1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 */
9
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <linux/llist.h>
40 #include <net/flow.h>
41 #include <net/page_pool.h>
42 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
43 #include <linux/netfilter/nf_conntrack_common.h>
44 #endif
45 #include <net/net_debug.h>
46
47 /**
48 * DOC: skb checksums
49 *
50 * The interface for checksum offload between the stack and networking drivers
51 * is as follows...
52 *
53 * IP checksum related features
54 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
55 *
56 * Drivers advertise checksum offload capabilities in the features of a device.
57 * From the stack's point of view these are capabilities offered by the driver.
58 * A driver typically only advertises features that it is capable of offloading
59 * to its device.
60 *
61 * .. flat-table:: Checksum related device features
62 * :widths: 1 10
63 *
64 * * - %NETIF_F_HW_CSUM
65 * - The driver (or its device) is able to compute one
66 * IP (one's complement) checksum for any combination
67 * of protocols or protocol layering. The checksum is
68 * computed and set in a packet per the CHECKSUM_PARTIAL
69 * interface (see below).
70 *
71 * * - %NETIF_F_IP_CSUM
72 * - Driver (device) is only able to checksum plain
73 * TCP or UDP packets over IPv4. These are specifically
74 * unencapsulated packets of the form IPv4|TCP or
75 * IPv4|UDP where the Protocol field in the IPv4 header
76 * is TCP or UDP. The IPv4 header may contain IP options.
77 * This feature cannot be set in features for a device
78 * with NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * * - %NETIF_F_IPV6_CSUM
82 * - Driver (device) is only able to checksum plain
83 * TCP or UDP packets over IPv6. These are specifically
84 * unencapsulated packets of the form IPv6|TCP or
85 * IPv6|UDP where the Next Header field in the IPv6
86 * header is either TCP or UDP. IPv6 extension headers
87 * are not supported with this feature. This feature
88 * cannot be set in features for a device with
89 * NETIF_F_HW_CSUM also set. This feature is being
90 * DEPRECATED (see below).
91 *
92 * * - %NETIF_F_RXCSUM
93 * - Driver (device) performs receive checksum offload.
94 * This flag is only used to disable the RX checksum
95 * feature for a device. The stack will accept receive
96 * checksum indication in packets received on a device
97 * regardless of whether NETIF_F_RXCSUM is set.
98 *
99 * Checksumming of received packets by device
100 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
101 *
102 * Indication of checksum verification is set in &sk_buff.ip_summed.
103 * Possible values are:
104 *
105 * - %CHECKSUM_NONE
106 *
107 * Device did not checksum this packet e.g. due to lack of capabilities.
108 * The packet contains full (though not verified) checksum in packet but
109 * not in skb->csum. Thus, skb->csum is undefined in this case.
110 *
111 * - %CHECKSUM_UNNECESSARY
112 *
113 * The hardware you're dealing with doesn't calculate the full checksum
114 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
115 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
116 * if their checksums are okay. &sk_buff.csum is still undefined in this case
117 * though. A driver or device must never modify the checksum field in the
118 * packet even if checksum is verified.
119 *
120 * %CHECKSUM_UNNECESSARY is applicable to following protocols:
121 *
122 * - TCP: IPv6 and IPv4.
123 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
124 * zero UDP checksum for either IPv4 or IPv6, the networking stack
125 * may perform further validation in this case.
126 * - GRE: only if the checksum is present in the header.
127 * - SCTP: indicates the CRC in SCTP header has been validated.
128 * - FCOE: indicates the CRC in FC frame has been validated.
129 *
130 * &sk_buff.csum_level indicates the number of consecutive checksums found in
131 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
132 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
133 * and a device is able to verify the checksums for UDP (possibly zero),
134 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
135 * two. If the device were only able to verify the UDP checksum and not
136 * GRE, either because it doesn't support GRE checksum or because GRE
137 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
138 * not considered in this case).
139 *
140 * - %CHECKSUM_COMPLETE
141 *
142 * This is the most generic way. The device supplied checksum of the _whole_
143 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
144 * hardware doesn't need to parse L3/L4 headers to implement this.
145 *
146 * Notes:
147 *
148 * - Even if device supports only some protocols, but is able to produce
149 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
150 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
151 *
152 * - %CHECKSUM_PARTIAL
153 *
154 * A checksum is set up to be offloaded to a device as described in the
155 * output description for CHECKSUM_PARTIAL. This may occur on a packet
156 * received directly from another Linux OS, e.g., a virtualized Linux kernel
157 * on the same host, or it may be set in the input path in GRO or remote
158 * checksum offload. For the purposes of checksum verification, the checksum
159 * referred to by skb->csum_start + skb->csum_offset and any preceding
160 * checksums in the packet are considered verified. Any checksums in the
161 * packet that are after the checksum being offloaded are not considered to
162 * be verified.
163 *
164 * Checksumming on transmit for non-GSO
165 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
166 *
167 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
168 * Values are:
169 *
170 * - %CHECKSUM_PARTIAL
171 *
172 * The driver is required to checksum the packet as seen by hard_start_xmit()
173 * from &sk_buff.csum_start up to the end, and to record/write the checksum at
174 * offset &sk_buff.csum_start + &sk_buff.csum_offset.
175 * A driver may verify that the
176 * csum_start and csum_offset values are valid values given the length and
177 * offset of the packet, but it should not attempt to validate that the
178 * checksum refers to a legitimate transport layer checksum -- it is the
179 * purview of the stack to validate that csum_start and csum_offset are set
180 * correctly.
181 *
182 * When the stack requests checksum offload for a packet, the driver MUST
183 * ensure that the checksum is set correctly. A driver can either offload the
184 * checksum calculation to the device, or call skb_checksum_help (in the case
185 * that the device does not support offload for a particular checksum).
186 *
187 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
188 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
189 * checksum offload capability.
190 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
191 * on network device checksumming capabilities: if a packet does not match
192 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
193 * &sk_buff.csum_not_inet, see :ref:`crc`)
194 * is called to resolve the checksum.
195 *
196 * - %CHECKSUM_NONE
197 *
198 * The skb was already checksummed by the protocol, or a checksum is not
199 * required.
200 *
201 * - %CHECKSUM_UNNECESSARY
202 *
203 * This has the same meaning as CHECKSUM_NONE for checksum offload on
204 * output.
205 *
206 * - %CHECKSUM_COMPLETE
207 *
208 * Not used in checksum output. If a driver observes a packet with this value
209 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
210 *
211 * .. _crc:
212 *
213 * Non-IP checksum (CRC) offloads
214 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
215 *
216 * .. flat-table::
217 * :widths: 1 10
218 *
219 * * - %NETIF_F_SCTP_CRC
220 * - This feature indicates that a device is capable of
221 * offloading the SCTP CRC in a packet. To perform this offload the stack
222 * will set csum_start and csum_offset accordingly, set ip_summed to
223 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
224 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
225 * A driver that supports both IP checksum offload and SCTP CRC32c offload
226 * must verify which offload is configured for a packet by testing the
227 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
228 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
229 *
230 * * - %NETIF_F_FCOE_CRC
231 * - This feature indicates that a device is capable of offloading the FCOE
232 * CRC in a packet. To perform this offload the stack will set ip_summed
233 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset
234 * accordingly. Note that there is no indication in the skbuff that the
235 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
236 * both IP checksum offload and FCOE CRC offload must verify which offload
237 * is configured for a packet, presumably by inspecting packet headers.
238 *
239 * Checksumming on output with GSO
240 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
241 *
242 * In the case of a GSO packet (skb_is_gso() is true), checksum offload
243 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
244 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
245 * part of the GSO operation is implied. If a checksum is being offloaded
246 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
247 * csum_offset are set to refer to the outermost checksum being offloaded
248 * (two offloaded checksums are possible with UDP encapsulation).
249 */
250
251 /* Don't change this without changing skb_csum_unnecessary! */
252 #define CHECKSUM_NONE 0
253 #define CHECKSUM_UNNECESSARY 1
254 #define CHECKSUM_COMPLETE 2
255 #define CHECKSUM_PARTIAL 3
256
257 /* Maximum value in skb->csum_level */
258 #define SKB_MAX_CSUM_LEVEL 3
259
260 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
261 #define SKB_WITH_OVERHEAD(X) \
262 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
263 #define SKB_MAX_ORDER(X, ORDER) \
264 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
265 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
266 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
267
268 /* return minimum truesize of one skb containing X bytes of data */
269 #define SKB_TRUESIZE(X) ((X) + \
270 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
271 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
272
273 struct ahash_request;
274 struct net_device;
275 struct scatterlist;
276 struct pipe_inode_info;
277 struct iov_iter;
278 struct napi_struct;
279 struct bpf_prog;
280 union bpf_attr;
281 struct skb_ext;
282
283 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
284 struct nf_bridge_info {
285 enum {
286 BRNF_PROTO_UNCHANGED,
287 BRNF_PROTO_8021Q,
288 BRNF_PROTO_PPPOE
289 } orig_proto:8;
290 u8 pkt_otherhost:1;
291 u8 in_prerouting:1;
292 u8 bridged_dnat:1;
293 __u16 frag_max_size;
294 struct net_device *physindev;
295
296 /* always valid & non-NULL from FORWARD on, for physdev match */
297 struct net_device *physoutdev;
298 union {
299 /* prerouting: detect dnat in orig/reply direction */
300 __be32 ipv4_daddr;
301 struct in6_addr ipv6_daddr;
302
303 /* after prerouting + nat detected: store original source
304 * mac since neigh resolution overwrites it, only used while
305 * skb is out in neigh layer.
306 */
307 char neigh_header[8];
308 };
309 };
310 #endif
311
312 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
313 /* Chain in tc_skb_ext will be used to share the tc chain with
314 * ovs recirc_id. It will be set to the current chain by tc
315 * and read by ovs to recirc_id.
316 */
317 struct tc_skb_ext {
318 __u32 chain;
319 __u16 mru;
320 __u16 zone;
321 u8 post_ct:1;
322 u8 post_ct_snat:1;
323 u8 post_ct_dnat:1;
324 };
325 #endif
326
327 struct sk_buff_head {
328 /* These two members must be first to match sk_buff. */
329 struct_group_tagged(sk_buff_list, list,
330 struct sk_buff *next;
331 struct sk_buff *prev;
332 );
333
334 __u32 qlen;
335 spinlock_t lock;
336 };
337
338 struct sk_buff;
339
340 /* The reason of skb drop, which is used in kfree_skb_reason().
341 * en...maybe they should be splited by group?
342 *
343 * Each item here should also be in 'TRACE_SKB_DROP_REASON', which is
344 * used to translate the reason to string.
345 */
346 enum skb_drop_reason {
347 SKB_NOT_DROPPED_YET = 0,
348 SKB_DROP_REASON_NOT_SPECIFIED, /* drop reason is not specified */
349 SKB_DROP_REASON_NO_SOCKET, /* socket not found */
350 SKB_DROP_REASON_PKT_TOO_SMALL, /* packet size is too small */
351 SKB_DROP_REASON_TCP_CSUM, /* TCP checksum error */
352 SKB_DROP_REASON_SOCKET_FILTER, /* dropped by socket filter */
353 SKB_DROP_REASON_UDP_CSUM, /* UDP checksum error */
354 SKB_DROP_REASON_NETFILTER_DROP, /* dropped by netfilter */
355 SKB_DROP_REASON_OTHERHOST, /* packet don't belong to current
356 * host (interface is in promisc
357 * mode)
358 */
359 SKB_DROP_REASON_IP_CSUM, /* IP checksum error */
360 SKB_DROP_REASON_IP_INHDR, /* there is something wrong with
361 * IP header (see
362 * IPSTATS_MIB_INHDRERRORS)
363 */
364 SKB_DROP_REASON_IP_RPFILTER, /* IP rpfilter validate failed.
365 * see the document for rp_filter
366 * in ip-sysctl.rst for more
367 * information
368 */
369 SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST, /* destination address of L2
370 * is multicast, but L3 is
371 * unicast.
372 */
373 SKB_DROP_REASON_XFRM_POLICY, /* xfrm policy check failed */
374 SKB_DROP_REASON_IP_NOPROTO, /* no support for IP protocol */
375 SKB_DROP_REASON_SOCKET_RCVBUFF, /* socket receive buff is full */
376 SKB_DROP_REASON_PROTO_MEM, /* proto memory limition, such as
377 * udp packet drop out of
378 * udp_memory_allocated.
379 */
380 SKB_DROP_REASON_TCP_MD5NOTFOUND, /* no MD5 hash and one
381 * expected, corresponding
382 * to LINUX_MIB_TCPMD5NOTFOUND
383 */
384 SKB_DROP_REASON_TCP_MD5UNEXPECTED, /* MD5 hash and we're not
385 * expecting one, corresponding
386 * to LINUX_MIB_TCPMD5UNEXPECTED
387 */
388 SKB_DROP_REASON_TCP_MD5FAILURE, /* MD5 hash and its wrong,
389 * corresponding to
390 * LINUX_MIB_TCPMD5FAILURE
391 */
392 SKB_DROP_REASON_SOCKET_BACKLOG, /* failed to add skb to socket
393 * backlog (see
394 * LINUX_MIB_TCPBACKLOGDROP)
395 */
396 SKB_DROP_REASON_TCP_FLAGS, /* TCP flags invalid */
397 SKB_DROP_REASON_TCP_ZEROWINDOW, /* TCP receive window size is zero,
398 * see LINUX_MIB_TCPZEROWINDOWDROP
399 */
400 SKB_DROP_REASON_TCP_OLD_DATA, /* the TCP data reveived is already
401 * received before (spurious retrans
402 * may happened), see
403 * LINUX_MIB_DELAYEDACKLOST
404 */
405 SKB_DROP_REASON_TCP_OVERWINDOW, /* the TCP data is out of window,
406 * the seq of the first byte exceed
407 * the right edges of receive
408 * window
409 */
410 SKB_DROP_REASON_TCP_OFOMERGE, /* the data of skb is already in
411 * the ofo queue, corresponding to
412 * LINUX_MIB_TCPOFOMERGE
413 */
414 SKB_DROP_REASON_TCP_RFC7323_PAWS, /* PAWS check, corresponding to
415 * LINUX_MIB_PAWSESTABREJECTED
416 */
417 SKB_DROP_REASON_TCP_INVALID_SEQUENCE, /* Not acceptable SEQ field */
418 SKB_DROP_REASON_TCP_RESET, /* Invalid RST packet */
419 SKB_DROP_REASON_TCP_INVALID_SYN, /* Incoming packet has unexpected SYN flag */
420 SKB_DROP_REASON_TCP_CLOSE, /* TCP socket in CLOSE state */
421 SKB_DROP_REASON_TCP_FASTOPEN, /* dropped by FASTOPEN request socket */
422 SKB_DROP_REASON_TCP_OLD_ACK, /* TCP ACK is old, but in window */
423 SKB_DROP_REASON_TCP_TOO_OLD_ACK, /* TCP ACK is too old */
424 SKB_DROP_REASON_TCP_ACK_UNSENT_DATA, /* TCP ACK for data we haven't sent yet */
425 SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE, /* pruned from TCP OFO queue */
426 SKB_DROP_REASON_TCP_OFO_DROP, /* data already in receive queue */
427 SKB_DROP_REASON_IP_OUTNOROUTES, /* route lookup failed */
428 SKB_DROP_REASON_BPF_CGROUP_EGRESS, /* dropped by
429 * BPF_PROG_TYPE_CGROUP_SKB
430 * eBPF program
431 */
432 SKB_DROP_REASON_IPV6DISABLED, /* IPv6 is disabled on the device */
433 SKB_DROP_REASON_NEIGH_CREATEFAIL, /* failed to create neigh
434 * entry
435 */
436 SKB_DROP_REASON_NEIGH_FAILED, /* neigh entry in failed state */
437 SKB_DROP_REASON_NEIGH_QUEUEFULL, /* arp_queue for neigh
438 * entry is full
439 */
440 SKB_DROP_REASON_NEIGH_DEAD, /* neigh entry is dead */
441 SKB_DROP_REASON_TC_EGRESS, /* dropped in TC egress HOOK */
442 SKB_DROP_REASON_QDISC_DROP, /* dropped by qdisc when packet
443 * outputting (failed to enqueue to
444 * current qdisc)
445 */
446 SKB_DROP_REASON_CPU_BACKLOG, /* failed to enqueue the skb to
447 * the per CPU backlog queue. This
448 * can be caused by backlog queue
449 * full (see netdev_max_backlog in
450 * net.rst) or RPS flow limit
451 */
452 SKB_DROP_REASON_XDP, /* dropped by XDP in input path */
453 SKB_DROP_REASON_TC_INGRESS, /* dropped in TC ingress HOOK */
454 SKB_DROP_REASON_UNHANDLED_PROTO, /* protocol not implemented
455 * or not supported
456 */
457 SKB_DROP_REASON_SKB_CSUM, /* sk_buff checksum computation
458 * error
459 */
460 SKB_DROP_REASON_SKB_GSO_SEG, /* gso segmentation error */
461 SKB_DROP_REASON_SKB_UCOPY_FAULT, /* failed to copy data from
462 * user space, e.g., via
463 * zerocopy_sg_from_iter()
464 * or skb_orphan_frags_rx()
465 */
466 SKB_DROP_REASON_DEV_HDR, /* device driver specific
467 * header/metadata is invalid
468 */
469 /* the device is not ready to xmit/recv due to any of its data
470 * structure that is not up/ready/initialized, e.g., the IFF_UP is
471 * not set, or driver specific tun->tfiles[txq] is not initialized
472 */
473 SKB_DROP_REASON_DEV_READY,
474 SKB_DROP_REASON_FULL_RING, /* ring buffer is full */
475 SKB_DROP_REASON_NOMEM, /* error due to OOM */
476 SKB_DROP_REASON_HDR_TRUNC, /* failed to trunc/extract the header
477 * from networking data, e.g., failed
478 * to pull the protocol header from
479 * frags via pskb_may_pull()
480 */
481 SKB_DROP_REASON_TAP_FILTER, /* dropped by (ebpf) filter directly
482 * attached to tun/tap, e.g., via
483 * TUNSETFILTEREBPF
484 */
485 SKB_DROP_REASON_TAP_TXFILTER, /* dropped by tx filter implemented
486 * at tun/tap, e.g., check_filter()
487 */
488 SKB_DROP_REASON_ICMP_CSUM, /* ICMP checksum error */
489 SKB_DROP_REASON_INVALID_PROTO, /* the packet doesn't follow RFC
490 * 2211, such as a broadcasts
491 * ICMP_TIMESTAMP
492 */
493 SKB_DROP_REASON_IP_INADDRERRORS, /* host unreachable, corresponding
494 * to IPSTATS_MIB_INADDRERRORS
495 */
496 SKB_DROP_REASON_IP_INNOROUTES, /* network unreachable, corresponding
497 * to IPSTATS_MIB_INADDRERRORS
498 */
499 SKB_DROP_REASON_PKT_TOO_BIG, /* packet size is too big (maybe exceed
500 * the MTU)
501 */
502 SKB_DROP_REASON_MAX,
503 };
504
505 #define SKB_DR_INIT(name, reason) \
506 enum skb_drop_reason name = SKB_DROP_REASON_##reason
507 #define SKB_DR(name) \
508 SKB_DR_INIT(name, NOT_SPECIFIED)
509 #define SKB_DR_SET(name, reason) \
510 (name = SKB_DROP_REASON_##reason)
511 #define SKB_DR_OR(name, reason) \
512 do { \
513 if (name == SKB_DROP_REASON_NOT_SPECIFIED || \
514 name == SKB_NOT_DROPPED_YET) \
515 SKB_DR_SET(name, reason); \
516 } while (0)
517
518 /* To allow 64K frame to be packed as single skb without frag_list we
519 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
520 * buffers which do not start on a page boundary.
521 *
522 * Since GRO uses frags we allocate at least 16 regardless of page
523 * size.
524 */
525 #if (65536/PAGE_SIZE + 1) < 16
526 #define MAX_SKB_FRAGS 16UL
527 #else
528 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
529 #endif
530 extern int sysctl_max_skb_frags;
531
532 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
533 * segment using its current segmentation instead.
