1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 */
9
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <linux/llist.h>
40 #include <net/flow.h>
41 #include <net/page_pool.h>
42 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
43 #include <linux/netfilter/nf_conntrack_common.h>
44 #endif
45 #include <net/net_debug.h>
46 #include <net/dropreason.h>
47
48 /**
49 * DOC: skb checksums
50 *
51 * The interface for checksum offload between the stack and networking drivers
52 * is as follows...
53 *
54 * IP checksum related features
55 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
56 *
57 * Drivers advertise checksum offload capabilities in the features of a device.
58 * From the stack's point of view these are capabilities offered by the driver.
59 * A driver typically only advertises features that it is capable of offloading
60 * to its device.
61 *
62 * .. flat-table:: Checksum related device features
63 * :widths: 1 10
64 *
65 * * - %NETIF_F_HW_CSUM
66 * - The driver (or its device) is able to compute one
67 * IP (one's complement) checksum for any combination
68 * of protocols or protocol layering. The checksum is
69 * computed and set in a packet per the CHECKSUM_PARTIAL
70 * interface (see below).
71 *
72 * * - %NETIF_F_IP_CSUM
73 * - Driver (device) is only able to checksum plain
74 * TCP or UDP packets over IPv4. These are specifically
75 * unencapsulated packets of the form IPv4|TCP or
76 * IPv4|UDP where the Protocol field in the IPv4 header
77 * is TCP or UDP. The IPv4 header may contain IP options.
78 * This feature cannot be set in features for a device
79 * with NETIF_F_HW_CSUM also set. This feature is being
80 * DEPRECATED (see below).
81 *
82 * * - %NETIF_F_IPV6_CSUM
83 * - Driver (device) is only able to checksum plain
84 * TCP or UDP packets over IPv6. These are specifically
85 * unencapsulated packets of the form IPv6|TCP or
86 * IPv6|UDP where the Next Header field in the IPv6
87 * header is either TCP or UDP. IPv6 extension headers
88 * are not supported with this feature. This feature
89 * cannot be set in features for a device with
90 * NETIF_F_HW_CSUM also set. This feature is being
91 * DEPRECATED (see below).
92 *
93 * * - %NETIF_F_RXCSUM
94 * - Driver (device) performs receive checksum offload.
95 * This flag is only used to disable the RX checksum
96 * feature for a device. The stack will accept receive
97 * checksum indication in packets received on a device
98 * regardless of whether NETIF_F_RXCSUM is set.
99 *
100 * Checksumming of received packets by device
101 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
102 *
103 * Indication of checksum verification is set in &sk_buff.ip_summed.
104 * Possible values are:
105 *
106 * - %CHECKSUM_NONE
107 *
108 * Device did not checksum this packet e.g. due to lack of capabilities.
109 * The packet contains full (though not verified) checksum in packet but
110 * not in skb->csum. Thus, skb->csum is undefined in this case.
111 *
112 * - %CHECKSUM_UNNECESSARY
113 *
114 * The hardware you're dealing with doesn't calculate the full checksum
115 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
116 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
117 * if their checksums are okay. &sk_buff.csum is still undefined in this case
118 * though. A driver or device must never modify the checksum field in the
119 * packet even if checksum is verified.
120 *
121 * %CHECKSUM_UNNECESSARY is applicable to following protocols:
122 *
123 * - TCP: IPv6 and IPv4.
124 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
125 * zero UDP checksum for either IPv4 or IPv6, the networking stack
126 * may perform further validation in this case.
127 * - GRE: only if the checksum is present in the header.
128 * - SCTP: indicates the CRC in SCTP header has been validated.
129 * - FCOE: indicates the CRC in FC frame has been validated.
130 *
131 * &sk_buff.csum_level indicates the number of consecutive checksums found in
132 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
133 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
134 * and a device is able to verify the checksums for UDP (possibly zero),
135 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
136 * two. If the device were only able to verify the UDP checksum and not
137 * GRE, either because it doesn't support GRE checksum or because GRE
138 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
139 * not considered in this case).
140 *
141 * - %CHECKSUM_COMPLETE
142 *
143 * This is the most generic way. The device supplied checksum of the _whole_
144 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
145 * hardware doesn't need to parse L3/L4 headers to implement this.
146 *
147 * Notes:
148 *
149 * - Even if device supports only some protocols, but is able to produce
150 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
151 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
152 *
153 * - %CHECKSUM_PARTIAL
154 *
155 * A checksum is set up to be offloaded to a device as described in the
156 * output description for CHECKSUM_PARTIAL. This may occur on a packet
157 * received directly from another Linux OS, e.g., a virtualized Linux kernel
158 * on the same host, or it may be set in the input path in GRO or remote
159 * checksum offload. For the purposes of checksum verification, the checksum
160 * referred to by skb->csum_start + skb->csum_offset and any preceding
161 * checksums in the packet are considered verified. Any checksums in the
162 * packet that are after the checksum being offloaded are not considered to
163 * be verified.
164 *
165 * Checksumming on transmit for non-GSO
166 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
167 *
168 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
169 * Values are:
170 *
171 * - %CHECKSUM_PARTIAL
172 *
173 * The driver is required to checksum the packet as seen by hard_start_xmit()
174 * from &sk_buff.csum_start up to the end, and to record/write the checksum at
175 * offset &sk_buff.csum_start + &sk_buff.csum_offset.
176 * A driver may verify that the
177 * csum_start and csum_offset values are valid values given the length and
178 * offset of the packet, but it should not attempt to validate that the
179 * checksum refers to a legitimate transport layer checksum -- it is the
180 * purview of the stack to validate that csum_start and csum_offset are set
181 * correctly.
182 *
183 * When the stack requests checksum offload for a packet, the driver MUST
184 * ensure that the checksum is set correctly. A driver can either offload the
185 * checksum calculation to the device, or call skb_checksum_help (in the case
186 * that the device does not support offload for a particular checksum).
187 *
188 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
189 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
190 * checksum offload capability.
191 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
192 * on network device checksumming capabilities: if a packet does not match
193 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
194 * &sk_buff.csum_not_inet, see :ref:`crc`)
195 * is called to resolve the checksum.
196 *
197 * - %CHECKSUM_NONE
198 *
199 * The skb was already checksummed by the protocol, or a checksum is not
200 * required.
201 *
202 * - %CHECKSUM_UNNECESSARY
203 *
204 * This has the same meaning as CHECKSUM_NONE for checksum offload on
205 * output.
206 *
207 * - %CHECKSUM_COMPLETE
208 *
209 * Not used in checksum output. If a driver observes a packet with this value
210 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
211 *
212 * .. _crc:
213 *
214 * Non-IP checksum (CRC) offloads
215 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
216 *
217 * .. flat-table::
218 * :widths: 1 10
219 *
220 * * - %NETIF_F_SCTP_CRC
221 * - This feature indicates that a device is capable of
222 * offloading the SCTP CRC in a packet. To perform this offload the stack
223 * will set csum_start and csum_offset accordingly, set ip_summed to
224 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
225 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
226 * A driver that supports both IP checksum offload and SCTP CRC32c offload
227 * must verify which offload is configured for a packet by testing the
228 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
229 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
230 *
231 * * - %NETIF_F_FCOE_CRC
232 * - This feature indicates that a device is capable of offloading the FCOE
233 * CRC in a packet. To perform this offload the stack will set ip_summed
234 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset
235 * accordingly. Note that there is no indication in the skbuff that the
236 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
237 * both IP checksum offload and FCOE CRC offload must verify which offload
238 * is configured for a packet, presumably by inspecting packet headers.
239 *
240 * Checksumming on output with GSO
241 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
242 *
243 * In the case of a GSO packet (skb_is_gso() is true), checksum offload
244 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
245 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
246 * part of the GSO operation is implied. If a checksum is being offloaded
247 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
248 * csum_offset are set to refer to the outermost checksum being offloaded
249 * (two offloaded checksums are possible with UDP encapsulation).
