumps whole packets if full_pkt, only headers otherwise.
799 */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)800 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
801 {
802 struct skb_shared_info *sh = skb_shinfo(skb);
803 struct net_device *dev = skb->dev;
804 struct sock *sk = skb->sk;
805 struct sk_buff *list_skb;
806 bool has_mac, has_trans;
807 int headroom, tailroom;
808 int i, len, seg_len;
809
810 if (full_pkt)
811 len = skb->len;
812 else
813 len = min_t(int, skb->len, MAX_HEADER + 128);
814
815 headroom = skb_headroom(skb);
816 tailroom = skb_tailroom(skb);
817
818 has_mac = skb_mac_header_was_set(skb);
819 has_trans = skb_transport_header_was_set(skb);
820
821 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
822 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
823 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
824 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
825 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
826 level, skb->len, headroom, skb_headlen(skb), tailroom,
827 has_mac ? skb->mac_header : -1,
828 has_mac ? skb_mac_header_len(skb) : -1,
829 skb->network_header,
830 has_trans ? skb_network_header_len(skb) : -1,
831 has_trans ? skb->transport_header : -1,
832 sh->tx_flags, sh->nr_frags,
833 sh->gso_size, sh->gso_type, sh->gso_segs,
834 skb->csum, skb->ip_summed, skb->csum_complete_sw,
835 skb->csum_valid, skb->csum_level,
836 skb->hash, skb->sw_hash, skb->l4_hash,
837 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
838
839 if (dev)
840 printk("%sdev name=%s feat=%pNF\n",
841 level, dev->name, &dev->features);
842 if (sk)
843 printk("%ssk family=%hu type=%u proto=%u\n",
844 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
845
846 if (full_pkt && headroom)
847 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
848 16, 1, skb->head, headroom, false);
849
850 seg_len = min_t(int, skb_headlen(skb), len);
851 if (seg_len)
852 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
853 16, 1, skb->data, seg_len, false);
854 len -= seg_len;
855
856 if (full_pkt && tailroom)
857 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
858 16, 1, skb_tail_pointer(skb), tailroom, false);
859
860 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
861 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
862 u32 p_off, p_len, copied;
863 struct page *p;
864 u8 *vaddr;
865
866 skb_frag_foreach_page(frag, skb_frag_off(frag),
867 skb_frag_size(frag), p, p_off, p_len,
868 copied) {
869 seg_len = min_t(int, p_len, len);
870 vaddr = kmap_atomic(p);
871 print_hex_dump(level, "skb frag: ",
872 DUMP_PREFIX_OFFSET,
873 16, 1, vaddr + p_off, seg_len, false);
874 kunmap_atomic(vaddr);
875 len -= seg_len;
876 if (!len)
877 break;
878 }
879 }
880
881 if (full_pkt && skb_has_frag_list(skb)) {
882 printk("skb fraglist:\n");
883 skb_walk_frags(skb, list_skb)
884 skb_dump(level, list_skb, true);
885 }
886 }
887 EXPORT_SYMBOL(skb_dump);
888
889 /**
890 * skb_tx_error - report an sk_buff xmit error
891 * @skb: buffer that triggered an error
892 *
893 * Report xmit error if a device callback is tracking this skb.
894 * skb must be freed afterwards.
895 */
skb_tx_error(struct sk_buff * skb)896 void skb_tx_error(struct sk_buff *skb)
897 {
898 skb_zcopy_clear(skb, true);
899 }
900 EXPORT_SYMBOL(skb_tx_error);
901
902 #ifdef CONFIG_TRACEPOINTS
903 /**
904 * consume_skb - free an skbuff
905 * @skb: buffer to free
906 *
907 * Drop a ref to the buffer and free it if the usage count has hit zero
908 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
909 * is being dropped after a failure and notes that
910 */
consume_skb(struct sk_buff * skb)911 void consume_skb(struct sk_buff *skb)
912 {
913 if (!skb_unref(skb))
914 return;
915
916 trace_consume_skb(skb);
917 __kfree_skb(skb);
918 }
919 EXPORT_SYMBOL(consume_skb);
920 #endif
921
922 /**
923 * __consume_stateless_skb - free an skbuff, assuming it is stateless
924 * @skb: buffer to free
925 *
926 * Alike consume_skb(), but this variant assumes that this is the last
927 * skb reference and all the head states have been already dropped
928 */
__consume_stateless_skb(struct sk_buff * skb)929 void __consume_stateless_skb(struct sk_buff *skb)
930 {
931 trace_consume_skb(skb);
932 skb_release_data(skb);
933 kfree_skbmem(skb);
934 }
935
napi_skb_cache_put(struct sk_buff * skb)936 static void napi_skb_cache_put(struct sk_buff *skb)
937 {
938 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
939 u32 i;
940
941 kasan_poison_object_data(skbuff_head_cache, skb);
942 nc->skb_cache[nc->skb_count++] = skb;
943
944 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
945 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
946 kasan_unpoison_object_data(skbuff_head_cache,
947 nc->skb_cache[i]);
948
949 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
950 nc->skb_cache + NAPI_SKB_CACHE_HALF);
951 nc->skb_count = NAPI_SKB_CACHE_HALF;
952 }
953 }
954
__kfree_skb_defer(struct sk_buff * skb)955 void __kfree_skb_defer(struct sk_buff *skb)
956 {
957 skb_release_all(skb);
958 napi_skb_cache_put(skb);
959 }
960
napi_skb_free_stolen_head(struct sk_buff * skb)961 void napi_skb_free_stolen_head(struct sk_buff *skb)
962 {
963 if (unlikely(skb->slow_gro)) {
964 nf_reset_ct(skb);
965 skb_dst_drop(skb);
966 skb_ext_put(skb);
967 skb_orphan(skb);
968 skb->slow_gro = 0;
969 }
970 napi_skb_cache_put(skb);
971 }
972
napi_consume_skb(struct sk_buff * skb,int budget)973 void napi_consume_skb(struct sk_buff *skb, int budget)
974 {
975 /* Zero budget indicate non-NAPI context called us, like netpoll */
976 if (unlikely(!budget)) {
977 dev_consume_skb_any(skb);
978 return;
979 }
980
981 lockdep_assert_in_softirq();
982
983 if (!skb_unref(skb))
984 return;
985
986 /* if reaching here SKB is ready to free */
987 trace_consume_skb(skb);
988
989 /* if SKB is a clone, don't handle this case */
990 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
991 __kfree_skb(skb);
992 return;
993 }
994
995 skb_release_all(skb);
996 napi_skb_cache_put(skb);
997 }
998 EXPORT_SYMBOL(napi_consume_skb);
999
1000 /* Make sure a field is contained by headers group */
1001 #define CHECK_SKB_FIELD(field) \
1002 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \
1003 offsetof(struct sk_buff, headers.field)); \
1004
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)1005 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1006 {
1007 new->tstamp = old->tstamp;
1008 /* We do not copy old->sk */
1009 new->dev = old->dev;
1010 memcpy(new->cb, old->cb, sizeof(old->cb));
1011 skb_dst_copy(new, old);
1012 __skb_ext_copy(new, old);
1013 __nf_copy(new, old, false);
1014
1015 /* Note : this field could be in the headers group.
1016 * It is not yet because we do not want to have a 16 bit hole
1017 */
1018 new->queue_mapping = old->queue_mapping;
1019
1020 memcpy(&new->headers, &old->headers, sizeof(new->headers));
1021 CHECK_SKB_FIELD(protocol);
1022 CHECK_SKB_FIELD(csum);
1023 CHECK_SKB_FIELD(hash);
1024 CHECK_SKB_FIELD(priority);
1025 CHECK_SKB_FIELD(skb_iif);
1026 CHECK_SKB_FIELD(vlan_proto);
1027 CHECK_SKB_FIELD(vlan_tci);
1028 CHECK_SKB_FIELD(transport_header);
1029 CHECK_SKB_FIELD(network_header);
1030 CHECK_SKB_FIELD(mac_header);
1031 CHECK_SKB_FIELD(inner_protocol);
1032 CHECK_SKB_FIELD(inner_transport_header);
1033 CHECK_SKB_FIELD(inner_network_header);
1034 CHECK_SKB_FIELD(inner_mac_header);
1035 CHECK_SKB_FIELD(mark);
1036 #ifdef CONFIG_NETWORK_SECMARK
1037 CHECK_SKB_FIELD(secmark);
1038 #endif
1039 #ifdef CONFIG_NET_RX_BUSY_POLL
1040 CHECK_SKB_FIELD(napi_id);
1041 #endif
1042 CHECK_SKB_FIELD(alloc_cpu);
1043 #ifdef CONFIG_XPS
1044 CHECK_SKB_FIELD(sender_cpu);
1045 #endif
1046 #ifdef CONFIG_NET_SCHED
1047 CHECK_SKB_FIELD(tc_index);
1048 #endif
1049
1050 }
1051
1052 /*
1053 * You should not add any new code to this function. Add it to
1054 * __copy_skb_header above instead.
1055 */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)1056 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1057 {
1058 #define C(x) n->x = skb->x
1059
1060 n->next = n->prev = NULL;
1061 n->sk = NULL;
1062 __copy_skb_header(n, skb);
1063
1064 C(len);
1065 C(data_len);
1066 C(mac_len);
1067 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1068 n->cloned = 1;
1069 n->nohdr = 0;
1070 n->peeked = 0;
1071 C(pfmemalloc);
1072 C(pp_recycle);
1073 n->destructor = NULL;
1074 C(tail);
1075 C(end);
1076 C(head);
1077 C(head_frag);
1078 C(data);
1079 C(truesize);
1080 refcount_set(&n->users, 1);
1081
1082 atomic_inc(&(skb_shinfo(skb)->dataref));
1083 skb->cloned = 1;
1084
1085 return n;
1086 #undef C
1087 }
1088
1089 /**
1090 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1091 * @first: first sk_buff of the msg
1092 */
alloc_skb_for_msg(struct sk_buff * first)1093 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1094 {
1095 struct sk_buff *n;
1096
1097 n = alloc_skb(0, GFP_ATOMIC);
1098 if (!n)
1099 return NULL;
1100
1101 n->len = first->len;
1102 n->data_len = first->len;
1103 n->truesize = first->truesize;
1104
1105 skb_shinfo(n)->frag_list = first;
1106
1107 __copy_skb_header(n, first);
1108 n->destructor = NULL;
1109
1110 return n;
1111 }
1112 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1113
1114 /**
1115 * skb_morph - morph one skb into another
1116 * @dst: the skb to receive the contents
1117 * @src: the skb to supply the contents
1118 *
1119 * This is identical to skb_clone except that the target skb is
1120 * supplied by the user.
1121 *
1122 * The target skb is returned upon exit.
1123 */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1124 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1125 {
1126 skb_release_all(dst);
1127 return __skb_clone(dst, src);
1128 }
1129 EXPORT_SYMBOL_GPL(skb_morph);
1130
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1131 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1132 {
1133 unsigned long max_pg, num_pg, new_pg, old_pg;
1134 struct user_struct *user;
1135
1136 if (capable(CAP_IPC_LOCK) || !size)
1137 return 0;
1138
1139 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1140 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1141 user = mmp->user ? : current_user();
1142
1143 do {
1144 old_pg = atomic_long_read(&user->locked_vm);
1145 new_pg = old_pg + num_pg;
1146 if (new_pg > max_pg)
1147 return -ENOBUFS;
1148 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1149 old_pg);
1150
1151 if (!mmp->user) {
1152 mmp->user = get_uid(user);
1153 mmp->num_pg = num_pg;
1154 } else {
1155 mmp->num_pg += num_pg;
1156 }
1157
1158 return 0;
1159 }
1160 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1161
mm_unaccount_pinned_pages(struct mmpin * mmp)1162 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1163 {
1164 if (mmp->user) {
1165 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1166 free_uid(mmp->user);
1167 }
1168 }
1169 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1170
msg_zerocopy_alloc(struct sock * sk,size_t size)1171 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1172 {
1173 struct ubuf_info *uarg;
1174 struct sk_buff *skb;
1175
1176 WARN_ON_ONCE(!in_task());
1177
1178 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1179 if (!skb)
1180 return NULL;
1181
1182 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1183 uarg = (void *)skb->cb;
1184 uarg->mmp.user = NULL;
1185
1186 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1187 kfree_skb(skb);
1188 return NULL;
1189 }
1190
1191 uarg->callback = msg_zerocopy_callback;
1192 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1193 uarg->len = 1;
1194 uarg->bytelen = size;
1195 uarg->zerocopy = 1;
1196 uarg->flags = SKBFL_ZEROCOPY_FRAG;
1197 refcount_set(&uarg->refcnt, 1);
1198 sock_hold(sk);
1199
1200 return uarg;
1201 }
1202
skb_from_uarg(struct ubuf_info * uarg)1203 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1204 {
1205 return container_of((void *)uarg, struct sk_buff, cb);
1206 }
1207
msg_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)1208 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1209 struct ubuf_info *uarg)
1210 {
1211 if (uarg) {
1212 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1213 u32 bytelen, next;
1214
1215 /* realloc only when socket is locked (TCP, UDP cork),
1216 * so uarg->len and sk_zckey access is serialized
1217 */
1218 if (!sock_owned_by_user(sk)) {
1219 WARN_ON_ONCE(1);
1220 return NULL;
1221 }
1222
1223 bytelen = uarg->bytelen + size;
1224 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1225 /* TCP can create new skb to attach new uarg */
1226 if (sk->sk_type == SOCK_STREAM)
1227 goto new_alloc;
1228 return NULL;
1229 }
1230
1231 next = (u32)atomic_read(&sk->sk_zckey);
1232 if ((u32)(uarg->id + uarg->len) == next) {
1233 if (mm_account_pinned_pages(&uarg->mmp, size))
1234 return NULL;
1235 uarg->len++;
1236 uarg->bytelen = bytelen;
1237 atomic_set(&sk->sk_zckey, ++next);
1238
1239 /* no extra ref when appending to datagram (MSG_MORE) */
1240 if (sk->sk_type == SOCK_STREAM)
1241 net_zcopy_get(uarg);
1242
1243 return uarg;
1244 }
1245 }
1246
1247 new_alloc:
1248 return msg_zerocopy_alloc(sk, size);
1249 }
1250 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1251
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1252 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1253 {
1254 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1255 u32 old_lo, old_hi;
1256 u64 sum_len;
1257
1258 old_lo = serr->ee.ee_info;
1259 old_hi = serr->ee.ee_data;
1260 sum_len = old_hi - old_lo + 1ULL + len;
1261
1262 if (sum_len >= (1ULL << 32))
1263 return false;
1264
1265 if (lo != old_hi + 1)
1266 return false;
1267
1268 serr->ee.ee_data += len;
1269 return true;
1270 }
1271
__msg_zerocopy_callback(struct ubuf_info * uarg)1272 static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1273 {
1274 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1275 struct sock_exterr_skb *serr;
1276 struct sock *sk = skb->sk;
1277 struct sk_buff_head *q;
1278 unsigned long flags;
1279 bool is_zerocopy;
1280 u32 lo, hi;
1281 u16 len;
1282
1283 mm_unaccount_pinned_pages(&uarg->mmp);
1284
1285 /* if !len, there was only 1 call, and it was aborted
1286 * so do not queue a completion notification
1287 */
1288 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1289 goto release;
1290
1291 len = uarg->len;
1292 lo = uarg->id;
1293 hi = uarg->id + len - 1;
1294 is_zerocopy = uarg->zerocopy;
1295
1296 serr = SKB_EXT_ERR(skb);
1297 memset(serr, 0, sizeof(*serr));
1298 serr->ee.ee_errno = 0;
1299 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1300 serr->ee.ee_data = hi;
1301 serr->ee.ee_info = lo;
1302 if (!is_zerocopy)
1303 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1304
1305 q = &sk->sk_error_queue;
1306 spin_lock_irqsave(&q->lock, flags);
1307 tail = skb_peek_tail(q);
1308 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1309 !skb_zerocopy_notify_extend(tail, lo, len)) {
1310 __skb_queue_tail(q, skb);
1311 skb = NULL;
1312 }
1313 spin_unlock_irqrestore(&q->lock, flags);
1314
1315 sk_error_report(sk);
1316
1317 release:
1318 consume_skb(skb);
1319 sock_put(sk);
1320 }
1321
msg_zerocopy_callback(struct sk_buff * skb,struct ubuf_info * uarg,bool success)1322 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1323 bool success)
1324 {
1325 uarg->zerocopy = uarg->zerocopy & success;
1326
1327 if (refcount_dec_and_test(&uarg->refcnt))
1328 __msg_zerocopy_callback(uarg);
1329 }
1330 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1331
msg_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1332 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1333 {
1334 struct sock *sk = skb_from_uarg(uarg)->sk;
1335
1336 atomic_dec(&sk->sk_zckey);
1337 uarg->len--;
1338
1339 if (have_uref)
1340 msg_zerocopy_callback(NULL, uarg, true);
1341 }
1342 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1343
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1344 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1345 struct msghdr *msg, int len,
1346 struct ubuf_info *uarg)
1347 {
1348 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1349 int err, orig_len = skb->len;
1350
1351 /* An skb can only point to one uarg. This edge case happens when
1352 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1353 */
1354 if (orig_uarg && uarg != orig_uarg)
1355 return -EEXIST;
1356
1357 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1358 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1359 struct sock *save_sk = skb->sk;
1360
1361 /* Streams do not free skb on error. Reset to prev state. */
1362 iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1363 skb->sk = sk;
1364 ___pskb_trim(skb, orig_len);
1365 skb->sk = save_sk;
1366 return err;
1367 }
1368
1369 skb_zcopy_set(skb, uarg, NULL);
1370 return skb->len - orig_len;
1371 }
1372 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1373
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1374 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1375 gfp_t gfp_mask)
1376 {
1377 if (skb_zcopy(orig)) {
1378 if (skb_zcopy(nskb)) {
1379 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1380 if (!gfp_mask) {
1381 WARN_ON_ONCE(1);
1382 return -ENOMEM;
1383 }
1384 if (skb_uarg(nskb) == skb_uarg(orig))
1385 return 0;
1386 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1387 return -EIO;
1388 }
1389 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1390 }
1391 return 0;
1392 }
1393
1394 /**
1395 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1396 * @skb: the skb to modify
1397 * @gfp_mask: allocation priority
1398 *
1399 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1400 * It will copy all frags into kernel and drop the reference
1401 * to userspace pages.
1402 *
1403 * If this function is called from an interrupt gfp_mask() must be
1404 * %GFP_ATOMIC.
1405 *
1406 * Returns 0 on success or a negative error code on failure
1407 * to allocate kernel memory to copy to.
1408 */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1409 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1410 {
1411 int num_frags = skb_shinfo(skb)->nr_frags;
1412 struct page *page, *head = NULL;
1413 int i, new_frags;
1414 u32 d_off;
1415
1416 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1417 return -EINVAL;
1418
1419 if (!num_frags)
1420 goto release;
1421
1422 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1423 for (i = 0; i < new_frags; i++) {
1424 page = alloc_page(gfp_mask);
1425 if (!page) {
1426 while (head) {
1427 struct page *next = (struct page *)page_private(head);
1428 put_page(head);
1429 head = next;
1430 }
1431 return -ENOMEM;
1432 }
1433 set_page_private(page, (unsigned long)head);
1434 head = page;
1435 }
1436
1437 page = head;
1438 d_off = 0;
1439 for (i = 0; i < num_frags; i++) {
1440 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1441 u32 p_off, p_len, copied;
1442 struct page *p;
1443 u8 *vaddr;
1444
1445 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1446 p, p_off, p_len, copied) {
1447 u32 copy, done = 0;
1448 vaddr = kmap_atomic(p);
1449
1450 while (done < p_len) {
1451 if (d_off == PAGE_SIZE) {
1452 d_off = 0;
1453 page = (struct page *)page_private(page);
1454 }
1455 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1456 memcpy(page_address(page) + d_off,
1457 vaddr + p_off + done, copy);
1458 done += copy;
1459 d_off += copy;
1460 }
1461 kunmap_atomic(vaddr);
1462 }
1463 }
1464
1465 /* skb frags release userspace buffers */
1466 for (i = 0; i < num_frags; i++)
1467 skb_frag_unref(skb, i);
1468
1469 /* skb frags point to kernel buffers */
1470 for (i = 0; i < new_frags - 1; i++) {
1471 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1472 head = (struct page *)page_private(head);
1473 }
1474 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1475 skb_shinfo(skb)->nr_frags = new_frags;
1476
1477 release:
1478 skb_zcopy_clear(skb, false);
1479 return 0;
1480 }
1481 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1482
1483 /**
1484 * skb_clone - duplicate an sk_buff
1485 * @skb: buffer to clone
1486 * @gfp_mask: allocation priority
1487 *
1488 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1489 * copies share the same packet data but not structure. The new
1490 * buffer has a reference count of 1. If the allocation fails the
1491 * function returns %NULL otherwise the new buffer is returned.
1492 *
1493 * If this function is called from an interrupt gfp_mask() must be
1494 * %GFP_ATOMIC.