534 */
535 #define GSO_BY_FRAGS 0xFFFF
536
537 typedef struct bio_vec skb_frag_t;
538
539 /**
540 * skb_frag_size() - Returns the size of a skb fragment
541 * @frag: skb fragment
542 */
skb_frag_size(const skb_frag_t * frag)543 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
544 {
545 return frag->bv_len;
546 }
547
548 /**
549 * skb_frag_size_set() - Sets the size of a skb fragment
550 * @frag: skb fragment
551 * @size: size of fragment
552 */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)553 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
554 {
555 frag->bv_len = size;
556 }
557
558 /**
559 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
560 * @frag: skb fragment
561 * @delta: value to add
562 */
skb_frag_size_add(skb_frag_t * frag,int delta)563 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
564 {
565 frag->bv_len += delta;
566 }
567
568 /**
569 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
570 * @frag: skb fragment
571 * @delta: value to subtract
572 */
skb_frag_size_sub(skb_frag_t * frag,int delta)573 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
574 {
575 frag->bv_len -= delta;
576 }
577
578 /**
579 * skb_frag_must_loop - Test if %p is a high memory page
580 * @p: fragment's page
581 */
skb_frag_must_loop(struct page * p)582 static inline bool skb_frag_must_loop(struct page *p)
583 {
584 #if defined(CONFIG_HIGHMEM)
585 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
586 return true;
587 #endif
588 return false;
589 }
590
591 /**
592 * skb_frag_foreach_page - loop over pages in a fragment
593 *
594 * @f: skb frag to operate on
595 * @f_off: offset from start of f->bv_page
596 * @f_len: length from f_off to loop over
597 * @p: (temp var) current page
598 * @p_off: (temp var) offset from start of current page,
599 * non-zero only on first page.
600 * @p_len: (temp var) length in current page,
601 * < PAGE_SIZE only on first and last page.
602 * @copied: (temp var) length so far, excluding current p_len.
603 *
604 * A fragment can hold a compound page, in which case per-page
605 * operations, notably kmap_atomic, must be called for each
606 * regular page.
607 */
608 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
609 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
610 p_off = (f_off) & (PAGE_SIZE - 1), \
611 p_len = skb_frag_must_loop(p) ? \
612 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
613 copied = 0; \
614 copied < f_len; \
615 copied += p_len, p++, p_off = 0, \
616 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
617
618 #define HAVE_HW_TIME_STAMP
619
620 /**
621 * struct skb_shared_hwtstamps - hardware time stamps
622 * @hwtstamp: hardware time stamp transformed into duration
623 * since arbitrary point in time
624 * @netdev_data: address/cookie of network device driver used as
625 * reference to actual hardware time stamp
626 *
627 * Software time stamps generated by ktime_get_real() are stored in
628 * skb->tstamp.
629 *
630 * hwtstamps can only be compared against other hwtstamps from
631 * the same device.
632 *
633 * This structure is attached to packets as part of the
634 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
635 */
636 struct skb_shared_hwtstamps {
637 union {
638 ktime_t hwtstamp;
639 void *netdev_data;
640 };
641 };
642
643 /* Definitions for tx_flags in struct skb_shared_info */
644 enum {
645 /* generate hardware time stamp */
646 SKBTX_HW_TSTAMP = 1 << 0,
647
648 /* generate software time stamp when queueing packet to NIC */
649 SKBTX_SW_TSTAMP = 1 << 1,
650
651 /* device driver is going to provide hardware time stamp */
652 SKBTX_IN_PROGRESS = 1 << 2,
653
654 /* generate hardware time stamp based on cycles if supported */
655 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
656
657 /* generate wifi status information (where possible) */
658 SKBTX_WIFI_STATUS = 1 << 4,
659
660 /* determine hardware time stamp based on time or cycles */
661 SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
662
663 /* generate software time stamp when entering packet scheduling */
664 SKBTX_SCHED_TSTAMP = 1 << 6,
665 };
666
667 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
668 SKBTX_SCHED_TSTAMP)
669 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \
670 SKBTX_HW_TSTAMP_USE_CYCLES | \
671 SKBTX_ANY_SW_TSTAMP)
672
673 /* Definitions for flags in struct skb_shared_info */
674 enum {
675 /* use zcopy routines */
676 SKBFL_ZEROCOPY_ENABLE = BIT(0),
677
678 /* This indicates at least one fragment might be overwritten
679 * (as in vmsplice(), sendfile() ...)
680 * If we need to compute a TX checksum, we'll need to copy
681 * all frags to avoid possible bad checksum
682 */
683 SKBFL_SHARED_FRAG = BIT(1),
684
685 /* segment contains only zerocopy data and should not be
686 * charged to the kernel memory.
687 */
688 SKBFL_PURE_ZEROCOPY = BIT(2),
689 };
690
691 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
692 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY)
693
694 /*
695 * The callback notifies userspace to release buffers when skb DMA is done in
696 * lower device, the skb last reference should be 0 when calling this.
697 * The zerocopy_success argument is true if zero copy transmit occurred,
698 * false on data copy or out of memory error caused by data copy attempt.
699 * The ctx field is used to track device context.
700 * The desc field is used to track userspace buffer index.
701 */
702 struct ubuf_info {
703 void (*callback)(struct sk_buff *, struct ubuf_info *,
704 bool zerocopy_success);
705 union {
706 struct {
707 unsigned long desc;
708 void *ctx;
709 };
710 struct {
711 u32 id;
712 u16 len;
713 u16 zerocopy:1;
714 u32 bytelen;
715 };
716 };
717 refcount_t refcnt;
718 u8 flags;
719
720 struct mmpin {
721 struct user_struct *user;
722 unsigned int num_pg;
723 } mmp;
724 };
725
726 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
727
728 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
729 void mm_unaccount_pinned_pages(struct mmpin *mmp);
730
731 /* This data is invariant across clones and lives at
732 * the end of the header data, ie. at skb->end.
733 */
734 struct skb_shared_info {
735 __u8 flags;
736 __u8 meta_len;
737 __u8 nr_frags;
738 __u8 tx_flags;
739 unsigned short gso_size;
740 /* Warning: this field is not always filled in (UFO)! */
741 unsigned short gso_segs;
742 struct sk_buff *frag_list;
743 struct skb_shared_hwtstamps hwtstamps;
744 unsigned int gso_type;
745 u32 tskey;
746
747 /*
748 * Warning : all fields before dataref are cleared in __alloc_skb()
749 */
750 atomic_t dataref;
751 unsigned int xdp_frags_size;
752
753 /* Intermediate layers must ensure that destructor_arg
754 * remains valid until skb destructor */
755 void * destructor_arg;
756
757 /* must be last field, see pskb_expand_head() */
758 skb_frag_t frags[MAX_SKB_FRAGS];
759 };
760
761 /**
762 * DOC: dataref and headerless skbs
763 *
764 * Transport layers send out clones of payload skbs they hold for
765 * retransmissions. To allow lower layers of the stack to prepend their headers
766 * we split &skb_shared_info.dataref into two halves.
767 * The lower 16 bits count the overall number of references.
768 * The higher 16 bits indicate how many of the references are payload-only.
769 * skb_header_cloned() checks if skb is allowed to add / write the headers.
770 *
771 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
772 * (via __skb_header_release()). Any clone created from marked skb will get
773 * &sk_buff.hdr_len populated with the available headroom.
774 * If there's the only clone in existence it's able to modify the headroom
775 * at will. The sequence of calls inside the transport layer is::
776 *
777 * <alloc skb>
778 * skb_reserve()
779 * __skb_header_release()
780 * skb_clone()
781 * // send the clone down the stack
782 *
783 * This is not a very generic construct and it depends on the transport layers
784 * doing the right thing. In practice there's usually only one payload-only skb.
785 * Having multiple payload-only skbs with different lengths of hdr_len is not
786 * possible. The payload-only skbs should never leave their owner.
787 */
788 #define SKB_DATAREF_SHIFT 16
789 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
790
791
792 enum {
793 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
794 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
795 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
796 };
797
798 enum {
799 SKB_GSO_TCPV4 = 1 << 0,
800
801 /* This indicates the skb is from an untrusted source. */
802 SKB_GSO_DODGY = 1 << 1,
803
804 /* This indicates the tcp segment has CWR set. */
805 SKB_GSO_TCP_ECN = 1 << 2,
806
807 SKB_GSO_TCP_FIXEDID = 1 << 3,
808
809 SKB_GSO_TCPV6 = 1 << 4,
810
811 SKB_GSO_FCOE = 1 << 5,
812
813 SKB_GSO_GRE = 1 << 6,
814
815 SKB_GSO_GRE_CSUM = 1 << 7,
816
817 SKB_GSO_IPXIP4 = 1 << 8,
818
819 SKB_GSO_IPXIP6 = 1 << 9,
820
821 SKB_GSO_UDP_TUNNEL = 1 << 10,
822
823 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
824
825 SKB_GSO_PARTIAL = 1 << 12,
826
827 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
828
829 SKB_GSO_SCTP = 1 << 14,
830
831 SKB_GSO_ESP = 1 << 15,
832
833 SKB_GSO_UDP = 1 << 16,
834
835 SKB_GSO_UDP_L4 = 1 << 17,
836
837 SKB_GSO_FRAGLIST = 1 << 18,
838 };
839
840 #if BITS_PER_LONG > 32
841 #define NET_SKBUFF_DATA_USES_OFFSET 1
842 #endif
843
844 #ifdef NET_SKBUFF_DATA_USES_OFFSET
845 typedef unsigned int sk_buff_data_t;
846 #else
847 typedef unsigned char *sk_buff_data_t;
848 #endif
849
850 /**
851 * DOC: Basic sk_buff geometry
852 *
853 * struct sk_buff itself is a metadata structure and does not hold any packet
854 * data. All the data is held in associated buffers.
855 *
856 * &sk_buff.head points to the main "head" buffer. The head buffer is divided
857 * into two parts:
858 *
859 * - data buffer, containing headers and sometimes payload;
860 * this is the part of the skb operated on by the common helpers
861 * such as skb_put() or skb_pull();
862 * - shared info (struct skb_shared_info) which holds an array of pointers
863 * to read-only data in the (page, offset, length) format.
864 *
865 * Optionally &skb_shared_info.frag_list may point to another skb.
866 *
867 * Basic diagram may look like this::
868 *
869 * ---------------
870 * | sk_buff |
871 * ---------------
872 * ,--------------------------- + head
873 * / ,----------------- + data
874 * / / ,----------- + tail
875 * | | | , + end
876 * | | | |
877 * v v v v
878 * -----------------------------------------------
879 * | headroom | data | tailroom | skb_shared_info |
880 * -----------------------------------------------
881 * + [page frag]
882 * + [page frag]
883 * + [page frag]
884 * + [page frag] ---------
885 * + frag_list --> | sk_buff |
886 * ---------
887 *
888 */
889
890 /**
891 * struct sk_buff - socket buffer
892 * @next: Next buffer in list
893 * @prev: Previous buffer in list
894 * @tstamp: Time we arrived/left
895 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
896 * for retransmit timer
897 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
898 * @list: queue head
899 * @ll_node: anchor in an llist (eg socket defer_list)
900 * @sk: Socket we are owned by
901 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
902 * fragmentation management
903 * @dev: Device we arrived on/are leaving by
904 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
905 * @cb: Control buffer. Free for use by every layer. Put private vars here
906 * @_skb_refdst: destination entry (with norefcount bit)
907 * @sp: the security path, used for xfrm
908 * @len: Length of actual data
909 * @data_len: Data length
910 * @mac_len: Length of link layer header
911 * @hdr_len: writable header length of cloned skb
912 * @csum: Checksum (must include start/offset pair)
913 * @csum_start: Offset from skb->head where checksumming should start
914 * @csum_offset: Offset from csum_start where checksum should be stored
915 * @priority: Packet queueing priority
916 * @ignore_df: allow local fragmentation
917 * @cloned: Head may be cloned (check refcnt to be sure)
918 * @ip_summed: Driver fed us an IP checksum
919 * @nohdr: Payload reference only, must not modify header
920 * @pkt_type: Packet class
921 * @fclone: skbuff clone status
922 * @ipvs_property: skbuff is owned by ipvs
923 * @inner_protocol_type: whether the inner protocol is
924 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
925 * @remcsum_offload: remote checksum offload is enabled
926 * @offload_fwd_mark: Packet was L2-forwarded in hardware
927 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
928 * @tc_skip_classify: do not classify packet. set by IFB device
929 * @tc_at_ingress: used within tc_classify to distinguish in/egress
930 * @redirected: packet was redirected by packet classifier
931 * @from_ingress: packet was redirected from the ingress path
932 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
933 * @peeked: this packet has been seen already, so stats have been
934 * done for it, don't do them again
935 * @nf_trace: netfilter packet trace flag
936 * @protocol: Packet protocol from driver
937 * @destructor: Destruct function
938 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
939 * @_sk_redir: socket redirection information for skmsg
940 * @_nfct: Associated connection, if any (with nfctinfo bits)
941 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
942 * @skb_iif: ifindex of device we arrived on
943 * @tc_index: Traffic control index
944 * @hash: the packet hash
945 * @queue_mapping: Queue mapping for multiqueue devices
946 * @head_frag: skb was allocated from page fragments,
947 * not allocated by kmalloc() or vmalloc().
948 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
949 * @pp_recycle: mark the packet for recycling instead of freeing (implies
950 * page_pool support on driver)
951 * @active_extensions: active extensions (skb_ext_id types)
952 * @ndisc_nodetype: router type (from link layer)
953 * @ooo_okay: allow the mapping of a socket to a queue to be changed
954 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
955 * ports.
956 * @sw_hash: indicates hash was computed in software stack
957 * @wifi_acked_valid: wifi_acked was set
958 * @wifi_acked: whether frame was acked on wifi or not
959 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
960 * @encapsulation: indicates the inner headers in the skbuff are valid
961 * @encap_hdr_csum: software checksum is needed
962 * @csum_valid: checksum is already valid
963 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
964 * @csum_complete_sw: checksum was completed by software
965 * @csum_level: indicates the number of consecutive checksums found in
966 * the packet minus one that have been verified as
967 * CHECKSUM_UNNECESSARY (max 3)
968 * @dst_pending_confirm: need to confirm neighbour
969 * @decrypted: Decrypted SKB
970 * @slow_gro: state present at GRO time, slower prepare step required
971 * @mono_delivery_time: When set, skb->tstamp has the
972 * delivery_time in mono clock base (i.e. EDT). Otherwise, the
973 * skb->tstamp has the (rcv) timestamp at ingress and
974 * delivery_time at egress.
975 * @napi_id: id of the NAPI struct this skb came from
976 * @sender_cpu: (aka @napi_id) source CPU in XPS
977 * @alloc_cpu: CPU which did the skb allocation.
978 * @secmark: security marking
979 * @mark: Generic packet mark
980 * @reserved_tailroom: (aka @mark) number of bytes of free space available
981 * at the tail of an sk_buff
982 * @vlan_present: VLAN tag is present
983 * @vlan_proto: vlan encapsulation protocol
984 * @vlan_tci: vlan tag control information
985 * @inner_protocol: Protocol (encapsulation)
986 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
987 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
988 * @inner_transport_header: Inner transport layer header (encapsulation)
989 * @inner_network_header: Network layer header (encapsulation)
990 * @inner_mac_header: Link layer header (encapsulation)
991 * @transport_header: Transport layer header
992 * @network_header: Network layer header
993 * @mac_header: Link layer header
994 * @kcov_handle: KCOV remote handle for remote coverage collection
995 * @tail: Tail pointer
996 * @end: End pointer
997 * @head: Head of buffer
998 * @data: Data head pointer
999 * @truesize: Buffer size
1000 * @users: User count - see {datagram,tcp}.c
1001 * @extensions: allocated extensions, valid if active_extensions is nonzero
1002 */
1003
1004 struct sk_buff {
1005 union {
1006 struct {
1007 /* These two members must be first to match sk_buff_head. */
1008 struct sk_buff *next;
1009 struct sk_buff *prev;
1010
1011 union {
1012 struct net_device *dev;
1013 /* Some protocols might use this space to store information,
1014 * while device pointer would be NULL.
1015 * UDP receive path is one user.
1016 */
1017 unsigned long dev_scratch;
1018 };
1019 };
1020 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
1021 struct list_head list;
1022 struct llist_node ll_node;
1023 };
1024
1025 union {
1026 struct sock *sk;
1027 int ip_defrag_offset;
1028 };
1029
1030 union {
1031 ktime_t tstamp;
1032 u64 skb_mstamp_ns; /* earliest departure time */
1033 };
1034 /*
1035 * This is the control buffer. It is free to use for every
1036 * layer. Please put your private variables there. If you
1037 * want to keep them across layers you have to do a skb_clone()
1038 * first. This is owned by whoever has the skb queued ATM.
1039 */
1040 char cb[48] __aligned(8);
1041
1042 union {
1043 struct {
1044 unsigned long _skb_refdst;
1045 void (*destructor)(struct sk_buff *skb);
1046 };
1047 struct list_head tcp_tsorted_anchor;
1048 #ifdef CONFIG_NET_SOCK_MSG
1049 unsigned long _sk_redir;
1050 #endif
1051 };
1052
1053 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1054 unsigned long _nfct;
1055 #endif
1056 unsigned int len,
1057 data_len;
1058 __u16 mac_len,
1059 hdr_len;
1060
1061 /* Following fields are _not_ copied in __copy_skb_header()
1062 * Note that queue_mapping is here mostly to fill a hole.
1063 */
1064 __u16 queue_mapping;
1065
1066 /* if you move cloned around you also must adapt those constants */
1067 #ifdef __BIG_ENDIAN_BITFIELD
1068 #define CLONED_MASK (1 << 7)
1069 #else
1070 #define CLONED_MASK 1
1071 #endif
1072 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset)
1073
1074 /* private: */
1075 __u8 __cloned_offset[0];
1076 /* public: */
1077 __u8 cloned:1,
1078 nohdr:1,
1079 fclone:2,
1080 peeked:1,
1081 head_frag:1,
1082 pfmemalloc:1,
1083 pp_recycle:1; /* page_pool recycle indicator */
1084 #ifdef CONFIG_SKB_EXTENSIONS
1085 __u8 active_extensions;
1086 #endif
1087
1088 /* Fields enclosed in headers group are copied
1089 * using a single memcpy() in __copy_skb_header()
1090 */
1091 struct_group(headers,
1092
1093 /* private: */
1094 __u8 __pkt_type_offset[0];
1095 /* public: */
1096 __u8 pkt_type:3; /* see PKT_TYPE_MAX */
1097 __u8 ignore_df:1;
1098 __u8 nf_trace:1;
1099 __u8 ip_summed:2;
1100 __u8 ooo_okay:1;
1101
1102 __u8 l4_hash:1;
1103 __u8 sw_hash:1;
1104 __u8 wifi_acked_valid:1;
1105 __u8 wifi_acked:1;
1106 __u8 no_fcs:1;
1107 /* Indicates the inner headers are valid in the skbuff. */
1108 __u8 encapsulation:1;
1109 __u8 encap_hdr_csum:1;
1110 __u8 csum_valid:1;
1111
1112 /* private: */
1113 __u8 __pkt_vlan_present_offset[0];
1114 /* public: */
1115 __u8 vlan_present:1; /* See PKT_VLAN_PRESENT_BIT */
1116 __u8 csum_complete_sw:1;
1117 __u8 csum_level:2;
1118 __u8 dst_pending_confirm:1;
1119 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */
1120 #ifdef CONFIG_NET_CLS_ACT
1121 __u8 tc_skip_classify:1;
1122 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */
1123 #endif
1124 #ifdef CONFIG_IPV6_NDISC_NODETYPE
1125 __u8 ndisc_nodetype:2;
1126 #endif
1127
1128 __u8 ipvs_property:1;
1129 __u8 inner_protocol_type:1;
1130 __u8 remcsum_offload:1;
1131 #ifdef CONFIG_NET_SWITCHDEV
1132 __u8 offload_fwd_mark:1;
1133 __u8 offload_l3_fwd_mark:1;
1134 #endif
1135 __u8 redirected:1;
1136 #ifdef CONFIG_NET_REDIRECT
1137 __u8 from_ingress:1;
1138 #endif
1139 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
1140 __u8 nf_skip_egress:1;
1141 #endif
1142 #ifdef CONFIG_TLS_DEVICE
1143 __u8 decrypted:1;
1144 #endif
1145 __u8 slow_gro:1;
1146 __u8 csum_not_inet:1;
1147
1148 #ifdef CONFIG_NET_SCHED
1149 __u16 tc_index; /* traffic control index */
1150 #endif
1151
1152 union {
1153 __wsum csum;
1154 struct {
1155 __u16 csum_start;
1156 __u16 csum_offset;
1157 };
1158 };
1159 __u32 priority;
1160 int skb_iif;
1161 __u32 hash;
1162 __be16 vlan_proto;
1163 __u16 vlan_tci;
1164 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1165 union {
1166 unsigned int napi_id;
1167 unsigned int sender_cpu;
1168 };
1169 #endif
1170 u16 alloc_cpu;
1171 #ifdef CONFIG_NETWORK_SECMARK
1172 __u32 secmark;
1173 #endif
1174
1175 union {
1176 __u32 mark;
1177 __u32 reserved_tailroom;
1178 };
1179
1180 union {
1181 __be16 inner_protocol;
1182 __u8 inner_ipproto;
1183 };
1184
1185 __u16 inner_transport_header;
1186 __u16 inner_network_header;
1187 __u16 inner_mac_header;
1188
1189 __be16 protocol;
1190 __u16 transport_header;
1191 __u16 network_header;
1192 __u16 mac_header;
1193
1194 #ifdef CONFIG_KCOV
1195 u64 kcov_handle;
1196 #endif
1197
1198 ); /* end headers group */
1199
1200 /* These elements must be at the end, see alloc_skb() for details. */
1201 sk_buff_data_t tail;
1202 sk_buff_data_t end;
1203 unsigned char *head,
1204 *data;
1205 unsigned int truesize;
1206 refcount_t users;
1207
1208 #ifdef CONFIG_SKB_EXTENSIONS
1209 /* only useable after checking ->active_extensions != 0 */
1210 struct skb_ext *extensions;
1211 #endif
1212 };
1213
1214 /* if you move pkt_type around you also must adapt those constants */
1215 #ifdef __BIG_ENDIAN_BITFIELD
1216 #define PKT_TYPE_MAX (7 << 5)
1217 #else
1218 #define PKT_TYPE_MAX 7
1219 #endif
1220 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset)
1221
1222 /* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time
1223 * around, you also must adapt these constants.