250 */
251
252 /* Don't change this without changing skb_csum_unnecessary! */
253 #define CHECKSUM_NONE 0
254 #define CHECKSUM_UNNECESSARY 1
255 #define CHECKSUM_COMPLETE 2
256 #define CHECKSUM_PARTIAL 3
257
258 /* Maximum value in skb->csum_level */
259 #define SKB_MAX_CSUM_LEVEL 3
260
261 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
262 #define SKB_WITH_OVERHEAD(X) \
263 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
264 #define SKB_MAX_ORDER(X, ORDER) \
265 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
266 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
267 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
268
269 /* return minimum truesize of one skb containing X bytes of data */
270 #define SKB_TRUESIZE(X) ((X) + \
271 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
272 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
273
274 struct ahash_request;
275 struct net_device;
276 struct scatterlist;
277 struct pipe_inode_info;
278 struct iov_iter;
279 struct napi_struct;
280 struct bpf_prog;
281 union bpf_attr;
282 struct skb_ext;
283
284 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
285 struct nf_bridge_info {
286 enum {
287 BRNF_PROTO_UNCHANGED,
288 BRNF_PROTO_8021Q,
289 BRNF_PROTO_PPPOE
290 } orig_proto:8;
291 u8 pkt_otherhost:1;
292 u8 in_prerouting:1;
293 u8 bridged_dnat:1;
294 __u16 frag_max_size;
295 struct net_device *physindev;
296
297 /* always valid & non-NULL from FORWARD on, for physdev match */
298 struct net_device *physoutdev;
299 union {
300 /* prerouting: detect dnat in orig/reply direction */
301 __be32 ipv4_daddr;
302 struct in6_addr ipv6_daddr;
303
304 /* after prerouting + nat detected: store original source
305 * mac since neigh resolution overwrites it, only used while
306 * skb is out in neigh layer.
307 */
308 char neigh_header[8];
309 };
310 };
311 #endif
312
313 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
314 /* Chain in tc_skb_ext will be used to share the tc chain with
315 * ovs recirc_id. It will be set to the current chain by tc
316 * and read by ovs to recirc_id.
317 */
318 struct tc_skb_ext {
319 __u32 chain;
320 __u16 mru;
321 __u16 zone;
322 u8 post_ct:1;
323 u8 post_ct_snat:1;
324 u8 post_ct_dnat:1;
325 };
326 #endif
327
328 struct sk_buff_head {
329 /* These two members must be first to match sk_buff. */
330 struct_group_tagged(sk_buff_list, list,
331 struct sk_buff *next;
332 struct sk_buff *prev;
333 );
334
335 __u32 qlen;
336 spinlock_t lock;
337 };
338
339 struct sk_buff;
340
341 /* To allow 64K frame to be packed as single skb without frag_list we
342 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
343 * buffers which do not start on a page boundary.
344 *
345 * Since GRO uses frags we allocate at least 16 regardless of page
346 * size.
347 */
348 #if (65536/PAGE_SIZE + 1) < 16
349 #define MAX_SKB_FRAGS 16UL
350 #else
351 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
352 #endif
353 extern int sysctl_max_skb_frags;
354
355 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
356 * segment using its current segmentation instead.
357 */
358 #define GSO_BY_FRAGS 0xFFFF
359
360 typedef struct bio_vec skb_frag_t;
361
362 /**
363 * skb_frag_size() - Returns the size of a skb fragment
364 * @frag: skb fragment
365 */
skb_frag_size(const skb_frag_t * frag)366 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
367 {
368 return frag->bv_len;
369 }
370
371 /**
372 * skb_frag_size_set() - Sets the size of a skb fragment
373 * @frag: skb fragment
374 * @size: size of fragment
375 */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)376 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
377 {
378 frag->bv_len = size;
379 }
380
381 /**
382 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
383 * @frag: skb fragment
384 * @delta: value to add
385 */
skb_frag_size_add(skb_frag_t * frag,int delta)386 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
387 {
388 frag->bv_len += delta;
389 }
390
391 /**
392 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
393 * @frag: skb fragment
394 * @delta: value to subtract
395 */
skb_frag_size_sub(skb_frag_t * frag,int delta)396 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
397 {
398 frag->bv_len -= delta;
399 }
400
401 /**
402 * skb_frag_must_loop - Test if %p is a high memory page
403 * @p: fragment's page
404 */
skb_frag_must_loop(struct page * p)405 static inline bool skb_frag_must_loop(struct page *p)
406 {
407 #if defined(CONFIG_HIGHMEM)
408 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
409 return true;
410 #endif
411 return false;
412 }
413
414 /**
415 * skb_frag_foreach_page - loop over pages in a fragment
416 *
417 * @f: skb frag to operate on
418 * @f_off: offset from start of f->bv_page
419 * @f_len: length from f_off to loop over
420 * @p: (temp var) current page
421 * @p_off: (temp var) offset from start of current page,
422 * non-zero only on first page.
423 * @p_len: (temp var) length in current page,
424 * < PAGE_SIZE only on first and last page.
425 * @copied: (temp var) length so far, excluding current p_len.
426 *
427 * A fragment can hold a compound page, in which case per-page
428 * operations, notably kmap_atomic, must be called for each
429 * regular page.
430 */
431 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
432 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
433 p_off = (f_off) & (PAGE_SIZE - 1), \
434 p_len = skb_frag_must_loop(p) ? \
435 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
436 copied = 0; \
437 copied < f_len; \
438 copied += p_len, p++, p_off = 0, \
439 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
440
441 #define HAVE_HW_TIME_STAMP
442
443 /**
444 * struct skb_shared_hwtstamps - hardware time stamps
445 * @hwtstamp: hardware time stamp transformed into duration
446 * since arbitrary point in time
447 * @netdev_data: address/cookie of network device driver used as
448 * reference to actual hardware time stamp
449 *
450 * Software time stamps generated by ktime_get_real() are stored in
451 * skb->tstamp.
452 *
453 * hwtstamps can only be compared against other hwtstamps from
454 * the same device.
455 *
456 * This structure is attached to packets as part of the
457 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
458 */
459 struct skb_shared_hwtstamps {
460 union {
461 ktime_t hwtstamp;
462 void *netdev_data;
463 };
464 };
465
466 /* Definitions for tx_flags in struct skb_shared_info */
467 enum {
468 /* generate hardware time stamp */
469 SKBTX_HW_TSTAMP = 1 << 0,
470
471 /* generate software time stamp when queueing packet to NIC */
472 SKBTX_SW_TSTAMP = 1 << 1,
473
474 /* device driver is going to provide hardware time stamp */
475 SKBTX_IN_PROGRESS = 1 << 2,
476
477 /* generate hardware time stamp based on cycles if supported */
478 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
479
480 /* generate wifi status information (where possible) */
481 SKBTX_WIFI_STATUS = 1 << 4,
482
483 /* determine hardware time stamp based on time or cycles */
484 SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
485
486 /* generate software time stamp when entering packet scheduling */
487 SKBTX_SCHED_TSTAMP = 1 << 6,
488 };
489
490 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
491 SKBTX_SCHED_TSTAMP)
492 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \
493 SKBTX_HW_TSTAMP_USE_CYCLES | \
494 SKBTX_ANY_SW_TSTAMP)
495
496 /* Definitions for flags in struct skb_shared_info */
497 enum {
498 /* use zcopy routines */
499 SKBFL_ZEROCOPY_ENABLE = BIT(0),
500
501 /* This indicates at least one fragment might be overwritten
502 * (as in vmsplice(), sendfile() ...)
503 * If we need to compute a TX checksum, we'll need to copy
504 * all frags to avoid possible bad checksum
505 */
506 SKBFL_SHARED_FRAG = BIT(1),
507
508 /* segment contains only zerocopy data and should not be
509 * charged to the kernel memory.
510 */
511 SKBFL_PURE_ZEROCOPY = BIT(2),
512
513 SKBFL_DONT_ORPHAN = BIT(3),
514
515 /* page references are managed by the ubuf_info, so it's safe to
516 * use frags only up until ubuf_info is released
517 */
518 SKBFL_MANAGED_FRAG_REFS = BIT(4),
519 };
520
521 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
522 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
523 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
524
525 /*
526 * The callback notifies userspace to release buffers when skb DMA is done in
527 * lower device, the skb last reference should be 0 when calling this.
528 * The zerocopy_success argument is true if zero copy transmit occurred,
529 * false on data copy or out of memory error caused by data copy attempt.