1495 */
1496
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1497 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1498 {
1499 struct sk_buff_fclones *fclones = container_of(skb,
1500 struct sk_buff_fclones,
1501 skb1);
1502 struct sk_buff *n;
1503
1504 if (skb_orphan_frags(skb, gfp_mask))
1505 return NULL;
1506
1507 if (skb->fclone == SKB_FCLONE_ORIG &&
1508 refcount_read(&fclones->fclone_ref) == 1) {
1509 n = &fclones->skb2;
1510 refcount_set(&fclones->fclone_ref, 2);
1511 } else {
1512 if (skb_pfmemalloc(skb))
1513 gfp_mask |= __GFP_MEMALLOC;
1514
1515 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1516 if (!n)
1517 return NULL;
1518
1519 n->fclone = SKB_FCLONE_UNAVAILABLE;
1520 }
1521
1522 return __skb_clone(n, skb);
1523 }
1524 EXPORT_SYMBOL(skb_clone);
1525
skb_headers_offset_update(struct sk_buff * skb,int off)1526 void skb_headers_offset_update(struct sk_buff *skb, int off)
1527 {
1528 /* Only adjust this if it actually is csum_start rather than csum */
1529 if (skb->ip_summed == CHECKSUM_PARTIAL)
1530 skb->csum_start += off;
1531 /* {transport,network,mac}_header and tail are relative to skb->head */
1532 skb->transport_header += off;
1533 skb->network_header += off;
1534 if (skb_mac_header_was_set(skb))
1535 skb->mac_header += off;
1536 skb->inner_transport_header += off;
1537 skb->inner_network_header += off;
1538 skb->inner_mac_header += off;
1539 }
1540 EXPORT_SYMBOL(skb_headers_offset_update);
1541
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)1542 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1543 {
1544 __copy_skb_header(new, old);
1545
1546 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1547 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1548 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1549 }
1550 EXPORT_SYMBOL(skb_copy_header);
1551
skb_alloc_rx_flag(const struct sk_buff * skb)1552 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1553 {
1554 if (skb_pfmemalloc(skb))
1555 return SKB_ALLOC_RX;
1556 return 0;
1557 }
1558
1559 /**
1560 * skb_copy - create private copy of an sk_buff
1561 * @skb: buffer to copy
1562 * @gfp_mask: allocation priority
1563 *
1564 * Make a copy of both an &sk_buff and its data. This is used when the
1565 * caller wishes to modify the data and needs a private copy of the
1566 * data to alter. Returns %NULL on failure or the pointer to the buffer
1567 * on success. The returned buffer has a reference count of 1.
1568 *
1569 * As by-product this function converts non-linear &sk_buff to linear
1570 * one, so that &sk_buff becomes completely private and caller is allowed
1571 * to modify all the data of returned buffer. This means that this
1572 * function is not recommended for use in circumstances when only
1573 * header is going to be modified. Use pskb_copy() instead.
1574 */
1575
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1576 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1577 {
1578 int headerlen = skb_headroom(skb);
1579 unsigned int size = skb_end_offset(skb) + skb->data_len;
1580 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1581 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1582
1583 if (!n)
1584 return NULL;
1585
1586 /* Set the data pointer */
1587 skb_reserve(n, headerlen);
1588 /* Set the tail pointer and length */
1589 skb_put(n, skb->len);
1590
1591 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1592
1593 skb_copy_header(n, skb);
1594 return n;
1595 }
1596 EXPORT_SYMBOL(skb_copy);
1597
1598 /**
1599 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1600 * @skb: buffer to copy
1601 * @headroom: headroom of new skb
1602 * @gfp_mask: allocation priority
1603 * @fclone: if true allocate the copy of the skb from the fclone
1604 * cache instead of the head cache; it is recommended to set this
1605 * to true for the cases where the copy will likely be cloned
1606 *
1607 * Make a copy of both an &sk_buff and part of its data, located
1608 * in header. Fragmented data remain shared. This is used when
1609 * the caller wishes to modify only header of &sk_buff and needs
1610 * private copy of the header to alter. Returns %NULL on failure
1611 * or the pointer to the buffer on success.
1612 * The returned buffer has a reference count of 1.
1613 */
1614
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)1615 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1616 gfp_t gfp_mask, bool fclone)
1617 {
1618 unsigned int size = skb_headlen(skb) + headroom;
1619 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1620 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1621
1622 if (!n)
1623 goto out;
1624
1625 /* Set the data pointer */
1626 skb_reserve(n, headroom);
1627 /* Set the tail pointer and length */
1628 skb_put(n, skb_headlen(skb));
1629 /* Copy the bytes */
1630 skb_copy_from_linear_data(skb, n->data, n->len);
1631
1632 n->truesize += skb->data_len;
1633 n->data_len = skb->data_len;
1634 n->len = skb->len;
1635
1636 if (skb_shinfo(skb)->nr_frags) {
1637 int i;
1638
1639 if (skb_orphan_frags(skb, gfp_mask) ||
1640 skb_zerocopy_clone(n, skb, gfp_mask)) {
1641 kfree_skb(n);
1642 n = NULL;
1643 goto out;
1644 }
1645 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1646 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1647 skb_frag_ref(skb, i);
1648 }
1649 skb_shinfo(n)->nr_frags = i;
1650 }
1651
1652 if (skb_has_frag_list(skb)) {
1653 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1654 skb_clone_fraglist(n);
1655 }
1656
1657 skb_copy_header(n, skb);
1658 out:
1659 return n;
1660 }
1661 EXPORT_SYMBOL(__pskb_copy_fclone);
1662
1663 /**
1664 * pskb_expand_head - reallocate header of &sk_buff
1665 * @skb: buffer to reallocate
1666 * @nhead: room to add at head
1667 * @ntail: room to add at tail
1668 * @gfp_mask: allocation priority
1669 *
1670 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1671 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1672 * reference count of 1. Returns zero in the case of success or error,
1673 * if expansion failed. In the last case, &sk_buff is not changed.
1674 *
1675 * All the pointers pointing into skb header may change and must be
1676 * reloaded after call to this function.
1677 */
1678
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1679 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1680 gfp_t gfp_mask)
1681 {
1682 int i, osize = skb_end_offset(skb);
1683 int size = osize + nhead + ntail;
1684 long off;
1685 u8 *data;
1686
1687 BUG_ON(nhead < 0);
1688
1689 BUG_ON(skb_shared(skb));
1690
1691 size = SKB_DATA_ALIGN(size);
1692
1693 if (skb_pfmemalloc(skb))
1694 gfp_mask |= __GFP_MEMALLOC;
1695 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1696 gfp_mask, NUMA_NO_NODE, NULL);
1697 if (!data)
1698 goto nodata;
1699 size = SKB_WITH_OVERHEAD(ksize(data));
1700
1701 /* Copy only real data... and, alas, header. This should be
1702 * optimized for the cases when header is void.
1703 */
1704 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1705
1706 memcpy((struct skb_shared_info *)(data + size),
1707 skb_shinfo(skb),
1708 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1709
1710 /*
1711 * if shinfo is shared we must drop the old head gracefully, but if it
1712 * is not we can just drop the old head and let the existing refcount
1713 * be since all we did is relocate the values
1714 */
1715 if (skb_cloned(skb)) {
1716 if (skb_orphan_frags(skb, gfp_mask))
1717 goto nofrags;
1718 if (skb_zcopy(skb))
1719 refcount_inc(&skb_uarg(skb)->refcnt);
1720 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1721 skb_frag_ref(skb, i);
1722
1723 if (skb_has_frag_list(skb))
1724 skb_clone_fraglist(skb);
1725
1726 skb_release_data(skb);
1727 } else {
1728 skb_free_head(skb);
1729 }
1730 off = (data + nhead) - skb->head;
1731
1732 skb->head = data;
1733 skb->head_frag = 0;
1734 skb->data += off;
1735
1736 skb_set_end_offset(skb, size);
1737 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1738 off = nhead;
1739 #endif
1740 skb->tail += off;
1741 skb_headers_offset_update(skb, nhead);
1742 skb->cloned = 0;
1743 skb->hdr_len = 0;
1744 skb->nohdr = 0;
1745 atomic_set(&skb_shinfo(skb)->dataref, 1);
1746
1747 skb_metadata_clear(skb);
1748
1749 /* It is not generally safe to change skb->truesize.
1750 * For the moment, we really care of rx path, or
1751 * when skb is orphaned (not attached to a socket).
1752 */
1753 if (!skb->sk || skb->destructor == sock_edemux)
1754 skb->truesize += size - osize;
1755
1756 return 0;
1757
1758 nofrags:
1759 kfree(data);
1760 nodata:
1761 return -ENOMEM;
1762 }
1763 EXPORT_SYMBOL(pskb_expand_head);
1764
1765 /* Make private copy of skb with writable head and some headroom */
1766
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1767 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1768 {
1769 struct sk_buff *skb2;
1770 int delta = headroom - skb_headroom(skb);
1771
1772 if (delta <= 0)
1773 skb2 = pskb_copy(skb, GFP_ATOMIC);
1774 else {
1775 skb2 = skb_clone(skb, GFP_ATOMIC);
1776 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1777 GFP_ATOMIC)) {
1778 kfree_skb(skb2);
1779 skb2 = NULL;
1780 }
1781 }
1782 return skb2;
1783 }
1784 EXPORT_SYMBOL(skb_realloc_headroom);
1785
__skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)1786 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1787 {
1788 unsigned int saved_end_offset, saved_truesize;
1789 struct skb_shared_info *shinfo;
1790 int res;
1791
1792 saved_end_offset = skb_end_offset(skb);
1793 saved_truesize = skb->truesize;
1794
1795 res = pskb_expand_head(skb, 0, 0, pri);
1796 if (res)
1797 return res;
1798
1799 skb->truesize = saved_truesize;
1800
1801 if (likely(skb_end_offset(skb) == saved_end_offset))
1802 return 0;
1803
1804 shinfo = skb_shinfo(skb);
1805
1806 /* We are about to change back skb->end,
1807 * we need to move skb_shinfo() to its new location.
1808 */
1809 memmove(skb->head + saved_end_offset,
1810 shinfo,
1811 offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
1812
1813 skb_set_end_offset(skb, saved_end_offset);
1814
1815 return 0;
1816 }
1817
1818 /**
1819 * skb_expand_head - reallocate header of &sk_buff
1820 * @skb: buffer to reallocate
1821 * @headroom: needed headroom
1822 *
1823 * Unlike skb_realloc_headroom, this one does not allocate a new skb
1824 * if possible; copies skb->sk to new skb as needed
1825 * and frees original skb in case of failures.
1826 *
1827 * It expect increased headroom and generates warning otherwise.
1828 */
1829
skb_expand_head(struct sk_buff * skb,unsigned int headroom)1830 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1831 {
1832 int delta = headroom - skb_headroom(skb);
1833 int osize = skb_end_offset(skb);
1834 struct sock *sk = skb->sk;
1835
1836 if (WARN_ONCE(delta <= 0,
1837 "%s is expecting an increase in the headroom", __func__))
1838 return skb;
1839
1840 delta = SKB_DATA_ALIGN(delta);
1841 /* pskb_expand_head() might crash, if skb is shared. */
1842 if (skb_shared(skb) || !is_skb_wmem(skb)) {
1843 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1844
1845 if (unlikely(!nskb))
1846 goto fail;
1847
1848 if (sk)
1849 skb_set_owner_w(nskb, sk);
1850 consume_skb(skb);
1851 skb = nskb;
1852 }
1853 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
1854 goto fail;
1855
1856 if (sk && is_skb_wmem(skb)) {
1857 delta = skb_end_offset(skb) - osize;
1858 refcount_add(delta, &sk->sk_wmem_alloc);
1859 skb->truesize += delta;
1860 }
1861 return skb;
1862
1863 fail:
1864 kfree_skb(skb);
1865 return NULL;
1866 }
1867 EXPORT_SYMBOL(skb_expand_head);
1868
1869 /**
1870 * skb_copy_expand - copy and expand sk_buff
1871 * @skb: buffer to copy
1872 * @newheadroom: new free bytes at head
1873 * @newtailroom: new free bytes at tail
1874 * @gfp_mask: allocation priority
1875 *
1876 * Make a copy of both an &sk_buff and its data and while doing so
1877 * allocate additional space.
1878 *
1879 * This is used when the caller wishes to modify the data and needs a
1880 * private copy of the data to alter as well as more space for new fields.
1881 * Returns %NULL on failure or the pointer to the buffer
1882 * on success. The returned buffer has a reference count of 1.
1883 *
1884 * You must pass %GFP_ATOMIC as the allocation priority if this function
1885 * is called from an interrupt.
1886 */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1887 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1888 int newheadroom, int newtailroom,
1889 gfp_t gfp_mask)
1890 {
1891 /*
1892 * Allocate the copy buffer
1893 */
1894 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1895 gfp_mask, skb_alloc_rx_flag(skb),
1896 NUMA_NO_NODE);
1897 int oldheadroom = skb_headroom(skb);
1898 int head_copy_len, head_copy_off;
1899
1900 if (!n)
1901 return NULL;
1902
1903 skb_reserve(n, newheadroom);
1904
1905 /* Set the tail pointer and length */
1906 skb_put(n, skb->len);
1907
1908 head_copy_len = oldheadroom;
1909 head_copy_off = 0;
1910 if (newheadroom <= head_copy_len)
1911 head_copy_len = newheadroom;
1912 else
1913 head_copy_off = newheadroom - head_copy_len;
1914
1915 /* Copy the linear header and data. */
1916 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1917 skb->len + head_copy_len));
1918
1919 skb_copy_header(n, skb);
1920
1921 skb_headers_offset_update(n, newheadroom - oldheadroom);
1922
1923 return n;
1924 }
1925 EXPORT_SYMBOL(skb_copy_expand);
1926
1927 /**
1928 * __skb_pad - zero pad the tail of an skb
1929 * @skb: buffer to pad
1930 * @pad: space to pad
1931 * @free_on_error: free buffer on error
1932 *
1933 * Ensure that a buffer is followed by a padding area that is zero
1934 * filled. Used by network drivers which may DMA or transfer data
1935 * beyond the buffer end onto the wire.
1936 *
1937 * May return error in out of memory cases. The skb is freed on error
1938 * if @free_on_error is true.
1939 */
1940
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)1941 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1942 {
1943 int err;
1944 int ntail;
1945
1946 /* If the skbuff is non linear tailroom is always zero.. */
1947 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1948 memset(skb->data+skb->len, 0, pad);
1949 return 0;
1950 }
1951
1952 ntail = skb->data_len + pad - (skb->end - skb->tail);
1953 if (likely(skb_cloned(skb) || ntail > 0)) {
1954 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1955 if (unlikely(err))
1956 goto free_skb;
1957 }
1958
1959 /* FIXME: The use of this function with non-linear skb's really needs
1960 * to be audited.
1961 */
1962 err = skb_linearize(skb);
1963 if (unlikely(err))
1964 goto free_skb;
1965
1966 memset(skb->data + skb->len, 0, pad);
1967 return 0;
1968
1969 free_skb:
1970 if (free_on_error)
1971 kfree_skb(skb);
1972 return err;
1973 }
1974 EXPORT_SYMBOL(__skb_pad);
1975
1976 /**
1977 * pskb_put - add data to the tail of a potentially fragmented buffer
1978 * @skb: start of the buffer to use
1979 * @tail: tail fragment of the buffer to use
1980 * @len: amount of data to add
1981 *
1982 * This function extends the used data area of the potentially
1983 * fragmented buffer. @tail must be the last fragment of @skb -- or
1984 * @skb itself. If this would exceed the total buffer size the kernel
1985 * will panic. A pointer to the first byte of the extra data is
1986 * returned.
1987 */
1988
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)1989 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1990 {
1991 if (tail != skb) {
1992 skb->data_len += len;
1993 skb->len += len;
1994 }
1995 return skb_put(tail, len);
1996 }
1997 EXPORT_SYMBOL_GPL(pskb_put);
1998
1999 /**
2000 * skb_put - add data to a buffer
2001 * @skb: buffer to use
2002 * @len: amount of data to add
2003 *
2004 * This function extends the used data area of the buffer. If this would
2005 * exceed the total buffer size the kernel will panic. A pointer to the
2006 * first byte of the extra data is returned.
2007 */
skb_put(struct sk_buff * skb,unsigned int len)2008 void *skb_put(struct sk_buff *skb, unsigned int len)
2009 {
2010 void *tmp = skb_tail_pointer(skb);
2011 SKB_LINEAR_ASSERT(skb);
2012 skb->tail += len;
2013 skb->len += len;
2014 if (unlikely(skb->tail > skb->end))
2015 skb_over_panic(skb, len, __builtin_return_address(0));
2016 return tmp;
2017 }
2018 EXPORT_SYMBOL(skb_put);
2019
2020 /**
2021 * skb_push - add data to the start of a buffer
2022 * @skb: buffer to use
2023 * @len: amount of data to add
2024 *
2025 * This function extends the used data area of the buffer at the buffer
2026 * start. If this would exceed the total buffer headroom the kernel will
2027 * panic. A pointer to the first byte of the extra data is returned.
2028 */
skb_push(struct sk_buff * skb,unsigned int len)2029 void *skb_push(struct sk_buff *skb, unsigned int len)
2030 {
2031 skb->data -= len;
2032 skb->len += len;
2033 if (unlikely(skb->data < skb->head))
2034 skb_under_panic(skb, len, __builtin_return_address(0));
2035 return skb->data;
2036 }
2037 EXPORT_SYMBOL(skb_push);
2038
2039 /**
2040 * skb_pull - remove data from the start of a buffer
2041 * @skb: buffer to use
2042 * @len: amount of data to remove
2043 *
2044 * This function removes data from the start of a buffer, returning
2045 * the memory to the headroom. A pointer to the next data in the buffer
2046 * is returned. Once the data has been pulled future pushes will overwrite
2047 * the old data.
2048 */
skb_pull(struct sk_buff * skb,unsigned int len)2049 void *skb_pull(struct sk_buff *skb, unsigned int len)
2050 {
2051 return skb_pull_inline(skb, len);
2052 }
2053 EXPORT_SYMBOL(skb_pull);
2054
2055 /**
2056 * skb_pull_data - remove data from the start of a buffer returning its
2057 * original position.
2058 * @skb: buffer to use
2059 * @len: amount of data to remove
2060 *
2061 * This function removes data from the start of a buffer, returning
2062 * the memory to the headroom. A pointer to the original data in the buffer
2063 * is returned after checking if there is enough data to pull. Once the
2064 * data has been pulled future pushes will overwrite the old data.
2065 */
skb_pull_data(struct sk_buff * skb,size_t len)2066 void *skb_pull_data(struct sk_buff *skb, size_t len)
2067 {
2068 void *data = skb->data;
2069
2070 if (skb->len < len)
2071 return NULL;
2072
2073 skb_pull(skb, len);
2074
2075 return data;
2076 }
2077 EXPORT_SYMBOL(skb_pull_data);
2078
2079 /**
2080 * skb_trim - remove end from a buffer
2081 * @skb: buffer to alter
2082 * @len: new length
2083 *
2084 * Cut the length of a buffer down by removing data from the tail. If
2085 * the buffer is already under the length specified it is not modified.
2086 * The skb must be linear.
2087 */
skb_trim(struct sk_buff * skb,unsigned int len)2088 void skb_trim(struct sk_buff *skb, unsigned int len)
2089 {
2090 if (skb->len > len)
2091 __skb_trim(skb, len);
2092 }
2093 EXPORT_SYMBOL(skb_trim);
2094
2095 /* Trims skb to length len. It can change skb pointers.
2096 */
2097
___pskb_trim(struct sk_buff * skb,unsigned int len)2098 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2099 {
2100 struct sk_buff **fragp;
2101 struct sk_buff *frag;
2102 int offset = skb_headlen(skb);
2103 int nfrags = skb_shinfo(skb)->nr_frags;
2104 int i;
2105 int err;
2106
2107 if (skb_cloned(skb) &&
2108 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2109 return err;
2110
2111 i = 0;
2112 if (offset >= len)
2113 goto drop_pages;
2114
2115 for (; i < nfrags; i++) {
2116 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2117
2118 if (end < len) {
2119 offset = end;
2120 continue;
2121 }
2122
2123 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2124
2125 drop_pages:
2126 skb_shinfo(skb)->nr_frags = i;
2127
2128 for (; i < nfrags; i++)
2129 skb_frag_unref(skb, i);
2130
2131 if (skb_has_frag_list(skb))
2132 skb_drop_fraglist(skb);
2133 goto done;
2134 }
2135
2136 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2137 fragp = &frag->next) {
2138 int end = offset + frag->len;
2139
2140 if (skb_shared(frag)) {
2141 struct sk_buff *nfrag;
2142
2143 nfrag = skb_clone(frag, GFP_ATOMIC);
2144 if (unlikely(!nfrag))
2145 return -ENOMEM;
2146
2147 nfrag->next = frag->next;
2148 consume_skb(frag);
2149 frag = nfrag;
2150 *fragp = frag;
2151 }
2152
2153 if (end < len) {
2154 offset = end;
2155 continue;
2156 }
2157
2158 if (end > len &&
2159 unlikely((err = pskb_trim(frag, len - offset))))
2160 return err;
2161
2162 if (frag->next)
2163 skb_drop_list(&frag->next);
2164 break;
2165 }
2166
2167 done:
2168 if (len > skb_headlen(skb)) {
2169 skb->data_len -= skb->len - len;
2170 skb->len = len;
2171 } else {
2172 skb->len = len;
2173 skb->data_len = 0;
2174 skb_set_tail_pointer(skb, len);
2175 }
2176
2177 if (!skb->sk || skb->destructor == sock_edemux)
2178 skb_condense(skb);
2179 return 0;
2180 }
2181 EXPORT_SYMBOL(___pskb_trim);
2182
2183 /* Note : use pskb_trim_rcsum() instead of calling this directly
2184 */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2185 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2186 {
2187 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2188 int delta = skb->len - len;
2189
2190 skb->csum = csum_block_sub(skb->csum,
2191 skb_checksum(skb, len, delta, 0),
2192 len);
2193 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2194 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2195 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2196
2197 if (offset + sizeof(__sum16) > hdlen)
2198 return -EINVAL;
2199 }
2200 return __pskb_trim(skb, len);
2201 }
2202 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2203
2204 /**
2205 * __pskb_pull_tail - advance tail of skb header
2206 * @skb: buffer to reallocate
2207 * @delta: number of bytes to advance tail
2208 *
2209 * The function makes a sense only on a fragmented &sk_buff,
2210 * it expands header moving its tail forward and copying necessary
2211 * data from fragmented part.