1224 */
1225 #ifdef __BIG_ENDIAN_BITFIELD
1226 #define PKT_VLAN_PRESENT_BIT 7
1227 #define TC_AT_INGRESS_MASK (1 << 0)
1228 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 2)
1229 #else
1230 #define PKT_VLAN_PRESENT_BIT 0
1231 #define TC_AT_INGRESS_MASK (1 << 7)
1232 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 5)
1233 #endif
1234 #define PKT_VLAN_PRESENT_OFFSET offsetof(struct sk_buff, __pkt_vlan_present_offset)
1235
1236 #ifdef __KERNEL__
1237 /*
1238 * Handling routines are only of interest to the kernel
1239 */
1240
1241 #define SKB_ALLOC_FCLONE 0x01
1242 #define SKB_ALLOC_RX 0x02
1243 #define SKB_ALLOC_NAPI 0x04
1244
1245 /**
1246 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1247 * @skb: buffer
1248 */
skb_pfmemalloc(const struct sk_buff * skb)1249 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1250 {
1251 return unlikely(skb->pfmemalloc);
1252 }
1253
1254 /*
1255 * skb might have a dst pointer attached, refcounted or not.
1256 * _skb_refdst low order bit is set if refcount was _not_ taken
1257 */
1258 #define SKB_DST_NOREF 1UL
1259 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
1260
1261 /**
1262 * skb_dst - returns skb dst_entry
1263 * @skb: buffer
1264 *
1265 * Returns skb dst_entry, regardless of reference taken or not.
1266 */
skb_dst(const struct sk_buff * skb)1267 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1268 {
1269 /* If refdst was not refcounted, check we still are in a
1270 * rcu_read_lock section
1271 */
1272 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1273 !rcu_read_lock_held() &&
1274 !rcu_read_lock_bh_held());
1275 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1276 }
1277
1278 /**
1279 * skb_dst_set - sets skb dst
1280 * @skb: buffer
1281 * @dst: dst entry
1282 *
1283 * Sets skb dst, assuming a reference was taken on dst and should
1284 * be released by skb_dst_drop()
1285 */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)1286 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1287 {
1288 skb->slow_gro |= !!dst;
1289 skb->_skb_refdst = (unsigned long)dst;
1290 }
1291
1292 /**
1293 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1294 * @skb: buffer
1295 * @dst: dst entry
1296 *
1297 * Sets skb dst, assuming a reference was not taken on dst.
1298 * If dst entry is cached, we do not take reference and dst_release
1299 * will be avoided by refdst_drop. If dst entry is not cached, we take
1300 * reference, so that last dst_release can destroy the dst immediately.
1301 */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)1302 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1303 {
1304 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1305 skb->slow_gro |= !!dst;
1306 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1307 }
1308
1309 /**
1310 * skb_dst_is_noref - Test if skb dst isn't refcounted
1311 * @skb: buffer
1312 */
skb_dst_is_noref(const struct sk_buff * skb)1313 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1314 {
1315 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1316 }
1317
1318 /**
1319 * skb_rtable - Returns the skb &rtable
1320 * @skb: buffer
1321 */
skb_rtable(const struct sk_buff * skb)1322 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1323 {
1324 return (struct rtable *)skb_dst(skb);
1325 }
1326
1327 /* For mangling skb->pkt_type from user space side from applications
1328 * such as nft, tc, etc, we only allow a conservative subset of
1329 * possible pkt_types to be set.
1330 */
skb_pkt_type_ok(u32 ptype)1331 static inline bool skb_pkt_type_ok(u32 ptype)
1332 {
1333 return ptype <= PACKET_OTHERHOST;
1334 }
1335
1336 /**
1337 * skb_napi_id - Returns the skb's NAPI id
1338 * @skb: buffer
1339 */
skb_napi_id(const struct sk_buff * skb)1340 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1341 {
1342 #ifdef CONFIG_NET_RX_BUSY_POLL
1343 return skb->napi_id;
1344 #else
1345 return 0;
1346 #endif
1347 }
1348
1349 /**
1350 * skb_unref - decrement the skb's reference count
1351 * @skb: buffer
1352 *
1353 * Returns true if we can free the skb.
1354 */
skb_unref(struct sk_buff * skb)1355 static inline bool skb_unref(struct sk_buff *skb)
1356 {
1357 if (unlikely(!skb))
1358 return false;
1359 if (likely(refcount_read(&skb->users) == 1))
1360 smp_rmb();
1361 else if (likely(!refcount_dec_and_test(&skb->users)))
1362 return false;
1363
1364 return true;
1365 }
1366
1367 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1368
1369 /**
1370 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1371 * @skb: buffer to free
1372 */
kfree_skb(struct sk_buff * skb)1373 static inline void kfree_skb(struct sk_buff *skb)
1374 {
1375 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1376 }
1377
1378 void skb_release_head_state(struct sk_buff *skb);
1379 void kfree_skb_list_reason(struct sk_buff *segs,
1380 enum skb_drop_reason reason);
1381 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1382 void skb_tx_error(struct sk_buff *skb);
1383
kfree_skb_list(struct sk_buff * segs)1384 static inline void kfree_skb_list(struct sk_buff *segs)
1385 {
1386 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1387 }
1388
1389 #ifdef CONFIG_TRACEPOINTS
1390 void consume_skb(struct sk_buff *skb);
1391 #else
consume_skb(struct sk_buff * skb)1392 static inline void consume_skb(struct sk_buff *skb)
1393 {
1394 return kfree_skb(skb);
1395 }
1396 #endif
1397
1398 void __consume_stateless_skb(struct sk_buff *skb);
1399 void __kfree_skb(struct sk_buff *skb);
1400 extern struct kmem_cache *skbuff_head_cache;
1401
1402 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1403 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1404 bool *fragstolen, int *delta_truesize);
1405
1406 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1407 int node);
1408 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1409 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1410 struct sk_buff *build_skb_around(struct sk_buff *skb,
1411 void *data, unsigned int frag_size);
1412 void skb_attempt_defer_free(struct sk_buff *skb);
1413
1414 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1415
1416 /**
1417 * alloc_skb - allocate a network buffer
1418 * @size: size to allocate
1419 * @priority: allocation mask
1420 *
1421 * This function is a convenient wrapper around __alloc_skb().
1422 */
alloc_skb(unsigned int size,gfp_t priority)1423 static inline struct sk_buff *alloc_skb(unsigned int size,
1424 gfp_t priority)
1425 {
1426 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1427 }
1428
1429 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1430 unsigned long data_len,
1431 int max_page_order,
1432 int *errcode,
1433 gfp_t gfp_mask);
1434 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1435
1436 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1437 struct sk_buff_fclones {
1438 struct sk_buff skb1;
1439
1440 struct sk_buff skb2;
1441
1442 refcount_t fclone_ref;
1443 };
1444
1445 /**
1446 * skb_fclone_busy - check if fclone is busy
1447 * @sk: socket
1448 * @skb: buffer
1449 *
1450 * Returns true if skb is a fast clone, and its clone is not freed.
1451 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1452 * so we also check that this didnt happen.
1453 */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1454 static inline bool skb_fclone_busy(const struct sock *sk,
1455 const struct sk_buff *skb)
1456 {
1457 const struct sk_buff_fclones *fclones;
1458
1459 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1460
1461 return skb->fclone == SKB_FCLONE_ORIG &&
1462 refcount_read(&fclones->fclone_ref) > 1 &&
1463 READ_ONCE(fclones->skb2.sk) == sk;
1464 }
1465
1466 /**
1467 * alloc_skb_fclone - allocate a network buffer from fclone cache
1468 * @size: size to allocate
1469 * @priority: allocation mask
1470 *
1471 * This function is a convenient wrapper around __alloc_skb().
1472 */
alloc_skb_fclone(unsigned int size,gfp_t priority)1473 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1474 gfp_t priority)
1475 {
1476 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1477 }
1478
1479 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1480 void skb_headers_offset_update(struct sk_buff *skb, int off);
1481 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1482 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1483 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1484 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1485 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1486 gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1487 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1488 gfp_t gfp_mask)
1489 {
1490 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1491 }
1492
1493 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1494 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1495 unsigned int headroom);
1496 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1497 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1498 int newtailroom, gfp_t priority);
1499 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1500 int offset, int len);
1501 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1502 int offset, int len);
1503 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1504 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1505
1506 /**
1507 * skb_pad - zero pad the tail of an skb
1508 * @skb: buffer to pad
1509 * @pad: space to pad
1510 *
1511 * Ensure that a buffer is followed by a padding area that is zero
1512 * filled. Used by network drivers which may DMA or transfer data
1513 * beyond the buffer end onto the wire.
1514 *
1515 * May return error in out of memory cases. The skb is freed on error.
1516 */
skb_pad(struct sk_buff * skb,int pad)1517 static inline int skb_pad(struct sk_buff *skb, int pad)
1518 {
1519 return __skb_pad(skb, pad, true);
1520 }
1521 #define dev_kfree_skb(a) consume_skb(a)
1522
1523 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1524 int offset, size_t size);
1525
1526 struct skb_seq_state {
1527 __u32 lower_offset;
1528 __u32 upper_offset;
1529 __u32 frag_idx;
1530 __u32 stepped_offset;
1531 struct sk_buff *root_skb;
1532 struct sk_buff *cur_skb;
1533 __u8 *frag_data;
1534 __u32 frag_off;
1535 };
1536
1537 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1538 unsigned int to, struct skb_seq_state *st);
1539 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1540 struct skb_seq_state *st);
1541 void skb_abort_seq_read(struct skb_seq_state *st);
1542
1543 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1544 unsigned int to, struct ts_config *config);
1545
1546 /*
1547 * Packet hash types specify the type of hash in skb_set_hash.
1548 *
1549 * Hash types refer to the protocol layer addresses which are used to
1550 * construct a packet's hash. The hashes are used to differentiate or identify
1551 * flows of the protocol layer for the hash type. Hash types are either
1552 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1553 *
1554 * Properties of hashes:
1555 *
1556 * 1) Two packets in different flows have different hash values
1557 * 2) Two packets in the same flow should have the same hash value
1558 *
1559 * A hash at a higher layer is considered to be more specific. A driver should
1560 * set the most specific hash possible.
1561 *
1562 * A driver cannot indicate a more specific hash than the layer at which a hash
1563 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1564 *
1565 * A driver may indicate a hash level which is less specific than the
1566 * actual layer the hash was computed on. For instance, a hash computed
1567 * at L4 may be considered an L3 hash. This should only be done if the
1568 * driver can't unambiguously determine that the HW computed the hash at
1569 * the higher layer. Note that the "should" in the second property above
1570 * permits this.
1571 */
1572 enum pkt_hash_types {
1573 PKT_HASH_TYPE_NONE, /* Undefined type */
1574 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1575 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1576 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1577 };
1578
skb_clear_hash(struct sk_buff * skb)1579 static inline void skb_clear_hash(struct sk_buff *skb)
1580 {
1581 skb->hash = 0;
1582 skb->sw_hash = 0;
1583 skb->l4_hash = 0;
1584 }
1585
skb_clear_hash_if_not_l4(struct sk_buff * skb)1586 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1587 {
1588 if (!skb->l4_hash)
1589 skb_clear_hash(skb);
1590 }
1591
1592 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1593 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1594 {
1595 skb->l4_hash = is_l4;
1596 skb->sw_hash = is_sw;
1597 skb->hash = hash;
1598 }
1599
1600 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1601 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1602 {
1603 /* Used by drivers to set hash from HW */
1604 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1605 }
1606
1607 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1608 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1609 {
1610 __skb_set_hash(skb, hash, true, is_l4);
1611 }
1612
1613 void __skb_get_hash(struct sk_buff *skb);
1614 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1615 u32 skb_get_poff(const struct sk_buff *skb);
1616 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1617 const struct flow_keys_basic *keys, int hlen);
1618 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1619 const void *data, int hlen_proto);
1620
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1621 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1622 int thoff, u8 ip_proto)
1623 {
1624 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1625 }
1626
1627 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1628 const struct flow_dissector_key *key,
1629 unsigned int key_count);
1630
1631 struct bpf_flow_dissector;
1632 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1633 __be16 proto, int nhoff, int hlen, unsigned int flags);
1634
1635 bool __skb_flow_dissect(const struct net *net,
1636 const struct sk_buff *skb,
1637 struct flow_dissector *flow_dissector,
1638 void *target_container, const void *data,
1639 __be16 proto, int nhoff, int hlen, unsigned int flags);
1640
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1641 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1642 struct flow_dissector *flow_dissector,
1643 void *target_container, unsigned int flags)
1644 {
1645 return __skb_flow_dissect(NULL, skb, flow_dissector,
1646 target_container, NULL, 0, 0, 0, flags);
1647 }
1648
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1649 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1650 struct flow_keys *flow,
1651 unsigned int flags)
1652 {
1653 memset(flow, 0, sizeof(*flow));
1654 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1655 flow, NULL, 0, 0, 0, flags);
1656 }
1657
1658 static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,const void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1659 skb_flow_dissect_flow_keys_basic(const struct net *net,
1660 const struct sk_buff *skb,
1661 struct flow_keys_basic *flow,
1662 const void *data, __be16 proto,
1663 int nhoff, int hlen, unsigned int flags)
1664 {
1665 memset(flow, 0, sizeof(*flow));
1666 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1667 data, proto, nhoff, hlen, flags);
1668 }
1669
1670 void skb_flow_dissect_meta(const struct sk_buff *skb,
1671 struct flow_dissector *flow_dissector,
1672 void *target_container);
1673
1674 /* Gets a skb connection tracking info, ctinfo map should be a
1675 * map of mapsize to translate enum ip_conntrack_info states
1676 * to user states.
1677 */
1678 void
1679 skb_flow_dissect_ct(const struct sk_buff *skb,
1680 struct flow_dissector *flow_dissector,
1681 void *target_container,
1682 u16 *ctinfo_map, size_t mapsize,
1683 bool post_ct, u16 zone);
1684 void
1685 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1686 struct flow_dissector *flow_dissector,
1687 void *target_container);
1688
1689 void skb_flow_dissect_hash(const struct sk_buff *skb,
1690 struct flow_dissector *flow_dissector,
1691 void *target_container);
1692
skb_get_hash(struct sk_buff * skb)1693 static inline __u32 skb_get_hash(struct sk_buff *skb)
1694 {
1695 if (!skb->l4_hash && !skb->sw_hash)
1696 __skb_get_hash(skb);
1697
1698 return skb->hash;
1699 }
1700
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1701 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1702 {
1703 if (!skb->l4_hash && !skb->sw_hash) {
1704 struct flow_keys keys;
1705 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1706
1707 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1708 }
1709
1710 return skb->hash;
1711 }
1712
1713 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1714 const siphash_key_t *perturb);
1715
skb_get_hash_raw(const struct sk_buff * skb)1716 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1717 {
1718 return skb->hash;
1719 }
1720
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1721 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1722 {
1723 to->hash = from->hash;
1724 to->sw_hash = from->sw_hash;
1725 to->l4_hash = from->l4_hash;
1726 };
1727
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1728 static inline void skb_copy_decrypted(struct sk_buff *to,
1729 const struct sk_buff *from)
1730 {
1731 #ifdef CONFIG_TLS_DEVICE
1732 to->decrypted = from->decrypted;
1733 #endif
1734 }
1735
1736 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1737 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1738 {
1739 return skb->head + skb->end;
1740 }
1741
skb_end_offset(const struct sk_buff * skb)1742 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1743 {
1744 return skb->end;
1745 }
1746
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1747 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1748 {
1749 skb->end = offset;
1750 }
1751 #else
skb_end_pointer(const struct sk_buff * skb)1752 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1753 {
1754 return skb->end;
1755 }
1756
skb_end_offset(const struct sk_buff * skb)1757 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1758 {
1759 return skb->end - skb->head;
1760 }
1761
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1762 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1763 {
1764 skb->end = skb->head + offset;
1765 }
1766 #endif
1767
1768 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1769 struct ubuf_info *uarg);
1770
1771 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1772
1773 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1774 bool success);
1775
1776 int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1777 struct iov_iter *from, size_t length);
1778
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1779 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1780 struct msghdr *msg, int len)
1781 {
1782 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1783 }
1784
1785 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1786 struct msghdr *msg, int len,
1787 struct ubuf_info *uarg);
1788
1789 /* Internal */
1790 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1791
skb_hwtstamps(struct sk_buff * skb)1792 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1793 {
1794 return &skb_shinfo(skb)->hwtstamps;
1795 }
1796
skb_zcopy(struct sk_buff * skb)1797 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1798 {
1799 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1800
1801 return is_zcopy ? skb_uarg(skb) : NULL;
1802 }
1803
skb_zcopy_pure(const struct sk_buff * skb)1804 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1805 {
1806 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1807 }
1808
skb_pure_zcopy_same(const struct sk_buff * skb1,const struct sk_buff * skb2)1809 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1810 const struct sk_buff *skb2)
1811 {
1812 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1813 }
1814
net_zcopy_get(struct ubuf_info * uarg)1815 static inline void net_zcopy_get(struct ubuf_info *uarg)
1816 {
1817 refcount_inc(&uarg->refcnt);
1818 }
1819
skb_zcopy_init(struct sk_buff * skb,struct ubuf_info * uarg)1820 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1821 {
1822 skb_shinfo(skb)->destructor_arg = uarg;
1823 skb_shinfo(skb)->flags |= uarg->flags;
1824 }
1825
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1826 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1827 bool *have_ref)
1828 {
1829 if (skb && uarg && !skb_zcopy(skb)) {
1830 if (unlikely(have_ref && *have_ref))
1831 *have_ref = false;
1832 else
1833 net_zcopy_get(uarg);
1834 skb_zcopy_init(skb, uarg);
1835 }
1836 }
1837
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1838 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1839 {
1840 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1841 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1842 }
1843
skb_zcopy_is_nouarg(struct sk_buff * skb)1844 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1845 {
1846 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1847 }
1848
skb_zcopy_get_nouarg(struct sk_buff * skb)1849 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1850 {
1851 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1852 }
1853
net_zcopy_put(struct ubuf_info * uarg)1854 static inline void net_zcopy_put(struct ubuf_info *uarg)
1855 {
1856 if (uarg)
1857 uarg->callback(NULL, uarg, true);
1858 }
1859
net_zcopy_put_abort(struct ubuf_info * uarg,bool have_uref)1860 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1861 {
1862 if (uarg) {
1863 if (uarg->callback == msg_zerocopy_callback)
1864 msg_zerocopy_put_abort(uarg, have_uref);
1865 else if (have_uref)
1866 net_zcopy_put(uarg);
1867 }
1868 }
1869
1870 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy_success)1871 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1872 {
1873 struct ubuf_info *uarg = skb_zcopy(skb);
1874
1875 if (uarg) {
1876 if (!skb_zcopy_is_nouarg(skb))
1877 uarg->callback(skb, uarg, zerocopy_success);
1878
1879 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1880 }
1881 }
1882
skb_mark_not_on_list(struct sk_buff * skb)1883 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1884 {
1885 skb->next = NULL;
1886 }
1887
1888 /* Iterate through singly-linked GSO fragments of an skb. */
1889 #define skb_list_walk_safe(first, skb, next_skb) \
1890 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1891 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1892
skb_list_del_init(struct sk_buff * skb)1893 static inline void skb_list_del_init(struct sk_buff *skb)
1894 {
1895 __list_del_entry(&skb->list);
1896 skb_mark_not_on_list(skb);
1897 }
1898
1899 /**
1900 * skb_queue_empty - check if a queue is empty
1901 * @list: queue head
1902 *
1903 * Returns true if the queue is empty, false otherwise.