530 * The ctx field is used to track device context.
531 * The desc field is used to track userspace buffer index.
532 */
533 struct ubuf_info {
534 void (*callback)(struct sk_buff *, struct ubuf_info *,
535 bool zerocopy_success);
536 refcount_t refcnt;
537 u8 flags;
538 };
539
540 struct ubuf_info_msgzc {
541 struct ubuf_info ubuf;
542
543 union {
544 struct {
545 unsigned long desc;
546 void *ctx;
547 };
548 struct {
549 u32 id;
550 u16 len;
551 u16 zerocopy:1;
552 u32 bytelen;
553 };
554 };
555
556 struct mmpin {
557 struct user_struct *user;
558 unsigned int num_pg;
559 } mmp;
560 };
561
562 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
563 #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \
564 ubuf)
565
566 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
567 void mm_unaccount_pinned_pages(struct mmpin *mmp);
568
569 /* This data is invariant across clones and lives at
570 * the end of the header data, ie. at skb->end.
571 */
572 struct skb_shared_info {
573 __u8 flags;
574 __u8 meta_len;
575 __u8 nr_frags;
576 __u8 tx_flags;
577 unsigned short gso_size;
578 /* Warning: this field is not always filled in (UFO)! */
579 unsigned short gso_segs;
580 struct sk_buff *frag_list;
581 struct skb_shared_hwtstamps hwtstamps;
582 unsigned int gso_type;
583 u32 tskey;
584
585 /*
586 * Warning : all fields before dataref are cleared in __alloc_skb()
587 */
588 atomic_t dataref;
589 unsigned int xdp_frags_size;
590
591 /* Intermediate layers must ensure that destructor_arg
592 * remains valid until skb destructor */
593 void * destructor_arg;
594
595 /* must be last field, see pskb_expand_head() */
596 skb_frag_t frags[MAX_SKB_FRAGS];
597 };
598
599 /**
600 * DOC: dataref and headerless skbs
601 *
602 * Transport layers send out clones of payload skbs they hold for
603 * retransmissions. To allow lower layers of the stack to prepend their headers
604 * we split &skb_shared_info.dataref into two halves.
605 * The lower 16 bits count the overall number of references.
606 * The higher 16 bits indicate how many of the references are payload-only.
607 * skb_header_cloned() checks if skb is allowed to add / write the headers.
608 *
609 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
610 * (via __skb_header_release()). Any clone created from marked skb will get
611 * &sk_buff.hdr_len populated with the available headroom.
612 * If there's the only clone in existence it's able to modify the headroom
613 * at will. The sequence of calls inside the transport layer is::
614 *
615 * <alloc skb>
616 * skb_reserve()
617 * __skb_header_release()
618 * skb_clone()
619 * // send the clone down the stack
620 *
621 * This is not a very generic construct and it depends on the transport layers
622 * doing the right thing. In practice there's usually only one payload-only skb.
623 * Having multiple payload-only skbs with different lengths of hdr_len is not
624 * possible. The payload-only skbs should never leave their owner.
625 */
626 #define SKB_DATAREF_SHIFT 16
627 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
628
629
630 enum {
631 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
632 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
633 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
634 };
635
636 enum {
637 SKB_GSO_TCPV4 = 1 << 0,
638
639 /* This indicates the skb is from an untrusted source. */
640 SKB_GSO_DODGY = 1 << 1,
641
642 /* This indicates the tcp segment has CWR set. */
643 SKB_GSO_TCP_ECN = 1 << 2,
644
645 SKB_GSO_TCP_FIXEDID = 1 << 3,
646
647 SKB_GSO_TCPV6 = 1 << 4,
648
649 SKB_GSO_FCOE = 1 << 5,
650
651 SKB_GSO_GRE = 1 << 6,
652
653 SKB_GSO_GRE_CSUM = 1 << 7,
654
655 SKB_GSO_IPXIP4 = 1 << 8,
656
657 SKB_GSO_IPXIP6 = 1 << 9,
658
659 SKB_GSO_UDP_TUNNEL = 1 << 10,
660
661 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
662
663 SKB_GSO_PARTIAL = 1 << 12,
664
665 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
666
667 SKB_GSO_SCTP = 1 << 14,
668
669 SKB_GSO_ESP = 1 << 15,
670
671 SKB_GSO_UDP = 1 << 16,
672
673 SKB_GSO_UDP_L4 = 1 << 17,
674
675 SKB_GSO_FRAGLIST = 1 << 18,
676 };
677
678 #if BITS_PER_LONG > 32
679 #define NET_SKBUFF_DATA_USES_OFFSET 1
680 #endif
681
682 #ifdef NET_SKBUFF_DATA_USES_OFFSET
683 typedef unsigned int sk_buff_data_t;
684 #else
685 typedef unsigned char *sk_buff_data_t;
686 #endif
687
688 /**
689 * DOC: Basic sk_buff geometry
690 *
691 * struct sk_buff itself is a metadata structure and does not hold any packet
692 * data. All the data is held in associated buffers.
693 *
694 * &sk_buff.head points to the main "head" buffer. The head buffer is divided
695 * into two parts:
696 *
697 * - data buffer, containing headers and sometimes payload;
698 * this is the part of the skb operated on by the common helpers
699 * such as skb_put() or skb_pull();
700 * - shared info (struct skb_shared_info) which holds an array of pointers
701 * to read-only data in the (page, offset, length) format.
702 *
703 * Optionally &skb_shared_info.frag_list may point to another skb.
704 *
705 * Basic diagram may look like this::
706 *
707 * ---------------
708 * | sk_buff |
709 * ---------------
710 * ,--------------------------- + head
711 * / ,----------------- + data
712 * / / ,----------- + tail
713 * | | | , + end
714 * | | | |
715 * v v v v
716 * -----------------------------------------------
717 * | headroom | data | tailroom | skb_shared_info |
718 * -----------------------------------------------
719 * + [page frag]
720 * + [page frag]
721 * + [page frag]
722 * + [page frag] ---------
723 * + frag_list --> | sk_buff |
724 * ---------
725 *
726 */
727
728 /**
729 * struct sk_buff - socket buffer
730 * @next: Next buffer in list
731 * @prev: Previous buffer in list
732 * @tstamp: Time we arrived/left
733 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
734 * for retransmit timer
735 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
736 * @list: queue head
737 * @ll_node: anchor in an llist (eg socket defer_list)
738 * @sk: Socket we are owned by
739 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
740 * fragmentation management
741 * @dev: Device we arrived on/are leaving by
742 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
743 * @cb: Control buffer. Free for use by every layer. Put private vars here
744 * @_skb_refdst: destination entry (with norefcount bit)
745 * @sp: the security path, used for xfrm
746 * @len: Length of actual data
747 * @data_len: Data length
748 * @mac_len: Length of link layer header
749 * @hdr_len: writable header length of cloned skb
750 * @csum: Checksum (must include start/offset pair)
751 * @csum_start: Offset from skb->head where checksumming should start
752 * @csum_offset: Offset from csum_start where checksum should be stored
753 * @priority: Packet queueing priority
754 * @ignore_df: allow local fragmentation
755 * @cloned: Head may be cloned (check refcnt to be sure)
756 * @ip_summed: Driver fed us an IP checksum
757 * @nohdr: Payload reference only, must not modify header
758 * @pkt_type: Packet class
759 * @fclone: skbuff clone status
760 * @ipvs_property: skbuff is owned by ipvs
761 * @inner_protocol_type: whether the inner protocol is
762 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
763 * @remcsum_offload: remote checksum offload is enabled
764 * @offload_fwd_mark: Packet was L2-forwarded in hardware
765 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
766 * @tc_skip_classify: do not classify packet. set by IFB device
767 * @tc_at_ingress: used within tc_classify to distinguish in/egress
768 * @redirected: packet was redirected by packet classifier
769 * @from_ingress: packet was redirected from the ingress path
770 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
771 * @peeked: this packet has been seen already, so stats have been
772 * done for it, don't do them again
773 * @nf_trace: netfilter packet trace flag
774 * @protocol: Packet protocol from driver
775 * @destructor: Destruct function
776 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
777 * @_sk_redir: socket redirection information for skmsg
778 * @_nfct: Associated connection, if any (with nfctinfo bits)
779 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
780 * @skb_iif: ifindex of device we arrived on
781 * @tc_index: Traffic control index
782 * @hash: the packet hash
783 * @queue_mapping: Queue mapping for multiqueue devices
784 * @head_frag: skb was allocated from page fragments,
785 * not allocated by kmalloc() or vmalloc().