2212 *
2213 * &sk_buff MUST have reference count of 1.
2214 *
2215 * Returns %NULL (and &sk_buff does not change) if pull failed
2216 * or value of new tail of skb in the case of success.
2217 *
2218 * All the pointers pointing into skb header may change and must be
2219 * reloaded after call to this function.
2220 */
2221
2222 /* Moves tail of skb head forward, copying data from fragmented part,
2223 * when it is necessary.
2224 * 1. It may fail due to malloc failure.
2225 * 2. It may change skb pointers.
2226 *
2227 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2228 */
__pskb_pull_tail(struct sk_buff * skb,int delta)2229 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2230 {
2231 /* If skb has not enough free space at tail, get new one
2232 * plus 128 bytes for future expansions. If we have enough
2233 * room at tail, reallocate without expansion only if skb is cloned.
2234 */
2235 int i, k, eat = (skb->tail + delta) - skb->end;
2236
2237 if (eat > 0 || skb_cloned(skb)) {
2238 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2239 GFP_ATOMIC))
2240 return NULL;
2241 }
2242
2243 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2244 skb_tail_pointer(skb), delta));
2245
2246 /* Optimization: no fragments, no reasons to preestimate
2247 * size of pulled pages. Superb.
2248 */
2249 if (!skb_has_frag_list(skb))
2250 goto pull_pages;
2251
2252 /* Estimate size of pulled pages. */
2253 eat = delta;
2254 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2255 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2256
2257 if (size >= eat)
2258 goto pull_pages;
2259 eat -= size;
2260 }
2261
2262 /* If we need update frag list, we are in troubles.
2263 * Certainly, it is possible to add an offset to skb data,
2264 * but taking into account that pulling is expected to
2265 * be very rare operation, it is worth to fight against
2266 * further bloating skb head and crucify ourselves here instead.
2267 * Pure masohism, indeed. 8)8)
2268 */
2269 if (eat) {
2270 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2271 struct sk_buff *clone = NULL;
2272 struct sk_buff *insp = NULL;
2273
2274 do {
2275 if (list->len <= eat) {
2276 /* Eaten as whole. */
2277 eat -= list->len;
2278 list = list->next;
2279 insp = list;
2280 } else {
2281 /* Eaten partially. */
2282
2283 if (skb_shared(list)) {
2284 /* Sucks! We need to fork list. :-( */
2285 clone = skb_clone(list, GFP_ATOMIC);
2286 if (!clone)
2287 return NULL;
2288 insp = list->next;
2289 list = clone;
2290 } else {
2291 /* This may be pulled without
2292 * problems. */
2293 insp = list;
2294 }
2295 if (!pskb_pull(list, eat)) {
2296 kfree_skb(clone);
2297 return NULL;
2298 }
2299 break;
2300 }
2301 } while (eat);
2302
2303 /* Free pulled out fragments. */
2304 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2305 skb_shinfo(skb)->frag_list = list->next;
2306 consume_skb(list);
2307 }
2308 /* And insert new clone at head. */
2309 if (clone) {
2310 clone->next = list;
2311 skb_shinfo(skb)->frag_list = clone;
2312 }
2313 }
2314 /* Success! Now we may commit changes to skb data. */
2315
2316 pull_pages:
2317 eat = delta;
2318 k = 0;
2319 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2320 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2321
2322 if (size <= eat) {
2323 skb_frag_unref(skb, i);
2324 eat -= size;
2325 } else {
2326 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2327
2328 *frag = skb_shinfo(skb)->frags[i];
2329 if (eat) {
2330 skb_frag_off_add(frag, eat);
2331 skb_frag_size_sub(frag, eat);
2332 if (!i)
2333 goto end;
2334 eat = 0;
2335 }
2336 k++;
2337 }
2338 }
2339 skb_shinfo(skb)->nr_frags = k;
2340
2341 end:
2342 skb->tail += delta;
2343 skb->data_len -= delta;
2344
2345 if (!skb->data_len)
2346 skb_zcopy_clear(skb, false);
2347
2348 return skb_tail_pointer(skb);
2349 }
2350 EXPORT_SYMBOL(__pskb_pull_tail);
2351
2352 /**
2353 * skb_copy_bits - copy bits from skb to kernel buffer
2354 * @skb: source skb
2355 * @offset: offset in source
2356 * @to: destination buffer
2357 * @len: number of bytes to copy
2358 *
2359 * Copy the specified number of bytes from the source skb to the
2360 * destination buffer.
2361 *
2362 * CAUTION ! :
2363 * If its prototype is ever changed,
2364 * check arch/{*}/net/{*}.S files,
2365 * since it is called from BPF assembly code.
2366 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2367 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2368 {
2369 int start = skb_headlen(skb);
2370 struct sk_buff *frag_iter;
2371 int i, copy;
2372
2373 if (offset > (int)skb->len - len)
2374 goto fault;
2375
2376 /* Copy header. */
2377 if ((copy = start - offset) > 0) {
2378 if (copy > len)
2379 copy = len;
2380 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2381 if ((len -= copy) == 0)
2382 return 0;
2383 offset += copy;
2384 to += copy;
2385 }
2386
2387 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2388 int end;
2389 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2390
2391 WARN_ON(start > offset + len);
2392
2393 end = start + skb_frag_size(f);
2394 if ((copy = end - offset) > 0) {
2395 u32 p_off, p_len, copied;
2396 struct page *p;
2397 u8 *vaddr;
2398
2399 if (copy > len)
2400 copy = len;
2401
2402 skb_frag_foreach_page(f,
2403 skb_frag_off(f) + offset - start,
2404 copy, p, p_off, p_len, copied) {
2405 vaddr = kmap_atomic(p);
2406 memcpy(to + copied, vaddr + p_off, p_len);
2407 kunmap_atomic(vaddr);
2408 }
2409
2410 if ((len -= copy) == 0)
2411 return 0;
2412 offset += copy;
2413 to += copy;
2414 }
2415 start = end;
2416 }
2417
2418 skb_walk_frags(skb, frag_iter) {
2419 int end;
2420
2421 WARN_ON(start > offset + len);
2422
2423 end = start + frag_iter->len;
2424 if ((copy = end - offset) > 0) {
2425 if (copy > len)
2426 copy = len;
2427 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2428 goto fault;
2429 if ((len -= copy) == 0)
2430 return 0;
2431 offset += copy;
2432 to += copy;
2433 }
2434 start = end;
2435 }
2436
2437 if (!len)
2438 return 0;
2439
2440 fault:
2441 return -EFAULT;
2442 }
2443 EXPORT_SYMBOL(skb_copy_bits);
2444
2445 /*
2446 * Callback from splice_to_pipe(), if we need to release some pages
2447 * at the end of the spd in case we error'ed out in filling the pipe.
2448 */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)2449 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2450 {
2451 put_page(spd->pages[i]);
2452 }
2453
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)2454 static struct page *linear_to_page(struct page *page, unsigned int *len,
2455 unsigned int *offset,
2456 struct sock *sk)
2457 {
2458 struct page_frag *pfrag = sk_page_frag(sk);
2459
2460 if (!sk_page_frag_refill(sk, pfrag))
2461 return NULL;
2462
2463 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2464
2465 memcpy(page_address(pfrag->page) + pfrag->offset,
2466 page_address(page) + *offset, *len);
2467 *offset = pfrag->offset;
2468 pfrag->offset += *len;
2469
2470 return pfrag->page;
2471 }
2472
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)2473 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2474 struct page *page,
2475 unsigned int offset)
2476 {
2477 return spd->nr_pages &&
2478 spd->pages[spd->nr_pages - 1] == page &&
2479 (spd->partial[spd->nr_pages - 1].offset +
2480 spd->partial[spd->nr_pages - 1].len == offset);
2481 }
2482
2483 /*
2484 * Fill page/offset/length into spd, if it can hold more pages.
2485 */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)2486 static bool spd_fill_page(struct splice_pipe_desc *spd,
2487 struct pipe_inode_info *pipe, struct page *page,
2488 unsigned int *len, unsigned int offset,
2489 bool linear,
2490 struct sock *sk)
2491 {
2492 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2493 return true;
2494
2495 if (linear) {
2496 page = linear_to_page(page, len, &offset, sk);
2497 if (!page)
2498 return true;
2499 }
2500 if (spd_can_coalesce(spd, page, offset)) {
2501 spd->partial[spd->nr_pages - 1].len += *len;
2502 return false;
2503 }
2504 get_page(page);
2505 spd->pages[spd->nr_pages] = page;
2506 spd->partial[spd->nr_pages].len = *len;
2507 spd->partial[spd->nr_pages].offset = offset;
2508 spd->nr_pages++;
2509
2510 return false;
2511 }
2512
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)2513 static bool __splice_segment(struct page *page, unsigned int poff,
2514 unsigned int plen, unsigned int *off,
2515 unsigned int *len,
2516 struct splice_pipe_desc *spd, bool linear,
2517 struct sock *sk,
2518 struct pipe_inode_info *pipe)
2519 {
2520 if (!*len)
2521 return true;
2522
2523 /* skip this segment if already processed */
2524 if (*off >= plen) {
2525 *off -= plen;
2526 return false;
2527 }
2528
2529 /* ignore any bits we already processed */
2530 poff += *off;
2531 plen -= *off;
2532 *off = 0;
2533
2534 do {
2535 unsigned int flen = min(*len, plen);
2536
2537 if (spd_fill_page(spd, pipe, page, &flen, poff,
2538 linear, sk))
2539 return true;
2540 poff += flen;
2541 plen -= flen;
2542 *len -= flen;
2543 } while (*len && plen);
2544
2545 return false;
2546 }
2547
2548 /*
2549 * Map linear and fragment data from the skb to spd. It reports true if the
2550 * pipe is full or if we already spliced the requested length.
2551 */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)2552 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2553 unsigned int *offset, unsigned int *len,
2554 struct splice_pipe_desc *spd, struct sock *sk)
2555 {
2556 int seg;
2557 struct sk_buff *iter;
2558
2559 /* map the linear part :
2560 * If skb->head_frag is set, this 'linear' part is backed by a
2561 * fragment, and if the head is not shared with any clones then
2562 * we can avoid a copy since we own the head portion of this page.
2563 */
2564 if (__splice_segment(virt_to_page(skb->data),
2565 (unsigned long) skb->data & (PAGE_SIZE - 1),
2566 skb_headlen(skb),
2567 offset, len, spd,
2568 skb_head_is_locked(skb),
2569 sk, pipe))
2570 return true;
2571
2572 /*
2573 * then map the fragments
2574 */
2575 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2576 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2577
2578 if (__splice_segment(skb_frag_page(f),
2579 skb_frag_off(f), skb_frag_size(f),
2580 offset, len, spd, false, sk, pipe))
2581 return true;
2582 }
2583
2584 skb_walk_frags(skb, iter) {
2585 if (*offset >= iter->len) {
2586 *offset -= iter->len;
2587 continue;
2588 }
2589 /* __skb_splice_bits() only fails if the output has no room
2590 * left, so no point in going over the frag_list for the error
2591 * case.
2592 */
2593 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2594 return true;
2595 }
2596
2597 return false;
2598 }
2599
2600 /*
2601 * Map data from the skb to a pipe. Should handle both the linear part,
2602 * the fragments, and the frag list.
2603 */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)2604 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2605 struct pipe_inode_info *pipe, unsigned int tlen,
2606 unsigned int flags)
2607 {
2608 struct partial_page partial[MAX_SKB_FRAGS];
2609 struct page *pages[MAX_SKB_FRAGS];
2610 struct splice_pipe_desc spd = {
2611 .pages = pages,
2612 .partial = partial,
2613 .nr_pages_max = MAX_SKB_FRAGS,
2614 .ops = &nosteal_pipe_buf_ops,
2615 .spd_release = sock_spd_release,
2616 };
2617 int ret = 0;
2618
2619 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2620
2621 if (spd.nr_pages)
2622 ret = splice_to_pipe(pipe, &spd);
2623
2624 return ret;
2625 }
2626 EXPORT_SYMBOL_GPL(skb_splice_bits);
2627
sendmsg_unlocked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)2628 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2629 struct kvec *vec, size_t num, size_t size)
2630 {
2631 struct socket *sock = sk->sk_socket;
2632
2633 if (!sock)
2634 return -EINVAL;
2635 return kernel_sendmsg(sock, msg, vec, num, size);
2636 }
2637
sendpage_unlocked(struct sock * sk,struct page * page,int offset,size_t size,int flags)2638 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2639 size_t size, int flags)
2640 {
2641 struct socket *sock = sk->sk_socket;
2642
2643 if (!sock)
2644 return -EINVAL;
2645 return kernel_sendpage(sock, page, offset, size, flags);
2646 }
2647
2648 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2649 struct kvec *vec, size_t num, size_t size);
2650 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2651 size_t size, int flags);
__skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len,sendmsg_func sendmsg,sendpage_func sendpage)2652 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2653 int len, sendmsg_func sendmsg, sendpage_func sendpage)
2654 {
2655 unsigned int orig_len = len;
2656 struct sk_buff *head = skb;
2657 unsigned short fragidx;
2658 int slen, ret;
2659
2660 do_frag_list:
2661
2662 /* Deal with head data */
2663 while (offset < skb_headlen(skb) && len) {
2664 struct kvec kv;
2665 struct msghdr msg;
2666
2667 slen = min_t(int, len, skb_headlen(skb) - offset);
2668 kv.iov_base = skb->data + offset;
2669 kv.iov_len = slen;
2670 memset(&msg, 0, sizeof(msg));
2671 msg.msg_flags = MSG_DONTWAIT;
2672
2673 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2674 sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2675 if (ret <= 0)
2676 goto error;
2677
2678 offset += ret;
2679 len -= ret;
2680 }
2681
2682 /* All the data was skb head? */
2683 if (!len)
2684 goto out;
2685
2686 /* Make offset relative to start of frags */
2687 offset -= skb_headlen(skb);
2688
2689 /* Find where we are in frag list */
2690 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2691 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2692
2693 if (offset < skb_frag_size(frag))
2694 break;
2695
2696 offset -= skb_frag_size(frag);
2697 }
2698
2699 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2700 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2701
2702 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2703
2704 while (slen) {
2705 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2706 sendpage_unlocked, sk,
2707 skb_frag_page(frag),
2708 skb_frag_off(frag) + offset,
2709 slen, MSG_DONTWAIT);
2710 if (ret <= 0)
2711 goto error;
2712
2713 len -= ret;
2714 offset += ret;
2715 slen -= ret;
2716 }
2717
2718 offset = 0;
2719 }
2720
2721 if (len) {
2722 /* Process any frag lists */
2723
2724 if (skb == head) {
2725 if (skb_has_frag_list(skb)) {
2726 skb = skb_shinfo(skb)->frag_list;
2727 goto do_frag_list;
2728 }
2729 } else if (skb->next) {
2730 skb = skb->next;
2731 goto do_frag_list;
2732 }
2733 }
2734
2735 out:
2736 return orig_len - len;
2737
2738 error:
2739 return orig_len == len ? ret : orig_len - len;
2740 }
2741
2742 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)2743 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2744 int len)
2745 {
2746 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2747 kernel_sendpage_locked);
2748 }
2749 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2750
2751 /* Send skb data on a socket. Socket must be unlocked. */
skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len)2752 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2753 {
2754 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2755 sendpage_unlocked);
2756 }
2757
2758 /**
2759 * skb_store_bits - store bits from kernel buffer to skb
2760 * @skb: destination buffer
2761 * @offset: offset in destination
2762 * @from: source buffer
2763 * @len: number of bytes to copy
2764 *
2765 * Copy the specified number of bytes from the source buffer to the
2766 * destination skb. This function handles all the messy bits of
2767 * traversing fragment lists and such.
2768 */
2769
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)2770 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2771 {
2772 int start = skb_headlen(skb);
2773 struct sk_buff *frag_iter;
2774 int i, copy;
2775
2776 if (offset > (int)skb->len - len)
2777 goto fault;
2778
2779 if ((copy = start - offset) > 0) {
2780 if (copy > len)
2781 copy = len;
2782 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2783 if ((len -= copy) == 0)
2784 return 0;
2785 offset += copy;
2786 from += copy;
2787 }
2788
2789 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2790 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2791 int end;
2792
2793 WARN_ON(start > offset + len);
2794
2795 end = start + skb_frag_size(frag);
2796 if ((copy = end - offset) > 0) {
2797 u32 p_off, p_len, copied;
2798 struct page *p;
2799 u8 *vaddr;
2800
2801 if (copy > len)
2802 copy = len;
2803
2804 skb_frag_foreach_page(frag,
2805 skb_frag_off(frag) + offset - start,
2806 copy, p, p_off, p_len, copied) {
2807 vaddr = kmap_atomic(p);
2808 memcpy(vaddr + p_off, from + copied, p_len);
2809 kunmap_atomic(vaddr);
2810 }
2811
2812 if ((len -= copy) == 0)
2813 return 0;
2814 offset += copy;
2815 from += copy;
2816 }
2817 start = end;
2818 }
2819
2820 skb_walk_frags(skb, frag_iter) {
2821 int end;
2822
2823 WARN_ON(start > offset + len);
2824
2825 end = start + frag_iter->len;
2826 if ((copy = end - offset) > 0) {
2827 if (copy > len)
2828 copy = len;
2829 if (skb_store_bits(frag_iter, offset - start,
2830 from, copy))
2831 goto fault;
2832 if ((len -= copy) == 0)
2833 return 0;
2834 offset += copy;
2835 from += copy;
2836 }
2837 start = end;
2838 }
2839 if (!len)
2840 return 0;
2841
2842 fault:
2843 return -EFAULT;
2844 }
2845 EXPORT_SYMBOL(skb_store_bits);
2846
2847 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)2848 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2849 __wsum csum, const struct skb_checksum_ops *ops)
2850 {
2851 int start = skb_headlen(skb);
2852 int i, copy = start - offset;
2853 struct sk_buff *frag_iter;
2854 int pos = 0;
2855
2856 /* Checksum header. */
2857 if (copy > 0) {
2858 if (copy > len)
2859 copy = len;
2860 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2861 skb->data + offset, copy, csum);
2862 if ((len -= copy) == 0)
2863 return csum;
2864 offset += copy;
2865 pos = copy;
2866 }
2867
2868 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2869 int end;
2870 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2871
2872 WARN_ON(start > offset + len);
2873
2874 end = start + skb_frag_size(frag);
2875 if ((copy = end - offset) > 0) {
2876 u32 p_off, p_len, copied;
2877 struct page *p;
2878 __wsum csum2;
2879 u8 *vaddr;
2880
2881 if (copy > len)
2882 copy = len;
2883
2884 skb_frag_foreach_page(frag,
2885 skb_frag_off(frag) + offset - start,
2886 copy, p, p_off, p_len, copied) {
2887 vaddr = kmap_atomic(p);
2888 csum2 = INDIRECT_CALL_1(ops->update,
2889 csum_partial_ext,
2890 vaddr + p_off, p_len, 0);
2891 kunmap_atomic(vaddr);
2892 csum = INDIRECT_CALL_1(ops->combine,
2893 csum_block_add_ext, csum,
2894 csum2, pos, p_len);
2895 pos += p_len;
2896 }
2897
2898 if (!(len -= copy))
2899 return csum;
2900 offset += copy;
2901 }
2902 start = end;
2903 }
2904
2905 skb_walk_frags(skb, frag_iter) {
2906 int end;
2907
2908 WARN_ON(start > offset + len);
2909
2910 end = start + frag_iter->len;
2911 if ((copy = end - offset) > 0) {
2912 __wsum csum2;
2913 if (copy > len)
2914 copy = len;
2915 csum2 = __skb_checksum(frag_iter, offset - start,
2916 copy, 0, ops);
2917 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2918 csum, csum2, pos, copy);
2919 if ((len -= copy) == 0)
2920 return csum;
2921 offset += copy;
2922 pos += copy;
2923 }
2924 start = end;
2925 }
2926 BUG_ON(len);
2927
2928 return csum;
2929 }
2930 EXPORT_SYMBOL(__skb_checksum);
2931
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)2932 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2933 int len, __wsum csum)
2934 {
2935 const struct skb_checksum_ops ops = {
2936 .update = csum_partial_ext,
2937 .combine = csum_block_add_ext,
2938 };
2939
2940 return __skb_checksum(skb, offset, len, csum, &ops);
2941 }
2942 EXPORT_SYMBOL(skb_checksum);
2943
2944 /* Both of above in one bottle. */
2945
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)2946 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2947 u8 *to, int len)
2948 {
2949 int start = skb_headlen(skb);
2950 int i, copy = start - offset;
2951 struct sk_buff *frag_iter;
2952 int pos = 0;
2953 __wsum csum = 0;
2954
2955 /* Copy header. */
2956 if (copy > 0) {
2957 if (copy > len)
2958 copy = len;
2959 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2960 copy);
2961 if ((len -= copy) == 0)
2962 return csum;
2963 offset += copy;
2964 to += copy;
2965 pos = copy;
2966 }
2967
2968 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2969 int end;
2970
2971 WARN_ON(start > offset + len);
2972
2973 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2974 if ((copy = end - offset) > 0) {
2975 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2976 u32 p_off, p_len, copied;
2977 struct page *p;
2978 __wsum csum2;
2979 u8 *vaddr;
2980
2981 if (copy > len)
2982 copy = len;
2983
2984 skb_frag_foreach_page(frag,
2985 skb_frag_off(frag) + offset - start,
2986 copy, p, p_off, p_len, copied) {
2987 vaddr = kmap_atomic(p);
2988 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2989 to + copied,
2990 p_len);
2991 kunmap_atomic(vaddr);
2992 csum = csum_block_add(csum, csum2, pos);
2993 pos += p_len;
2994 }
2995
2996 if (!(len -= copy))
2997 return csum;
2998 offset += copy;
2999 to += copy;
3000 }
3001 start = end;
3002 }
3003
3004 skb_walk_frags(skb, frag_iter) {
3005 __wsum csum2;
3006 int end;
3007
3008 WARN_ON(start > offset + len);
3009
3010 end = start + frag_iter->len;
3011 if ((copy = end - offset) > 0) {
3012 if (copy > len)
3013 copy = len;
3014 csum2 = skb_copy_and_csum_bits(frag_iter,
3015 offset - start,
3016 to, copy);
3017 csum = csum_block_add(csum, csum2, pos);
3018 if ((len -= copy) == 0)
3019 return csum;
3020 offset += copy;
3021 to += copy;
3022 pos += copy;
3023 }
3024 start = end;
3025 }
3026 BUG_ON(len);
3027 return csum;
3028 }
3029 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3030
__skb_checksum_complete_head(struct sk_buff * skb,int len)3031 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3032 {
3033 __sum16 sum;
3034
3035 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3036 /* See comments in __skb_checksum_complete(). */
3037 if (likely(!sum)) {
3038 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3039 !skb->csum_complete_sw)
3040 netdev_rx_csum_fault(skb->dev, skb);
3041 }
3042 if (!skb_shared(skb))
3043 skb->csum_valid = !sum;
3044 return sum;
3045 }
3046 EXPORT_SYMBOL(__skb_checksum_complete_head);
3047
3048 /* This function assumes skb->csum already holds pseudo header's checksum,
3049 * which has been changed from the hardware checksum, for example, by
3050 * __skb_checksum_validate_complete(). And, the original skb->csum must
3051 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3052 *
3053 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3054 * zero. The new checksum is stored back into skb->csum unless the skb is
3055 * shared.