1904 */
skb_queue_empty(const struct sk_buff_head * list)1905 static inline int skb_queue_empty(const struct sk_buff_head *list)
1906 {
1907 return list->next == (const struct sk_buff *) list;
1908 }
1909
1910 /**
1911 * skb_queue_empty_lockless - check if a queue is empty
1912 * @list: queue head
1913 *
1914 * Returns true if the queue is empty, false otherwise.
1915 * This variant can be used in lockless contexts.
1916 */
skb_queue_empty_lockless(const struct sk_buff_head * list)1917 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1918 {
1919 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1920 }
1921
1922
1923 /**
1924 * skb_queue_is_last - check if skb is the last entry in the queue
1925 * @list: queue head
1926 * @skb: buffer
1927 *
1928 * Returns true if @skb is the last buffer on the list.
1929 */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1930 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1931 const struct sk_buff *skb)
1932 {
1933 return skb->next == (const struct sk_buff *) list;
1934 }
1935
1936 /**
1937 * skb_queue_is_first - check if skb is the first entry in the queue
1938 * @list: queue head
1939 * @skb: buffer
1940 *
1941 * Returns true if @skb is the first buffer on the list.
1942 */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1943 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1944 const struct sk_buff *skb)
1945 {
1946 return skb->prev == (const struct sk_buff *) list;
1947 }
1948
1949 /**
1950 * skb_queue_next - return the next packet in the queue
1951 * @list: queue head
1952 * @skb: current buffer
1953 *
1954 * Return the next packet in @list after @skb. It is only valid to
1955 * call this if skb_queue_is_last() evaluates to false.
1956 */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1957 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1958 const struct sk_buff *skb)
1959 {
1960 /* This BUG_ON may seem severe, but if we just return then we
1961 * are going to dereference garbage.
1962 */
1963 BUG_ON(skb_queue_is_last(list, skb));
1964 return skb->next;
1965 }
1966
1967 /**
1968 * skb_queue_prev - return the prev packet in the queue
1969 * @list: queue head
1970 * @skb: current buffer
1971 *
1972 * Return the prev packet in @list before @skb. It is only valid to
1973 * call this if skb_queue_is_first() evaluates to false.
1974 */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1975 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1976 const struct sk_buff *skb)
1977 {
1978 /* This BUG_ON may seem severe, but if we just return then we
1979 * are going to dereference garbage.
1980 */
1981 BUG_ON(skb_queue_is_first(list, skb));
1982 return skb->prev;
1983 }
1984
1985 /**
1986 * skb_get - reference buffer
1987 * @skb: buffer to reference
1988 *
1989 * Makes another reference to a socket buffer and returns a pointer
1990 * to the buffer.
1991 */
skb_get(struct sk_buff * skb)1992 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1993 {
1994 refcount_inc(&skb->users);
1995 return skb;
1996 }
1997
1998 /*
1999 * If users == 1, we are the only owner and can avoid redundant atomic changes.
2000 */
2001
2002 /**
2003 * skb_cloned - is the buffer a clone
2004 * @skb: buffer to check
2005 *
2006 * Returns true if the buffer was generated with skb_clone() and is
2007 * one of multiple shared copies of the buffer. Cloned buffers are
2008 * shared data so must not be written to under normal circumstances.
2009 */
skb_cloned(const struct sk_buff * skb)2010 static inline int skb_cloned(const struct sk_buff *skb)
2011 {
2012 return skb->cloned &&
2013 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
2014 }
2015
skb_unclone(struct sk_buff * skb,gfp_t pri)2016 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
2017 {
2018 might_sleep_if(gfpflags_allow_blocking(pri));
2019
2020 if (skb_cloned(skb))
2021 return pskb_expand_head(skb, 0, 0, pri);
2022
2023 return 0;
2024 }
2025
2026 /* This variant of skb_unclone() makes sure skb->truesize
2027 * and skb_end_offset() are not changed, whenever a new skb->head is needed.
2028 *
2029 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
2030 * when various debugging features are in place.
2031 */
2032 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)2033 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2034 {
2035 might_sleep_if(gfpflags_allow_blocking(pri));
2036
2037 if (skb_cloned(skb))
2038 return __skb_unclone_keeptruesize(skb, pri);
2039 return 0;
2040 }
2041
2042 /**
2043 * skb_header_cloned - is the header a clone
2044 * @skb: buffer to check
2045 *
2046 * Returns true if modifying the header part of the buffer requires
2047 * the data to be copied.
2048 */
skb_header_cloned(const struct sk_buff * skb)2049 static inline int skb_header_cloned(const struct sk_buff *skb)
2050 {
2051 int dataref;
2052
2053 if (!skb->cloned)
2054 return 0;
2055
2056 dataref = atomic_read(&skb_shinfo(skb)->dataref);
2057 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
2058 return dataref != 1;
2059 }
2060
skb_header_unclone(struct sk_buff * skb,gfp_t pri)2061 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
2062 {
2063 might_sleep_if(gfpflags_allow_blocking(pri));
2064
2065 if (skb_header_cloned(skb))
2066 return pskb_expand_head(skb, 0, 0, pri);
2067
2068 return 0;
2069 }
2070
2071 /**
2072 * __skb_header_release() - allow clones to use the headroom
2073 * @skb: buffer to operate on
2074 *
2075 * See "DOC: dataref and headerless skbs".
2076 */
__skb_header_release(struct sk_buff * skb)2077 static inline void __skb_header_release(struct sk_buff *skb)
2078 {
2079 skb->nohdr = 1;
2080 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
2081 }
2082
2083
2084 /**
2085 * skb_shared - is the buffer shared
2086 * @skb: buffer to check
2087 *
2088 * Returns true if more than one person has a reference to this
2089 * buffer.
2090 */
skb_shared(const struct sk_buff * skb)2091 static inline int skb_shared(const struct sk_buff *skb)
2092 {
2093 return refcount_read(&skb->users) != 1;
2094 }
2095
2096 /**
2097 * skb_share_check - check if buffer is shared and if so clone it
2098 * @skb: buffer to check
2099 * @pri: priority for memory allocation
2100 *
2101 * If the buffer is shared the buffer is cloned and the old copy
2102 * drops a reference. A new clone with a single reference is returned.
2103 * If the buffer is not shared the original buffer is returned. When
2104 * being called from interrupt status or with spinlocks held pri must
2105 * be GFP_ATOMIC.
2106 *
2107 * NULL is returned on a memory allocation failure.
2108 */
skb_share_check(struct sk_buff * skb,gfp_t pri)2109 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2110 {
2111 might_sleep_if(gfpflags_allow_blocking(pri));
2112 if (skb_shared(skb)) {
2113 struct sk_buff *nskb = skb_clone(skb, pri);
2114
2115 if (likely(nskb))
2116 consume_skb(skb);
2117 else
2118 kfree_skb(skb);
2119 skb = nskb;
2120 }
2121 return skb;
2122 }
2123
2124 /*
2125 * Copy shared buffers into a new sk_buff. We effectively do COW on
2126 * packets to handle cases where we have a local reader and forward
2127 * and a couple of other messy ones. The normal one is tcpdumping
2128 * a packet thats being forwarded.
2129 */
2130
2131 /**
2132 * skb_unshare - make a copy of a shared buffer
2133 * @skb: buffer to check
2134 * @pri: priority for memory allocation
2135 *
2136 * If the socket buffer is a clone then this function creates a new
2137 * copy of the data, drops a reference count on the old copy and returns
2138 * the new copy with the reference count at 1. If the buffer is not a clone
2139 * the original buffer is returned. When called with a spinlock held or
2140 * from interrupt state @pri must be %GFP_ATOMIC
2141 *
2142 * %NULL is returned on a memory allocation failure.
2143 */
skb_unshare(struct sk_buff * skb,gfp_t pri)2144 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2145 gfp_t pri)
2146 {
2147 might_sleep_if(gfpflags_allow_blocking(pri));
2148 if (skb_cloned(skb)) {
2149 struct sk_buff *nskb = skb_copy(skb, pri);
2150
2151 /* Free our shared copy */
2152 if (likely(nskb))
2153 consume_skb(skb);
2154 else
2155 kfree_skb(skb);
2156 skb = nskb;
2157 }
2158 return skb;
2159 }
2160
2161 /**
2162 * skb_peek - peek at the head of an &sk_buff_head
2163 * @list_: list to peek at
2164 *
2165 * Peek an &sk_buff. Unlike most other operations you _MUST_
2166 * be careful with this one. A peek leaves the buffer on the
2167 * list and someone else may run off with it. You must hold
2168 * the appropriate locks or have a private queue to do this.
2169 *
2170 * Returns %NULL for an empty list or a pointer to the head element.
2171 * The reference count is not incremented and the reference is therefore
2172 * volatile. Use with caution.
2173 */
skb_peek(const struct sk_buff_head * list_)2174 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2175 {
2176 struct sk_buff *skb = list_->next;
2177
2178 if (skb == (struct sk_buff *)list_)
2179 skb = NULL;
2180 return skb;
2181 }
2182
2183 /**
2184 * __skb_peek - peek at the head of a non-empty &sk_buff_head
2185 * @list_: list to peek at
2186 *
2187 * Like skb_peek(), but the caller knows that the list is not empty.
2188 */
__skb_peek(const struct sk_buff_head * list_)2189 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2190 {
2191 return list_->next;
2192 }
2193
2194 /**
2195 * skb_peek_next - peek skb following the given one from a queue
2196 * @skb: skb to start from
2197 * @list_: list to peek at
2198 *
2199 * Returns %NULL when the end of the list is met or a pointer to the
2200 * next element. The reference count is not incremented and the
2201 * reference is therefore volatile. Use with caution.
2202 */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)2203 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2204 const struct sk_buff_head *list_)
2205 {
2206 struct sk_buff *next = skb->next;
2207
2208 if (next == (struct sk_buff *)list_)
2209 next = NULL;
2210 return next;
2211 }
2212
2213 /**
2214 * skb_peek_tail - peek at the tail of an &sk_buff_head
2215 * @list_: list to peek at
2216 *
2217 * Peek an &sk_buff. Unlike most other operations you _MUST_
2218 * be careful with this one. A peek leaves the buffer on the
2219 * list and someone else may run off with it. You must hold
2220 * the appropriate locks or have a private queue to do this.
2221 *
2222 * Returns %NULL for an empty list or a pointer to the tail element.
2223 * The reference count is not incremented and the reference is therefore
2224 * volatile. Use with caution.
2225 */
skb_peek_tail(const struct sk_buff_head * list_)2226 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2227 {
2228 struct sk_buff *skb = READ_ONCE(list_->prev);
2229
2230 if (skb == (struct sk_buff *)list_)
2231 skb = NULL;
2232 return skb;
2233
2234 }
2235
2236 /**
2237 * skb_queue_len - get queue length
2238 * @list_: list to measure
2239 *
2240 * Return the length of an &sk_buff queue.
2241 */
skb_queue_len(const struct sk_buff_head * list_)2242 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2243 {
2244 return list_->qlen;
2245 }
2246
2247 /**
2248 * skb_queue_len_lockless - get queue length
2249 * @list_: list to measure
2250 *
2251 * Return the length of an &sk_buff queue.
2252 * This variant can be used in lockless contexts.
2253 */
skb_queue_len_lockless(const struct sk_buff_head * list_)2254 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2255 {
2256 return READ_ONCE(list_->qlen);
2257 }
2258
2259 /**
2260 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2261 * @list: queue to initialize
2262 *
2263 * This initializes only the list and queue length aspects of
2264 * an sk_buff_head object. This allows to initialize the list
2265 * aspects of an sk_buff_head without reinitializing things like
2266 * the spinlock. It can also be used for on-stack sk_buff_head
2267 * objects where the spinlock is known to not be used.
2268 */
__skb_queue_head_init(struct sk_buff_head * list)2269 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2270 {
2271 list->prev = list->next = (struct sk_buff *)list;
2272 list->qlen = 0;
2273 }
2274
2275 /*
2276 * This function creates a split out lock class for each invocation;
2277 * this is needed for now since a whole lot of users of the skb-queue
2278 * infrastructure in drivers have different locking usage (in hardirq)
2279 * than the networking core (in softirq only). In the long run either the
2280 * network layer or drivers should need annotation to consolidate the
2281 * main types of usage into 3 classes.
2282 */
skb_queue_head_init(struct sk_buff_head * list)2283 static inline void skb_queue_head_init(struct sk_buff_head *list)
2284 {
2285 spin_lock_init(&list->lock);
2286 __skb_queue_head_init(list);
2287 }
2288
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)2289 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2290 struct lock_class_key *class)
2291 {
2292 skb_queue_head_init(list);
2293 lockdep_set_class(&list->lock, class);
2294 }
2295
2296 /*
2297 * Insert an sk_buff on a list.
2298 *
2299 * The "__skb_xxxx()" functions are the non-atomic ones that
2300 * can only be called with interrupts disabled.
2301 */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)2302 static inline void __skb_insert(struct sk_buff *newsk,
2303 struct sk_buff *prev, struct sk_buff *next,
2304 struct sk_buff_head *list)
2305 {
2306 /* See skb_queue_empty_lockless() and skb_peek_tail()
2307 * for the opposite READ_ONCE()
2308 */
2309 WRITE_ONCE(newsk->next, next);
2310 WRITE_ONCE(newsk->prev, prev);
2311 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2312 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2313 WRITE_ONCE(list->qlen, list->qlen + 1);
2314 }
2315
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)2316 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2317 struct sk_buff *prev,
2318 struct sk_buff *next)
2319 {
2320 struct sk_buff *first = list->next;
2321 struct sk_buff *last = list->prev;
2322
2323 WRITE_ONCE(first->prev, prev);
2324 WRITE_ONCE(prev->next, first);
2325
2326 WRITE_ONCE(last->next, next);
2327 WRITE_ONCE(next->prev, last);
2328 }
2329
2330 /**
2331 * skb_queue_splice - join two skb lists, this is designed for stacks
2332 * @list: the new list to add
2333 * @head: the place to add it in the first list
2334 */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)2335 static inline void skb_queue_splice(const struct sk_buff_head *list,
2336 struct sk_buff_head *head)
2337 {
2338 if (!skb_queue_empty(list)) {
2339 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2340 head->qlen += list->qlen;
2341 }
2342 }
2343
2344 /**
2345 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2346 * @list: the new list to add
2347 * @head: the place to add it in the first list
2348 *
2349 * The list at @list is reinitialised
2350 */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)2351 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2352 struct sk_buff_head *head)
2353 {
2354 if (!skb_queue_empty(list)) {
2355 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2356 head->qlen += list->qlen;
2357 __skb_queue_head_init(list);
2358 }
2359 }
2360
2361 /**
2362 * skb_queue_splice_tail - join two skb lists, each list being a queue
2363 * @list: the new list to add
2364 * @head: the place to add it in the first list
2365 */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)2366 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2367 struct sk_buff_head *head)
2368 {
2369 if (!skb_queue_empty(list)) {
2370 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2371 head->qlen += list->qlen;
2372 }
2373 }
2374
2375 /**
2376 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2377 * @list: the new list to add
2378 * @head: the place to add it in the first list
2379 *
2380 * Each of the lists is a queue.
2381 * The list at @list is reinitialised
2382 */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)2383 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2384 struct sk_buff_head *head)
2385 {
2386 if (!skb_queue_empty(list)) {
2387 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2388 head->qlen += list->qlen;
2389 __skb_queue_head_init(list);
2390 }
2391 }
2392
2393 /**
2394 * __skb_queue_after - queue a buffer at the list head
2395 * @list: list to use
2396 * @prev: place after this buffer
2397 * @newsk: buffer to queue
2398 *
2399 * Queue a buffer int the middle of a list. This function takes no locks
2400 * and you must therefore hold required locks before calling it.
2401 *
2402 * A buffer cannot be placed on two lists at the same time.
2403 */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2404 static inline void __skb_queue_after(struct sk_buff_head *list,
2405 struct sk_buff *prev,
2406 struct sk_buff *newsk)
2407 {
2408 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2409 }
2410
2411 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2412 struct sk_buff_head *list);
2413
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2414 static inline void __skb_queue_before(struct sk_buff_head *list,
2415 struct sk_buff *next,
2416 struct sk_buff *newsk)
2417 {
2418 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2419 }
2420
2421 /**
2422 * __skb_queue_head - queue a buffer at the list head
2423 * @list: list to use
2424 * @newsk: buffer to queue
2425 *
2426 * Queue a buffer at the start of a list. This function takes no locks
2427 * and you must therefore hold required locks before calling it.
2428 *
2429 * A buffer cannot be placed on two lists at the same time.
2430 */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2431 static inline void __skb_queue_head(struct sk_buff_head *list,
2432 struct sk_buff *newsk)
2433 {
2434 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2435 }
2436 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2437
2438 /**
2439 * __skb_queue_tail - queue a buffer at the list tail
2440 * @list: list to use
2441 * @newsk: buffer to queue
2442 *
2443 * Queue a buffer at the end of a list. This function takes no locks
2444 * and you must therefore hold required locks before calling it.
2445 *
2446 * A buffer cannot be placed on two lists at the same time.
2447 */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2448 static inline void __skb_queue_tail(struct sk_buff_head *list,
2449 struct sk_buff *newsk)
2450 {
2451 __skb_queue_before(list, (struct sk_buff *)list, newsk);
2452 }
2453 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2454
2455 /*
2456 * remove sk_buff from list. _Must_ be called atomically, and with
2457 * the list known..
2458 */
2459 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2460 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2461 {
2462 struct sk_buff *next, *prev;
2463
2464 WRITE_ONCE(list->qlen, list->qlen - 1);
2465 next = skb->next;
2466 prev = skb->prev;
2467 skb->next = skb->prev = NULL;
2468 WRITE_ONCE(next->prev, prev);
2469 WRITE_ONCE(prev->next, next);
2470 }
2471
2472 /**
2473 * __skb_dequeue - remove from the head of the queue
2474 * @list: list to dequeue from
2475 *
2476 * Remove the head of the list. This function does not take any locks
2477 * so must be used with appropriate locks held only. The head item is
2478 * returned or %NULL if the list is empty.