786 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
787 * @pp_recycle: mark the packet for recycling instead of freeing (implies
788 * page_pool support on driver)
789 * @active_extensions: active extensions (skb_ext_id types)
790 * @ndisc_nodetype: router type (from link layer)
791 * @ooo_okay: allow the mapping of a socket to a queue to be changed
792 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
793 * ports.
794 * @sw_hash: indicates hash was computed in software stack
795 * @wifi_acked_valid: wifi_acked was set
796 * @wifi_acked: whether frame was acked on wifi or not
797 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
798 * @encapsulation: indicates the inner headers in the skbuff are valid
799 * @encap_hdr_csum: software checksum is needed
800 * @csum_valid: checksum is already valid
801 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
802 * @csum_complete_sw: checksum was completed by software
803 * @csum_level: indicates the number of consecutive checksums found in
804 * the packet minus one that have been verified as
805 * CHECKSUM_UNNECESSARY (max 3)
806 * @scm_io_uring: SKB holds io_uring registered files
807 * @dst_pending_confirm: need to confirm neighbour
808 * @decrypted: Decrypted SKB
809 * @slow_gro: state present at GRO time, slower prepare step required
810 * @mono_delivery_time: When set, skb->tstamp has the
811 * delivery_time in mono clock base (i.e. EDT). Otherwise, the
812 * skb->tstamp has the (rcv) timestamp at ingress and
813 * delivery_time at egress.
814 * @napi_id: id of the NAPI struct this skb came from
815 * @sender_cpu: (aka @napi_id) source CPU in XPS
816 * @alloc_cpu: CPU which did the skb allocation.
817 * @secmark: security marking
818 * @mark: Generic packet mark
819 * @reserved_tailroom: (aka @mark) number of bytes of free space available
820 * at the tail of an sk_buff
821 * @vlan_present: VLAN tag is present
822 * @vlan_proto: vlan encapsulation protocol
823 * @vlan_tci: vlan tag control information
824 * @inner_protocol: Protocol (encapsulation)
825 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
826 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
827 * @inner_transport_header: Inner transport layer header (encapsulation)
828 * @inner_network_header: Network layer header (encapsulation)
829 * @inner_mac_header: Link layer header (encapsulation)
830 * @transport_header: Transport layer header
831 * @network_header: Network layer header
832 * @mac_header: Link layer header
833 * @kcov_handle: KCOV remote handle for remote coverage collection
834 * @tail: Tail pointer
835 * @end: End pointer
836 * @head: Head of buffer
837 * @data: Data head pointer
838 * @truesize: Buffer size
839 * @users: User count - see {datagram,tcp}.c
840 * @extensions: allocated extensions, valid if active_extensions is nonzero
841 */
842
843 struct sk_buff {
844 union {
845 struct {
846 /* These two members must be first to match sk_buff_head. */
847 struct sk_buff *next;
848 struct sk_buff *prev;
849
850 union {
851 struct net_device *dev;
852 /* Some protocols might use this space to store information,
853 * while device pointer would be NULL.
854 * UDP receive path is one user.
855 */
856 unsigned long dev_scratch;
857 };
858 };
859 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
860 struct list_head list;
861 struct llist_node ll_node;
862 };
863
864 union {
865 struct sock *sk;
866 int ip_defrag_offset;
867 };
868
869 union {
870 ktime_t tstamp;
871 u64 skb_mstamp_ns; /* earliest departure time */
872 };
873 /*
874 * This is the control buffer. It is free to use for every
875 * layer. Please put your private variables there. If you
876 * want to keep them across layers you have to do a skb_clone()
877 * first. This is owned by whoever has the skb queued ATM.
878 */
879 char cb[48] __aligned(8);
880
881 union {
882 struct {
883 unsigned long _skb_refdst;
884 void (*destructor)(struct sk_buff *skb);
885 };
886 struct list_head tcp_tsorted_anchor;
887 #ifdef CONFIG_NET_SOCK_MSG
888 unsigned long _sk_redir;
889 #endif
890 };
891
892 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
893 unsigned long _nfct;
894 #endif
895 unsigned int len,
896 data_len;
897 __u16 mac_len,
898 hdr_len;
899
900 /* Following fields are _not_ copied in __copy_skb_header()
901 * Note that queue_mapping is here mostly to fill a hole.
902 */
903 __u16 queue_mapping;
904
905 /* if you move cloned around you also must adapt those constants */
906 #ifdef __BIG_ENDIAN_BITFIELD
907 #define CLONED_MASK (1 << 7)
908 #else
909 #define CLONED_MASK 1
910 #endif
911 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset)
912
913 /* private: */
914 __u8 __cloned_offset[0];
915 /* public: */
916 __u8 cloned:1,
917 nohdr:1,
918 fclone:2,
919 peeked:1,
920 head_frag:1,
921 pfmemalloc:1,
922 pp_recycle:1; /* page_pool recycle indicator */
923 #ifdef CONFIG_SKB_EXTENSIONS
924 __u8 active_extensions;
925 #endif
926
927 /* Fields enclosed in headers group are copied
928 * using a single memcpy() in __copy_skb_header()
929 */
930 struct_group(headers,
931
932 /* private: */
933 __u8 __pkt_type_offset[0];
934 /* public: */
935 __u8 pkt_type:3; /* see PKT_TYPE_MAX */
936 __u8 ignore_df:1;
937 __u8 nf_trace:1;
938 __u8 ip_summed:2;
939 __u8 ooo_okay:1;
940
941 __u8 l4_hash:1;
942 __u8 sw_hash:1;
943 __u8 wifi_acked_valid:1;
944 __u8 wifi_acked:1;
945 __u8 no_fcs:1;
946 /* Indicates the inner headers are valid in the skbuff. */
947 __u8 encapsulation:1;
948 __u8 encap_hdr_csum:1;
949 __u8 csum_valid:1;
950
951 /* private: */
952 __u8 __pkt_vlan_present_offset[0];
953 /* public: */
954 __u8 vlan_present:1; /* See PKT_VLAN_PRESENT_BIT */
955 __u8 csum_complete_sw:1;
956 __u8 csum_level:2;
957 __u8 dst_pending_confirm:1;
958 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */
959 #ifdef CONFIG_NET_CLS_ACT
960 __u8 tc_skip_classify:1;
961 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */
962 #endif
963 #ifdef CONFIG_IPV6_NDISC_NODETYPE
964 __u8 ndisc_nodetype:2;
965 #endif
966
967 __u8 ipvs_property:1;
968 __u8 inner_protocol_type:1;
969 __u8 remcsum_offload:1;
970 #ifdef CONFIG_NET_SWITCHDEV
971 __u8 offload_fwd_mark:1;
972 __u8 offload_l3_fwd_mark:1;
973 #endif
974 __u8 redirected:1;
975 #ifdef CONFIG_NET_REDIRECT
976 __u8 from_ingress:1;
977 #endif
978 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
979 __u8 nf_skip_egress:1;
980 #endif
981 #ifdef CONFIG_TLS_DEVICE
982 __u8 decrypted:1;
983 #endif
984 __u8 slow_gro:1;
985 __u8 csum_not_inet:1;
986 __u8 scm_io_uring:1;
987
988 #ifdef CONFIG_NET_SCHED
989 __u16 tc_index; /* traffic control index */
990 #endif
991
992 union {
993 __wsum csum;
994 struct {
995 __u16 csum_start;
996 __u16 csum_offset;
997 };
998 };
999 __u32 priority;
1000 int skb_iif;
1001 __u32 hash;
1002 __be16 vlan_proto;
1003 __u16 vlan_tci;
1004 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1005 union {
1006 unsigned int napi_id;
1007 unsigned int sender_cpu;
1008 };
1009 #endif
1010 u16 alloc_cpu;
1011 #ifdef CONFIG_NETWORK_SECMARK
1012 __u32 secmark;
1013 #endif
1014
1015 union {
1016 __u32 mark;
1017 __u32 reserved_tailroom;
1018 };
1019
1020 union {
1021 __be16 inner_protocol;
1022 __u8 inner_ipproto;
1023 };
1024
1025 __u16 inner_transport_header;
1026 __u16 inner_network_header;
1027 __u16 inner_mac_header;
1028
1029 __be16 protocol;
1030 __u16 transport_header;
1031 __u16 network_header;
1032 __u16 mac_header;
1033
1034 #ifdef CONFIG_KCOV
1035 u64 kcov_handle;
1036 #endif
1037
1038 ); /* end headers group */
1039
1040 /* These elements must be at the end, see alloc_skb() for details. */
1041 sk_buff_data_t tail;
1042 sk_buff_data_t end;
1043 unsigned char *head,
1044 *data;
1045 unsigned int truesize;
1046 refcount_t users;
1047
1048 #ifdef CONFIG_SKB_EXTENSIONS
1049 /* only useable after checking ->active_extensions != 0 */
1050 struct skb_ext *extensions;
1051 #endif
1052 };
1053
1054 /* if you move pkt_type around you also must adapt those constants */
1055 #ifdef __BIG_ENDIAN_BITFIELD
1056 #define PKT_TYPE_MAX (7 << 5)
1057 #else
1058 #define PKT_TYPE_MAX 7
1059 #endif
1060 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset)
1061
1062 /* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time
1063 * around, you also must adapt these constants.