3056 */
__skb_checksum_complete(struct sk_buff * skb)3057 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3058 {
3059 __wsum csum;
3060 __sum16 sum;
3061
3062 csum = skb_checksum(skb, 0, skb->len, 0);
3063
3064 sum = csum_fold(csum_add(skb->csum, csum));
3065 /* This check is inverted, because we already knew the hardware
3066 * checksum is invalid before calling this function. So, if the
3067 * re-computed checksum is valid instead, then we have a mismatch
3068 * between the original skb->csum and skb_checksum(). This means either
3069 * the original hardware checksum is incorrect or we screw up skb->csum
3070 * when moving skb->data around.
3071 */
3072 if (likely(!sum)) {
3073 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3074 !skb->csum_complete_sw)
3075 netdev_rx_csum_fault(skb->dev, skb);
3076 }
3077
3078 if (!skb_shared(skb)) {
3079 /* Save full packet checksum */
3080 skb->csum = csum;
3081 skb->ip_summed = CHECKSUM_COMPLETE;
3082 skb->csum_complete_sw = 1;
3083 skb->csum_valid = !sum;
3084 }
3085
3086 return sum;
3087 }
3088 EXPORT_SYMBOL(__skb_checksum_complete);
3089
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)3090 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3091 {
3092 net_warn_ratelimited(
3093 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3094 __func__);
3095 return 0;
3096 }
3097
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)3098 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3099 int offset, int len)
3100 {
3101 net_warn_ratelimited(
3102 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3103 __func__);
3104 return 0;
3105 }
3106
3107 static const struct skb_checksum_ops default_crc32c_ops = {
3108 .update = warn_crc32c_csum_update,
3109 .combine = warn_crc32c_csum_combine,
3110 };
3111
3112 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3113 &default_crc32c_ops;
3114 EXPORT_SYMBOL(crc32c_csum_stub);
3115
3116 /**
3117 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3118 * @from: source buffer
3119 *
3120 * Calculates the amount of linear headroom needed in the 'to' skb passed
3121 * into skb_zerocopy().
3122 */
3123 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)3124 skb_zerocopy_headlen(const struct sk_buff *from)
3125 {
3126 unsigned int hlen = 0;
3127
3128 if (!from->head_frag ||
3129 skb_headlen(from) < L1_CACHE_BYTES ||
3130 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3131 hlen = skb_headlen(from);
3132 if (!hlen)
3133 hlen = from->len;
3134 }
3135
3136 if (skb_has_frag_list(from))
3137 hlen = from->len;
3138
3139 return hlen;
3140 }
3141 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3142
3143 /**
3144 * skb_zerocopy - Zero copy skb to skb
3145 * @to: destination buffer
3146 * @from: source buffer
3147 * @len: number of bytes to copy from source buffer
3148 * @hlen: size of linear headroom in destination buffer
3149 *
3150 * Copies up to `len` bytes from `from` to `to` by creating references
3151 * to the frags in the source buffer.
3152 *
3153 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3154 * headroom in the `to` buffer.
3155 *
3156 * Return value:
3157 * 0: everything is OK
3158 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3159 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3160 */
3161 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)3162 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3163 {
3164 int i, j = 0;
3165 int plen = 0; /* length of skb->head fragment */
3166 int ret;
3167 struct page *page;
3168 unsigned int offset;
3169
3170 BUG_ON(!from->head_frag && !hlen);
3171
3172 /* dont bother with small payloads */
3173 if (len <= skb_tailroom(to))
3174 return skb_copy_bits(from, 0, skb_put(to, len), len);
3175
3176 if (hlen) {
3177 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3178 if (unlikely(ret))
3179 return ret;
3180 len -= hlen;
3181 } else {
3182 plen = min_t(int, skb_headlen(from), len);
3183 if (plen) {
3184 page = virt_to_head_page(from->head);
3185 offset = from->data - (unsigned char *)page_address(page);
3186 __skb_fill_page_desc(to, 0, page, offset, plen);
3187 get_page(page);
3188 j = 1;
3189 len -= plen;
3190 }
3191 }
3192
3193 to->truesize += len + plen;
3194 to->len += len + plen;
3195 to->data_len += len + plen;
3196
3197 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3198 skb_tx_error(from);
3199 return -ENOMEM;
3200 }
3201 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3202
3203 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3204 int size;
3205
3206 if (!len)
3207 break;
3208 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3209 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3210 len);
3211 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3212 len -= size;
3213 skb_frag_ref(to, j);
3214 j++;
3215 }
3216 skb_shinfo(to)->nr_frags = j;
3217
3218 return 0;
3219 }
3220 EXPORT_SYMBOL_GPL(skb_zerocopy);
3221
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3222 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3223 {
3224 __wsum csum;
3225 long csstart;
3226
3227 if (skb->ip_summed == CHECKSUM_PARTIAL)
3228 csstart = skb_checksum_start_offset(skb);
3229 else
3230 csstart = skb_headlen(skb);
3231
3232 BUG_ON(csstart > skb_headlen(skb));
3233
3234 skb_copy_from_linear_data(skb, to, csstart);
3235
3236 csum = 0;
3237 if (csstart != skb->len)
3238 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3239 skb->len - csstart);
3240
3241 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3242 long csstuff = csstart + skb->csum_offset;
3243
3244 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3245 }
3246 }
3247 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3248
3249 /**
3250 * skb_dequeue - remove from the head of the queue
3251 * @list: list to dequeue from
3252 *
3253 * Remove the head of the list. The list lock is taken so the function
3254 * may be used safely with other locking list functions. The head item is
3255 * returned or %NULL if the list is empty.
3256 */
3257
skb_dequeue(struct sk_buff_head * list)3258 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3259 {
3260 unsigned long flags;
3261 struct sk_buff *result;
3262
3263 spin_lock_irqsave(&list->lock, flags);
3264 result = __skb_dequeue(list);
3265 spin_unlock_irqrestore(&list->lock, flags);
3266 return result;
3267 }
3268 EXPORT_SYMBOL(skb_dequeue);
3269
3270 /**
3271 * skb_dequeue_tail - remove from the tail of the queue
3272 * @list: list to dequeue from
3273 *
3274 * Remove the tail of the list. The list lock is taken so the function
3275 * may be used safely with other locking list functions. The tail item is
3276 * returned or %NULL if the list is empty.
3277 */
skb_dequeue_tail(struct sk_buff_head * list)3278 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3279 {
3280 unsigned long flags;
3281 struct sk_buff *result;
3282
3283 spin_lock_irqsave(&list->lock, flags);
3284 result = __skb_dequeue_tail(list);
3285 spin_unlock_irqrestore(&list->lock, flags);
3286 return result;
3287 }
3288 EXPORT_SYMBOL(skb_dequeue_tail);
3289
3290 /**
3291 * skb_queue_purge - empty a list
3292 * @list: list to empty
3293 *
3294 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3295 * the list and one reference dropped. This function takes the list
3296 * lock and is atomic with respect to other list locking functions.
3297 */
skb_queue_purge(struct sk_buff_head * list)3298 void skb_queue_purge(struct sk_buff_head *list)
3299 {
3300 struct sk_buff *skb;
3301 while ((skb = skb_dequeue(list)) != NULL)
3302 kfree_skb(skb);
3303 }
3304 EXPORT_SYMBOL(skb_queue_purge);
3305
3306 /**
3307 * skb_rbtree_purge - empty a skb rbtree
3308 * @root: root of the rbtree to empty
3309 * Return value: the sum of truesizes of all purged skbs.
3310 *
3311 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3312 * the list and one reference dropped. This function does not take
3313 * any lock. Synchronization should be handled by the caller (e.g., TCP
3314 * out-of-order queue is protected by the socket lock).
3315 */
skb_rbtree_purge(struct rb_root * root)3316 unsigned int skb_rbtree_purge(struct rb_root *root)
3317 {
3318 struct rb_node *p = rb_first(root);
3319 unsigned int sum = 0;
3320
3321 while (p) {
3322 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3323
3324 p = rb_next(p);
3325 rb_erase(&skb->rbnode, root);
3326 sum += skb->truesize;
3327 kfree_skb(skb);
3328 }
3329 return sum;
3330 }
3331
3332 /**
3333 * skb_queue_head - queue a buffer at the list head
3334 * @list: list to use
3335 * @newsk: buffer to queue
3336 *
3337 * Queue a buffer at the start of the list. This function takes the
3338 * list lock and can be used safely with other locking &sk_buff functions
3339 * safely.
3340 *
3341 * A buffer cannot be placed on two lists at the same time.
3342 */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)3343 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3344 {
3345 unsigned long flags;
3346
3347 spin_lock_irqsave(&list->lock, flags);
3348 __skb_queue_head(list, newsk);
3349 spin_unlock_irqrestore(&list->lock, flags);
3350 }
3351 EXPORT_SYMBOL(skb_queue_head);
3352
3353 /**
3354 * skb_queue_tail - queue a buffer at the list tail
3355 * @list: list to use
3356 * @newsk: buffer to queue
3357 *
3358 * Queue a buffer at the tail of the list. This function takes the
3359 * list lock and can be used safely with other locking &sk_buff functions
3360 * safely.
3361 *
3362 * A buffer cannot be placed on two lists at the same time.
3363 */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)3364 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3365 {
3366 unsigned long flags;
3367
3368 spin_lock_irqsave(&list->lock, flags);
3369 __skb_queue_tail(list, newsk);
3370 spin_unlock_irqrestore(&list->lock, flags);
3371 }
3372 EXPORT_SYMBOL(skb_queue_tail);
3373
3374 /**
3375 * skb_unlink - remove a buffer from a list
3376 * @skb: buffer to remove
3377 * @list: list to use
3378 *
3379 * Remove a packet from a list. The list locks are taken and this
3380 * function is atomic with respect to other list locked calls
3381 *
3382 * You must know what list the SKB is on.
3383 */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)3384 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3385 {
3386 unsigned long flags;
3387
3388 spin_lock_irqsave(&list->lock, flags);
3389 __skb_unlink(skb, list);
3390 spin_unlock_irqrestore(&list->lock, flags);
3391 }
3392 EXPORT_SYMBOL(skb_unlink);
3393
3394 /**
3395 * skb_append - append a buffer
3396 * @old: buffer to insert after
3397 * @newsk: buffer to insert
3398 * @list: list to use
3399 *
3400 * Place a packet after a given packet in a list. The list locks are taken
3401 * and this function is atomic with respect to other list locked calls.
3402 * A buffer cannot be placed on two lists at the same time.
3403 */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)3404 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3405 {
3406 unsigned long flags;
3407
3408 spin_lock_irqsave(&list->lock, flags);
3409 __skb_queue_after(list, old, newsk);
3410 spin_unlock_irqrestore(&list->lock, flags);
3411 }
3412 EXPORT_SYMBOL(skb_append);
3413
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)3414 static inline void skb_split_inside_header(struct sk_buff *skb,
3415 struct sk_buff* skb1,
3416 const u32 len, const int pos)
3417 {
3418 int i;
3419
3420 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3421 pos - len);
3422 /* And move data appendix as is. */
3423 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3424 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3425
3426 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3427 skb_shinfo(skb)->nr_frags = 0;
3428 skb1->data_len = skb->data_len;
3429 skb1->len += skb1->data_len;
3430 skb->data_len = 0;
3431 skb->len = len;
3432 skb_set_tail_pointer(skb, len);
3433 }
3434
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)3435 static inline void skb_split_no_header(struct sk_buff *skb,
3436 struct sk_buff* skb1,
3437 const u32 len, int pos)
3438 {
3439 int i, k = 0;
3440 const int nfrags = skb_shinfo(skb)->nr_frags;
3441
3442 skb_shinfo(skb)->nr_frags = 0;
3443 skb1->len = skb1->data_len = skb->len - len;
3444 skb->len = len;
3445 skb->data_len = len - pos;
3446
3447 for (i = 0; i < nfrags; i++) {
3448 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3449
3450 if (pos + size > len) {
3451 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3452
3453 if (pos < len) {
3454 /* Split frag.
3455 * We have two variants in this case:
3456 * 1. Move all the frag to the second
3457 * part, if it is possible. F.e.
3458 * this approach is mandatory for TUX,
3459 * where splitting is expensive.
3460 * 2. Split is accurately. We make this.
3461 */
3462 skb_frag_ref(skb, i);
3463 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3464 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3465 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3466 skb_shinfo(skb)->nr_frags++;
3467 }
3468 k++;
3469 } else
3470 skb_shinfo(skb)->nr_frags++;
3471 pos += size;
3472 }
3473 skb_shinfo(skb1)->nr_frags = k;
3474 }
3475
3476 /**
3477 * skb_split - Split fragmented skb to two parts at length len.
3478 * @skb: the buffer to split
3479 * @skb1: the buffer to receive the second part
3480 * @len: new length for skb
3481 */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)3482 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3483 {
3484 int pos = skb_headlen(skb);
3485 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3486
3487 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3488 skb_zerocopy_clone(skb1, skb, 0);
3489 if (len < pos) /* Split line is inside header. */
3490 skb_split_inside_header(skb, skb1, len, pos);
3491 else /* Second chunk has no header, nothing to copy. */
3492 skb_split_no_header(skb, skb1, len, pos);
3493 }
3494 EXPORT_SYMBOL(skb_split);
3495
3496 /* Shifting from/to a cloned skb is a no-go.
3497 *
3498 * Caller cannot keep skb_shinfo related pointers past calling here!
3499 */
skb_prepare_for_shift(struct sk_buff * skb)3500 static int skb_prepare_for_shift(struct sk_buff *skb)
3501 {
3502 return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3503 }
3504
3505 /**
3506 * skb_shift - Shifts paged data partially from skb to another
3507 * @tgt: buffer into which tail data gets added
3508 * @skb: buffer from which the paged data comes from
3509 * @shiftlen: shift up to this many bytes
3510 *
3511 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3512 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3513 * It's up to caller to free skb if everything was shifted.
3514 *
3515 * If @tgt runs out of frags, the whole operation is aborted.
3516 *
3517 * Skb cannot include anything else but paged data while tgt is allowed
3518 * to have non-paged data as well.
3519 *
3520 * TODO: full sized shift could be optimized but that would need
3521 * specialized skb free'er to handle frags without up-to-date nr_frags.
3522 */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)3523 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3524 {
3525 int from, to, merge, todo;
3526 skb_frag_t *fragfrom, *fragto;
3527
3528 BUG_ON(shiftlen > skb->len);
3529
3530 if (skb_headlen(skb))
3531 return 0;
3532 if (skb_zcopy(tgt) || skb_zcopy(skb))
3533 return 0;
3534
3535 todo = shiftlen;
3536 from = 0;
3537 to = skb_shinfo(tgt)->nr_frags;
3538 fragfrom = &skb_shinfo(skb)->frags[from];
3539
3540 /* Actual merge is delayed until the point when we know we can
3541 * commit all, so that we don't have to undo partial changes
3542 */
3543 if (!to ||
3544 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3545 skb_frag_off(fragfrom))) {
3546 merge = -1;
3547 } else {
3548 merge = to - 1;
3549
3550 todo -= skb_frag_size(fragfrom);
3551 if (todo < 0) {
3552 if (skb_prepare_for_shift(skb) ||
3553 skb_prepare_for_shift(tgt))
3554 return 0;
3555
3556 /* All previous frag pointers might be stale! */
3557 fragfrom = &skb_shinfo(skb)->frags[from];
3558 fragto = &skb_shinfo(tgt)->frags[merge];
3559
3560 skb_frag_size_add(fragto, shiftlen);
3561 skb_frag_size_sub(fragfrom, shiftlen);
3562 skb_frag_off_add(fragfrom, shiftlen);
3563
3564 goto onlymerged;
3565 }
3566
3567 from++;
3568 }
3569
3570 /* Skip full, not-fitting skb to avoid expensive operations */
3571 if ((shiftlen == skb->len) &&
3572 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3573 return 0;
3574
3575 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3576 return 0;
3577
3578 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3579 if (to == MAX_SKB_FRAGS)
3580 return 0;
3581
3582 fragfrom = &skb_shinfo(skb)->frags[from];
3583 fragto = &skb_shinfo(tgt)->frags[to];
3584
3585 if (todo >= skb_frag_size(fragfrom)) {
3586 *fragto = *fragfrom;
3587 todo -= skb_frag_size(fragfrom);
3588 from++;
3589 to++;
3590
3591 } else {
3592 __skb_frag_ref(fragfrom);
3593 skb_frag_page_copy(fragto, fragfrom);
3594 skb_frag_off_copy(fragto, fragfrom);
3595 skb_frag_size_set(fragto, todo);
3596
3597 skb_frag_off_add(fragfrom, todo);
3598 skb_frag_size_sub(fragfrom, todo);
3599 todo = 0;
3600
3601 to++;
3602 break;
3603 }
3604 }
3605
3606 /* Ready to "commit" this state change to tgt */
3607 skb_shinfo(tgt)->nr_frags = to;
3608
3609 if (merge >= 0) {
3610 fragfrom = &skb_shinfo(skb)->frags[0];
3611 fragto = &skb_shinfo(tgt)->frags[merge];
3612
3613 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3614 __skb_frag_unref(fragfrom, skb->pp_recycle);
3615 }
3616
3617 /* Reposition in the original skb */
3618 to = 0;
3619 while (from < skb_shinfo(skb)->nr_frags)
3620 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3621 skb_shinfo(skb)->nr_frags = to;
3622
3623 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3624
3625 onlymerged:
3626 /* Most likely the tgt won't ever need its checksum anymore, skb on
3627 * the other hand might need it if it needs to be resent
3628 */
3629 tgt->ip_summed = CHECKSUM_PARTIAL;
3630 skb->ip_summed = CHECKSUM_PARTIAL;
3631
3632 /* Yak, is it really working this way? Some helper please? */
3633 skb->len -= shiftlen;
3634 skb->data_len -= shiftlen;
3635 skb->truesize -= shiftlen;
3636 tgt->len += shiftlen;
3637 tgt->data_len += shiftlen;
3638 tgt->truesize += shiftlen;
3639
3640 return shiftlen;
3641 }
3642
3643 /**
3644 * skb_prepare_seq_read - Prepare a sequential read of skb data
3645 * @skb: the buffer to read
3646 * @from: lower offset of data to be read
3647 * @to: upper offset of data to be read
3648 * @st: state variable
3649 *
3650 * Initializes the specified state variable. Must be called before
3651 * invoking skb_seq_read() for the first time.