2479 */
__skb_dequeue(struct sk_buff_head * list)2480 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2481 {
2482 struct sk_buff *skb = skb_peek(list);
2483 if (skb)
2484 __skb_unlink(skb, list);
2485 return skb;
2486 }
2487 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2488
2489 /**
2490 * __skb_dequeue_tail - remove from the tail of the queue
2491 * @list: list to dequeue from
2492 *
2493 * Remove the tail of the list. This function does not take any locks
2494 * so must be used with appropriate locks held only. The tail item is
2495 * returned or %NULL if the list is empty.
2496 */
__skb_dequeue_tail(struct sk_buff_head * list)2497 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2498 {
2499 struct sk_buff *skb = skb_peek_tail(list);
2500 if (skb)
2501 __skb_unlink(skb, list);
2502 return skb;
2503 }
2504 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2505
2506
skb_is_nonlinear(const struct sk_buff * skb)2507 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2508 {
2509 return skb->data_len;
2510 }
2511
skb_headlen(const struct sk_buff * skb)2512 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2513 {
2514 return skb->len - skb->data_len;
2515 }
2516
__skb_pagelen(const struct sk_buff * skb)2517 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2518 {
2519 unsigned int i, len = 0;
2520
2521 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2522 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2523 return len;
2524 }
2525
skb_pagelen(const struct sk_buff * skb)2526 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2527 {
2528 return skb_headlen(skb) + __skb_pagelen(skb);
2529 }
2530
__skb_fill_page_desc_noacc(struct skb_shared_info * shinfo,int i,struct page * page,int off,int size)2531 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2532 int i, struct page *page,
2533 int off, int size)
2534 {
2535 skb_frag_t *frag = &shinfo->frags[i];
2536
2537 /*
2538 * Propagate page pfmemalloc to the skb if we can. The problem is
2539 * that not all callers have unique ownership of the page but rely
2540 * on page_is_pfmemalloc doing the right thing(tm).
2541 */
2542 frag->bv_page = page;
2543 frag->bv_offset = off;
2544 skb_frag_size_set(frag, size);
2545 }
2546
2547 /**
2548 * __skb_fill_page_desc - initialise a paged fragment in an skb
2549 * @skb: buffer containing fragment to be initialised
2550 * @i: paged fragment index to initialise
2551 * @page: the page to use for this fragment
2552 * @off: the offset to the data with @page
2553 * @size: the length of the data
2554 *
2555 * Initialises the @i'th fragment of @skb to point to &size bytes at
2556 * offset @off within @page.
2557 *
2558 * Does not take any additional reference on the fragment.
2559 */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2560 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2561 struct page *page, int off, int size)
2562 {
2563 __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2564 page = compound_head(page);
2565 if (page_is_pfmemalloc(page))
2566 skb->pfmemalloc = true;
2567 }
2568
2569 /**
2570 * skb_fill_page_desc - initialise a paged fragment in an skb
2571 * @skb: buffer containing fragment to be initialised
2572 * @i: paged fragment index to initialise
2573 * @page: the page to use for this fragment
2574 * @off: the offset to the data with @page
2575 * @size: the length of the data
2576 *
2577 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2578 * @skb to point to @size bytes at offset @off within @page. In
2579 * addition updates @skb such that @i is the last fragment.
2580 *
2581 * Does not take any additional reference on the fragment.
2582 */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2583 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2584 struct page *page, int off, int size)
2585 {
2586 __skb_fill_page_desc(skb, i, page, off, size);
2587 skb_shinfo(skb)->nr_frags = i + 1;
2588 }
2589
2590 /**
2591 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2592 * @skb: buffer containing fragment to be initialised
2593 * @i: paged fragment index to initialise
2594 * @page: the page to use for this fragment
2595 * @off: the offset to the data with @page
2596 * @size: the length of the data
2597 *
2598 * Variant of skb_fill_page_desc() which does not deal with
2599 * pfmemalloc, if page is not owned by us.
2600 */
skb_fill_page_desc_noacc(struct sk_buff * skb,int i,struct page * page,int off,int size)2601 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2602 struct page *page, int off,
2603 int size)
2604 {
2605 struct skb_shared_info *shinfo = skb_shinfo(skb);
2606
2607 __skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2608 shinfo->nr_frags = i + 1;
2609 }
2610
2611 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2612 int size, unsigned int truesize);
2613
2614 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2615 unsigned int truesize);
2616
2617 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2618
2619 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2620 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2621 {
2622 return skb->head + skb->tail;
2623 }
2624
skb_reset_tail_pointer(struct sk_buff * skb)2625 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2626 {
2627 skb->tail = skb->data - skb->head;
2628 }
2629
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2630 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2631 {
2632 skb_reset_tail_pointer(skb);
2633 skb->tail += offset;
2634 }
2635
2636 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2637 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2638 {
2639 return skb->tail;
2640 }
2641
skb_reset_tail_pointer(struct sk_buff * skb)2642 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2643 {
2644 skb->tail = skb->data;
2645 }
2646
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2647 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2648 {
2649 skb->tail = skb->data + offset;
2650 }
2651
2652 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2653
skb_assert_len(struct sk_buff * skb)2654 static inline void skb_assert_len(struct sk_buff *skb)
2655 {
2656 #ifdef CONFIG_DEBUG_NET
2657 if (WARN_ONCE(!skb->len, "%s\n", __func__))
2658 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2659 #endif /* CONFIG_DEBUG_NET */
2660 }
2661
2662 /*
2663 * Add data to an sk_buff
2664 */
2665 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2666 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2667 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2668 {
2669 void *tmp = skb_tail_pointer(skb);
2670 SKB_LINEAR_ASSERT(skb);
2671 skb->tail += len;
2672 skb->len += len;
2673 return tmp;
2674 }
2675
__skb_put_zero(struct sk_buff * skb,unsigned int len)2676 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2677 {
2678 void *tmp = __skb_put(skb, len);
2679
2680 memset(tmp, 0, len);
2681 return tmp;
2682 }
2683
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2684 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2685 unsigned int len)
2686 {
2687 void *tmp = __skb_put(skb, len);
2688
2689 memcpy(tmp, data, len);
2690 return tmp;
2691 }
2692
__skb_put_u8(struct sk_buff * skb,u8 val)2693 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2694 {
2695 *(u8 *)__skb_put(skb, 1) = val;
2696 }
2697
skb_put_zero(struct sk_buff * skb,unsigned int len)2698 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2699 {
2700 void *tmp = skb_put(skb, len);
2701
2702 memset(tmp, 0, len);
2703
2704 return tmp;
2705 }
2706
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2707 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2708 unsigned int len)
2709 {
2710 void *tmp = skb_put(skb, len);
2711
2712 memcpy(tmp, data, len);
2713
2714 return tmp;
2715 }
2716
skb_put_u8(struct sk_buff * skb,u8 val)2717 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2718 {
2719 *(u8 *)skb_put(skb, 1) = val;
2720 }
2721
2722 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2723 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2724 {
2725 skb->data -= len;
2726 skb->len += len;
2727 return skb->data;
2728 }
2729
2730 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2731 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2732 {
2733 skb->len -= len;
2734 if (unlikely(skb->len < skb->data_len)) {
2735 #if defined(CONFIG_DEBUG_NET)
2736 skb->len += len;
2737 pr_err("__skb_pull(len=%u)\n", len);
2738 skb_dump(KERN_ERR, skb, false);
2739 #endif
2740 BUG();
2741 }
2742 return skb->data += len;
2743 }
2744
skb_pull_inline(struct sk_buff * skb,unsigned int len)2745 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2746 {
2747 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2748 }
2749
2750 void *skb_pull_data(struct sk_buff *skb, size_t len);
2751
2752 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2753
__pskb_pull(struct sk_buff * skb,unsigned int len)2754 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2755 {
2756 if (len > skb_headlen(skb) &&
2757 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2758 return NULL;
2759 skb->len -= len;
2760 return skb->data += len;
2761 }
2762
pskb_pull(struct sk_buff * skb,unsigned int len)2763 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2764 {
2765 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2766 }
2767
pskb_may_pull(struct sk_buff * skb,unsigned int len)2768 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2769 {
2770 if (likely(len <= skb_headlen(skb)))
2771 return true;
2772 if (unlikely(len > skb->len))
2773 return false;
2774 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2775 }
2776
2777 void skb_condense(struct sk_buff *skb);
2778
2779 /**
2780 * skb_headroom - bytes at buffer head
2781 * @skb: buffer to check
2782 *
2783 * Return the number of bytes of free space at the head of an &sk_buff.
2784 */
skb_headroom(const struct sk_buff * skb)2785 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2786 {
2787 return skb->data - skb->head;
2788 }
2789
2790 /**
2791 * skb_tailroom - bytes at buffer end
2792 * @skb: buffer to check
2793 *
2794 * Return the number of bytes of free space at the tail of an sk_buff
2795 */
skb_tailroom(const struct sk_buff * skb)2796 static inline int skb_tailroom(const struct sk_buff *skb)
2797 {
2798 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2799 }
2800
2801 /**
2802 * skb_availroom - bytes at buffer end
2803 * @skb: buffer to check
2804 *
2805 * Return the number of bytes of free space at the tail of an sk_buff
2806 * allocated by sk_stream_alloc()
2807 */
skb_availroom(const struct sk_buff * skb)2808 static inline int skb_availroom(const struct sk_buff *skb)
2809 {
2810 if (skb_is_nonlinear(skb))
2811 return 0;
2812
2813 return skb->end - skb->tail - skb->reserved_tailroom;
2814 }
2815
2816 /**
2817 * skb_reserve - adjust headroom
2818 * @skb: buffer to alter
2819 * @len: bytes to move
2820 *
2821 * Increase the headroom of an empty &sk_buff by reducing the tail
2822 * room. This is only allowed for an empty buffer.
2823 */
skb_reserve(struct sk_buff * skb,int len)2824 static inline void skb_reserve(struct sk_buff *skb, int len)
2825 {
2826 skb->data += len;
2827 skb->tail += len;
2828 }
2829
2830 /**
2831 * skb_tailroom_reserve - adjust reserved_tailroom
2832 * @skb: buffer to alter
2833 * @mtu: maximum amount of headlen permitted
2834 * @needed_tailroom: minimum amount of reserved_tailroom
2835 *
2836 * Set reserved_tailroom so that headlen can be as large as possible but
2837 * not larger than mtu and tailroom cannot be smaller than
2838 * needed_tailroom.
2839 * The required headroom should already have been reserved before using
2840 * this function.
2841 */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2842 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2843 unsigned int needed_tailroom)
2844 {
2845 SKB_LINEAR_ASSERT(skb);
2846 if (mtu < skb_tailroom(skb) - needed_tailroom)
2847 /* use at most mtu */
2848 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2849 else
2850 /* use up to all available space */
2851 skb->reserved_tailroom = needed_tailroom;
2852 }
2853
2854 #define ENCAP_TYPE_ETHER 0
2855 #define ENCAP_TYPE_IPPROTO 1
2856
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2857 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2858 __be16 protocol)
2859 {
2860 skb->inner_protocol = protocol;
2861 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2862 }
2863
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2864 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2865 __u8 ipproto)
2866 {
2867 skb->inner_ipproto = ipproto;
2868 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2869 }
2870
skb_reset_inner_headers(struct sk_buff * skb)2871 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2872 {
2873 skb->inner_mac_header = skb->mac_header;
2874 skb->inner_network_header = skb->network_header;
2875 skb->inner_transport_header = skb->transport_header;
2876 }
2877
skb_reset_mac_len(struct sk_buff * skb)2878 static inline void skb_reset_mac_len(struct sk_buff *skb)
2879 {
2880 skb->mac_len = skb->network_header - skb->mac_header;
2881 }
2882
skb_inner_transport_header(const struct sk_buff * skb)2883 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2884 *skb)
2885 {
2886 return skb->head + skb->inner_transport_header;
2887 }
2888
skb_inner_transport_offset(const struct sk_buff * skb)2889 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2890 {
2891 return skb_inner_transport_header(skb) - skb->data;
2892 }
2893
skb_reset_inner_transport_header(struct sk_buff * skb)2894 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2895 {
2896 skb->inner_transport_header = skb->data - skb->head;
2897 }
2898
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2899 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2900 const int offset)
2901 {
2902 skb_reset_inner_transport_header(skb);
2903 skb->inner_transport_header += offset;
2904 }
2905
skb_inner_network_header(const struct sk_buff * skb)2906 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2907 {
2908 return skb->head + skb->inner_network_header;
2909 }
2910
skb_reset_inner_network_header(struct sk_buff * skb)2911 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2912 {
2913 skb->inner_network_header = skb->data - skb->head;
2914 }
2915
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2916 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2917 const int offset)
2918 {
2919 skb_reset_inner_network_header(skb);
2920 skb->inner_network_header += offset;
2921 }
2922
skb_inner_mac_header(const struct sk_buff * skb)2923 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2924 {
2925 return skb->head + skb->inner_mac_header;
2926 }
2927
skb_reset_inner_mac_header(struct sk_buff * skb)2928 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2929 {
2930 skb->inner_mac_header = skb->data - skb->head;
2931 }
2932
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2933 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2934 const int offset)
2935 {
2936 skb_reset_inner_mac_header(skb);
2937 skb->inner_mac_header += offset;
2938 }
skb_transport_header_was_set(const struct sk_buff * skb)2939 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2940 {
2941 return skb->transport_header != (typeof(skb->transport_header))~0U;
2942 }
2943
skb_transport_header(const struct sk_buff * skb)2944 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2945 {
2946 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2947 return skb->head + skb->transport_header;
2948 }
2949
skb_reset_transport_header(struct sk_buff * skb)2950 static inline void skb_reset_transport_header(struct sk_buff *skb)
2951 {
2952 skb->transport_header = skb->data - skb->head;
2953 }
2954
skb_set_transport_header(struct sk_buff * skb,const int offset)2955 static inline void skb_set_transport_header(struct sk_buff *skb,
2956 const int offset)
2957 {
2958 skb_reset_transport_header(skb);
2959 skb->transport_header += offset;
2960 }
2961
skb_network_header(const struct sk_buff * skb)2962 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2963 {
2964 return skb->head + skb->network_header;
2965 }
2966
skb_reset_network_header(struct sk_buff * skb)2967 static inline void skb_reset_network_header(struct sk_buff *skb)
2968 {
2969 skb->network_header = skb->data - skb->head;
2970 }
2971
skb_set_network_header(struct sk_buff * skb,const int offset)2972 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2973 {
2974 skb_reset_network_header(skb);
2975 skb->network_header += offset;
2976 }
2977
skb_mac_header(const struct sk_buff * skb)2978 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2979 {
2980 return skb->head + skb->mac_header;
2981 }
2982
skb_mac_offset(const struct sk_buff * skb)2983 static inline int skb_mac_offset(const struct sk_buff *skb)
2984 {
2985 return skb_mac_header(skb) - skb->data;
2986 }
2987
skb_mac_header_len(const struct sk_buff * skb)2988 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2989 {
2990 return skb->network_header - skb->mac_header;
2991 }
2992
skb_mac_header_was_set(const struct sk_buff * skb)2993 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2994 {
2995 return skb->mac_header != (typeof(skb->mac_header))~0U;
2996 }
2997
skb_unset_mac_header(struct sk_buff * skb)2998 static inline void skb_unset_mac_header(struct sk_buff *skb)
2999 {
3000 skb->mac_header = (typeof(skb->mac_header))~0U;
3001 }
3002
skb_reset_mac_header(struct sk_buff * skb)3003 static inline void skb_reset_mac_header(struct sk_buff *skb)
3004 {
3005 skb->mac_header = skb->data - skb->head;
3006 }
3007
skb_set_mac_header(struct sk_buff * skb,const int offset)3008 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
3009 {
3010 skb_reset_mac_header(skb);
3011 skb->mac_header += offset;
3012 }
3013
skb_pop_mac_header(struct sk_buff * skb)3014 static inline void skb_pop_mac_header(struct sk_buff *skb)
3015 {
3016 skb->mac_header = skb->network_header;
3017 }
3018
skb_probe_transport_header(struct sk_buff * skb)3019 static inline void skb_probe_transport_header(struct sk_buff *skb)
3020 {
3021 struct flow_keys_basic keys;
3022
3023 if (skb_transport_header_was_set(skb))
3024 return;
3025
3026 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
3027 NULL, 0, 0, 0, 0))
3028 skb_set_transport_header(skb, keys.control.thoff);
3029 }
3030
skb_mac_header_rebuild(struct sk_buff * skb)3031 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
3032 {
3033 if (skb_mac_header_was_set(skb)) {
3034 const unsigned char *old_mac = skb_mac_header(skb);
3035
3036 skb_set_mac_header(skb, -skb->mac_len);
3037 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
3038 }
3039 }
3040
skb_checksum_start_offset(const struct sk_buff * skb)3041 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3042 {
3043 return skb->csum_start - skb_headroom(skb);
3044 }
3045
skb_checksum_start(const struct sk_buff * skb)3046 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3047 {
3048 return skb->head + skb->csum_start;
3049 }
3050
skb_transport_offset(const struct sk_buff * skb)3051 static inline int skb_transport_offset(const struct sk_buff *skb)
3052 {
3053 return skb_transport_header(skb) - skb->data;
3054 }
3055
skb_network_header_len(const struct sk_buff * skb)3056 static inline u32 skb_network_header_len(const struct sk_buff *skb)
3057 {
3058 return skb->transport_header - skb->network_header;
3059 }
3060
skb_inner_network_header_len(const struct sk_buff * skb)3061 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3062 {
3063 return skb->inner_transport_header - skb->inner_network_header;
3064 }
3065
skb_network_offset(const struct sk_buff * skb)3066 static inline int skb_network_offset(const struct sk_buff *skb)
3067 {
3068 return skb_network_header(skb) - skb->data;
3069 }
3070
skb_inner_network_offset(const struct sk_buff * skb)3071 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3072 {
3073 return skb_inner_network_header(skb) - skb->data;
3074 }
3075
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)3076 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3077 {
3078 return pskb_may_pull(skb, skb_network_offset(skb) + len);
3079 }
3080
3081 /*
3082 * CPUs often take a performance hit when accessing unaligned memory
3083 * locations. The actual performance hit varies, it can be small if the
3084 * hardware handles it or large if we have to take an exception and fix it
3085 * in software.
3086 *
3087 * Since an ethernet header is 14 bytes network drivers often end up with
3088 * the IP header at an unaligned offset. The IP header can be aligned by
3089 * shifting the start of the packet by 2 bytes. Drivers should do this
3090 * with:
3091 *
3092 * skb_reserve(skb, NET_IP_ALIGN);
3093 *
3094 * The downside to this alignment of the IP header is that the DMA is now
3095 * unaligned. On some architectures the cost of an unaligned DMA is high
3096 * and this cost outweighs the gains made by aligning the IP header.
3097 *
3098 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3099 * to be overridden.
3100 */
3101 #ifndef NET_IP_ALIGN
3102 #define NET_IP_ALIGN 2
3103 #endif
3104
3105 /*
3106 * The networking layer reserves some headroom in skb data (via
3107 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3108 * the header has to grow. In the default case, if the header has to grow
3109 * 32 bytes or less we avoid the reallocation.
3110 *
3111 * Unfortunately this headroom changes the DMA alignment of the resulting
3112 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3113 * on some architectures. An architecture can override this value,
3114 * perhaps setting it to a cacheline in size (since that will maintain
3115 * cacheline alignment of the DMA). It must be a power of 2.
3116 *
3117 * Various parts of the networking layer expect at least 32 bytes of
3118 * headroom, you should not reduce this.
3119 *
3120 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3121 * to reduce average number of cache lines per packet.