1064 */
1065 #ifdef __BIG_ENDIAN_BITFIELD
1066 #define PKT_VLAN_PRESENT_BIT 7
1067 #define TC_AT_INGRESS_MASK (1 << 0)
1068 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 2)
1069 #else
1070 #define PKT_VLAN_PRESENT_BIT 0
1071 #define TC_AT_INGRESS_MASK (1 << 7)
1072 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 5)
1073 #endif
1074 #define PKT_VLAN_PRESENT_OFFSET offsetof(struct sk_buff, __pkt_vlan_present_offset)
1075
1076 #ifdef __KERNEL__
1077 /*
1078 * Handling routines are only of interest to the kernel
1079 */
1080
1081 #define SKB_ALLOC_FCLONE 0x01
1082 #define SKB_ALLOC_RX 0x02
1083 #define SKB_ALLOC_NAPI 0x04
1084
1085 /**
1086 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1087 * @skb: buffer
1088 */
skb_pfmemalloc(const struct sk_buff * skb)1089 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1090 {
1091 return unlikely(skb->pfmemalloc);
1092 }
1093
1094 /*
1095 * skb might have a dst pointer attached, refcounted or not.
1096 * _skb_refdst low order bit is set if refcount was _not_ taken
1097 */
1098 #define SKB_DST_NOREF 1UL
1099 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
1100
1101 /**
1102 * skb_dst - returns skb dst_entry
1103 * @skb: buffer
1104 *
1105 * Returns skb dst_entry, regardless of reference taken or not.
1106 */
skb_dst(const struct sk_buff * skb)1107 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1108 {
1109 /* If refdst was not refcounted, check we still are in a
1110 * rcu_read_lock section
1111 */
1112 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1113 !rcu_read_lock_held() &&
1114 !rcu_read_lock_bh_held());
1115 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1116 }
1117
1118 /**
1119 * skb_dst_set - sets skb dst
1120 * @skb: buffer
1121 * @dst: dst entry
1122 *
1123 * Sets skb dst, assuming a reference was taken on dst and should
1124 * be released by skb_dst_drop()
1125 */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)1126 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1127 {
1128 skb->slow_gro |= !!dst;
1129 skb->_skb_refdst = (unsigned long)dst;
1130 }
1131
1132 /**
1133 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1134 * @skb: buffer
1135 * @dst: dst entry
1136 *
1137 * Sets skb dst, assuming a reference was not taken on dst.
1138 * If dst entry is cached, we do not take reference and dst_release
1139 * will be avoided by refdst_drop. If dst entry is not cached, we take
1140 * reference, so that last dst_release can destroy the dst immediately.
1141 */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)1142 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1143 {
1144 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1145 skb->slow_gro |= !!dst;
1146 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1147 }
1148
1149 /**
1150 * skb_dst_is_noref - Test if skb dst isn't refcounted
1151 * @skb: buffer
1152 */
skb_dst_is_noref(const struct sk_buff * skb)1153 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1154 {
1155 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1156 }
1157
1158 /**
1159 * skb_rtable - Returns the skb &rtable
1160 * @skb: buffer
1161 */
skb_rtable(const struct sk_buff * skb)1162 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1163 {
1164 return (struct rtable *)skb_dst(skb);
1165 }
1166
1167 /* For mangling skb->pkt_type from user space side from applications
1168 * such as nft, tc, etc, we only allow a conservative subset of
1169 * possible pkt_types to be set.
1170 */
skb_pkt_type_ok(u32 ptype)1171 static inline bool skb_pkt_type_ok(u32 ptype)
1172 {
1173 return ptype <= PACKET_OTHERHOST;
1174 }
1175
1176 /**
1177 * skb_napi_id - Returns the skb's NAPI id
1178 * @skb: buffer
1179 */
skb_napi_id(const struct sk_buff * skb)1180 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1181 {
1182 #ifdef CONFIG_NET_RX_BUSY_POLL
1183 return skb->napi_id;
1184 #else
1185 return 0;
1186 #endif
1187 }
1188
1189 /**
1190 * skb_unref - decrement the skb's reference count
1191 * @skb: buffer
1192 *
1193 * Returns true if we can free the skb.
1194 */
skb_unref(struct sk_buff * skb)1195 static inline bool skb_unref(struct sk_buff *skb)
1196 {
1197 if (unlikely(!skb))
1198 return false;
1199 if (likely(refcount_read(&skb->users) == 1))
1200 smp_rmb();
1201 else if (likely(!refcount_dec_and_test(&skb->users)))
1202 return false;
1203
1204 return true;
1205 }
1206
1207 void __fix_address
1208 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1209
1210 /**
1211 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1212 * @skb: buffer to free
1213 */
kfree_skb(struct sk_buff * skb)1214 static inline void kfree_skb(struct sk_buff *skb)
1215 {
1216 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1217 }
1218
1219 void skb_release_head_state(struct sk_buff *skb);
1220 void kfree_skb_list_reason(struct sk_buff *segs,
1221 enum skb_drop_reason reason);
1222 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1223 void skb_tx_error(struct sk_buff *skb);
1224
kfree_skb_list(struct sk_buff * segs)1225 static inline void kfree_skb_list(struct sk_buff *segs)
1226 {
1227 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1228 }
1229
1230 #ifdef CONFIG_TRACEPOINTS
1231 void consume_skb(struct sk_buff *skb);
1232 #else
consume_skb(struct sk_buff * skb)1233 static inline void consume_skb(struct sk_buff *skb)
1234 {
1235 return kfree_skb(skb);
1236 }
1237 #endif
1238
1239 void __consume_stateless_skb(struct sk_buff *skb);
1240 void __kfree_skb(struct sk_buff *skb);
1241 extern struct kmem_cache *skbuff_head_cache;
1242
1243 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1244 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1245 bool *fragstolen, int *delta_truesize);
1246
1247 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1248 int node);
1249 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1250 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1251 struct sk_buff *build_skb_around(struct sk_buff *skb,
1252 void *data, unsigned int frag_size);
1253 void skb_attempt_defer_free(struct sk_buff *skb);
1254
1255 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1256
1257 /**
1258 * alloc_skb - allocate a network buffer
1259 * @size: size to allocate
1260 * @priority: allocation mask
1261 *
1262 * This function is a convenient wrapper around __alloc_skb().
1263 */
alloc_skb(unsigned int size,gfp_t priority)1264 static inline struct sk_buff *alloc_skb(unsigned int size,
1265 gfp_t priority)
1266 {
1267 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1268 }
1269
1270 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1271 unsigned long data_len,
1272 int max_page_order,
1273 int *errcode,
1274 gfp_t gfp_mask);
1275 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1276
1277 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1278 struct sk_buff_fclones {
1279 struct sk_buff skb1;
1280
1281 struct sk_buff skb2;
1282
1283 refcount_t fclone_ref;
1284 };
1285
1286 /**
1287 * skb_fclone_busy - check if fclone is busy
1288 * @sk: socket
1289 * @skb: buffer
1290 *
1291 * Returns true if skb is a fast clone, and its clone is not freed.