3652 */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)3653 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3654 unsigned int to, struct skb_seq_state *st)
3655 {
3656 st->lower_offset = from;
3657 st->upper_offset = to;
3658 st->root_skb = st->cur_skb = skb;
3659 st->frag_idx = st->stepped_offset = 0;
3660 st->frag_data = NULL;
3661 st->frag_off = 0;
3662 }
3663 EXPORT_SYMBOL(skb_prepare_seq_read);
3664
3665 /**
3666 * skb_seq_read - Sequentially read skb data
3667 * @consumed: number of bytes consumed by the caller so far
3668 * @data: destination pointer for data to be returned
3669 * @st: state variable
3670 *
3671 * Reads a block of skb data at @consumed relative to the
3672 * lower offset specified to skb_prepare_seq_read(). Assigns
3673 * the head of the data block to @data and returns the length
3674 * of the block or 0 if the end of the skb data or the upper
3675 * offset has been reached.
3676 *
3677 * The caller is not required to consume all of the data
3678 * returned, i.e. @consumed is typically set to the number
3679 * of bytes already consumed and the next call to
3680 * skb_seq_read() will return the remaining part of the block.
3681 *
3682 * Note 1: The size of each block of data returned can be arbitrary,
3683 * this limitation is the cost for zerocopy sequential
3684 * reads of potentially non linear data.
3685 *
3686 * Note 2: Fragment lists within fragments are not implemented
3687 * at the moment, state->root_skb could be replaced with
3688 * a stack for this purpose.
3689 */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)3690 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3691 struct skb_seq_state *st)
3692 {
3693 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3694 skb_frag_t *frag;
3695
3696 if (unlikely(abs_offset >= st->upper_offset)) {
3697 if (st->frag_data) {
3698 kunmap_atomic(st->frag_data);
3699 st->frag_data = NULL;
3700 }
3701 return 0;
3702 }
3703
3704 next_skb:
3705 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3706
3707 if (abs_offset < block_limit && !st->frag_data) {
3708 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3709 return block_limit - abs_offset;
3710 }
3711
3712 if (st->frag_idx == 0 && !st->frag_data)
3713 st->stepped_offset += skb_headlen(st->cur_skb);
3714
3715 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3716 unsigned int pg_idx, pg_off, pg_sz;
3717
3718 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3719
3720 pg_idx = 0;
3721 pg_off = skb_frag_off(frag);
3722 pg_sz = skb_frag_size(frag);
3723
3724 if (skb_frag_must_loop(skb_frag_page(frag))) {
3725 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3726 pg_off = offset_in_page(pg_off + st->frag_off);
3727 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3728 PAGE_SIZE - pg_off);
3729 }
3730
3731 block_limit = pg_sz + st->stepped_offset;
3732 if (abs_offset < block_limit) {
3733 if (!st->frag_data)
3734 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3735
3736 *data = (u8 *)st->frag_data + pg_off +
3737 (abs_offset - st->stepped_offset);
3738
3739 return block_limit - abs_offset;
3740 }
3741
3742 if (st->frag_data) {
3743 kunmap_atomic(st->frag_data);
3744 st->frag_data = NULL;
3745 }
3746
3747 st->stepped_offset += pg_sz;
3748 st->frag_off += pg_sz;
3749 if (st->frag_off == skb_frag_size(frag)) {
3750 st->frag_off = 0;
3751 st->frag_idx++;
3752 }
3753 }
3754
3755 if (st->frag_data) {
3756 kunmap_atomic(st->frag_data);
3757 st->frag_data = NULL;
3758 }
3759
3760 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3761 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3762 st->frag_idx = 0;
3763 goto next_skb;
3764 } else if (st->cur_skb->next) {
3765 st->cur_skb = st->cur_skb->next;
3766 st->frag_idx = 0;
3767 goto next_skb;
3768 }
3769
3770 return 0;
3771 }
3772 EXPORT_SYMBOL(skb_seq_read);
3773
3774 /**
3775 * skb_abort_seq_read - Abort a sequential read of skb data
3776 * @st: state variable
3777 *
3778 * Must be called if skb_seq_read() was not called until it
3779 * returned 0.
3780 */
skb_abort_seq_read(struct skb_seq_state * st)3781 void skb_abort_seq_read(struct skb_seq_state *st)
3782 {
3783 if (st->frag_data)
3784 kunmap_atomic(st->frag_data);
3785 }
3786 EXPORT_SYMBOL(skb_abort_seq_read);
3787
3788 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3789
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)3790 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3791 struct ts_config *conf,
3792 struct ts_state *state)
3793 {
3794 return skb_seq_read(offset, text, TS_SKB_CB(state));
3795 }
3796
skb_ts_finish(struct ts_config * conf,struct ts_state * state)3797 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3798 {
3799 skb_abort_seq_read(TS_SKB_CB(state));
3800 }
3801
3802 /**
3803 * skb_find_text - Find a text pattern in skb data
3804 * @skb: the buffer to look in
3805 * @from: search offset
3806 * @to: search limit
3807 * @config: textsearch configuration
3808 *
3809 * Finds a pattern in the skb data according to the specified
3810 * textsearch configuration. Use textsearch_next() to retrieve
3811 * subsequent occurrences of the pattern. Returns the offset
3812 * to the first occurrence or UINT_MAX if no match was found.
3813 */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)3814 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3815 unsigned int to, struct ts_config *config)
3816 {
3817 struct ts_state state;
3818 unsigned int ret;
3819
3820 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3821
3822 config->get_next_block = skb_ts_get_next_block;
3823 config->finish = skb_ts_finish;
3824
3825 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3826
3827 ret = textsearch_find(config, &state);
3828 return (ret <= to - from ? ret : UINT_MAX);
3829 }
3830 EXPORT_SYMBOL(skb_find_text);
3831
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size)3832 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3833 int offset, size_t size)
3834 {
3835 int i = skb_shinfo(skb)->nr_frags;
3836
3837 if (skb_can_coalesce(skb, i, page, offset)) {
3838 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3839 } else if (i < MAX_SKB_FRAGS) {
3840 get_page(page);
3841 skb_fill_page_desc(skb, i, page, offset, size);
3842 } else {
3843 return -EMSGSIZE;
3844 }
3845
3846 return 0;
3847 }
3848 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3849
3850 /**
3851 * skb_pull_rcsum - pull skb and update receive checksum
3852 * @skb: buffer to update
3853 * @len: length of data pulled
3854 *
3855 * This function performs an skb_pull on the packet and updates
3856 * the CHECKSUM_COMPLETE checksum. It should be used on
3857 * receive path processing instead of skb_pull unless you know
3858 * that the checksum difference is zero (e.g., a valid IP header)
3859 * or you are setting ip_summed to CHECKSUM_NONE.
3860 */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)3861 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3862 {
3863 unsigned char *data = skb->data;
3864
3865 BUG_ON(len > skb->len);
3866 __skb_pull(skb, len);
3867 skb_postpull_rcsum(skb, data, len);
3868 return skb->data;
3869 }
3870 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3871
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)3872 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3873 {
3874 skb_frag_t head_frag;
3875 struct page *page;
3876
3877 page = virt_to_head_page(frag_skb->head);
3878 __skb_frag_set_page(&head_frag, page);
3879 skb_frag_off_set(&head_frag, frag_skb->data -
3880 (unsigned char *)page_address(page));
3881 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3882 return head_frag;
3883 }
3884
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)3885 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3886 netdev_features_t features,
3887 unsigned int offset)
3888 {
3889 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3890 unsigned int tnl_hlen = skb_tnl_header_len(skb);
3891 unsigned int delta_truesize = 0;
3892 unsigned int delta_len = 0;
3893 struct sk_buff *tail = NULL;
3894 struct sk_buff *nskb, *tmp;
3895 int len_diff, err;
3896
3897 skb_push(skb, -skb_network_offset(skb) + offset);
3898
3899 skb_shinfo(skb)->frag_list = NULL;
3900
3901 do {
3902 nskb = list_skb;
3903 list_skb = list_skb->next;
3904
3905 err = 0;
3906 delta_truesize += nskb->truesize;
3907 if (skb_shared(nskb)) {
3908 tmp = skb_clone(nskb, GFP_ATOMIC);
3909 if (tmp) {
3910 consume_skb(nskb);
3911 nskb = tmp;
3912 err = skb_unclone(nskb, GFP_ATOMIC);
3913 } else {
3914 err = -ENOMEM;
3915 }
3916 }
3917
3918 if (!tail)
3919 skb->next = nskb;
3920 else
3921 tail->next = nskb;
3922
3923 if (unlikely(err)) {
3924 nskb->next = list_skb;
3925 goto err_linearize;
3926 }
3927
3928 tail = nskb;
3929
3930 delta_len += nskb->len;
3931
3932 skb_push(nskb, -skb_network_offset(nskb) + offset);
3933
3934 skb_release_head_state(nskb);
3935 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
3936 __copy_skb_header(nskb, skb);
3937
3938 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3939 nskb->transport_header += len_diff;
3940 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3941 nskb->data - tnl_hlen,
3942 offset + tnl_hlen);
3943
3944 if (skb_needs_linearize(nskb, features) &&
3945 __skb_linearize(nskb))
3946 goto err_linearize;
3947
3948 } while (list_skb);
3949
3950 skb->truesize = skb->truesize - delta_truesize;
3951 skb->data_len = skb->data_len - delta_len;
3952 skb->len = skb->len - delta_len;
3953
3954 skb_gso_reset(skb);
3955
3956 skb->prev = tail;
3957
3958 if (skb_needs_linearize(skb, features) &&
3959 __skb_linearize(skb))
3960 goto err_linearize;
3961
3962 skb_get(skb);
3963
3964 return skb;
3965
3966 err_linearize:
3967 kfree_skb_list(skb->next);
3968 skb->next = NULL;
3969 return ERR_PTR(-ENOMEM);
3970 }
3971 EXPORT_SYMBOL_GPL(skb_segment_list);
3972
3973 /**
3974 * skb_segment - Perform protocol segmentation on skb.
3975 * @head_skb: buffer to segment
3976 * @features: features for the output path (see dev->features)
3977 *
3978 * This function performs segmentation on the given skb. It returns
3979 * a pointer to the first in a list of new skbs for the segments.
3980 * In case of error it returns ERR_PTR(err).
3981 */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)3982 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3983 netdev_features_t features)
3984 {
3985 struct sk_buff *segs = NULL;
3986 struct sk_buff *tail = NULL;
3987 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3988 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3989 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3990 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3991 struct sk_buff *frag_skb = head_skb;
3992 unsigned int offset = doffset;
3993 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3994 unsigned int partial_segs = 0;
3995 unsigned int headroom;
3996 unsigned int len = head_skb->len;
3997 __be16 proto;
3998 bool csum, sg;
3999 int nfrags = skb_shinfo(head_skb)->nr_frags;
4000 int err = -ENOMEM;
4001 int i = 0;
4002 int pos;
4003
4004 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
4005 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
4006 /* gso_size is untrusted, and we have a frag_list with a linear
4007 * non head_frag head.
4008 *
4009 * (we assume checking the first list_skb member suffices;
4010 * i.e if either of the list_skb members have non head_frag
4011 * head, then the first one has too).
4012 *
4013 * If head_skb's headlen does not fit requested gso_size, it
4014 * means that the frag_list members do NOT terminate on exact
4015 * gso_size boundaries. Hence we cannot perform skb_frag_t page
4016 * sharing. Therefore we must fallback to copying the frag_list
4017 * skbs; we do so by disabling SG.
4018 */
4019 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
4020 features &= ~NETIF_F_SG;
4021 }
4022
4023 __skb_push(head_skb, doffset);
4024 proto = skb_network_protocol(head_skb, NULL);
4025 if (unlikely(!proto))
4026 return ERR_PTR(-EINVAL);
4027
4028 sg = !!(features & NETIF_F_SG);
4029 csum = !!can_checksum_protocol(features, proto);
4030
4031 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4032 if (!(features & NETIF_F_GSO_PARTIAL)) {
4033 struct sk_buff *iter;
4034 unsigned int frag_len;
4035
4036 if (!list_skb ||
4037 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4038 goto normal;
4039
4040 /* If we get here then all the required
4041 * GSO features except frag_list are supported.
4042 * Try to split the SKB to multiple GSO SKBs
4043 * with no frag_list.
4044 * Currently we can do that only when the buffers don't
4045 * have a linear part and all the buffers except
4046 * the last are of the same length.
4047 */
4048 frag_len = list_skb->len;
4049 skb_walk_frags(head_skb, iter) {
4050 if (frag_len != iter->len && iter->next)
4051 goto normal;
4052 if (skb_headlen(iter) && !iter->head_frag)
4053 goto normal;
4054
4055 len -= iter->len;
4056 }
4057
4058 if (len != frag_len)
4059 goto normal;
4060 }
4061
4062 /* GSO partial only requires that we trim off any excess that
4063 * doesn't fit into an MSS sized block, so take care of that
4064 * now.
4065 */
4066 partial_segs = len / mss;
4067 if (partial_segs > 1)
4068 mss *= partial_segs;
4069 else
4070 partial_segs = 0;
4071 }
4072
4073 normal:
4074 headroom = skb_headroom(head_skb);
4075 pos = skb_headlen(head_skb);
4076
4077 do {
4078 struct sk_buff *nskb;
4079 skb_frag_t *nskb_frag;
4080 int hsize;
4081 int size;
4082
4083 if (unlikely(mss == GSO_BY_FRAGS)) {
4084 len = list_skb->len;
4085 } else {
4086 len = head_skb->len - offset;
4087 if (len > mss)
4088 len = mss;
4089 }
4090
4091 hsize = skb_headlen(head_skb) - offset;
4092
4093 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4094 (skb_headlen(list_skb) == len || sg)) {
4095 BUG_ON(skb_headlen(list_skb) > len);
4096
4097 i = 0;
4098 nfrags = skb_shinfo(list_skb)->nr_frags;
4099 frag = skb_shinfo(list_skb)->frags;
4100 frag_skb = list_skb;
4101 pos += skb_headlen(list_skb);
4102
4103 while (pos < offset + len) {
4104 BUG_ON(i >= nfrags);
4105
4106 size = skb_frag_size(frag);
4107 if (pos + size > offset + len)
4108 break;
4109
4110 i++;
4111 pos += size;
4112 frag++;
4113 }
4114
4115 nskb = skb_clone(list_skb, GFP_ATOMIC);
4116 list_skb = list_skb->next;
4117
4118 if (unlikely(!nskb))
4119 goto err;
4120
4121 if (unlikely(pskb_trim(nskb, len))) {
4122 kfree_skb(nskb);
4123 goto err;
4124 }
4125
4126 hsize = skb_end_offset(nskb);
4127 if (skb_cow_head(nskb, doffset + headroom)) {
4128 kfree_skb(nskb);
4129 goto err;
4130 }
4131
4132 nskb->truesize += skb_end_offset(nskb) - hsize;
4133 skb_release_head_state(nskb);
4134 __skb_push(nskb, doffset);
4135 } else {
4136 if (hsize < 0)
4137 hsize = 0;
4138 if (hsize > len || !sg)
4139 hsize = len;
4140
4141 nskb = __alloc_skb(hsize + doffset + headroom,
4142 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4143 NUMA_NO_NODE);
4144
4145 if (unlikely(!nskb))
4146 goto err;
4147
4148 skb_reserve(nskb, headroom);
4149 __skb_put(nskb, doffset);
4150 }
4151
4152 if (segs)
4153 tail->next = nskb;
4154 else
4155 segs = nskb;
4156 tail = nskb;
4157
4158 __copy_skb_header(nskb, head_skb);
4159
4160 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4161 skb_reset_mac_len(nskb);
4162
4163 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4164 nskb->data - tnl_hlen,
4165 doffset + tnl_hlen);
4166
4167 if (nskb->len == len + doffset)
4168 goto perform_csum_check;
4169
4170 if (!sg) {
4171 if (!csum) {
4172 if (!nskb->remcsum_offload)
4173 nskb->ip_summed = CHECKSUM_NONE;
4174 SKB_GSO_CB(nskb)->csum =
4175 skb_copy_and_csum_bits(head_skb, offset,
4176 skb_put(nskb,
4177 len),
4178 len);
4179 SKB_GSO_CB(nskb)->csum_start =
4180 skb_headroom(nskb) + doffset;
4181 } else {
4182 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4183 goto err;
4184 }
4185 continue;
4186 }
4187
4188 nskb_frag = skb_shinfo(nskb)->frags;
4189
4190 skb_copy_from_linear_data_offset(head_skb, offset,
4191 skb_put(nskb, hsize), hsize);
4192
4193 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4194 SKBFL_SHARED_FRAG;
4195
4196 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4197 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4198 goto err;
4199
4200 while (pos < offset + len) {
4201 if (i >= nfrags) {
4202 i = 0;
4203 nfrags = skb_shinfo(list_skb)->nr_frags;
4204 frag = skb_shinfo(list_skb)->frags;
4205 frag_skb = list_skb;
4206 if (!skb_headlen(list_skb)) {
4207 BUG_ON(!nfrags);
4208 } else {
4209 BUG_ON(!list_skb->head_frag);
4210
4211 /* to make room for head_frag. */
4212 i--;
4213 frag--;
4214 }
4215 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4216 skb_zerocopy_clone(nskb, frag_skb,
4217 GFP_ATOMIC))
4218 goto err;
4219
4220 list_skb = list_skb->next;
4221 }
4222
4223 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4224 MAX_SKB_FRAGS)) {
4225 net_warn_ratelimited(
4226 "skb_segment: too many frags: %u %u\n",
4227 pos, mss);
4228 err = -EINVAL;
4229 goto err;
4230 }
4231
4232 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4233 __skb_frag_ref(nskb_frag);
4234 size = skb_frag_size(nskb_frag);
4235
4236 if (pos < offset) {
4237 skb_frag_off_add(nskb_frag, offset - pos);
4238 skb_frag_size_sub(nskb_frag, offset - pos);
4239 }
4240
4241 skb_shinfo(nskb)->nr_frags++;
4242
4243 if (pos + size <= offset + len) {
4244 i++;
4245 frag++;
4246 pos += size;
4247 } else {
4248 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4249 goto skip_fraglist;
4250 }
4251
4252 nskb_frag++;
4253 }
4254
4255 skip_fraglist:
4256 nskb->data_len = len - hsize;
4257 nskb->len += nskb->data_len;
4258 nskb->truesize += nskb->data_len;
4259
4260 perform_csum_check:
4261 if (!csum) {
4262 if (skb_has_shared_frag(nskb) &&
4263 __skb_linearize(nskb))
4264 goto err;
4265
4266 if (!nskb->remcsum_offload)
4267 nskb->ip_summed = CHECKSUM_NONE;
4268 SKB_GSO_CB(nskb)->csum =
4269 skb_checksum(nskb, doffset,
4270 nskb->len - doffset, 0);
4271 SKB_GSO_CB(nskb)->csum_start =
4272 skb_headroom(nskb) + doffset;
4273 }
4274 } while ((offset += len) < head_skb->len);
4275
4276 /* Some callers want to get the end of the list.
4277 * Put it in segs->prev to avoid walking the list.
4278 * (see validate_xmit_skb_list() for example)
4279 */
4280 segs->prev = tail;
4281
4282 if (partial_segs) {
4283 struct sk_buff *iter;
4284 int type = skb_shinfo(head_skb)->gso_type;
4285 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4286
4287 /* Update type to add partial and then remove dodgy if set */
4288 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4289 type &= ~SKB_GSO_DODGY;
4290
4291 /* Update GSO info and prepare to start updating headers on
4292 * our way back down the stack of protocols.
4293 */
4294 for (iter = segs; iter; iter = iter->next) {
4295 skb_shinfo(iter)->gso_size = gso_size;
4296 skb_shinfo(iter)->gso_segs = partial_segs;
4297 skb_shinfo(iter)->gso_type = type;
4298 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4299 }
4300
4301 if (tail->len - doffset <= gso_size)
4302 skb_shinfo(tail)->gso_size = 0;
4303 else if (tail != segs)
4304 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4305 }
4306
4307 /* Following permits correct backpressure, for protocols
4308 * using skb_set_owner_w().
4309 * Idea is to tranfert ownership from head_skb to last segment.