3122 * get_rps_cpu() for example only access one 64 bytes aligned block :
3123 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3124 */
3125 #ifndef NET_SKB_PAD
3126 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
3127 #endif
3128
3129 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3130
__skb_set_length(struct sk_buff * skb,unsigned int len)3131 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3132 {
3133 if (WARN_ON(skb_is_nonlinear(skb)))
3134 return;
3135 skb->len = len;
3136 skb_set_tail_pointer(skb, len);
3137 }
3138
__skb_trim(struct sk_buff * skb,unsigned int len)3139 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3140 {
3141 __skb_set_length(skb, len);
3142 }
3143
3144 void skb_trim(struct sk_buff *skb, unsigned int len);
3145
__pskb_trim(struct sk_buff * skb,unsigned int len)3146 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3147 {
3148 if (skb->data_len)
3149 return ___pskb_trim(skb, len);
3150 __skb_trim(skb, len);
3151 return 0;
3152 }
3153
pskb_trim(struct sk_buff * skb,unsigned int len)3154 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3155 {
3156 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3157 }
3158
3159 /**
3160 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3161 * @skb: buffer to alter
3162 * @len: new length
3163 *
3164 * This is identical to pskb_trim except that the caller knows that
3165 * the skb is not cloned so we should never get an error due to out-
3166 * of-memory.
3167 */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)3168 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3169 {
3170 int err = pskb_trim(skb, len);
3171 BUG_ON(err);
3172 }
3173
__skb_grow(struct sk_buff * skb,unsigned int len)3174 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3175 {
3176 unsigned int diff = len - skb->len;
3177
3178 if (skb_tailroom(skb) < diff) {
3179 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3180 GFP_ATOMIC);
3181 if (ret)
3182 return ret;
3183 }
3184 __skb_set_length(skb, len);
3185 return 0;
3186 }
3187
3188 /**
3189 * skb_orphan - orphan a buffer
3190 * @skb: buffer to orphan
3191 *
3192 * If a buffer currently has an owner then we call the owner's
3193 * destructor function and make the @skb unowned. The buffer continues
3194 * to exist but is no longer charged to its former owner.
3195 */
skb_orphan(struct sk_buff * skb)3196 static inline void skb_orphan(struct sk_buff *skb)
3197 {
3198 if (skb->destructor) {
3199 skb->destructor(skb);
3200 skb->destructor = NULL;
3201 skb->sk = NULL;
3202 } else {
3203 BUG_ON(skb->sk);
3204 }
3205 }
3206
3207 /**
3208 * skb_orphan_frags - orphan the frags contained in a buffer
3209 * @skb: buffer to orphan frags from
3210 * @gfp_mask: allocation mask for replacement pages
3211 *
3212 * For each frag in the SKB which needs a destructor (i.e. has an
3213 * owner) create a copy of that frag and release the original
3214 * page by calling the destructor.
3215 */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)3216 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3217 {
3218 if (likely(!skb_zcopy(skb)))
3219 return 0;
3220 if (!skb_zcopy_is_nouarg(skb) &&
3221 skb_uarg(skb)->callback == msg_zerocopy_callback)
3222 return 0;
3223 return skb_copy_ubufs(skb, gfp_mask);
3224 }
3225
3226 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)3227 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3228 {
3229 if (likely(!skb_zcopy(skb)))
3230 return 0;
3231 return skb_copy_ubufs(skb, gfp_mask);
3232 }
3233
3234 /**
3235 * __skb_queue_purge - empty a list
3236 * @list: list to empty
3237 *
3238 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3239 * the list and one reference dropped. This function does not take the
3240 * list lock and the caller must hold the relevant locks to use it.
3241 */
__skb_queue_purge(struct sk_buff_head * list)3242 static inline void __skb_queue_purge(struct sk_buff_head *list)
3243 {
3244 struct sk_buff *skb;
3245 while ((skb = __skb_dequeue(list)) != NULL)
3246 kfree_skb(skb);
3247 }
3248 void skb_queue_purge(struct sk_buff_head *list);
3249
3250 unsigned int skb_rbtree_purge(struct rb_root *root);
3251
3252 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3253
3254 /**
3255 * netdev_alloc_frag - allocate a page fragment
3256 * @fragsz: fragment size
3257 *
3258 * Allocates a frag from a page for receive buffer.
3259 * Uses GFP_ATOMIC allocations.
3260 */
netdev_alloc_frag(unsigned int fragsz)3261 static inline void *netdev_alloc_frag(unsigned int fragsz)
3262 {
3263 return __netdev_alloc_frag_align(fragsz, ~0u);
3264 }
3265
netdev_alloc_frag_align(unsigned int fragsz,unsigned int align)3266 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3267 unsigned int align)
3268 {
3269 WARN_ON_ONCE(!is_power_of_2(align));
3270 return __netdev_alloc_frag_align(fragsz, -align);
3271 }
3272
3273 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3274 gfp_t gfp_mask);
3275
3276 /**
3277 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
3278 * @dev: network device to receive on
3279 * @length: length to allocate
3280 *
3281 * Allocate a new &sk_buff and assign it a usage count of one. The
3282 * buffer has unspecified headroom built in. Users should allocate
3283 * the headroom they think they need without accounting for the
3284 * built in space. The built in space is used for optimisations.
3285 *
3286 * %NULL is returned if there is no free memory. Although this function
3287 * allocates memory it can be called from an interrupt.
3288 */
netdev_alloc_skb(struct net_device * dev,unsigned int length)3289 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3290 unsigned int length)
3291 {
3292 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3293 }
3294
3295 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)3296 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3297 gfp_t gfp_mask)
3298 {
3299 return __netdev_alloc_skb(NULL, length, gfp_mask);
3300 }
3301
3302 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)3303 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3304 {
3305 return netdev_alloc_skb(NULL, length);
3306 }
3307
3308
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)3309 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3310 unsigned int length, gfp_t gfp)
3311 {
3312 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3313
3314 if (NET_IP_ALIGN && skb)
3315 skb_reserve(skb, NET_IP_ALIGN);
3316 return skb;
3317 }
3318
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)3319 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3320 unsigned int length)
3321 {
3322 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3323 }
3324
skb_free_frag(void * addr)3325 static inline void skb_free_frag(void *addr)
3326 {
3327 page_frag_free(addr);
3328 }
3329
3330 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3331
napi_alloc_frag(unsigned int fragsz)3332 static inline void *napi_alloc_frag(unsigned int fragsz)
3333 {
3334 return __napi_alloc_frag_align(fragsz, ~0u);
3335 }
3336
napi_alloc_frag_align(unsigned int fragsz,unsigned int align)3337 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3338 unsigned int align)
3339 {
3340 WARN_ON_ONCE(!is_power_of_2(align));
3341 return __napi_alloc_frag_align(fragsz, -align);
3342 }
3343
3344 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3345 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)3346 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3347 unsigned int length)
3348 {
3349 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3350 }
3351 void napi_consume_skb(struct sk_buff *skb, int budget);
3352
3353 void napi_skb_free_stolen_head(struct sk_buff *skb);
3354 void __kfree_skb_defer(struct sk_buff *skb);
3355
3356 /**
3357 * __dev_alloc_pages - allocate page for network Rx
3358 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3359 * @order: size of the allocation
3360 *
3361 * Allocate a new page.
3362 *
3363 * %NULL is returned if there is no free memory.
3364 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)3365 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3366 unsigned int order)
3367 {
3368 /* This piece of code contains several assumptions.
3369 * 1. This is for device Rx, therefor a cold page is preferred.
3370 * 2. The expectation is the user wants a compound page.
3371 * 3. If requesting a order 0 page it will not be compound
3372 * due to the check to see if order has a value in prep_new_page
3373 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3374 * code in gfp_to_alloc_flags that should be enforcing this.
3375 */
3376 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3377
3378 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3379 }
3380
dev_alloc_pages(unsigned int order)3381 static inline struct page *dev_alloc_pages(unsigned int order)
3382 {
3383 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3384 }
3385
3386 /**
3387 * __dev_alloc_page - allocate a page for network Rx
3388 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3389 *
3390 * Allocate a new page.
3391 *
3392 * %NULL is returned if there is no free memory.
3393 */
__dev_alloc_page(gfp_t gfp_mask)3394 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3395 {
3396 return __dev_alloc_pages(gfp_mask, 0);
3397 }
3398
dev_alloc_page(void)3399 static inline struct page *dev_alloc_page(void)
3400 {
3401 return dev_alloc_pages(0);
3402 }
3403
3404 /**
3405 * dev_page_is_reusable - check whether a page can be reused for network Rx
3406 * @page: the page to test
3407 *
3408 * A page shouldn't be considered for reusing/recycling if it was allocated
3409 * under memory pressure or at a distant memory node.
3410 *
3411 * Returns false if this page should be returned to page allocator, true
3412 * otherwise.
3413 */
dev_page_is_reusable(const struct page * page)3414 static inline bool dev_page_is_reusable(const struct page *page)
3415 {
3416 return likely(page_to_nid(page) == numa_mem_id() &&
3417 !page_is_pfmemalloc(page));
3418 }
3419
3420 /**
3421 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3422 * @page: The page that was allocated from skb_alloc_page
3423 * @skb: The skb that may need pfmemalloc set
3424 */
skb_propagate_pfmemalloc(const struct page * page,struct sk_buff * skb)3425 static inline void skb_propagate_pfmemalloc(const struct page *page,
3426 struct sk_buff *skb)
3427 {
3428 if (page_is_pfmemalloc(page))
3429 skb->pfmemalloc = true;
3430 }
3431
3432 /**
3433 * skb_frag_off() - Returns the offset of a skb fragment
3434 * @frag: the paged fragment
3435 */
skb_frag_off(const skb_frag_t * frag)3436 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3437 {
3438 return frag->bv_offset;
3439 }
3440
3441 /**
3442 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3443 * @frag: skb fragment
3444 * @delta: value to add
3445 */
skb_frag_off_add(skb_frag_t * frag,int delta)3446 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3447 {
3448 frag->bv_offset += delta;
3449 }
3450
3451 /**
3452 * skb_frag_off_set() - Sets the offset of a skb fragment
3453 * @frag: skb fragment
3454 * @offset: offset of fragment
3455 */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)3456 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3457 {
3458 frag->bv_offset = offset;
3459 }
3460
3461 /**
3462 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3463 * @fragto: skb fragment where offset is set
3464 * @fragfrom: skb fragment offset is copied from
3465 */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3466 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3467 const skb_frag_t *fragfrom)
3468 {
3469 fragto->bv_offset = fragfrom->bv_offset;
3470 }
3471
3472 /**
3473 * skb_frag_page - retrieve the page referred to by a paged fragment
3474 * @frag: the paged fragment
3475 *
3476 * Returns the &struct page associated with @frag.
3477 */
skb_frag_page(const skb_frag_t * frag)3478 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3479 {
3480 return frag->bv_page;
3481 }
3482
3483 /**
3484 * __skb_frag_ref - take an addition reference on a paged fragment.
3485 * @frag: the paged fragment
3486 *
3487 * Takes an additional reference on the paged fragment @frag.
3488 */
__skb_frag_ref(skb_frag_t * frag)3489 static inline void __skb_frag_ref(skb_frag_t *frag)
3490 {
3491 get_page(skb_frag_page(frag));
3492 }
3493
3494 /**
3495 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3496 * @skb: the buffer
3497 * @f: the fragment offset.
3498 *
3499 * Takes an additional reference on the @f'th paged fragment of @skb.
3500 */
skb_frag_ref(struct sk_buff * skb,int f)3501 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3502 {
3503 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3504 }
3505
3506 /**
3507 * __skb_frag_unref - release a reference on a paged fragment.
3508 * @frag: the paged fragment
3509 * @recycle: recycle the page if allocated via page_pool
3510 *
3511 * Releases a reference on the paged fragment @frag
3512 * or recycles the page via the page_pool API.
3513 */
__skb_frag_unref(skb_frag_t * frag,bool recycle)3514 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3515 {
3516 struct page *page = skb_frag_page(frag);
3517
3518 #ifdef CONFIG_PAGE_POOL
3519 if (recycle && page_pool_return_skb_page(page))
3520 return;
3521 #endif
3522 put_page(page);
3523 }
3524
3525 /**
3526 * skb_frag_unref - release a reference on a paged fragment of an skb.
3527 * @skb: the buffer
3528 * @f: the fragment offset
3529 *
3530 * Releases a reference on the @f'th paged fragment of @skb.
3531 */
skb_frag_unref(struct sk_buff * skb,int f)3532 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3533 {
3534 __skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle);
3535 }
3536
3537 /**
3538 * skb_frag_address - gets the address of the data contained in a paged fragment
3539 * @frag: the paged fragment buffer
3540 *
3541 * Returns the address of the data within @frag. The page must already
3542 * be mapped.
3543 */
skb_frag_address(const skb_frag_t * frag)3544 static inline void *skb_frag_address(const skb_frag_t *frag)
3545 {
3546 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3547 }
3548
3549 /**
3550 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3551 * @frag: the paged fragment buffer
3552 *
3553 * Returns the address of the data within @frag. Checks that the page
3554 * is mapped and returns %NULL otherwise.
3555 */
skb_frag_address_safe(const skb_frag_t * frag)3556 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3557 {
3558 void *ptr = page_address(skb_frag_page(frag));
3559 if (unlikely(!ptr))
3560 return NULL;
3561
3562 return ptr + skb_frag_off(frag);
3563 }
3564
3565 /**
3566 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3567 * @fragto: skb fragment where page is set
3568 * @fragfrom: skb fragment page is copied from
3569 */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3570 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3571 const skb_frag_t *fragfrom)
3572 {
3573 fragto->bv_page = fragfrom->bv_page;
3574 }
3575
3576 /**
3577 * __skb_frag_set_page - sets the page contained in a paged fragment
3578 * @frag: the paged fragment
3579 * @page: the page to set
3580 *
3581 * Sets the fragment @frag to contain @page.
3582 */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)3583 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3584 {
3585 frag->bv_page = page;
3586 }
3587
3588 /**
3589 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3590 * @skb: the buffer
3591 * @f: the fragment offset
3592 * @page: the page to set
3593 *
3594 * Sets the @f'th fragment of @skb to contain @page.
3595 */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)3596 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3597 struct page *page)
3598 {
3599 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3600 }
3601
3602 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3603
3604 /**
3605 * skb_frag_dma_map - maps a paged fragment via the DMA API
3606 * @dev: the device to map the fragment to
3607 * @frag: the paged fragment to map
3608 * @offset: the offset within the fragment (starting at the
3609 * fragment's own offset)
3610 * @size: the number of bytes to map
3611 * @dir: the direction of the mapping (``PCI_DMA_*``)
3612 *
3613 * Maps the page associated with @frag to @device.
3614 */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3615 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3616 const skb_frag_t *frag,
3617 size_t offset, size_t size,
3618 enum dma_data_direction dir)
3619 {
3620 return dma_map_page(dev, skb_frag_page(frag),
3621 skb_frag_off(frag) + offset, size, dir);
3622 }
3623
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3624 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3625 gfp_t gfp_mask)
3626 {
3627 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3628 }
3629
3630
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3631 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3632 gfp_t gfp_mask)
3633 {
3634 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3635 }
3636
3637
3638 /**
3639 * skb_clone_writable - is the header of a clone writable
3640 * @skb: buffer to check
3641 * @len: length up to which to write
3642 *
3643 * Returns true if modifying the header part of the cloned buffer
3644 * does not requires the data to be copied.
3645 */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3646 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3647 {
3648 return !skb_header_cloned(skb) &&
3649 skb_headroom(skb) + len <= skb->hdr_len;
3650 }
3651
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3652 static inline int skb_try_make_writable(struct sk_buff *skb,
3653 unsigned int write_len)
3654 {
3655 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3656 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3657 }
3658
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3659 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3660 int cloned)
3661 {
3662 int delta = 0;
3663
3664 if (headroom > skb_headroom(skb))
3665 delta = headroom - skb_headroom(skb);
3666
3667 if (delta || cloned)
3668 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3669 GFP_ATOMIC);
3670 return 0;
3671 }
3672
3673 /**
3674 * skb_cow - copy header of skb when it is required
3675 * @skb: buffer to cow
3676 * @headroom: needed headroom
3677 *
3678 * If the skb passed lacks sufficient headroom or its data part
3679 * is shared, data is reallocated. If reallocation fails, an error
3680 * is returned and original skb is not changed.
3681 *
3682 * The result is skb with writable area skb->head...skb->tail
3683 * and at least @headroom of space at head.
3684 */
skb_cow(struct sk_buff * skb,unsigned int headroom)3685 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3686 {
3687 return __skb_cow(skb, headroom, skb_cloned(skb));
3688 }
3689
3690 /**
3691 * skb_cow_head - skb_cow but only making the head writable
3692 * @skb: buffer to cow
3693 * @headroom: needed headroom
3694 *
3695 * This function is identical to skb_cow except that we replace the
3696 * skb_cloned check by skb_header_cloned. It should be used when
3697 * you only need to push on some header and do not need to modify
3698 * the data.
3699 */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3700 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3701 {
3702 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3703 }
3704
3705 /**
3706 * skb_padto - pad an skbuff up to a minimal size
3707 * @skb: buffer to pad
3708 * @len: minimal length
3709 *
3710 * Pads up a buffer to ensure the trailing bytes exist and are
3711 * blanked. If the buffer already contains sufficient data it
3712 * is untouched. Otherwise it is extended. Returns zero on
3713 * success. The skb is freed on error.
3714 */
skb_padto(struct sk_buff * skb,unsigned int len)3715 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3716 {
3717 unsigned int size = skb->len;
3718 if (likely(size >= len))
3719 return 0;
3720 return skb_pad(skb, len - size);
3721 }
3722
3723 /**
3724 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3725 * @skb: buffer to pad
3726 * @len: minimal length
3727 * @free_on_error: free buffer on error
3728 *
3729 * Pads up a buffer to ensure the trailing bytes exist and are
3730 * blanked. If the buffer already contains sufficient data it
3731 * is untouched. Otherwise it is extended. Returns zero on
3732 * success. The skb is freed on error if @free_on_error is true.
3733 */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3734 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3735 unsigned int len,
3736 bool free_on_error)
3737 {
3738 unsigned int size = skb->len;
3739
3740 if (unlikely(size < len)) {
3741 len -= size;
3742 if (__skb_pad(skb, len, free_on_error))
3743 return -ENOMEM;
3744 __skb_put(skb, len);
3745 }
3746 return 0;
3747 }
3748
3749 /**
3750 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3751 * @skb: buffer to pad
3752 * @len: minimal length
3753 *
3754 * Pads up a buffer to ensure the trailing bytes exist and are
3755 * blanked. If the buffer already contains sufficient data it
3756 * is untouched. Otherwise it is extended. Returns zero on
3757 * success. The skb is freed on error.
3758 */
skb_put_padto(struct sk_buff * skb,unsigned int len)3759 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3760 {
3761 return __skb_put_padto(skb, len, true);
3762 }
3763
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3764 static inline int skb_add_data(struct sk_buff *skb,
3765 struct iov_iter *from, int copy)
3766 {
3767 const int off = skb->len;
3768
3769 if (skb->ip_summed == CHECKSUM_NONE) {
3770 __wsum csum = 0;
3771 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3772 &csum, from)) {
3773 skb->csum = csum_block_add(skb->csum, csum, off);
3774 return 0;
3775 }
3776 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3777 return 0;
3778
3779 __skb_trim(skb, off);
3780 return -EFAULT;
3781 }
3782
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3783 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3784 const struct page *page, int off)
3785 {
3786 if (skb_zcopy(skb))
3787 return false;
3788 if (i) {
3789 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3790
3791 return page == skb_frag_page(frag) &&
3792 off == skb_frag_off(frag) + skb_frag_size(frag);
3793 }
3794 return false;
3795 }
3796
__skb_linearize(struct sk_buff * skb)3797 static inline int __skb_linearize(struct sk_buff *skb)
3798 {
3799 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3800 }
3801
3802 /**
3803 * skb_linearize - convert paged skb to linear one
3804 * @skb: buffer to linarize
3805 *
3806 * If there is no free memory -ENOMEM is returned, otherwise zero
3807 * is returned and the old skb data released.