1292 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1293 * so we also check that this didnt happen.
1294 */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1295 static inline bool skb_fclone_busy(const struct sock *sk,
1296 const struct sk_buff *skb)
1297 {
1298 const struct sk_buff_fclones *fclones;
1299
1300 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1301
1302 return skb->fclone == SKB_FCLONE_ORIG &&
1303 refcount_read(&fclones->fclone_ref) > 1 &&
1304 READ_ONCE(fclones->skb2.sk) == sk;
1305 }
1306
1307 /**
1308 * alloc_skb_fclone - allocate a network buffer from fclone cache
1309 * @size: size to allocate
1310 * @priority: allocation mask
1311 *
1312 * This function is a convenient wrapper around __alloc_skb().
1313 */
alloc_skb_fclone(unsigned int size,gfp_t priority)1314 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1315 gfp_t priority)
1316 {
1317 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1318 }
1319
1320 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1321 void skb_headers_offset_update(struct sk_buff *skb, int off);
1322 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1323 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1324 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1325 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1326 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1327 gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1328 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1329 gfp_t gfp_mask)
1330 {
1331 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1332 }
1333
1334 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1335 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1336 unsigned int headroom);
1337 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1338 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1339 int newtailroom, gfp_t priority);
1340 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1341 int offset, int len);
1342 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1343 int offset, int len);
1344 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1345 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1346
1347 /**
1348 * skb_pad - zero pad the tail of an skb
1349 * @skb: buffer to pad
1350 * @pad: space to pad
1351 *
1352 * Ensure that a buffer is followed by a padding area that is zero
1353 * filled. Used by network drivers which may DMA or transfer data
1354 * beyond the buffer end onto the wire.
1355 *
1356 * May return error in out of memory cases. The skb is freed on error.
1357 */
skb_pad(struct sk_buff * skb,int pad)1358 static inline int skb_pad(struct sk_buff *skb, int pad)
1359 {
1360 return __skb_pad(skb, pad, true);
1361 }
1362 #define dev_kfree_skb(a) consume_skb(a)
1363
1364 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1365 int offset, size_t size);
1366
1367 struct skb_seq_state {
1368 __u32 lower_offset;
1369 __u32 upper_offset;
1370 __u32 frag_idx;
1371 __u32 stepped_offset;
1372 struct sk_buff *root_skb;
1373 struct sk_buff *cur_skb;
1374 __u8 *frag_data;
1375 __u32 frag_off;
1376 };
1377
1378 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1379 unsigned int to, struct skb_seq_state *st);
1380 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1381 struct skb_seq_state *st);
1382 void skb_abort_seq_read(struct skb_seq_state *st);
1383
1384 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1385 unsigned int to, struct ts_config *config);
1386
1387 /*
1388 * Packet hash types specify the type of hash in skb_set_hash.
1389 *
1390 * Hash types refer to the protocol layer addresses which are used to
1391 * construct a packet's hash. The hashes are used to differentiate or identify
1392 * flows of the protocol layer for the hash type. Hash types are either
1393 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1394 *
1395 * Properties of hashes:
1396 *
1397 * 1) Two packets in different flows have different hash values
1398 * 2) Two packets in the same flow should have the same hash value
1399 *
1400 * A hash at a higher layer is considered to be more specific. A driver should
1401 * set the most specific hash possible.
1402 *
1403 * A driver cannot indicate a more specific hash than the layer at which a hash
1404 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1405 *
1406 * A driver may indicate a hash level which is less specific than the
1407 * actual layer the hash was computed on. For instance, a hash computed
1408 * at L4 may be considered an L3 hash. This should only be done if the
1409 * driver can't unambiguously determine that the HW computed the hash at
1410 * the higher layer. Note that the "should" in the second property above
1411 * permits this.
1412 */
1413 enum pkt_hash_types {
1414 PKT_HASH_TYPE_NONE, /* Undefined type */
1415 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1416 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1417 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1418 };
1419
skb_clear_hash(struct sk_buff * skb)1420 static inline void skb_clear_hash(struct sk_buff *skb)
1421 {
1422 skb->hash = 0;
1423 skb->sw_hash = 0;
1424 skb->l4_hash = 0;
1425 }
1426
skb_clear_hash_if_not_l4(struct sk_buff * skb)1427 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1428 {
1429 if (!skb->l4_hash)
1430 skb_clear_hash(skb);
1431 }
1432
1433 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1434 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1435 {
1436 skb->l4_hash = is_l4;
1437 skb->sw_hash = is_sw;
1438 skb->hash = hash;
1439 }
1440
1441 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1442 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1443 {
1444 /* Used by drivers to set hash from HW */
1445 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1446 }
1447
1448 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1449 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1450 {
1451 __skb_set_hash(skb, hash, true, is_l4);
1452 }
1453
1454 void __skb_get_hash(struct sk_buff *skb);
1455 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1456 u32 skb_get_poff(const struct sk_buff *skb);
1457 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1458 const struct flow_keys_basic *keys, int hlen);
1459 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1460 const void *data, int hlen_proto);
1461
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1462 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1463 int thoff, u8 ip_proto)
1464 {
1465 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1466 }
1467
1468 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1469 const struct flow_dissector_key *key,
1470 unsigned int key_count);
1471
1472 struct bpf_flow_dissector;
1473 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1474 __be16 proto, int nhoff, int hlen, unsigned int flags);
1475
1476 bool __skb_flow_dissect(const struct net *net,
1477 const struct sk_buff *skb,
1478 struct flow_dissector *flow_dissector,
1479 void *target_container, const void *data,
1480 __be16 proto, int nhoff, int hlen, unsigned int flags);
1481
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1482 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1483 struct flow_dissector *flow_dissector,
1484 void *target_container, unsigned int flags)
1485 {
1486 return __skb_flow_dissect(NULL, skb, flow_dissector,
1487 target_container, NULL, 0, 0, 0, flags);
1488 }
1489
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1490 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1491 struct flow_keys *flow,
1492 unsigned int flags)
1493 {
1494 memset(flow, 0, sizeof(*flow));
1495 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1496 flow, NULL, 0, 0, 0, flags);
1497 }
1498
1499 static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,const void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1500 skb_flow_dissect_flow_keys_basic(const struct net *net,
1501 const struct sk_buff *skb,
1502 struct flow_keys_basic *flow,
1503 const void *data, __be16 proto,
1504 int nhoff, int hlen, unsigned int flags)
1505 {
1506 memset(flow, 0, sizeof(*flow));
1507 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1508 data, proto, nhoff, hlen, flags);
1509 }
1510
1511 void skb_flow_dissect_meta(const struct sk_buff *skb,
1512 struct flow_dissector *flow_dissector,
1513 void *target_container);
1514
1515 /* Gets a skb connection tracking info, ctinfo map should be a
1516 * map of mapsize to translate enum ip_conntrack_info states
1517 * to user states.