4310 */
4311 if (head_skb->destructor == sock_wfree) {
4312 swap(tail->truesize, head_skb->truesize);
4313 swap(tail->destructor, head_skb->destructor);
4314 swap(tail->sk, head_skb->sk);
4315 }
4316 return segs;
4317
4318 err:
4319 kfree_skb_list(segs);
4320 return ERR_PTR(err);
4321 }
4322 EXPORT_SYMBOL_GPL(skb_segment);
4323
4324 #ifdef CONFIG_SKB_EXTENSIONS
4325 #define SKB_EXT_ALIGN_VALUE 8
4326 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4327
4328 static const u8 skb_ext_type_len[] = {
4329 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4330 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4331 #endif
4332 #ifdef CONFIG_XFRM
4333 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4334 #endif
4335 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4336 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4337 #endif
4338 #if IS_ENABLED(CONFIG_MPTCP)
4339 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4340 #endif
4341 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4342 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4343 #endif
4344 };
4345
skb_ext_total_length(void)4346 static __always_inline unsigned int skb_ext_total_length(void)
4347 {
4348 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4349 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4350 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4351 #endif
4352 #ifdef CONFIG_XFRM
4353 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4354 #endif
4355 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4356 skb_ext_type_len[TC_SKB_EXT] +
4357 #endif
4358 #if IS_ENABLED(CONFIG_MPTCP)
4359 skb_ext_type_len[SKB_EXT_MPTCP] +
4360 #endif
4361 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4362 skb_ext_type_len[SKB_EXT_MCTP] +
4363 #endif
4364 0;
4365 }
4366
skb_extensions_init(void)4367 static void skb_extensions_init(void)
4368 {
4369 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4370 BUILD_BUG_ON(skb_ext_total_length() > 255);
4371
4372 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4373 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4374 0,
4375 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4376 NULL);
4377 }
4378 #else
skb_extensions_init(void)4379 static void skb_extensions_init(void) {}
4380 #endif
4381
skb_init(void)4382 void __init skb_init(void)
4383 {
4384 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4385 sizeof(struct sk_buff),
4386 0,
4387 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4388 offsetof(struct sk_buff, cb),
4389 sizeof_field(struct sk_buff, cb),
4390 NULL);
4391 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4392 sizeof(struct sk_buff_fclones),
4393 0,
4394 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4395 NULL);
4396 skb_extensions_init();
4397 }
4398
4399 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)4400 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4401 unsigned int recursion_level)
4402 {
4403 int start = skb_headlen(skb);
4404 int i, copy = start - offset;
4405 struct sk_buff *frag_iter;
4406 int elt = 0;
4407
4408 if (unlikely(recursion_level >= 24))
4409 return -EMSGSIZE;
4410
4411 if (copy > 0) {
4412 if (copy > len)
4413 copy = len;
4414 sg_set_buf(sg, skb->data + offset, copy);
4415 elt++;
4416 if ((len -= copy) == 0)
4417 return elt;
4418 offset += copy;
4419 }
4420
4421 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4422 int end;
4423
4424 WARN_ON(start > offset + len);
4425
4426 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4427 if ((copy = end - offset) > 0) {
4428 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4429 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4430 return -EMSGSIZE;
4431
4432 if (copy > len)
4433 copy = len;
4434 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4435 skb_frag_off(frag) + offset - start);
4436 elt++;
4437 if (!(len -= copy))
4438 return elt;
4439 offset += copy;
4440 }
4441 start = end;
4442 }
4443
4444 skb_walk_frags(skb, frag_iter) {
4445 int end, ret;
4446
4447 WARN_ON(start > offset + len);
4448
4449 end = start + frag_iter->len;
4450 if ((copy = end - offset) > 0) {
4451 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4452 return -EMSGSIZE;
4453
4454 if (copy > len)
4455 copy = len;
4456 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4457 copy, recursion_level + 1);
4458 if (unlikely(ret < 0))
4459 return ret;
4460 elt += ret;
4461 if ((len -= copy) == 0)
4462 return elt;
4463 offset += copy;
4464 }
4465 start = end;
4466 }
4467 BUG_ON(len);
4468 return elt;
4469 }
4470
4471 /**
4472 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4473 * @skb: Socket buffer containing the buffers to be mapped
4474 * @sg: The scatter-gather list to map into
4475 * @offset: The offset into the buffer's contents to start mapping
4476 * @len: Length of buffer space to be mapped
4477 *
4478 * Fill the specified scatter-gather list with mappings/pointers into a
4479 * region of the buffer space attached to a socket buffer. Returns either
4480 * the number of scatterlist items used, or -EMSGSIZE if the contents
4481 * could not fit.
4482 */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4483 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4484 {
4485 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4486
4487 if (nsg <= 0)
4488 return nsg;
4489
4490 sg_mark_end(&sg[nsg - 1]);
4491
4492 return nsg;
4493 }
4494 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4495
4496 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4497 * sglist without mark the sg which contain last skb data as the end.
4498 * So the caller can mannipulate sg list as will when padding new data after
4499 * the first call without calling sg_unmark_end to expend sg list.
4500 *
4501 * Scenario to use skb_to_sgvec_nomark:
4502 * 1. sg_init_table
4503 * 2. skb_to_sgvec_nomark(payload1)
4504 * 3. skb_to_sgvec_nomark(payload2)
4505 *
4506 * This is equivalent to:
4507 * 1. sg_init_table
4508 * 2. skb_to_sgvec(payload1)
4509 * 3. sg_unmark_end
4510 * 4. skb_to_sgvec(payload2)
4511 *
4512 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4513 * is more preferable.
4514 */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4515 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4516 int offset, int len)
4517 {
4518 return __skb_to_sgvec(skb, sg, offset, len, 0);
4519 }
4520 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4521
4522
4523
4524 /**
4525 * skb_cow_data - Check that a socket buffer's data buffers are writable
4526 * @skb: The socket buffer to check.
4527 * @tailbits: Amount of trailing space to be added
4528 * @trailer: Returned pointer to the skb where the @tailbits space begins
4529 *
4530 * Make sure that the data buffers attached to a socket buffer are
4531 * writable. If they are not, private copies are made of the data buffers
4532 * and the socket buffer is set to use these instead.
4533 *
4534 * If @tailbits is given, make sure that there is space to write @tailbits
4535 * bytes of data beyond current end of socket buffer. @trailer will be
4536 * set to point to the skb in which this space begins.
4537 *
4538 * The number of scatterlist elements required to completely map the
4539 * COW'd and extended socket buffer will be returned.
4540 */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)4541 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4542 {
4543 int copyflag;
4544 int elt;
4545 struct sk_buff *skb1, **skb_p;
4546
4547 /* If skb is cloned or its head is paged, reallocate
4548 * head pulling out all the pages (pages are considered not writable
4549 * at the moment even if they are anonymous).
4550 */
4551 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4552 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4553 return -ENOMEM;
4554
4555 /* Easy case. Most of packets will go this way. */
4556 if (!skb_has_frag_list(skb)) {
4557 /* A little of trouble, not enough of space for trailer.
4558 * This should not happen, when stack is tuned to generate
4559 * good frames. OK, on miss we reallocate and reserve even more
4560 * space, 128 bytes is fair. */
4561
4562 if (skb_tailroom(skb) < tailbits &&
4563 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4564 return -ENOMEM;
4565
4566 /* Voila! */
4567 *trailer = skb;
4568 return 1;
4569 }
4570
4571 /* Misery. We are in troubles, going to mincer fragments... */
4572
4573 elt = 1;
4574 skb_p = &skb_shinfo(skb)->frag_list;
4575 copyflag = 0;
4576
4577 while ((skb1 = *skb_p) != NULL) {
4578 int ntail = 0;
4579
4580 /* The fragment is partially pulled by someone,
4581 * this can happen on input. Copy it and everything
4582 * after it. */
4583
4584 if (skb_shared(skb1))
4585 copyflag = 1;
4586
4587 /* If the skb is the last, worry about trailer. */
4588
4589 if (skb1->next == NULL && tailbits) {
4590 if (skb_shinfo(skb1)->nr_frags ||
4591 skb_has_frag_list(skb1) ||
4592 skb_tailroom(skb1) < tailbits)
4593 ntail = tailbits + 128;
4594 }
4595
4596 if (copyflag ||
4597 skb_cloned(skb1) ||
4598 ntail ||
4599 skb_shinfo(skb1)->nr_frags ||
4600 skb_has_frag_list(skb1)) {
4601 struct sk_buff *skb2;
4602
4603 /* Fuck, we are miserable poor guys... */
4604 if (ntail == 0)
4605 skb2 = skb_copy(skb1, GFP_ATOMIC);
4606 else
4607 skb2 = skb_copy_expand(skb1,
4608 skb_headroom(skb1),
4609 ntail,
4610 GFP_ATOMIC);
4611 if (unlikely(skb2 == NULL))
4612 return -ENOMEM;
4613
4614 if (skb1->sk)
4615 skb_set_owner_w(skb2, skb1->sk);
4616
4617 /* Looking around. Are we still alive?
4618 * OK, link new skb, drop old one */
4619
4620 skb2->next = skb1->next;
4621 *skb_p = skb2;
4622 kfree_skb(skb1);
4623 skb1 = skb2;
4624 }
4625 elt++;
4626 *trailer = skb1;
4627 skb_p = &skb1->next;
4628 }
4629
4630 return elt;
4631 }
4632 EXPORT_SYMBOL_GPL(skb_cow_data);
4633
sock_rmem_free(struct sk_buff * skb)4634 static void sock_rmem_free(struct sk_buff *skb)
4635 {
4636 struct sock *sk = skb->sk;
4637
4638 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4639 }
4640
skb_set_err_queue(struct sk_buff * skb)4641 static void skb_set_err_queue(struct sk_buff *skb)
4642 {
4643 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4644 * So, it is safe to (mis)use it to mark skbs on the error queue.
4645 */
4646 skb->pkt_type = PACKET_OUTGOING;
4647 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4648 }
4649
4650 /*
4651 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4652 */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)4653 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4654 {
4655 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4656 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4657 return -ENOMEM;
4658
4659 skb_orphan(skb);
4660 skb->sk = sk;
4661 skb->destructor = sock_rmem_free;
4662 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4663 skb_set_err_queue(skb);
4664
4665 /* before exiting rcu section, make sure dst is refcounted */
4666 skb_dst_force(skb);
4667
4668 skb_queue_tail(&sk->sk_error_queue, skb);
4669 if (!sock_flag(sk, SOCK_DEAD))
4670 sk_error_report(sk);
4671 return 0;
4672 }
4673 EXPORT_SYMBOL(sock_queue_err_skb);
4674
is_icmp_err_skb(const struct sk_buff * skb)4675 static bool is_icmp_err_skb(const struct sk_buff *skb)
4676 {
4677 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4678 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4679 }
4680
sock_dequeue_err_skb(struct sock * sk)4681 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4682 {
4683 struct sk_buff_head *q = &sk->sk_error_queue;
4684 struct sk_buff *skb, *skb_next = NULL;
4685 bool icmp_next = false;
4686 unsigned long flags;
4687
4688 spin_lock_irqsave(&q->lock, flags);
4689 skb = __skb_dequeue(q);
4690 if (skb && (skb_next = skb_peek(q))) {
4691 icmp_next = is_icmp_err_skb(skb_next);
4692 if (icmp_next)
4693 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4694 }
4695 spin_unlock_irqrestore(&q->lock, flags);
4696
4697 if (is_icmp_err_skb(skb) && !icmp_next)
4698 sk->sk_err = 0;
4699
4700 if (skb_next)
4701 sk_error_report(sk);
4702
4703 return skb;
4704 }
4705 EXPORT_SYMBOL(sock_dequeue_err_skb);
4706
4707 /**
4708 * skb_clone_sk - create clone of skb, and take reference to socket
4709 * @skb: the skb to clone
4710 *
4711 * This function creates a clone of a buffer that holds a reference on
4712 * sk_refcnt. Buffers created via this function are meant to be
4713 * returned using sock_queue_err_skb, or free via kfree_skb.
4714 *
4715 * When passing buffers allocated with this function to sock_queue_err_skb
4716 * it is necessary to wrap the call with sock_hold/sock_put in order to
4717 * prevent the socket from being released prior to being enqueued on
4718 * the sk_error_queue.
4719 */
skb_clone_sk(struct sk_buff * skb)4720 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4721 {
4722 struct sock *sk = skb->sk;
4723 struct sk_buff *clone;
4724
4725 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4726 return NULL;
4727
4728 clone = skb_clone(skb, GFP_ATOMIC);
4729 if (!clone) {
4730 sock_put(sk);
4731 return NULL;
4732 }
4733
4734 clone->sk = sk;
4735 clone->destructor = sock_efree;
4736
4737 return clone;
4738 }
4739 EXPORT_SYMBOL(skb_clone_sk);
4740
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)4741 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4742 struct sock *sk,
4743 int tstype,
4744 bool opt_stats)
4745 {
4746 struct sock_exterr_skb *serr;
4747 int err;
4748
4749 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4750
4751 serr = SKB_EXT_ERR(skb);
4752 memset(serr, 0, sizeof(*serr));
4753 serr->ee.ee_errno = ENOMSG;
4754 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4755 serr->ee.ee_info = tstype;
4756 serr->opt_stats = opt_stats;
4757 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4758 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4759 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4760 if (sk_is_tcp(sk))
4761 serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
4762 }
4763
4764 err = sock_queue_err_skb(sk, skb);
4765
4766 if (err)
4767 kfree_skb(skb);
4768 }
4769
skb_may_tx_timestamp(struct sock * sk,bool tsonly)4770 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4771 {
4772 bool ret;
4773
4774 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
4775 return true;
4776
4777 read_lock_bh(&sk->sk_callback_lock);
4778 ret = sk->sk_socket && sk->sk_socket->file &&
4779 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4780 read_unlock_bh(&sk->sk_callback_lock);
4781 return ret;
4782 }
4783
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)4784 void skb_complete_tx_timestamp(struct sk_buff *skb,
4785 struct skb_shared_hwtstamps *hwtstamps)
4786 {
4787 struct sock *sk = skb->sk;
4788
4789 if (!skb_may_tx_timestamp(sk, false))
4790 goto err;
4791
4792 /* Take a reference to prevent skb_orphan() from freeing the socket,
4793 * but only if the socket refcount is not zero.
4794 */
4795 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4796 *skb_hwtstamps(skb) = *hwtstamps;
4797 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4798 sock_put(sk);
4799 return;
4800 }
4801
4802 err:
4803 kfree_skb(skb);
4804 }
4805 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4806
__skb_tstamp_tx(struct sk_buff * orig_skb,const struct sk_buff * ack_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)4807 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4808 const struct sk_buff *ack_skb,
4809 struct skb_shared_hwtstamps *hwtstamps,
4810 struct sock *sk, int tstype)
4811 {
4812 struct sk_buff *skb;
4813 bool tsonly, opt_stats = false;
4814
4815 if (!sk)
4816 return;
4817
4818 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4819 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4820 return;
4821
4822 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4823 if (!skb_may_tx_timestamp(sk, tsonly))
4824 return;
4825
4826 if (tsonly) {
4827 #ifdef CONFIG_INET
4828 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4829 sk_is_tcp(sk)) {
4830 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4831 ack_skb);
4832 opt_stats = true;
4833 } else
4834 #endif
4835 skb = alloc_skb(0, GFP_ATOMIC);
4836 } else {
4837 skb = skb_clone(orig_skb, GFP_ATOMIC);
4838 }
4839 if (!skb)
4840 return;
4841
4842 if (tsonly) {
4843 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4844 SKBTX_ANY_TSTAMP;
4845 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4846 }
4847
4848 if (hwtstamps)
4849 *skb_hwtstamps(skb) = *hwtstamps;
4850 else
4851 __net_timestamp(skb);
4852
4853 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4854 }
4855 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4856
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)4857 void skb_tstamp_tx(struct sk_buff *orig_skb,
4858 struct skb_shared_hwtstamps *hwtstamps)
4859 {
4860 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4861 SCM_TSTAMP_SND);
4862 }
4863 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4864
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)4865 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4866 {
4867 struct sock *sk = skb->sk;
4868 struct sock_exterr_skb *serr;
4869 int err = 1;
4870
4871 skb->wifi_acked_valid = 1;
4872 skb->wifi_acked = acked;
4873
4874 serr = SKB_EXT_ERR(skb);
4875 memset(serr, 0, sizeof(*serr));
4876 serr->ee.ee_errno = ENOMSG;
4877 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4878
4879 /* Take a reference to prevent skb_orphan() from freeing the socket,
4880 * but only if the socket refcount is not zero.
4881 */
4882 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4883 err = sock_queue_err_skb(sk, skb);
4884 sock_put(sk);
4885 }
4886 if (err)
4887 kfree_skb(skb);
4888 }
4889 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4890
4891 /**
4892 * skb_partial_csum_set - set up and verify partial csum values for packet
4893 * @skb: the skb to set
4894 * @start: the number of bytes after skb->data to start checksumming.
4895 * @off: the offset from start to place the checksum.
4896 *
4897 * For untrusted partially-checksummed packets, we need to make sure the values
4898 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4899 *
4900 * This function checks and sets those values and skb->ip_summed: if this
4901 * returns false you should drop the packet.
4902 */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)4903 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4904 {
4905 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4906 u32 csum_start = skb_headroom(skb) + (u32)start;
4907
4908 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4909 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4910 start, off, skb_headroom(skb), skb_headlen(skb));
4911 return false;
4912 }
4913 skb->ip_summed = CHECKSUM_PARTIAL;
4914 skb->csum_start = csum_start;
4915 skb->csum_offset = off;
4916 skb_set_transport_header(skb, start);
4917 return true;
4918 }
4919 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4920
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)4921 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4922 unsigned int max)
4923 {
4924 if (skb_headlen(skb) >= len)
4925 return 0;
4926
4927 /* If we need to pullup then pullup to the max, so we
4928 * won't need to do it again.
4929 */
4930 if (max > skb->len)
4931 max = skb->len;
4932
4933 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4934 return -ENOMEM;
4935
4936 if (skb_headlen(skb) < len)
4937 return -EPROTO;
4938
4939 return 0;
4940 }
4941
4942 #define MAX_TCP_HDR_LEN (15 * 4)
4943
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)4944 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4945 typeof(IPPROTO_IP) proto,
4946 unsigned int off)
4947 {
4948 int err;
4949
4950 switch (proto) {
4951 case IPPROTO_TCP:
4952 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4953 off + MAX_TCP_HDR_LEN);
4954 if (!err && !skb_partial_csum_set(skb, off,
4955 offsetof(struct tcphdr,
4956 check)))
4957 err = -EPROTO;
4958 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4959
4960 case IPPROTO_UDP:
4961 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4962 off + sizeof(struct udphdr));
4963 if (!err && !skb_partial_csum_set(skb, off,
4964 offsetof(struct udphdr,
4965 check)))
4966 err = -EPROTO;
4967 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4968 }
4969
4970 return ERR_PTR(-EPROTO);
4971 }
4972
4973 /* This value should be large enough to cover a tagged ethernet header plus
4974 * maximally sized IP and TCP or UDP headers.
4975 */
4976 #define MAX_IP_HDR_LEN 128
4977
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)4978 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4979 {
4980 unsigned int off;
4981 bool fragment;
4982 __sum16 *csum;
4983 int err;
4984
4985 fragment = false;
4986
4987 err = skb_maybe_pull_tail(skb,
4988 sizeof(struct iphdr),
4989 MAX_IP_HDR_LEN);
4990 if (err < 0)
4991 goto out;
4992
4993 if (ip_is_fragment(ip_hdr(skb)))
4994 fragment = true;
4995
4996 off = ip_hdrlen(skb);
4997
4998 err = -EPROTO;
4999
5000 if (fragment)
5001 goto out;
5002
5003 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5004 if (IS_ERR(csum))
5005 return PTR_ERR(csum);
5006
5007 if (recalculate)
5008 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5009 ip_hdr(skb)->daddr,
5010 skb->len - off,
5011 ip_hdr(skb)->protocol, 0);
5012 err = 0;
5013
5014 out:
5015 return err;
5016 }
5017
5018 /* This value should be large enough to cover a tagged ethernet header plus
5019 * an IPv6 header, all options, and a maximal TCP or UDP header.