3808 */
skb_linearize(struct sk_buff * skb)3809 static inline int skb_linearize(struct sk_buff *skb)
3810 {
3811 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3812 }
3813
3814 /**
3815 * skb_has_shared_frag - can any frag be overwritten
3816 * @skb: buffer to test
3817 *
3818 * Return true if the skb has at least one frag that might be modified
3819 * by an external entity (as in vmsplice()/sendfile())
3820 */
skb_has_shared_frag(const struct sk_buff * skb)3821 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3822 {
3823 return skb_is_nonlinear(skb) &&
3824 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3825 }
3826
3827 /**
3828 * skb_linearize_cow - make sure skb is linear and writable
3829 * @skb: buffer to process
3830 *
3831 * If there is no free memory -ENOMEM is returned, otherwise zero
3832 * is returned and the old skb data released.
3833 */
skb_linearize_cow(struct sk_buff * skb)3834 static inline int skb_linearize_cow(struct sk_buff *skb)
3835 {
3836 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3837 __skb_linearize(skb) : 0;
3838 }
3839
3840 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3841 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3842 unsigned int off)
3843 {
3844 if (skb->ip_summed == CHECKSUM_COMPLETE)
3845 skb->csum = csum_block_sub(skb->csum,
3846 csum_partial(start, len, 0), off);
3847 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3848 skb_checksum_start_offset(skb) < 0)
3849 skb->ip_summed = CHECKSUM_NONE;
3850 }
3851
3852 /**
3853 * skb_postpull_rcsum - update checksum for received skb after pull
3854 * @skb: buffer to update
3855 * @start: start of data before pull
3856 * @len: length of data pulled
3857 *
3858 * After doing a pull on a received packet, you need to call this to
3859 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3860 * CHECKSUM_NONE so that it can be recomputed from scratch.
3861 */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3862 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3863 const void *start, unsigned int len)
3864 {
3865 if (skb->ip_summed == CHECKSUM_COMPLETE)
3866 skb->csum = wsum_negate(csum_partial(start, len,
3867 wsum_negate(skb->csum)));
3868 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3869 skb_checksum_start_offset(skb) < 0)
3870 skb->ip_summed = CHECKSUM_NONE;
3871 }
3872
3873 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3874 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3875 unsigned int off)
3876 {
3877 if (skb->ip_summed == CHECKSUM_COMPLETE)
3878 skb->csum = csum_block_add(skb->csum,
3879 csum_partial(start, len, 0), off);
3880 }
3881
3882 /**
3883 * skb_postpush_rcsum - update checksum for received skb after push
3884 * @skb: buffer to update
3885 * @start: start of data after push
3886 * @len: length of data pushed
3887 *
3888 * After doing a push on a received packet, you need to call this to
3889 * update the CHECKSUM_COMPLETE checksum.
3890 */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3891 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3892 const void *start, unsigned int len)
3893 {
3894 __skb_postpush_rcsum(skb, start, len, 0);
3895 }
3896
3897 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3898
3899 /**
3900 * skb_push_rcsum - push skb and update receive checksum
3901 * @skb: buffer to update
3902 * @len: length of data pulled
3903 *
3904 * This function performs an skb_push on the packet and updates
3905 * the CHECKSUM_COMPLETE checksum. It should be used on
3906 * receive path processing instead of skb_push unless you know
3907 * that the checksum difference is zero (e.g., a valid IP header)
3908 * or you are setting ip_summed to CHECKSUM_NONE.
3909 */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3910 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3911 {
3912 skb_push(skb, len);
3913 skb_postpush_rcsum(skb, skb->data, len);
3914 return skb->data;
3915 }
3916
3917 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3918 /**
3919 * pskb_trim_rcsum - trim received skb and update checksum
3920 * @skb: buffer to trim
3921 * @len: new length
3922 *
3923 * This is exactly the same as pskb_trim except that it ensures the
3924 * checksum of received packets are still valid after the operation.
3925 * It can change skb pointers.
3926 */
3927
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3928 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3929 {
3930 if (likely(len >= skb->len))
3931 return 0;
3932 return pskb_trim_rcsum_slow(skb, len);
3933 }
3934
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3935 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3936 {
3937 if (skb->ip_summed == CHECKSUM_COMPLETE)
3938 skb->ip_summed = CHECKSUM_NONE;
3939 __skb_trim(skb, len);
3940 return 0;
3941 }
3942
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3943 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3944 {
3945 if (skb->ip_summed == CHECKSUM_COMPLETE)
3946 skb->ip_summed = CHECKSUM_NONE;
3947 return __skb_grow(skb, len);
3948 }
3949
3950 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3951 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3952 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3953 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3954 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3955
3956 #define skb_queue_walk(queue, skb) \
3957 for (skb = (queue)->next; \
3958 skb != (struct sk_buff *)(queue); \
3959 skb = skb->next)
3960
3961 #define skb_queue_walk_safe(queue, skb, tmp) \
3962 for (skb = (queue)->next, tmp = skb->next; \
3963 skb != (struct sk_buff *)(queue); \
3964 skb = tmp, tmp = skb->next)
3965
3966 #define skb_queue_walk_from(queue, skb) \
3967 for (; skb != (struct sk_buff *)(queue); \
3968 skb = skb->next)
3969
3970 #define skb_rbtree_walk(skb, root) \
3971 for (skb = skb_rb_first(root); skb != NULL; \
3972 skb = skb_rb_next(skb))
3973
3974 #define skb_rbtree_walk_from(skb) \
3975 for (; skb != NULL; \
3976 skb = skb_rb_next(skb))
3977
3978 #define skb_rbtree_walk_from_safe(skb, tmp) \
3979 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3980 skb = tmp)
3981
3982 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3983 for (tmp = skb->next; \
3984 skb != (struct sk_buff *)(queue); \
3985 skb = tmp, tmp = skb->next)
3986
3987 #define skb_queue_reverse_walk(queue, skb) \
3988 for (skb = (queue)->prev; \
3989 skb != (struct sk_buff *)(queue); \
3990 skb = skb->prev)
3991
3992 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3993 for (skb = (queue)->prev, tmp = skb->prev; \
3994 skb != (struct sk_buff *)(queue); \
3995 skb = tmp, tmp = skb->prev)
3996
3997 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3998 for (tmp = skb->prev; \
3999 skb != (struct sk_buff *)(queue); \
4000 skb = tmp, tmp = skb->prev)
4001
skb_has_frag_list(const struct sk_buff * skb)4002 static inline bool skb_has_frag_list(const struct sk_buff *skb)
4003 {
4004 return skb_shinfo(skb)->frag_list != NULL;
4005 }
4006
skb_frag_list_init(struct sk_buff * skb)4007 static inline void skb_frag_list_init(struct sk_buff *skb)
4008 {
4009 skb_shinfo(skb)->frag_list = NULL;
4010 }
4011
4012 #define skb_walk_frags(skb, iter) \
4013 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
4014
4015
4016 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
4017 int *err, long *timeo_p,
4018 const struct sk_buff *skb);
4019 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
4020 struct sk_buff_head *queue,
4021 unsigned int flags,
4022 int *off, int *err,
4023 struct sk_buff **last);
4024 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
4025 struct sk_buff_head *queue,
4026 unsigned int flags, int *off, int *err,
4027 struct sk_buff **last);
4028 struct sk_buff *__skb_recv_datagram(struct sock *sk,
4029 struct sk_buff_head *sk_queue,
4030 unsigned int flags, int *off, int *err);
4031 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
4032 __poll_t datagram_poll(struct file *file, struct socket *sock,
4033 struct poll_table_struct *wait);
4034 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
4035 struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)4036 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
4037 struct msghdr *msg, int size)
4038 {
4039 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
4040 }
4041 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
4042 struct msghdr *msg);
4043 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
4044 struct iov_iter *to, int len,
4045 struct ahash_request *hash);
4046 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
4047 struct iov_iter *from, int len);
4048 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
4049 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
4050 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)4051 static inline void skb_free_datagram_locked(struct sock *sk,
4052 struct sk_buff *skb)
4053 {
4054 __skb_free_datagram_locked(sk, skb, 0);
4055 }
4056 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4057 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4058 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4059 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4060 int len);
4061 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4062 struct pipe_inode_info *pipe, unsigned int len,
4063 unsigned int flags);
4064 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4065 int len);
4066 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4067 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4068 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4069 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4070 int len, int hlen);
4071 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4072 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4073 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4074 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
4075 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
4076 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4077 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4078 unsigned int offset);
4079 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4080 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4081 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4082 int skb_vlan_pop(struct sk_buff *skb);
4083 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4084 int skb_eth_pop(struct sk_buff *skb);
4085 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4086 const unsigned char *src);
4087 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4088 int mac_len, bool ethernet);
4089 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4090 bool ethernet);
4091 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4092 int skb_mpls_dec_ttl(struct sk_buff *skb);
4093 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4094 gfp_t gfp);
4095
memcpy_from_msg(void * data,struct msghdr * msg,int len)4096 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4097 {
4098 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4099 }
4100
memcpy_to_msg(struct msghdr * msg,void * data,int len)4101 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4102 {
4103 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4104 }
4105
4106 struct skb_checksum_ops {
4107 __wsum (*update)(const void *mem, int len, __wsum wsum);
4108 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4109 };
4110
4111 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4112
4113 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4114 __wsum csum, const struct skb_checksum_ops *ops);
4115 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4116 __wsum csum);
4117
4118 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,const void * data,int hlen,void * buffer)4119 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4120 const void *data, int hlen, void *buffer)
4121 {
4122 if (likely(hlen - offset >= len))
4123 return (void *)data + offset;
4124
4125 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4126 return NULL;
4127
4128 return buffer;
4129 }
4130
4131 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)4132 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4133 {
4134 return __skb_header_pointer(skb, offset, len, skb->data,
4135 skb_headlen(skb), buffer);
4136 }
4137
4138 /**
4139 * skb_needs_linearize - check if we need to linearize a given skb
4140 * depending on the given device features.
4141 * @skb: socket buffer to check
4142 * @features: net device features
4143 *
4144 * Returns true if either:
4145 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
4146 * 2. skb is fragmented and the device does not support SG.
4147 */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)4148 static inline bool skb_needs_linearize(struct sk_buff *skb,
4149 netdev_features_t features)
4150 {
4151 return skb_is_nonlinear(skb) &&
4152 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4153 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4154 }
4155
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)4156 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4157 void *to,
4158 const unsigned int len)
4159 {
4160 memcpy(to, skb->data, len);
4161 }
4162
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)4163 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4164 const int offset, void *to,
4165 const unsigned int len)
4166 {
4167 memcpy(to, skb->data + offset, len);
4168 }
4169
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)4170 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4171 const void *from,
4172 const unsigned int len)
4173 {
4174 memcpy(skb->data, from, len);
4175 }
4176
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)4177 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4178 const int offset,
4179 const void *from,
4180 const unsigned int len)
4181 {
4182 memcpy(skb->data + offset, from, len);
4183 }
4184
4185 void skb_init(void);
4186
skb_get_ktime(const struct sk_buff * skb)4187 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4188 {
4189 return skb->tstamp;
4190 }
4191
4192 /**
4193 * skb_get_timestamp - get timestamp from a skb
4194 * @skb: skb to get stamp from
4195 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
4196 *
4197 * Timestamps are stored in the skb as offsets to a base timestamp.
4198 * This function converts the offset back to a struct timeval and stores
4199 * it in stamp.
4200 */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)4201 static inline void skb_get_timestamp(const struct sk_buff *skb,
4202 struct __kernel_old_timeval *stamp)
4203 {
4204 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
4205 }
4206
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)4207 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4208 struct __kernel_sock_timeval *stamp)
4209 {
4210 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4211
4212 stamp->tv_sec = ts.tv_sec;
4213 stamp->tv_usec = ts.tv_nsec / 1000;
4214 }
4215
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)4216 static inline void skb_get_timestampns(const struct sk_buff *skb,
4217 struct __kernel_old_timespec *stamp)
4218 {
4219 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4220
4221 stamp->tv_sec = ts.tv_sec;
4222 stamp->tv_nsec = ts.tv_nsec;
4223 }
4224
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)4225 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4226 struct __kernel_timespec *stamp)
4227 {
4228 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4229
4230 stamp->tv_sec = ts.tv_sec;
4231 stamp->tv_nsec = ts.tv_nsec;
4232 }
4233
__net_timestamp(struct sk_buff * skb)4234 static inline void __net_timestamp(struct sk_buff *skb)
4235 {
4236 skb->tstamp = ktime_get_real();
4237 skb->mono_delivery_time = 0;
4238 }
4239
net_timedelta(ktime_t t)4240 static inline ktime_t net_timedelta(ktime_t t)
4241 {
4242 return ktime_sub(ktime_get_real(), t);
4243 }
4244
skb_set_delivery_time(struct sk_buff * skb,ktime_t kt,bool mono)4245 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4246 bool mono)
4247 {
4248 skb->tstamp = kt;
4249 skb->mono_delivery_time = kt && mono;
4250 }
4251
4252 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4253
4254 /* It is used in the ingress path to clear the delivery_time.
4255 * If needed, set the skb->tstamp to the (rcv) timestamp.
4256 */
skb_clear_delivery_time(struct sk_buff * skb)4257 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4258 {
4259 if (skb->mono_delivery_time) {
4260 skb->mono_delivery_time = 0;
4261 if (static_branch_unlikely(&netstamp_needed_key))
4262 skb->tstamp = ktime_get_real();
4263 else
4264 skb->tstamp = 0;
4265 }
4266 }
4267
skb_clear_tstamp(struct sk_buff * skb)4268 static inline void skb_clear_tstamp(struct sk_buff *skb)
4269 {
4270 if (skb->mono_delivery_time)
4271 return;
4272
4273 skb->tstamp = 0;
4274 }
4275
skb_tstamp(const struct sk_buff * skb)4276 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4277 {
4278 if (skb->mono_delivery_time)
4279 return 0;
4280
4281 return skb->tstamp;
4282 }
4283
skb_tstamp_cond(const struct sk_buff * skb,bool cond)4284 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4285 {
4286 if (!skb->mono_delivery_time && skb->tstamp)
4287 return skb->tstamp;
4288
4289 if (static_branch_unlikely(&netstamp_needed_key) || cond)
4290 return ktime_get_real();
4291
4292 return 0;
4293 }
4294
skb_metadata_len(const struct sk_buff * skb)4295 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4296 {
4297 return skb_shinfo(skb)->meta_len;
4298 }
4299
skb_metadata_end(const struct sk_buff * skb)4300 static inline void *skb_metadata_end(const struct sk_buff *skb)
4301 {
4302 return skb_mac_header(skb);
4303 }
4304
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)4305 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4306 const struct sk_buff *skb_b,
4307 u8 meta_len)
4308 {
4309 const void *a = skb_metadata_end(skb_a);
4310 const void *b = skb_metadata_end(skb_b);
4311 /* Using more efficient varaiant than plain call to memcmp(). */
4312 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4313 u64 diffs = 0;
4314
4315 switch (meta_len) {
4316 #define __it(x, op) (x -= sizeof(u##op))
4317 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4318 case 32: diffs |= __it_diff(a, b, 64);
4319 fallthrough;
4320 case 24: diffs |= __it_diff(a, b, 64);
4321 fallthrough;
4322 case 16: diffs |= __it_diff(a, b, 64);
4323 fallthrough;
4324 case 8: diffs |= __it_diff(a, b, 64);
4325 break;
4326 case 28: diffs |= __it_diff(a, b, 64);
4327 fallthrough;
4328 case 20: diffs |= __it_diff(a, b, 64);
4329 fallthrough;
4330 case 12: diffs |= __it_diff(a, b, 64);
4331 fallthrough;
4332 case 4: diffs |= __it_diff(a, b, 32);
4333 break;
4334 }
4335 return diffs;
4336 #else
4337 return memcmp(a - meta_len, b - meta_len, meta_len);
4338 #endif
4339 }
4340
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)4341 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4342 const struct sk_buff *skb_b)
4343 {
4344 u8 len_a = skb_metadata_len(skb_a);
4345 u8 len_b = skb_metadata_len(skb_b);
4346
4347 if (!(len_a | len_b))
4348 return false;
4349
4350 return len_a != len_b ?
4351 true : __skb_metadata_differs(skb_a, skb_b, len_a);
4352 }
4353
skb_metadata_set(struct sk_buff * skb,u8 meta_len)4354 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4355 {
4356 skb_shinfo(skb)->meta_len = meta_len;
4357 }
4358
skb_metadata_clear(struct sk_buff * skb)4359 static inline void skb_metadata_clear(struct sk_buff *skb)
4360 {
4361 skb_metadata_set(skb, 0);
4362 }
4363
4364 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4365
4366 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4367
4368 void skb_clone_tx_timestamp(struct sk_buff *skb);
4369 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4370
4371 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4372
skb_clone_tx_timestamp(struct sk_buff * skb)4373 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4374 {
4375 }
4376
skb_defer_rx_timestamp(struct sk_buff * skb)4377 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4378 {
4379 return false;
4380 }
4381
4382 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4383
4384 /**
4385 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4386 *
4387 * PHY drivers may accept clones of transmitted packets for
4388 * timestamping via their phy_driver.txtstamp method. These drivers
4389 * must call this function to return the skb back to the stack with a
4390 * timestamp.
4391 *
4392 * @skb: clone of the original outgoing packet
4393 * @hwtstamps: hardware time stamps
4394 *
4395 */
4396 void skb_complete_tx_timestamp(struct sk_buff *skb,
4397 struct skb_shared_hwtstamps *hwtstamps);
4398
4399 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4400 struct skb_shared_hwtstamps *hwtstamps,
4401 struct sock *sk, int tstype);
4402
4403 /**
4404 * skb_tstamp_tx - queue clone of skb with send time stamps
4405 * @orig_skb: the original outgoing packet
4406 * @hwtstamps: hardware time stamps, may be NULL if not available
4407 *
4408 * If the skb has a socket associated, then this function clones the
4409 * skb (thus sharing the actual data and optional structures), stores
4410 * the optional hardware time stamping information (if non NULL) or
4411 * generates a software time stamp (otherwise), then queues the clone
4412 * to the error queue of the socket. Errors are silently ignored.
4413 */
4414 void skb_tstamp_tx(struct sk_buff *orig_skb,
4415 struct skb_shared_hwtstamps *hwtstamps);
4416
4417 /**
4418 * skb_tx_timestamp() - Driver hook for transmit timestamping
4419 *
4420 * Ethernet MAC Drivers should call this function in their hard_xmit()
4421 * function immediately before giving the sk_buff to the MAC hardware.
4422 *
4423 * Specifically, one should make absolutely sure that this function is
4424 * called before TX completion of this packet can trigger. Otherwise
4425 * the packet could potentially already be freed.
4426 *
4427 * @skb: A socket buffer.
4428 */
skb_tx_timestamp(struct sk_buff * skb)4429 static inline void skb_tx_timestamp(struct sk_buff *skb)
4430 {
4431 skb_clone_tx_timestamp(skb);
4432 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4433 skb_tstamp_tx(skb, NULL);
4434 }
4435
4436 /**
4437 * skb_complete_wifi_ack - deliver skb with wifi status
4438 *
4439 * @skb: the original outgoing packet
4440 * @acked: ack status
4441 *
4442 */
4443 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4444
4445 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4446 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4447
skb_csum_unnecessary(const struct sk_buff * skb)4448 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4449 {
4450 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4451 skb->csum_valid ||
4452 (skb->ip_summed == CHECKSUM_PARTIAL &&
4453 skb_checksum_start_offset(skb) >= 0));
4454 }
4455
4456 /**
4457 * skb_checksum_complete - Calculate checksum of an entire packet
4458 * @skb: packet to process
4459 *
4460 * This function calculates the checksum over the entire packet plus
4461 * the value of skb->csum. The latter can be used to supply the
4462 * checksum of a pseudo header as used by TCP/UDP. It returns the
4463 * checksum.
4464 *
4465 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
4466 * this function can be used to verify that checksum on received
4467 * packets. In that case the function should return zero if the
4468 * checksum is correct. In particular, this function will return zero
4469 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4470 * hardware has already verified the correctness of the checksum.
4471 */
skb_checksum_complete(struct sk_buff * skb)4472 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4473 {
4474 return skb_csum_unnecessary(skb) ?