1518 */
1519 void
1520 skb_flow_dissect_ct(const struct sk_buff *skb,
1521 struct flow_dissector *flow_dissector,
1522 void *target_container,
1523 u16 *ctinfo_map, size_t mapsize,
1524 bool post_ct, u16 zone);
1525 void
1526 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1527 struct flow_dissector *flow_dissector,
1528 void *target_container);
1529
1530 void skb_flow_dissect_hash(const struct sk_buff *skb,
1531 struct flow_dissector *flow_dissector,
1532 void *target_container);
1533
skb_get_hash(struct sk_buff * skb)1534 static inline __u32 skb_get_hash(struct sk_buff *skb)
1535 {
1536 if (!skb->l4_hash && !skb->sw_hash)
1537 __skb_get_hash(skb);
1538
1539 return skb->hash;
1540 }
1541
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1542 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1543 {
1544 if (!skb->l4_hash && !skb->sw_hash) {
1545 struct flow_keys keys;
1546 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1547
1548 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1549 }
1550
1551 return skb->hash;
1552 }
1553
1554 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1555 const siphash_key_t *perturb);
1556
skb_get_hash_raw(const struct sk_buff * skb)1557 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1558 {
1559 return skb->hash;
1560 }
1561
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1562 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1563 {
1564 to->hash = from->hash;
1565 to->sw_hash = from->sw_hash;
1566 to->l4_hash = from->l4_hash;
1567 };
1568
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1569 static inline void skb_copy_decrypted(struct sk_buff *to,
1570 const struct sk_buff *from)
1571 {
1572 #ifdef CONFIG_TLS_DEVICE
1573 to->decrypted = from->decrypted;
1574 #endif
1575 }
1576
1577 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1578 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1579 {
1580 return skb->head + skb->end;
1581 }
1582
skb_end_offset(const struct sk_buff * skb)1583 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1584 {
1585 return skb->end;
1586 }
1587
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1588 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1589 {
1590 skb->end = offset;
1591 }
1592 #else
skb_end_pointer(const struct sk_buff * skb)1593 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1594 {
1595 return skb->end;
1596 }
1597
skb_end_offset(const struct sk_buff * skb)1598 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1599 {
1600 return skb->end - skb->head;
1601 }
1602
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1603 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1604 {
1605 skb->end = skb->head + offset;
1606 }
1607 #endif
1608
1609 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1610 struct ubuf_info *uarg);
1611
1612 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1613
1614 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1615 bool success);
1616
1617 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1618 struct sk_buff *skb, struct iov_iter *from,
1619 size_t length);
1620
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1621 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1622 struct msghdr *msg, int len)
1623 {
1624 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1625 }
1626
1627 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1628 struct msghdr *msg, int len,
1629 struct ubuf_info *uarg);
1630
1631 /* Internal */
1632 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1633
skb_hwtstamps(struct sk_buff * skb)1634 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1635 {
1636 return &skb_shinfo(skb)->hwtstamps;
1637 }
1638
skb_zcopy(struct sk_buff * skb)1639 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1640 {
1641 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1642
1643 return is_zcopy ? skb_uarg(skb) : NULL;
1644 }
1645
skb_zcopy_pure(const struct sk_buff * skb)1646 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1647 {
1648 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1649 }
1650
skb_zcopy_managed(const struct sk_buff * skb)1651 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1652 {
1653 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1654 }
1655
skb_pure_zcopy_same(const struct sk_buff * skb1,const struct sk_buff * skb2)1656 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1657 const struct sk_buff *skb2)
1658 {
1659 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1660 }
1661
net_zcopy_get(struct ubuf_info * uarg)1662 static inline void net_zcopy_get(struct ubuf_info *uarg)
1663 {
1664 refcount_inc(&uarg->refcnt);
1665 }
1666
skb_zcopy_init(struct sk_buff * skb,struct ubuf_info * uarg)1667 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1668 {
1669 skb_shinfo(skb)->destructor_arg = uarg;
1670 skb_shinfo(skb)->flags |= uarg->flags;
1671 }
1672
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1673 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1674 bool *have_ref)
1675 {
1676 if (skb && uarg && !skb_zcopy(skb)) {
1677 if (unlikely(have_ref && *have_ref))
1678 *have_ref = false;
1679 else
1680 net_zcopy_get(uarg);
1681 skb_zcopy_init(skb, uarg);
1682 }
1683 }
1684
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1685 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1686 {
1687 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1688 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1689 }
1690
skb_zcopy_is_nouarg(struct sk_buff * skb)1691 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1692 {
1693 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1694 }
1695
skb_zcopy_get_nouarg(struct sk_buff * skb)1696 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1697 {
1698 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1699 }
1700
net_zcopy_put(struct ubuf_info * uarg)1701 static inline void net_zcopy_put(struct ubuf_info *uarg)
1702 {
1703 if (uarg)
1704 uarg->callback(NULL, uarg, true);
1705 }
1706
net_zcopy_put_abort(struct ubuf_info * uarg,bool have_uref)1707 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1708 {
1709 if (uarg) {
1710 if (uarg->callback == msg_zerocopy_callback)
1711 msg_zerocopy_put_abort(uarg, have_uref);
1712 else if (have_uref)
1713 net_zcopy_put(uarg);
1714 }
1715 }
1716
1717 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy_success)1718 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1719 {
1720 struct ubuf_info *uarg = skb_zcopy(skb);
1721
1722 if (uarg) {
1723 if (!skb_zcopy_is_nouarg(skb))
1724 uarg->callback(skb, uarg, zerocopy_success);
1725
1726 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1727 }
1728 }
1729
1730 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1731
skb_zcopy_downgrade_managed(struct sk_buff * skb)1732 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1733 {
1734 if (unlikely(skb_zcopy_managed(skb)))
1735 __skb_zcopy_downgrade_managed(skb);
1736 }
1737
skb_mark_not_on_list(struct sk_buff * skb)1738 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1739 {
1740 skb->next = NULL;
1741 }
1742
1743 /* Iterate through singly-linked GSO fragments of an skb. */
1744 #define skb_list_walk_safe(first, skb, next_skb) \
1745 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1746 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1747
skb_list_del_init(struct sk_buff * skb)1748 static inline void skb_list_del_init(struct sk_buff *skb)
1749 {
1750 __list_del_entry(&skb->list);
1751 skb_mark_not_on_list(skb);
1752 }
1753
1754 /**
1755 * skb_queue_empty - check if a queue is empty
1756 * @list: queue head
1757 *
1758 * Returns true if the queue is empty, false otherwise.
1759 */
skb_queue_empty(const struct sk_buff_head * list)1760 static inline int skb_queue_empty(const struct sk_buff_head *list)
1761 {
1762 return list->next == (const struct sk_buff *) list;
1763 }
1764
1765 /**
1766 * skb_queue_empty_lockless - check if a queue is empty
1767 * @list: queue head
1768 *
1769 * Returns true if the queue is empty, false otherwise.
1770 * This variant can be used in lockless contexts.
1771 */
skb_queue_empty_lockless(const struct sk_buff_head * list)1772 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1773 {
1774 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1775 }
1776
1777
1778 /**
1779 * skb_queue_is_last - check if skb is the last entry in the queue
1780 * @list: queue head
1781 * @skb: buffer
1782 *
1783 * Returns true if @skb is the last buffer on the list.
1784 */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1785 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1786 const struct sk_buff *skb)
1787 {
1788 return skb->next == (const struct sk_buff *) list;
1789 }
1790
1791 /**
1792 * skb_queue_is_first - check if skb is the first entry in the queue
1793 * @list: queue head
1794 * @skb: buffer
1795 *
1796 * Returns true if @skb is the first buffer on the list.
1797 */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1798 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1799 const struct sk_buff *skb)
1800 {
1801 return skb->prev == (const struct sk_buff *) list;
1802 }
1803
1804 /**
1805 * skb_queue_next - return the next packet in the queue
1806 * @list: queue head
1807 * @skb: current buffer
1808 *
1809 * Return the next packet in @list after @skb. It is only valid to
1810 * call this if skb_queue_is_last() evaluates to false.
1811 */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1812 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1813 const struct sk_buff *skb)
1814 {
1815 /* This BUG_ON may seem severe, but if we just return then we
1816 * are going to dereference garbage.
1817 */
1818 BUG_ON(skb_queue_is_last(list, skb));
1819 return skb->next;
1820 }
1821
1822 /**
1823 * skb_queue_prev - return the prev packet in the queue
1824 * @list: queue head
1825 * @skb: current buffer
1826 *
1827 * Return the prev packet in @list before @skb. It is only valid to
1828 * call this if skb_queue_is_first() evaluates to false.
1829 */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1830 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1831 const struct sk_buff *skb)
1832 {
1833 /* This BUG_ON may seem severe, but if we just return then we
1834 * are going to dereference garbage.
1835 */
1836 BUG_ON(skb_queue_is_first(list, skb));
1837 return skb->prev;
1838 }
1839
1840 /**
1841 * skb_get - reference buffer
1842 * @skb: buffer to reference
1843 *
1844 * Makes another reference to a socket buffer and returns a pointer
1845 * to the buffer.