5020 */
5021 #define MAX_IPV6_HDR_LEN 256
5022
5023 #define OPT_HDR(type, skb, off) \
5024 (type *)(skb_network_header(skb) + (off))
5025
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)5026 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5027 {
5028 int err;
5029 u8 nexthdr;
5030 unsigned int off;
5031 unsigned int len;
5032 bool fragment;
5033 bool done;
5034 __sum16 *csum;
5035
5036 fragment = false;
5037 done = false;
5038
5039 off = sizeof(struct ipv6hdr);
5040
5041 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5042 if (err < 0)
5043 goto out;
5044
5045 nexthdr = ipv6_hdr(skb)->nexthdr;
5046
5047 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5048 while (off <= len && !done) {
5049 switch (nexthdr) {
5050 case IPPROTO_DSTOPTS:
5051 case IPPROTO_HOPOPTS:
5052 case IPPROTO_ROUTING: {
5053 struct ipv6_opt_hdr *hp;
5054
5055 err = skb_maybe_pull_tail(skb,
5056 off +
5057 sizeof(struct ipv6_opt_hdr),
5058 MAX_IPV6_HDR_LEN);
5059 if (err < 0)
5060 goto out;
5061
5062 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5063 nexthdr = hp->nexthdr;
5064 off += ipv6_optlen(hp);
5065 break;
5066 }
5067 case IPPROTO_AH: {
5068 struct ip_auth_hdr *hp;
5069
5070 err = skb_maybe_pull_tail(skb,
5071 off +
5072 sizeof(struct ip_auth_hdr),
5073 MAX_IPV6_HDR_LEN);
5074 if (err < 0)
5075 goto out;
5076
5077 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5078 nexthdr = hp->nexthdr;
5079 off += ipv6_authlen(hp);
5080 break;
5081 }
5082 case IPPROTO_FRAGMENT: {
5083 struct frag_hdr *hp;
5084
5085 err = skb_maybe_pull_tail(skb,
5086 off +
5087 sizeof(struct frag_hdr),
5088 MAX_IPV6_HDR_LEN);
5089 if (err < 0)
5090 goto out;
5091
5092 hp = OPT_HDR(struct frag_hdr, skb, off);
5093
5094 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5095 fragment = true;
5096
5097 nexthdr = hp->nexthdr;
5098 off += sizeof(struct frag_hdr);
5099 break;
5100 }
5101 default:
5102 done = true;
5103 break;
5104 }
5105 }
5106
5107 err = -EPROTO;
5108
5109 if (!done || fragment)
5110 goto out;
5111
5112 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5113 if (IS_ERR(csum))
5114 return PTR_ERR(csum);
5115
5116 if (recalculate)
5117 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5118 &ipv6_hdr(skb)->daddr,
5119 skb->len - off, nexthdr, 0);
5120 err = 0;
5121
5122 out:
5123 return err;
5124 }
5125
5126 /**
5127 * skb_checksum_setup - set up partial checksum offset
5128 * @skb: the skb to set up
5129 * @recalculate: if true the pseudo-header checksum will be recalculated
5130 */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5131 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5132 {
5133 int err;
5134
5135 switch (skb->protocol) {
5136 case htons(ETH_P_IP):
5137 err = skb_checksum_setup_ipv4(skb, recalculate);
5138 break;
5139
5140 case htons(ETH_P_IPV6):
5141 err = skb_checksum_setup_ipv6(skb, recalculate);
5142 break;
5143
5144 default:
5145 err = -EPROTO;
5146 break;
5147 }
5148
5149 return err;
5150 }
5151 EXPORT_SYMBOL(skb_checksum_setup);
5152
5153 /**
5154 * skb_checksum_maybe_trim - maybe trims the given skb
5155 * @skb: the skb to check
5156 * @transport_len: the data length beyond the network header
5157 *
5158 * Checks whether the given skb has data beyond the given transport length.
5159 * If so, returns a cloned skb trimmed to this transport length.
5160 * Otherwise returns the provided skb. Returns NULL in error cases
5161 * (e.g. transport_len exceeds skb length or out-of-memory).
5162 *
5163 * Caller needs to set the skb transport header and free any returned skb if it
5164 * differs from the provided skb.
5165 */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5166 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5167 unsigned int transport_len)
5168 {
5169 struct sk_buff *skb_chk;
5170 unsigned int len = skb_transport_offset(skb) + transport_len;
5171 int ret;
5172
5173 if (skb->len < len)
5174 return NULL;
5175 else if (skb->len == len)
5176 return skb;
5177
5178 skb_chk = skb_clone(skb, GFP_ATOMIC);
5179 if (!skb_chk)
5180 return NULL;
5181
5182 ret = pskb_trim_rcsum(skb_chk, len);
5183 if (ret) {
5184 kfree_skb(skb_chk);
5185 return NULL;
5186 }
5187
5188 return skb_chk;
5189 }
5190
5191 /**
5192 * skb_checksum_trimmed - validate checksum of an skb
5193 * @skb: the skb to check
5194 * @transport_len: the data length beyond the network header
5195 * @skb_chkf: checksum function to use
5196 *
5197 * Applies the given checksum function skb_chkf to the provided skb.
5198 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5199 *
5200 * If the skb has data beyond the given transport length, then a
5201 * trimmed & cloned skb is checked and returned.
5202 *
5203 * Caller needs to set the skb transport header and free any returned skb if it
5204 * differs from the provided skb.
5205 */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))5206 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5207 unsigned int transport_len,
5208 __sum16(*skb_chkf)(struct sk_buff *skb))
5209 {
5210 struct sk_buff *skb_chk;
5211 unsigned int offset = skb_transport_offset(skb);
5212 __sum16 ret;
5213
5214 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5215 if (!skb_chk)
5216 goto err;
5217
5218 if (!pskb_may_pull(skb_chk, offset))
5219 goto err;
5220
5221 skb_pull_rcsum(skb_chk, offset);
5222 ret = skb_chkf(skb_chk);
5223 skb_push_rcsum(skb_chk, offset);
5224
5225 if (ret)
5226 goto err;
5227
5228 return skb_chk;
5229
5230 err:
5231 if (skb_chk && skb_chk != skb)
5232 kfree_skb(skb_chk);
5233
5234 return NULL;
5235
5236 }
5237 EXPORT_SYMBOL(skb_checksum_trimmed);
5238
__skb_warn_lro_forwarding(const struct sk_buff * skb)5239 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5240 {
5241 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5242 skb->dev->name);
5243 }
5244 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5245
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)5246 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5247 {
5248 if (head_stolen) {
5249 skb_release_head_state(skb);
5250 kmem_cache_free(skbuff_head_cache, skb);
5251 } else {
5252 __kfree_skb(skb);
5253 }
5254 }
5255 EXPORT_SYMBOL(kfree_skb_partial);
5256
5257 /**
5258 * skb_try_coalesce - try to merge skb to prior one
5259 * @to: prior buffer
5260 * @from: buffer to add
5261 * @fragstolen: pointer to boolean
5262 * @delta_truesize: how much more was allocated than was requested
5263 */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)5264 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5265 bool *fragstolen, int *delta_truesize)
5266 {
5267 struct skb_shared_info *to_shinfo, *from_shinfo;
5268 int i, delta, len = from->len;
5269
5270 *fragstolen = false;
5271
5272 if (skb_cloned(to))
5273 return false;
5274
5275 /* In general, avoid mixing slab allocated and page_pool allocated
5276 * pages within the same SKB. However when @to is not pp_recycle and
5277 * @from is cloned, we can transition frag pages from page_pool to
5278 * reference counted.
5279 *
5280 * On the other hand, don't allow coalescing two pp_recycle SKBs if
5281 * @from is cloned, in case the SKB is using page_pool fragment
5282 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5283 * references for cloned SKBs at the moment that would result in
5284 * inconsistent reference counts.
5285 */
5286 if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from)))
5287 return false;
5288
5289 if (len <= skb_tailroom(to)) {
5290 if (len)
5291 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5292 *delta_truesize = 0;
5293 return true;
5294 }
5295
5296 to_shinfo = skb_shinfo(to);
5297 from_shinfo = skb_shinfo(from);
5298 if (to_shinfo->frag_list || from_shinfo->frag_list)
5299 return false;
5300 if (skb_zcopy(to) || skb_zcopy(from))
5301 return false;
5302
5303 if (skb_headlen(from) != 0) {
5304 struct page *page;
5305 unsigned int offset;
5306
5307 if (to_shinfo->nr_frags +
5308 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5309 return false;
5310
5311 if (skb_head_is_locked(from))
5312 return false;
5313
5314 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5315
5316 page = virt_to_head_page(from->head);
5317 offset = from->data - (unsigned char *)page_address(page);
5318
5319 skb_fill_page_desc(to, to_shinfo->nr_frags,
5320 page, offset, skb_headlen(from));
5321 *fragstolen = true;
5322 } else {
5323 if (to_shinfo->nr_frags +
5324 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5325 return false;
5326
5327 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5328 }
5329
5330 WARN_ON_ONCE(delta < len);
5331
5332 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5333 from_shinfo->frags,
5334 from_shinfo->nr_frags * sizeof(skb_frag_t));
5335 to_shinfo->nr_frags += from_shinfo->nr_frags;
5336
5337 if (!skb_cloned(from))
5338 from_shinfo->nr_frags = 0;
5339
5340 /* if the skb is not cloned this does nothing
5341 * since we set nr_frags to 0.
5342 */
5343 for (i = 0; i < from_shinfo->nr_frags; i++)
5344 __skb_frag_ref(&from_shinfo->frags[i]);
5345
5346 to->truesize += delta;
5347 to->len += len;
5348 to->data_len += len;
5349
5350 *delta_truesize = delta;
5351 return true;
5352 }
5353 EXPORT_SYMBOL(skb_try_coalesce);
5354
5355 /**
5356 * skb_scrub_packet - scrub an skb
5357 *
5358 * @skb: buffer to clean
5359 * @xnet: packet is crossing netns
5360 *
5361 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5362 * into/from a tunnel. Some information have to be cleared during these
5363 * operations.
5364 * skb_scrub_packet can also be used to clean a skb before injecting it in
5365 * another namespace (@xnet == true). We have to clear all information in the
5366 * skb that could impact namespace isolation.
5367 */
skb_scrub_packet(struct sk_buff * skb,bool xnet)5368 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5369 {
5370 skb->pkt_type = PACKET_HOST;
5371 skb->skb_iif = 0;
5372 skb->ignore_df = 0;
5373 skb_dst_drop(skb);
5374 skb_ext_reset(skb);
5375 nf_reset_ct(skb);
5376 nf_reset_trace(skb);
5377
5378 #ifdef CONFIG_NET_SWITCHDEV
5379 skb->offload_fwd_mark = 0;
5380 skb->offload_l3_fwd_mark = 0;
5381 #endif
5382
5383 if (!xnet)
5384 return;
5385
5386 ipvs_reset(skb);
5387 skb->mark = 0;
5388 skb_clear_tstamp(skb);
5389 }
5390 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5391
5392 /**
5393 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5394 *
5395 * @skb: GSO skb
5396 *
5397 * skb_gso_transport_seglen is used to determine the real size of the
5398 * individual segments, including Layer4 headers (TCP/UDP).
5399 *
5400 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5401 */
skb_gso_transport_seglen(const struct sk_buff * skb)5402 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5403 {
5404 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5405 unsigned int thlen = 0;
5406
5407 if (skb->encapsulation) {
5408 thlen = skb_inner_transport_header(skb) -
5409 skb_transport_header(skb);
5410
5411 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5412 thlen += inner_tcp_hdrlen(skb);
5413 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5414 thlen = tcp_hdrlen(skb);
5415 } else if (unlikely(skb_is_gso_sctp(skb))) {
5416 thlen = sizeof(struct sctphdr);
5417 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5418 thlen = sizeof(struct udphdr);
5419 }
5420 /* UFO sets gso_size to the size of the fragmentation
5421 * payload, i.e. the size of the L4 (UDP) header is already
5422 * accounted for.
5423 */
5424 return thlen + shinfo->gso_size;
5425 }
5426
5427 /**
5428 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5429 *
5430 * @skb: GSO skb
5431 *
5432 * skb_gso_network_seglen is used to determine the real size of the
5433 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5434 *
5435 * The MAC/L2 header is not accounted for.
5436 */
skb_gso_network_seglen(const struct sk_buff * skb)5437 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5438 {
5439 unsigned int hdr_len = skb_transport_header(skb) -
5440 skb_network_header(skb);
5441
5442 return hdr_len + skb_gso_transport_seglen(skb);
5443 }
5444
5445 /**
5446 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5447 *
5448 * @skb: GSO skb
5449 *
5450 * skb_gso_mac_seglen is used to determine the real size of the
5451 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5452 * headers (TCP/UDP).
5453 */
skb_gso_mac_seglen(const struct sk_buff * skb)5454 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5455 {
5456 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5457
5458 return hdr_len + skb_gso_transport_seglen(skb);
5459 }
5460
5461 /**
5462 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5463 *
5464 * There are a couple of instances where we have a GSO skb, and we
5465 * want to determine what size it would be after it is segmented.
5466 *
5467 * We might want to check:
5468 * - L3+L4+payload size (e.g. IP forwarding)
5469 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5470 *
5471 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5472 *
5473 * @skb: GSO skb
5474 *
5475 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5476 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5477 *
5478 * @max_len: The maximum permissible length.
5479 *
5480 * Returns true if the segmented length <= max length.
5481 */
skb_gso_size_check(const struct sk_buff * skb,unsigned int seg_len,unsigned int max_len)5482 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5483 unsigned int seg_len,
5484 unsigned int max_len) {
5485 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5486 const struct sk_buff *iter;
5487
5488 if (shinfo->gso_size != GSO_BY_FRAGS)
5489 return seg_len <= max_len;
5490
5491 /* Undo this so we can re-use header sizes */
5492 seg_len -= GSO_BY_FRAGS;
5493
5494 skb_walk_frags(skb, iter) {
5495 if (seg_len + skb_headlen(iter) > max_len)
5496 return false;
5497 }
5498
5499 return true;
5500 }
5501
5502 /**
5503 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5504 *
5505 * @skb: GSO skb
5506 * @mtu: MTU to validate against
5507 *
5508 * skb_gso_validate_network_len validates if a given skb will fit a
5509 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5510 * payload.
5511 */
skb_gso_validate_network_len(const struct sk_buff * skb,unsigned int mtu)5512 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5513 {
5514 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5515 }
5516 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5517
5518 /**
5519 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5520 *
5521 * @skb: GSO skb
5522 * @len: length to validate against
5523 *
5524 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5525 * length once split, including L2, L3 and L4 headers and the payload.
5526 */
skb_gso_validate_mac_len(const struct sk_buff * skb,unsigned int len)5527 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5528 {
5529 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5530 }
5531 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5532
skb_reorder_vlan_header(struct sk_buff * skb)5533 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5534 {
5535 int mac_len, meta_len;
5536 void *meta;
5537
5538 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5539 kfree_skb(skb);
5540 return NULL;
5541 }
5542
5543 mac_len = skb->data - skb_mac_header(skb);
5544 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5545 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5546 mac_len - VLAN_HLEN - ETH_TLEN);
5547 }
5548
5549 meta_len = skb_metadata_len(skb);
5550 if (meta_len) {
5551 meta = skb_metadata_end(skb) - meta_len;
5552 memmove(meta + VLAN_HLEN, meta, meta_len);
5553 }
5554
5555 skb->mac_header += VLAN_HLEN;
5556 return skb;
5557 }
5558
skb_vlan_untag(struct sk_buff * skb)5559 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5560 {
5561 struct vlan_hdr *vhdr;
5562 u16 vlan_tci;
5563
5564 if (unlikely(skb_vlan_tag_present(skb))) {
5565 /* vlan_tci is already set-up so leave this for another time */
5566 return skb;
5567 }
5568
5569 skb = skb_share_check(skb, GFP_ATOMIC);
5570 if (unlikely(!skb))
5571 goto err_free;
5572 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5573 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5574 goto err_free;
5575
5576 vhdr = (struct vlan_hdr *)skb->data;
5577 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5578 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5579
5580 skb_pull_rcsum(skb, VLAN_HLEN);
5581 vlan_set_encap_proto(skb, vhdr);
5582
5583 skb = skb_reorder_vlan_header(skb);
5584 if (unlikely(!skb))
5585 goto err_free;
5586
5587 skb_reset_network_header(skb);
5588 if (!skb_transport_header_was_set(skb))
5589 skb_reset_transport_header(skb);
5590 skb_reset_mac_len(skb);
5591
5592 return skb;
5593
5594 err_free:
5595 kfree_skb(skb);
5596 return NULL;
5597 }
5598 EXPORT_SYMBOL(skb_vlan_untag);
5599
skb_ensure_writable(struct sk_buff * skb,unsigned int write_len)5600 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5601 {
5602 if (!pskb_may_pull(skb, write_len))
5603 return -ENOMEM;
5604
5605 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5606 return 0;
5607
5608 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5609 }
5610 EXPORT_SYMBOL(skb_ensure_writable);
5611
5612 /* remove VLAN header from packet and update csum accordingly.
5613 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5614 */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)5615 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5616 {
5617 struct vlan_hdr *vhdr;
5618 int offset = skb->data - skb_mac_header(skb);
5619 int err;
5620
5621 if (WARN_ONCE(offset,
5622 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5623 offset)) {
5624 return -EINVAL;
5625 }
5626
5627 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5628 if (unlikely(err))
5629 return err;
5630
5631 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5632
5633 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5634 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5635
5636 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5637 __skb_pull(skb, VLAN_HLEN);
5638
5639 vlan_set_encap_proto(skb, vhdr);
5640 skb->mac_header += VLAN_HLEN;
5641
5642 if (skb_network_offset(skb) < ETH_HLEN)
5643 skb_set_network_header(skb, ETH_HLEN);
5644
5645 skb_reset_mac_len(skb);
5646
5647 return err;
5648 }
5649 EXPORT_SYMBOL(__skb_vlan_pop);
5650
5651 /* Pop a vlan tag either from hwaccel or from payload.
5652 * Expects skb->data at mac header.
5653 */
skb_vlan_pop(struct sk_buff * skb)5654 int skb_vlan_pop(struct sk_buff *skb)
5655 {
5656 u16 vlan_tci;
5657 __be16 vlan_proto;
5658 int err;
5659
5660 if (likely(skb_vlan_tag_present(skb))) {
5661 __vlan_hwaccel_clear_tag(skb);
5662 } else {
5663 if (unlikely(!eth_type_vlan(skb->protocol)))
5664 return 0;
5665
5666 err = __skb_vlan_pop(skb, &vlan_tci);
5667 if (err)
5668 return err;
5669 }
5670 /* move next vlan tag to hw accel tag */
5671 if (likely(!eth_type_vlan(skb->protocol)))
5672 return 0;
5673
5674 vlan_proto = skb->protocol;
5675 err = __skb_vlan_pop(skb, &vlan_tci);
5676 if (unlikely(err))
5677 return err;
5678
5679 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5680 return 0;
5681 }
5682 EXPORT_SYMBOL(skb_vlan_pop);
5683
5684 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5685 * Expects skb->data at mac header.
5686 */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)5687 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5688 {
5689 if (skb_vlan_tag_present(skb)) {
5690 int offset = skb->data - skb_mac_header(skb);
5691 int err;
5692
5693 if (WARN_ONCE(offset,
5694 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5695 offset)) {
5696 return -EINVAL;
5697 }
5698
5699 err = __vlan_insert_tag(skb, skb->vlan_proto,
5700 skb_vlan_tag_get(skb));
5701 if (err)
5702 return err;
5703
5704 skb->protocol = skb->vlan_proto;
5705 skb->mac_len += VLAN_HLEN;
5706
5707 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5708 }
5709 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5710 return 0;
5711 }
5712 EXPORT_SYMBOL(skb_vlan_push);
5713
5714 /**
5715 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5716 *
5717 * @skb: Socket buffer to modify
5718 *
5719 * Drop the Ethernet header of @skb.
5720 *
5721 * Expects that skb->data points to the mac header and that no VLAN tags are
5722 * present.
5723 *
5724 * Returns 0 on success, -errno otherwise.
5725 */
skb_eth_pop(struct sk_buff * skb)5726 int skb_eth_pop(struct sk_buff *skb)
5727 {
5728 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5729 skb_network_offset(skb) < ETH_HLEN)
5730 return -EPROTO;
5731
5732 skb_pull_rcsum(skb, ETH_HLEN);
5733 skb_reset_mac_header(skb);
5734 skb_reset_mac_len(skb);
5735
5736 return 0;
5737 }
5738 EXPORT_SYMBOL(skb_eth_pop);
5739
5740 /**
5741 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5742 *
5743 * @skb: Socket buffer to modify
5744 * @dst: Destination MAC address of the new header
5745 * @src: Source MAC address of the new header
5746 *
5747 * Prepend @skb with a new Ethernet header.
5748 *
5749 * Expects that skb->data points to the mac header, which must be empty.
5750 *
5751 * Returns 0 on success, -errno otherwise.
5752 */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)5753 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5754 const unsigned char *src)
5755 {
5756 struct ethhdr *eth;
5757 int err;
5758
5759 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5760 return -EPROTO;
5761
5762 err = skb_cow_head(skb, sizeof(*eth));
5763 if (err < 0)
5764 return err;
5765
5766 skb_push(skb, sizeof(*eth));
5767 skb_reset_mac_header(skb);
5768 skb_reset_mac_len(skb);
5769
5770 eth = eth_hdr(skb);
5771 ether_addr_copy(eth->h_dest, dst);
5772 ether_addr_copy(eth->h_source, src);
5773 eth->h_proto = skb->protocol;
5774
5775 skb_postpush_rcsum(skb, eth, sizeof(*eth));
5776
5777 return 0;
5778 }
5779 EXPORT_SYMBOL(skb_eth_push);
5780
5781 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)5782 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5783 __be16 ethertype)
5784 {
5785 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5786 __be16 diff[] = { ~hdr->h_proto, ethertype };
5787
5788 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5789 }
5790
5791 hdr->h_proto = ethertype;
5792 }
5793
5794 /**
5795 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5796 * the packet
5797 *
5798 * @skb: buffer
5799 * @mpls_lse: MPLS label stack entry to push
5800 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5801 * @mac_len: length of the MAC header
5802 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5803 * ethernet
5804 *
5805 * Expects skb->data at mac header.
5806 *
5807 * Returns 0 on success, -errno otherwise.