4475 0 : __skb_checksum_complete(skb);
4476 }
4477
__skb_decr_checksum_unnecessary(struct sk_buff * skb)4478 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4479 {
4480 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4481 if (skb->csum_level == 0)
4482 skb->ip_summed = CHECKSUM_NONE;
4483 else
4484 skb->csum_level--;
4485 }
4486 }
4487
__skb_incr_checksum_unnecessary(struct sk_buff * skb)4488 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4489 {
4490 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4491 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4492 skb->csum_level++;
4493 } else if (skb->ip_summed == CHECKSUM_NONE) {
4494 skb->ip_summed = CHECKSUM_UNNECESSARY;
4495 skb->csum_level = 0;
4496 }
4497 }
4498
__skb_reset_checksum_unnecessary(struct sk_buff * skb)4499 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4500 {
4501 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4502 skb->ip_summed = CHECKSUM_NONE;
4503 skb->csum_level = 0;
4504 }
4505 }
4506
4507 /* Check if we need to perform checksum complete validation.
4508 *
4509 * Returns true if checksum complete is needed, false otherwise
4510 * (either checksum is unnecessary or zero checksum is allowed).
4511 */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)4512 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4513 bool zero_okay,
4514 __sum16 check)
4515 {
4516 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4517 skb->csum_valid = 1;
4518 __skb_decr_checksum_unnecessary(skb);
4519 return false;
4520 }
4521
4522 return true;
4523 }
4524
4525 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4526 * in checksum_init.
4527 */
4528 #define CHECKSUM_BREAK 76
4529
4530 /* Unset checksum-complete
4531 *
4532 * Unset checksum complete can be done when packet is being modified
4533 * (uncompressed for instance) and checksum-complete value is
4534 * invalidated.
4535 */
skb_checksum_complete_unset(struct sk_buff * skb)4536 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4537 {
4538 if (skb->ip_summed == CHECKSUM_COMPLETE)
4539 skb->ip_summed = CHECKSUM_NONE;
4540 }
4541
4542 /* Validate (init) checksum based on checksum complete.
4543 *
4544 * Return values:
4545 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
4546 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4547 * checksum is stored in skb->csum for use in __skb_checksum_complete
4548 * non-zero: value of invalid checksum
4549 *
4550 */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4551 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4552 bool complete,
4553 __wsum psum)
4554 {
4555 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4556 if (!csum_fold(csum_add(psum, skb->csum))) {
4557 skb->csum_valid = 1;
4558 return 0;
4559 }
4560 }
4561
4562 skb->csum = psum;
4563
4564 if (complete || skb->len <= CHECKSUM_BREAK) {
4565 __sum16 csum;
4566
4567 csum = __skb_checksum_complete(skb);
4568 skb->csum_valid = !csum;
4569 return csum;
4570 }
4571
4572 return 0;
4573 }
4574
null_compute_pseudo(struct sk_buff * skb,int proto)4575 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4576 {
4577 return 0;
4578 }
4579
4580 /* Perform checksum validate (init). Note that this is a macro since we only
4581 * want to calculate the pseudo header which is an input function if necessary.
4582 * First we try to validate without any computation (checksum unnecessary) and
4583 * then calculate based on checksum complete calling the function to compute
4584 * pseudo header.
4585 *
4586 * Return values:
4587 * 0: checksum is validated or try to in skb_checksum_complete
4588 * non-zero: value of invalid checksum
4589 */
4590 #define __skb_checksum_validate(skb, proto, complete, \
4591 zero_okay, check, compute_pseudo) \
4592 ({ \
4593 __sum16 __ret = 0; \
4594 skb->csum_valid = 0; \
4595 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4596 __ret = __skb_checksum_validate_complete(skb, \
4597 complete, compute_pseudo(skb, proto)); \
4598 __ret; \
4599 })
4600
4601 #define skb_checksum_init(skb, proto, compute_pseudo) \
4602 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4603
4604 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4605 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4606
4607 #define skb_checksum_validate(skb, proto, compute_pseudo) \
4608 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4609
4610 #define skb_checksum_validate_zero_check(skb, proto, check, \
4611 compute_pseudo) \
4612 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4613
4614 #define skb_checksum_simple_validate(skb) \
4615 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4616
__skb_checksum_convert_check(struct sk_buff * skb)4617 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4618 {
4619 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4620 }
4621
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4622 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4623 {
4624 skb->csum = ~pseudo;
4625 skb->ip_summed = CHECKSUM_COMPLETE;
4626 }
4627
4628 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \
4629 do { \
4630 if (__skb_checksum_convert_check(skb)) \
4631 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4632 } while (0)
4633
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4634 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4635 u16 start, u16 offset)
4636 {
4637 skb->ip_summed = CHECKSUM_PARTIAL;
4638 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4639 skb->csum_offset = offset - start;
4640 }
4641
4642 /* Update skbuf and packet to reflect the remote checksum offload operation.
4643 * When called, ptr indicates the starting point for skb->csum when
4644 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4645 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4646 */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4647 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4648 int start, int offset, bool nopartial)
4649 {
4650 __wsum delta;
4651
4652 if (!nopartial) {
4653 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4654 return;
4655 }
4656
4657 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4658 __skb_checksum_complete(skb);
4659 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4660 }
4661
4662 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4663
4664 /* Adjust skb->csum since we changed the packet */
4665 skb->csum = csum_add(skb->csum, delta);
4666 }
4667
skb_nfct(const struct sk_buff * skb)4668 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4669 {
4670 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4671 return (void *)(skb->_nfct & NFCT_PTRMASK);
4672 #else
4673 return NULL;
4674 #endif
4675 }
4676
skb_get_nfct(const struct sk_buff * skb)4677 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4678 {
4679 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4680 return skb->_nfct;
4681 #else
4682 return 0UL;
4683 #endif
4684 }
4685
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4686 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4687 {
4688 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4689 skb->slow_gro |= !!nfct;
4690 skb->_nfct = nfct;
4691 #endif
4692 }
4693
4694 #ifdef CONFIG_SKB_EXTENSIONS
4695 enum skb_ext_id {
4696 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4697 SKB_EXT_BRIDGE_NF,
4698 #endif
4699 #ifdef CONFIG_XFRM
4700 SKB_EXT_SEC_PATH,
4701 #endif
4702 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4703 TC_SKB_EXT,
4704 #endif
4705 #if IS_ENABLED(CONFIG_MPTCP)
4706 SKB_EXT_MPTCP,
4707 #endif
4708 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4709 SKB_EXT_MCTP,
4710 #endif
4711 SKB_EXT_NUM, /* must be last */
4712 };
4713
4714 /**
4715 * struct skb_ext - sk_buff extensions
4716 * @refcnt: 1 on allocation, deallocated on 0
4717 * @offset: offset to add to @data to obtain extension address
4718 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4719 * @data: start of extension data, variable sized
4720 *
4721 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4722 * to use 'u8' types while allowing up to 2kb worth of extension data.
4723 */
4724 struct skb_ext {
4725 refcount_t refcnt;
4726 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4727 u8 chunks; /* same */
4728 char data[] __aligned(8);
4729 };
4730
4731 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4732 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4733 struct skb_ext *ext);
4734 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4735 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4736 void __skb_ext_put(struct skb_ext *ext);
4737
skb_ext_put(struct sk_buff * skb)4738 static inline void skb_ext_put(struct sk_buff *skb)
4739 {
4740 if (skb->active_extensions)
4741 __skb_ext_put(skb->extensions);
4742 }
4743
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4744 static inline void __skb_ext_copy(struct sk_buff *dst,
4745 const struct sk_buff *src)
4746 {
4747 dst->active_extensions = src->active_extensions;
4748
4749 if (src->active_extensions) {
4750 struct skb_ext *ext = src->extensions;
4751
4752 refcount_inc(&ext->refcnt);
4753 dst->extensions = ext;
4754 }
4755 }
4756
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4757 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4758 {
4759 skb_ext_put(dst);
4760 __skb_ext_copy(dst, src);
4761 }
4762
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4763 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4764 {
4765 return !!ext->offset[i];
4766 }
4767
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4768 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4769 {
4770 return skb->active_extensions & (1 << id);
4771 }
4772
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4773 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4774 {
4775 if (skb_ext_exist(skb, id))
4776 __skb_ext_del(skb, id);
4777 }
4778
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4779 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4780 {
4781 if (skb_ext_exist(skb, id)) {
4782 struct skb_ext *ext = skb->extensions;
4783
4784 return (void *)ext + (ext->offset[id] << 3);
4785 }
4786
4787 return NULL;
4788 }
4789
skb_ext_reset(struct sk_buff * skb)4790 static inline void skb_ext_reset(struct sk_buff *skb)
4791 {
4792 if (unlikely(skb->active_extensions)) {
4793 __skb_ext_put(skb->extensions);
4794 skb->active_extensions = 0;
4795 }
4796 }
4797
skb_has_extensions(struct sk_buff * skb)4798 static inline bool skb_has_extensions(struct sk_buff *skb)
4799 {
4800 return unlikely(skb->active_extensions);
4801 }
4802 #else
skb_ext_put(struct sk_buff * skb)4803 static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4804 static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4805 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4806 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4807 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4808 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4809 #endif /* CONFIG_SKB_EXTENSIONS */
4810
nf_reset_ct(struct sk_buff * skb)4811 static inline void nf_reset_ct(struct sk_buff *skb)
4812 {
4813 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4814 nf_conntrack_put(skb_nfct(skb));
4815 skb->_nfct = 0;
4816 #endif
4817 }
4818
nf_reset_trace(struct sk_buff * skb)4819 static inline void nf_reset_trace(struct sk_buff *skb)
4820 {
4821 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4822 skb->nf_trace = 0;
4823 #endif
4824 }
4825
ipvs_reset(struct sk_buff * skb)4826 static inline void ipvs_reset(struct sk_buff *skb)
4827 {
4828 #if IS_ENABLED(CONFIG_IP_VS)
4829 skb->ipvs_property = 0;
4830 #endif
4831 }
4832
4833 /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4834 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4835 bool copy)
4836 {
4837 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4838 dst->_nfct = src->_nfct;
4839 nf_conntrack_get(skb_nfct(src));
4840 #endif
4841 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4842 if (copy)
4843 dst->nf_trace = src->nf_trace;
4844 #endif
4845 }
4846
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4847 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4848 {
4849 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4850 nf_conntrack_put(skb_nfct(dst));
4851 #endif
4852 dst->slow_gro = src->slow_gro;
4853 __nf_copy(dst, src, true);
4854 }
4855
4856 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4857 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4858 {
4859 to->secmark = from->secmark;
4860 }
4861
skb_init_secmark(struct sk_buff * skb)4862 static inline void skb_init_secmark(struct sk_buff *skb)
4863 {
4864 skb->secmark = 0;
4865 }
4866 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4867 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4868 { }
4869
skb_init_secmark(struct sk_buff * skb)4870 static inline void skb_init_secmark(struct sk_buff *skb)
4871 { }
4872 #endif
4873
secpath_exists(const struct sk_buff * skb)4874 static inline int secpath_exists(const struct sk_buff *skb)
4875 {
4876 #ifdef CONFIG_XFRM
4877 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4878 #else
4879 return 0;
4880 #endif
4881 }
4882
skb_irq_freeable(const struct sk_buff * skb)4883 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4884 {
4885 return !skb->destructor &&
4886 !secpath_exists(skb) &&
4887 !skb_nfct(skb) &&
4888 !skb->_skb_refdst &&
4889 !skb_has_frag_list(skb);
4890 }
4891
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)4892 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4893 {
4894 skb->queue_mapping = queue_mapping;
4895 }
4896
skb_get_queue_mapping(const struct sk_buff * skb)4897 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4898 {
4899 return skb->queue_mapping;
4900 }
4901
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)4902 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4903 {
4904 to->queue_mapping = from->queue_mapping;
4905 }
4906
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4907 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4908 {
4909 skb->queue_mapping = rx_queue + 1;
4910 }
4911
skb_get_rx_queue(const struct sk_buff * skb)4912 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4913 {
4914 return skb->queue_mapping - 1;
4915 }
4916
skb_rx_queue_recorded(const struct sk_buff * skb)4917 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4918 {
4919 return skb->queue_mapping != 0;
4920 }
4921
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4922 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4923 {
4924 skb->dst_pending_confirm = val;
4925 }
4926
skb_get_dst_pending_confirm(const struct sk_buff * skb)4927 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4928 {
4929 return skb->dst_pending_confirm != 0;
4930 }
4931
skb_sec_path(const struct sk_buff * skb)4932 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4933 {
4934 #ifdef CONFIG_XFRM
4935 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4936 #else
4937 return NULL;
4938 #endif
4939 }
4940
4941 /* Keeps track of mac header offset relative to skb->head.
4942 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4943 * For non-tunnel skb it points to skb_mac_header() and for
4944 * tunnel skb it points to outer mac header.
4945 * Keeps track of level of encapsulation of network headers.
4946 */
4947 struct skb_gso_cb {
4948 union {
4949 int mac_offset;
4950 int data_offset;
4951 };
4952 int encap_level;
4953 __wsum csum;
4954 __u16 csum_start;
4955 };
4956 #define SKB_GSO_CB_OFFSET 32
4957 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4958
skb_tnl_header_len(const struct sk_buff * inner_skb)4959 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4960 {
4961 return (skb_mac_header(inner_skb) - inner_skb->head) -
4962 SKB_GSO_CB(inner_skb)->mac_offset;
4963 }
4964
gso_pskb_expand_head(struct sk_buff * skb,int extra)4965 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4966 {
4967 int new_headroom, headroom;
4968 int ret;
4969
4970 headroom = skb_headroom(skb);
4971 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4972 if (ret)
4973 return ret;
4974
4975 new_headroom = skb_headroom(skb);
4976 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4977 return 0;
4978 }
4979
gso_reset_checksum(struct sk_buff * skb,__wsum res)4980 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4981 {
4982 /* Do not update partial checksums if remote checksum is enabled. */
4983 if (skb->remcsum_offload)
4984 return;
4985
4986 SKB_GSO_CB(skb)->csum = res;
4987 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4988 }
4989
4990 /* Compute the checksum for a gso segment. First compute the checksum value
4991 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4992 * then add in skb->csum (checksum from csum_start to end of packet).
4993 * skb->csum and csum_start are then updated to reflect the checksum of the
4994 * resultant packet starting from the transport header-- the resultant checksum
4995 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4996 * header.
4997 */
gso_make_checksum(struct sk_buff * skb,__wsum res)4998 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4999 {
5000 unsigned char *csum_start = skb_transport_header(skb);
5001 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
5002 __wsum partial = SKB_GSO_CB(skb)->csum;
5003
5004 SKB_GSO_CB(skb)->csum = res;
5005 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
5006
5007 return csum_fold(csum_partial(csum_start, plen, partial));
5008 }
5009
skb_is_gso(const struct sk_buff * skb)5010 static inline bool skb_is_gso(const struct sk_buff *skb)
5011 {
5012 return skb_shinfo(skb)->gso_size;
5013 }
5014
5015 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)5016 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
5017 {
5018 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
5019 }
5020
5021 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)5022 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
5023 {
5024 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
5025 }
5026
5027 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)5028 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
5029 {
5030 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
5031 }
5032
skb_gso_reset(struct sk_buff * skb)5033 static inline void skb_gso_reset(struct sk_buff *skb)
5034 {
5035 skb_shinfo(skb)->gso_size = 0;
5036 skb_shinfo(skb)->gso_segs = 0;
5037 skb_shinfo(skb)->gso_type = 0;
5038 }
5039
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)5040 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
5041 u16 increment)
5042 {
5043 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5044 return;
5045 shinfo->gso_size += increment;
5046 }
5047
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)5048 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
5049 u16 decrement)
5050 {
5051 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5052 return;
5053 shinfo->gso_size -= decrement;
5054 }
5055
5056 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
5057
skb_warn_if_lro(const struct sk_buff * skb)5058 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
5059 {
5060 /* LRO sets gso_size but not gso_type, whereas if GSO is really
5061 * wanted then gso_type will be set. */
5062 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5063
5064 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
5065 unlikely(shinfo->gso_type == 0)) {
5066 __skb_warn_lro_forwarding(skb);
5067 return true;
5068 }
5069 return false;
5070 }
5071
skb_forward_csum(struct sk_buff * skb)5072 static inline void skb_forward_csum(struct sk_buff *skb)
5073 {
5074 /* Unfortunately we don't support this one. Any brave souls? */
5075 if (skb->ip_summed == CHECKSUM_COMPLETE)
5076 skb->ip_summed = CHECKSUM_NONE;
5077 }
5078
5079 /**
5080 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
5081 * @skb: skb to check
5082 *
5083 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
5084 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
5085 * use this helper, to document places where we make this assertion.
5086 */
skb_checksum_none_assert(const struct sk_buff * skb)5087 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
5088 {
5089 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
5090 }
5091
5092 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5093
5094 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5095 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5096 unsigned int transport_len,
5097 __sum16(*skb_chkf)(struct sk_buff *skb));
5098
5099 /**
5100 * skb_head_is_locked - Determine if the skb->head is locked down
5101 * @skb: skb to check
5102 *
5103 * The head on skbs build around a head frag can be removed if they are
5104 * not cloned. This function returns true if the skb head is locked down
5105 * due to either being allocated via kmalloc, or by being a clone with
5106 * multiple references to the head.
5107 */
skb_head_is_locked(const struct sk_buff * skb)5108 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5109 {
5110 return !skb->head_frag || skb_cloned(skb);
5111 }
5112
5113 /* Local Checksum Offload.
5114 * Compute outer checksum based on the assumption that the
5115 * inner checksum will be offloaded later.
5116 * See Documentation/networking/checksum-offloads.rst for
5117 * explanation of how this works.
5118 * Fill in outer checksum adjustment (e.g. with sum of outer
5119 * pseudo-header) before calling.
5120 * Also ensure that inner checksum is in linear data area.
5121 */
lco_csum(struct sk_buff * skb)5122 static inline __wsum lco_csum(struct sk_buff *skb)
5123 {
5124 unsigned char *csum_start = skb_checksum_start(skb);
5125 unsigned char *l4_hdr = skb_transport_header(skb);
5126 __wsum partial;
5127
5128 /* Start with complement of inner checksum adjustment */
5129 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5130 skb->csum_offset));
5131
5132 /* Add in checksum of our headers (incl. outer checksum
5133 * adjustment filled in by caller) and return result.
5134 */
5135 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5136 }
5137
skb_is_redirected(const struct sk_buff * skb)5138 static inline bool skb_is_redirected(const struct sk_buff *skb)
5139 {
5140 return skb->redirected;
5141 }
5142
skb_set_redirected(struct sk_buff * skb,bool from_ingress)5143 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5144 {
5145 skb->redirected = 1;
5146 #ifdef CONFIG_NET_REDIRECT
5147 skb->from_ingress = from_ingress;
5148 if (skb->from_ingress)
5149 skb_clear_tstamp(skb);
5150 #endif
5151 }
5152
skb_reset_redirect(struct sk_buff * skb)5153 static inline void skb_reset_redirect(struct sk_buff *skb)
5154 {
5155 skb->redirected = 0;
5156 }
5157
skb_csum_is_sctp(struct sk_buff * skb)5158 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5159 {
5160 return skb->csum_not_inet;
5161 }
5162
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)5163 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5164 const u64 kcov_handle)
5165 {
5166 #ifdef CONFIG_KCOV
5167 skb->kcov_handle = kcov_handle;
5168 #endif
5169 }
5170
skb_get_kcov_handle(struct sk_buff * skb)5171 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5172 {
5173 #ifdef CONFIG_KCOV
5174 return skb->kcov_handle;
5175 #else
5176 return 0;
5177 #endif
5178 }
5179
5180 #ifdef CONFIG_PAGE_POOL
skb_mark_for_recycle(struct sk_buff * skb)5181 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5182 {
5183 skb->pp_recycle = 1;
5184 }
5185 #endif
5186
skb_pp_recycle(struct sk_buff * skb,void * data)5187 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
5188 {
5189 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
5190 return false;
5191 return page_pool_return_skb_page(virt_to_page(data));
5192 }
5193
5194 #endif /* __KERNEL__ */
5195 #endif /* _LINUX_SKBUFF_H */
5196