5808 */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)5809 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5810 int mac_len, bool ethernet)
5811 {
5812 struct mpls_shim_hdr *lse;
5813 int err;
5814
5815 if (unlikely(!eth_p_mpls(mpls_proto)))
5816 return -EINVAL;
5817
5818 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5819 if (skb->encapsulation)
5820 return -EINVAL;
5821
5822 err = skb_cow_head(skb, MPLS_HLEN);
5823 if (unlikely(err))
5824 return err;
5825
5826 if (!skb->inner_protocol) {
5827 skb_set_inner_network_header(skb, skb_network_offset(skb));
5828 skb_set_inner_protocol(skb, skb->protocol);
5829 }
5830
5831 skb_push(skb, MPLS_HLEN);
5832 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5833 mac_len);
5834 skb_reset_mac_header(skb);
5835 skb_set_network_header(skb, mac_len);
5836 skb_reset_mac_len(skb);
5837
5838 lse = mpls_hdr(skb);
5839 lse->label_stack_entry = mpls_lse;
5840 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5841
5842 if (ethernet && mac_len >= ETH_HLEN)
5843 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5844 skb->protocol = mpls_proto;
5845
5846 return 0;
5847 }
5848 EXPORT_SYMBOL_GPL(skb_mpls_push);
5849
5850 /**
5851 * skb_mpls_pop() - pop the outermost MPLS header
5852 *
5853 * @skb: buffer
5854 * @next_proto: ethertype of header after popped MPLS header
5855 * @mac_len: length of the MAC header
5856 * @ethernet: flag to indicate if the packet is ethernet
5857 *
5858 * Expects skb->data at mac header.
5859 *
5860 * Returns 0 on success, -errno otherwise.
5861 */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)5862 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5863 bool ethernet)
5864 {
5865 int err;
5866
5867 if (unlikely(!eth_p_mpls(skb->protocol)))
5868 return 0;
5869
5870 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5871 if (unlikely(err))
5872 return err;
5873
5874 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5875 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5876 mac_len);
5877
5878 __skb_pull(skb, MPLS_HLEN);
5879 skb_reset_mac_header(skb);
5880 skb_set_network_header(skb, mac_len);
5881
5882 if (ethernet && mac_len >= ETH_HLEN) {
5883 struct ethhdr *hdr;
5884
5885 /* use mpls_hdr() to get ethertype to account for VLANs. */
5886 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5887 skb_mod_eth_type(skb, hdr, next_proto);
5888 }
5889 skb->protocol = next_proto;
5890
5891 return 0;
5892 }
5893 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5894
5895 /**
5896 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5897 *
5898 * @skb: buffer
5899 * @mpls_lse: new MPLS label stack entry to update to
5900 *
5901 * Expects skb->data at mac header.
5902 *
5903 * Returns 0 on success, -errno otherwise.
5904 */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)5905 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5906 {
5907 int err;
5908
5909 if (unlikely(!eth_p_mpls(skb->protocol)))
5910 return -EINVAL;
5911
5912 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5913 if (unlikely(err))
5914 return err;
5915
5916 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5917 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5918
5919 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5920 }
5921
5922 mpls_hdr(skb)->label_stack_entry = mpls_lse;
5923
5924 return 0;
5925 }
5926 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5927
5928 /**
5929 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5930 *
5931 * @skb: buffer
5932 *
5933 * Expects skb->data at mac header.
5934 *
5935 * Returns 0 on success, -errno otherwise.
5936 */
skb_mpls_dec_ttl(struct sk_buff * skb)5937 int skb_mpls_dec_ttl(struct sk_buff *skb)
5938 {
5939 u32 lse;
5940 u8 ttl;
5941
5942 if (unlikely(!eth_p_mpls(skb->protocol)))
5943 return -EINVAL;
5944
5945 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5946 return -ENOMEM;
5947
5948 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5949 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5950 if (!--ttl)
5951 return -EINVAL;
5952
5953 lse &= ~MPLS_LS_TTL_MASK;
5954 lse |= ttl << MPLS_LS_TTL_SHIFT;
5955
5956 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5957 }
5958 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5959
5960 /**
5961 * alloc_skb_with_frags - allocate skb with page frags
5962 *
5963 * @header_len: size of linear part
5964 * @data_len: needed length in frags
5965 * @max_page_order: max page order desired.
5966 * @errcode: pointer to error code if any
5967 * @gfp_mask: allocation mask
5968 *
5969 * This can be used to allocate a paged skb, given a maximal order for frags.
5970 */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int max_page_order,int * errcode,gfp_t gfp_mask)5971 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5972 unsigned long data_len,
5973 int max_page_order,
5974 int *errcode,
5975 gfp_t gfp_mask)
5976 {
5977 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5978 unsigned long chunk;
5979 struct sk_buff *skb;
5980 struct page *page;
5981 int i;
5982
5983 *errcode = -EMSGSIZE;
5984 /* Note this test could be relaxed, if we succeed to allocate
5985 * high order pages...
5986 */
5987 if (npages > MAX_SKB_FRAGS)
5988 return NULL;
5989
5990 *errcode = -ENOBUFS;
5991 skb = alloc_skb(header_len, gfp_mask);
5992 if (!skb)
5993 return NULL;
5994
5995 skb->truesize += npages << PAGE_SHIFT;
5996
5997 for (i = 0; npages > 0; i++) {
5998 int order = max_page_order;
5999
6000 while (order) {
6001 if (npages >= 1 << order) {
6002 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6003 __GFP_COMP |
6004 __GFP_NOWARN,
6005 order);
6006 if (page)
6007 goto fill_page;
6008 /* Do not retry other high order allocations */
6009 order = 1;
6010 max_page_order = 0;
6011 }
6012 order--;
6013 }
6014 page = alloc_page(gfp_mask);
6015 if (!page)
6016 goto failure;
6017 fill_page:
6018 chunk = min_t(unsigned long, data_len,
6019 PAGE_SIZE << order);
6020 skb_fill_page_desc(skb, i, page, 0, chunk);
6021 data_len -= chunk;
6022 npages -= 1 << order;
6023 }
6024 return skb;
6025
6026 failure:
6027 kfree_skb(skb);
6028 return NULL;
6029 }
6030 EXPORT_SYMBOL(alloc_skb_with_frags);
6031
6032 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)6033 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6034 const int headlen, gfp_t gfp_mask)
6035 {
6036 int i;
6037 int size = skb_end_offset(skb);
6038 int new_hlen = headlen - off;
6039 u8 *data;
6040
6041 size = SKB_DATA_ALIGN(size);
6042
6043 if (skb_pfmemalloc(skb))
6044 gfp_mask |= __GFP_MEMALLOC;
6045 data = kmalloc_reserve(size +
6046 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6047 gfp_mask, NUMA_NO_NODE, NULL);
6048 if (!data)
6049 return -ENOMEM;
6050
6051 size = SKB_WITH_OVERHEAD(ksize(data));
6052
6053 /* Copy real data, and all frags */
6054 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6055 skb->len -= off;
6056
6057 memcpy((struct skb_shared_info *)(data + size),
6058 skb_shinfo(skb),
6059 offsetof(struct skb_shared_info,
6060 frags[skb_shinfo(skb)->nr_frags]));
6061 if (skb_cloned(skb)) {
6062 /* drop the old head gracefully */
6063 if (skb_orphan_frags(skb, gfp_mask)) {
6064 kfree(data);
6065 return -ENOMEM;
6066 }
6067 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6068 skb_frag_ref(skb, i);
6069 if (skb_has_frag_list(skb))
6070 skb_clone_fraglist(skb);
6071 skb_release_data(skb);
6072 } else {
6073 /* we can reuse existing recount- all we did was
6074 * relocate values
6075 */
6076 skb_free_head(skb);
6077 }
6078
6079 skb->head = data;
6080 skb->data = data;
6081 skb->head_frag = 0;
6082 skb_set_end_offset(skb, size);
6083 skb_set_tail_pointer(skb, skb_headlen(skb));
6084 skb_headers_offset_update(skb, 0);
6085 skb->cloned = 0;
6086 skb->hdr_len = 0;
6087 skb->nohdr = 0;
6088 atomic_set(&skb_shinfo(skb)->dataref, 1);
6089
6090 return 0;
6091 }
6092
6093 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6094
6095 /* carve out the first eat bytes from skb's frag_list. May recurse into
6096 * pskb_carve()
6097 */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6098 static int pskb_carve_frag_list(struct sk_buff *skb,
6099 struct skb_shared_info *shinfo, int eat,
6100 gfp_t gfp_mask)
6101 {
6102 struct sk_buff *list = shinfo->frag_list;
6103 struct sk_buff *clone = NULL;
6104 struct sk_buff *insp = NULL;
6105
6106 do {
6107 if (!list) {
6108 pr_err("Not enough bytes to eat. Want %d\n", eat);
6109 return -EFAULT;
6110 }
6111 if (list->len <= eat) {
6112 /* Eaten as whole. */
6113 eat -= list->len;
6114 list = list->next;
6115 insp = list;
6116 } else {
6117 /* Eaten partially. */
6118 if (skb_shared(list)) {
6119 clone = skb_clone(list, gfp_mask);
6120 if (!clone)
6121 return -ENOMEM;
6122 insp = list->next;
6123 list = clone;
6124 } else {
6125 /* This may be pulled without problems. */
6126 insp = list;
6127 }
6128 if (pskb_carve(list, eat, gfp_mask) < 0) {
6129 kfree_skb(clone);
6130 return -ENOMEM;
6131 }
6132 break;
6133 }
6134 } while (eat);
6135
6136 /* Free pulled out fragments. */
6137 while ((list = shinfo->frag_list) != insp) {
6138 shinfo->frag_list = list->next;
6139 consume_skb(list);
6140 }
6141 /* And insert new clone at head. */
6142 if (clone) {
6143 clone->next = list;
6144 shinfo->frag_list = clone;
6145 }
6146 return 0;
6147 }
6148
6149 /* carve off first len bytes from skb. Split line (off) is in the
6150 * non-linear part of skb
6151 */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6152 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6153 int pos, gfp_t gfp_mask)
6154 {
6155 int i, k = 0;
6156 int size = skb_end_offset(skb);
6157 u8 *data;
6158 const int nfrags = skb_shinfo(skb)->nr_frags;
6159 struct skb_shared_info *shinfo;
6160
6161 size = SKB_DATA_ALIGN(size);
6162
6163 if (skb_pfmemalloc(skb))
6164 gfp_mask |= __GFP_MEMALLOC;
6165 data = kmalloc_reserve(size +
6166 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6167 gfp_mask, NUMA_NO_NODE, NULL);
6168 if (!data)
6169 return -ENOMEM;
6170
6171 size = SKB_WITH_OVERHEAD(ksize(data));
6172
6173 memcpy((struct skb_shared_info *)(data + size),
6174 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6175 if (skb_orphan_frags(skb, gfp_mask)) {
6176 kfree(data);
6177 return -ENOMEM;
6178 }
6179 shinfo = (struct skb_shared_info *)(data + size);
6180 for (i = 0; i < nfrags; i++) {
6181 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6182
6183 if (pos + fsize > off) {
6184 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6185
6186 if (pos < off) {
6187 /* Split frag.
6188 * We have two variants in this case:
6189 * 1. Move all the frag to the second
6190 * part, if it is possible. F.e.
6191 * this approach is mandatory for TUX,
6192 * where splitting is expensive.
6193 * 2. Split is accurately. We make this.
6194 */
6195 skb_frag_off_add(&shinfo->frags[0], off - pos);
6196 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6197 }
6198 skb_frag_ref(skb, i);
6199 k++;
6200 }
6201 pos += fsize;
6202 }
6203 shinfo->nr_frags = k;
6204 if (skb_has_frag_list(skb))
6205 skb_clone_fraglist(skb);
6206
6207 /* split line is in frag list */
6208 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6209 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6210 if (skb_has_frag_list(skb))
6211 kfree_skb_list(skb_shinfo(skb)->frag_list);
6212 kfree(data);
6213 return -ENOMEM;
6214 }
6215 skb_release_data(skb);
6216
6217 skb->head = data;
6218 skb->head_frag = 0;
6219 skb->data = data;
6220 skb_set_end_offset(skb, size);
6221 skb_reset_tail_pointer(skb);
6222 skb_headers_offset_update(skb, 0);
6223 skb->cloned = 0;
6224 skb->hdr_len = 0;
6225 skb->nohdr = 0;
6226 skb->len -= off;
6227 skb->data_len = skb->len;
6228 atomic_set(&skb_shinfo(skb)->dataref, 1);
6229 return 0;
6230 }
6231
6232 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6233 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6234 {
6235 int headlen = skb_headlen(skb);
6236
6237 if (len < headlen)
6238 return pskb_carve_inside_header(skb, len, headlen, gfp);
6239 else
6240 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6241 }
6242
6243 /* Extract to_copy bytes starting at off from skb, and return this in
6244 * a new skb
6245 */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6246 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6247 int to_copy, gfp_t gfp)
6248 {
6249 struct sk_buff *clone = skb_clone(skb, gfp);
6250
6251 if (!clone)
6252 return NULL;
6253
6254 if (pskb_carve(clone, off, gfp) < 0 ||
6255 pskb_trim(clone, to_copy)) {
6256 kfree_skb(clone);
6257 return NULL;
6258 }
6259 return clone;
6260 }
6261 EXPORT_SYMBOL(pskb_extract);
6262
6263 /**
6264 * skb_condense - try to get rid of fragments/frag_list if possible
6265 * @skb: buffer
6266 *
6267 * Can be used to save memory before skb is added to a busy queue.
6268 * If packet has bytes in frags and enough tail room in skb->head,
6269 * pull all of them, so that we can free the frags right now and adjust
6270 * truesize.
6271 * Notes:
6272 * We do not reallocate skb->head thus can not fail.
6273 * Caller must re-evaluate skb->truesize if needed.
6274 */
skb_condense(struct sk_buff * skb)6275 void skb_condense(struct sk_buff *skb)
6276 {
6277 if (skb->data_len) {
6278 if (skb->data_len > skb->end - skb->tail ||
6279 skb_cloned(skb))
6280 return;
6281
6282 /* Nice, we can free page frag(s) right now */
6283 __pskb_pull_tail(skb, skb->data_len);
6284 }
6285 /* At this point, skb->truesize might be over estimated,
6286 * because skb had a fragment, and fragments do not tell
6287 * their truesize.
6288 * When we pulled its content into skb->head, fragment
6289 * was freed, but __pskb_pull_tail() could not possibly
6290 * adjust skb->truesize, not knowing the frag truesize.
6291 */
6292 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6293 }
6294
6295 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6296 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6297 {
6298 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6299 }
6300
6301 /**
6302 * __skb_ext_alloc - allocate a new skb extensions storage
6303 *
6304 * @flags: See kmalloc().
6305 *
6306 * Returns the newly allocated pointer. The pointer can later attached to a
6307 * skb via __skb_ext_set().
6308 * Note: caller must handle the skb_ext as an opaque data.
6309 */
__skb_ext_alloc(gfp_t flags)6310 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6311 {
6312 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6313
6314 if (new) {
6315 memset(new->offset, 0, sizeof(new->offset));
6316 refcount_set(&new->refcnt, 1);
6317 }
6318
6319 return new;
6320 }
6321
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6322 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6323 unsigned int old_active)
6324 {
6325 struct skb_ext *new;
6326
6327 if (refcount_read(&old->refcnt) == 1)
6328 return old;
6329
6330 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6331 if (!new)
6332 return NULL;
6333
6334 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6335 refcount_set(&new->refcnt, 1);
6336
6337 #ifdef CONFIG_XFRM
6338 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6339 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6340 unsigned int i;
6341
6342 for (i = 0; i < sp->len; i++)
6343 xfrm_state_hold(sp->xvec[i]);
6344 }
6345 #endif
6346 __skb_ext_put(old);
6347 return new;
6348 }
6349
6350 /**
6351 * __skb_ext_set - attach the specified extension storage to this skb
6352 * @skb: buffer
6353 * @id: extension id
6354 * @ext: extension storage previously allocated via __skb_ext_alloc()
6355 *
6356 * Existing extensions, if any, are cleared.
6357 *
6358 * Returns the pointer to the extension.
6359 */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)6360 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6361 struct skb_ext *ext)
6362 {
6363 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6364
6365 skb_ext_put(skb);
6366 newlen = newoff + skb_ext_type_len[id];
6367 ext->chunks = newlen;
6368 ext->offset[id] = newoff;
6369 skb->extensions = ext;
6370 skb->active_extensions = 1 << id;
6371 return skb_ext_get_ptr(ext, id);
6372 }
6373
6374 /**
6375 * skb_ext_add - allocate space for given extension, COW if needed
6376 * @skb: buffer
6377 * @id: extension to allocate space for
6378 *
6379 * Allocates enough space for the given extension.
6380 * If the extension is already present, a pointer to that extension
6381 * is returned.
6382 *
6383 * If the skb was cloned, COW applies and the returned memory can be
6384 * modified without changing the extension space of clones buffers.
6385 *
6386 * Returns pointer to the extension or NULL on allocation failure.
6387 */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)6388 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6389 {
6390 struct skb_ext *new, *old = NULL;
6391 unsigned int newlen, newoff;
6392
6393 if (skb->active_extensions) {
6394 old = skb->extensions;
6395
6396 new = skb_ext_maybe_cow(old, skb->active_extensions);
6397 if (!new)
6398 return NULL;
6399
6400 if (__skb_ext_exist(new, id))
6401 goto set_active;
6402
6403 newoff = new->chunks;
6404 } else {
6405 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6406
6407 new = __skb_ext_alloc(GFP_ATOMIC);
6408 if (!new)
6409 return NULL;
6410 }
6411
6412 newlen = newoff + skb_ext_type_len[id];
6413 new->chunks = newlen;
6414 new->offset[id] = newoff;
6415 set_active:
6416 skb->slow_gro = 1;
6417 skb->extensions = new;
6418 skb->active_extensions |= 1 << id;
6419 return skb_ext_get_ptr(new, id);
6420 }
6421 EXPORT_SYMBOL(skb_ext_add);
6422
6423 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)6424 static void skb_ext_put_sp(struct sec_path *sp)
6425 {
6426 unsigned int i;
6427
6428 for (i = 0; i < sp->len; i++)
6429 xfrm_state_put(sp->xvec[i]);
6430 }
6431 #endif
6432
6433 #ifdef CONFIG_MCTP_FLOWS
skb_ext_put_mctp(struct mctp_flow * flow)6434 static void skb_ext_put_mctp(struct mctp_flow *flow)
6435 {
6436 if (flow->key)
6437 mctp_key_unref(flow->key);
6438 }
6439 #endif
6440
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)6441 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6442 {
6443 struct skb_ext *ext = skb->extensions;
6444
6445 skb->active_extensions &= ~(1 << id);
6446 if (skb->active_extensions == 0) {
6447 skb->extensions = NULL;
6448 __skb_ext_put(ext);
6449 #ifdef CONFIG_XFRM
6450 } else if (id == SKB_EXT_SEC_PATH &&
6451 refcount_read(&ext->refcnt) == 1) {
6452 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6453
6454 skb_ext_put_sp(sp);
6455 sp->len = 0;
6456 #endif
6457 }
6458 }
6459 EXPORT_SYMBOL(__skb_ext_del);
6460
__skb_ext_put(struct skb_ext * ext)6461 void __skb_ext_put(struct skb_ext *ext)
6462 {
6463 /* If this is last clone, nothing can increment
6464 * it after check passes. Avoids one atomic op.
6465 */
6466 if (refcount_read(&ext->refcnt) == 1)
6467 goto free_now;
6468
6469 if (!refcount_dec_and_test(&ext->refcnt))
6470 return;
6471 free_now:
6472 #ifdef CONFIG_XFRM
6473 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6474 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6475 #endif
6476 #ifdef CONFIG_MCTP_FLOWS
6477 if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6478 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6479 #endif
6480
6481 kmem_cache_free(skbuff_ext_cache, ext);
6482 }
6483 EXPORT_SYMBOL(__skb_ext_put);
6484 #endif /* CONFIG_SKB_EXTENSIONS */
6485
6486 /**
6487 * skb_attempt_defer_free - queue skb for remote freeing
6488 * @skb: buffer
6489 *
6490 * Put @skb in a per-cpu list, using the cpu which
6491 * allocated the skb/pages to reduce false sharing
6492 * and memory zone spinlock contention.
6493 */
skb_attempt_defer_free(struct sk_buff * skb)6494 void skb_attempt_defer_free(struct sk_buff *skb)
6495 {
6496 int cpu = skb->alloc_cpu;
6497 struct softnet_data *sd;
6498 unsigned long flags;
6499 unsigned int defer_max;
6500 bool kick;
6501
6502 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6503 !cpu_online(cpu) ||
6504 cpu == raw_smp_processor_id()) {
6505 nodefer: __kfree_skb(skb);
6506 return;
6507 }
6508
6509 sd = &per_cpu(softnet_data, cpu);
6510 defer_max = READ_ONCE(sysctl_skb_defer_max);
6511 if (READ_ONCE(sd->defer_count) >= defer_max)
6512 goto nodefer;
6513
6514 spin_lock_irqsave(&sd->defer_lock, flags);
6515 /* Send an IPI every time queue reaches half capacity. */
6516 kick = sd->defer_count == (defer_max >> 1);
6517 /* Paired with the READ_ONCE() few lines above */
6518 WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6519
6520 skb->next = sd->defer_list;
6521 /* Paired with READ_ONCE() in skb_defer_free_flush() */
6522 WRITE_ONCE(sd->defer_list, skb);
6523 spin_unlock_irqrestore(&sd->defer_lock, flags);
6524
6525 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6526 * if we are unlucky enough (this seems very unlikely).
6527 */
6528 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6529 smp_call_function_single_async(cpu, &sd->defer_csd);
6530 }
6531