1846 */
skb_get(struct sk_buff * skb)1847 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1848 {
1849 refcount_inc(&skb->users);
1850 return skb;
1851 }
1852
1853 /*
1854 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1855 */
1856
1857 /**
1858 * skb_cloned - is the buffer a clone
1859 * @skb: buffer to check
1860 *
1861 * Returns true if the buffer was generated with skb_clone() and is
1862 * one of multiple shared copies of the buffer. Cloned buffers are
1863 * shared data so must not be written to under normal circumstances.
1864 */
skb_cloned(const struct sk_buff * skb)1865 static inline int skb_cloned(const struct sk_buff *skb)
1866 {
1867 return skb->cloned &&
1868 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1869 }
1870
skb_unclone(struct sk_buff * skb,gfp_t pri)1871 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1872 {
1873 might_sleep_if(gfpflags_allow_blocking(pri));
1874
1875 if (skb_cloned(skb))
1876 return pskb_expand_head(skb, 0, 0, pri);
1877
1878 return 0;
1879 }
1880
1881 /* This variant of skb_unclone() makes sure skb->truesize
1882 * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1883 *
1884 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1885 * when various debugging features are in place.
1886 */
1887 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)1888 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1889 {
1890 might_sleep_if(gfpflags_allow_blocking(pri));
1891
1892 if (skb_cloned(skb))
1893 return __skb_unclone_keeptruesize(skb, pri);
1894 return 0;
1895 }
1896
1897 /**
1898 * skb_header_cloned - is the header a clone
1899 * @skb: buffer to check
1900 *
1901 * Returns true if modifying the header part of the buffer requires
1902 * the data to be copied.
1903 */
skb_header_cloned(const struct sk_buff * skb)1904 static inline int skb_header_cloned(const struct sk_buff *skb)
1905 {
1906 int dataref;
1907
1908 if (!skb->cloned)
1909 return 0;
1910
1911 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1912 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1913 return dataref != 1;
1914 }
1915
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1916 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1917 {
1918 might_sleep_if(gfpflags_allow_blocking(pri));
1919
1920 if (skb_header_cloned(skb))
1921 return pskb_expand_head(skb, 0, 0, pri);
1922
1923 return 0;
1924 }
1925
1926 /**
1927 * __skb_header_release() - allow clones to use the headroom
1928 * @skb: buffer to operate on
1929 *
1930 * See "DOC: dataref and headerless skbs".
1931 */
__skb_header_release(struct sk_buff * skb)1932 static inline void __skb_header_release(struct sk_buff *skb)
1933 {
1934 skb->nohdr = 1;
1935 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1936 }
1937
1938
1939 /**
1940 * skb_shared - is the buffer shared
1941 * @skb: buffer to check
1942 *
1943 * Returns true if more than one person has a reference to this
1944 * buffer.
1945 */
skb_shared(const struct sk_buff * skb)1946 static inline int skb_shared(const struct sk_buff *skb)
1947 {
1948 return refcount_read(&skb->users) != 1;
1949 }
1950
1951 /**
1952 * skb_share_check - check if buffer is shared and if so clone it
1953 * @skb: buffer to check
1954 * @pri: priority for memory allocation
1955 *
1956 * If the buffer is shared the buffer is cloned and the old copy
1957 * drops a reference. A new clone with a single reference is returned.
1958 * If the buffer is not shared the original buffer is returned. When
1959 * being called from interrupt status or with spinlocks held pri must
1960 * be GFP_ATOMIC.
1961 *
1962 * NULL is returned on a memory allocation failure.
1963 */
skb_share_check(struct sk_buff * skb,gfp_t pri)1964 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1965 {
1966 might_sleep_if(gfpflags_allow_blocking(pri));
1967 if (skb_shared(skb)) {
1968 struct sk_buff *nskb = skb_clone(skb, pri);
1969
1970 if (likely(nskb))
1971 consume_skb(skb);
1972 else
1973 kfree_skb(skb);
1974 skb = nskb;
1975 }
1976 return skb;
1977 }
1978
1979 /*
1980 * Copy shared buffers into a new sk_buff. We effectively do COW on
1981 * packets to handle cases where we have a local reader and forward
1982 * and a couple of other messy ones. The normal one is tcpdumping
1983 * a packet thats being forwarded.
1984 */
1985
1986 /**
1987 * skb_unshare - make a copy of a shared buffer
1988 * @skb: buffer to check
1989 * @pri: priority for memory allocation
1990 *
1991 * If the socket buffer is a clone then this function creates a new
1992 * copy of the data, drops a reference count on the old copy and returns
1993 * the new copy with the reference count at 1. If the buffer is not a clone
1994 * the original buffer is returned. When called with a spinlock held or
1995 * from interrupt state @pri must be %GFP_ATOMIC
1996 *
1997 * %NULL is returned on a memory allocation failure.
1998 */
skb_unshare(struct sk_buff * skb,gfp_t pri)1999 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2000 gfp_t pri)
2001 {
2002 might_sleep_if(gfpflags_allow_blocking(pri));
2003 if (skb_cloned(skb)) {
2004 struct sk_buff *nskb = skb_copy(skb, pri);
2005
2006 /* Free our shared copy */
2007 if (likely(nskb))
2008 consume_skb(skb);
2009 else
2010 kfree_skb(skb);
2011 skb = nskb;
2012 }
2013 return skb;
2014 }
2015
2016 /**
2017 * skb_peek - peek at the head of an &sk_buff_head
2018 * @list_: list to peek at
2019 *
2020 * Peek an &sk_buff. Unlike most other operations you _MUST_
2021 * be careful with this one. A peek leaves the buffer on the
2022 * list and someone else may run off with it. You must hold
2023 * the appropriate locks or have a private queue to do this.
2024 *
2025 * Returns %NULL for an empty list or a pointer to the head element.
2026 * The reference count is not incremented and the reference is therefore
2027 * volatile. Use with caution.
2028 */
skb_peek(const struct sk_buff_head * list_)2029 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2030 {
2031 struct sk_buff *skb = list_->next;
2032
2033 if (skb == (struct sk_buff *)list_)
2034 skb = NULL;
2035 return skb;
2036 }
2037
2038 /**
2039 * __skb_peek - peek at the head of a non-empty &sk_buff_head
2040 * @list_: list to peek at
2041 *
2042 * Like skb_peek(), but the caller knows that the list is not empty.
2043 */
__skb_peek(const struct sk_buff_head * list_)2044 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2045 {
2046 return list_->next;
2047 }
2048
2049 /**
2050 * skb_peek_next - peek skb following the given one from a queue
2051 * @skb: skb to start from
2052 * @list_: list to peek at
2053 *
2054 * Returns %NULL when the end of the list is met or a pointer to the
2055 * next element. The reference count is not incremented and the
2056 * reference is therefore volatile. Use with caution.
2057 */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)2058 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2059 const struct sk_buff_head *list_)
2060 {
2061 struct sk_buff *next = skb->next;
2062
2063 if (next == (struct sk_buff *)list_)
2064 next = NULL;
2065 return next;
2066 }
2067
2068 /**
2069 * skb_peek_tail - peek at the tail of an &sk_buff_head
2070 * @list_: list to peek at
2071 *
2072 * Peek an &sk_buff. Unlike most other operations you _MUST_
2073 * be careful with this one. A peek leaves the buffer on the
2074 * list and someone else may run off with it. You must hold
2075 * the appropriate locks or have a private queue to do this.
2076 *
2077 * Returns %NULL for an empty list or a pointer to the tail element.
2078 * The reference count is not incremented and the reference is therefore
2079 * volatile. Use with caution.
2080 */
skb_peek_tail(const struct sk_buff_head * list_)2081 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2082 {
2083 struct sk_buff *skb = READ_ONCE(list_->prev);
2084
2085 if (skb == (struct sk_buff *)list_)
2086 skb = NULL;
2087 return skb;
2088
2089 }
2090
2091 /**
2092 * skb_queue_len - get queue length
2093 * @list_: list to measure
2094 *
2095 * Return the length of an &sk_buff queue.
2096 */
skb_queue_len(const struct sk_buff_head * list_)2097 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2098 {
2099 return list_->qlen;
2100 }
2101
2102 /**
2103 * skb_queue_len_lockless - get queue length
2104 * @list_: list to measure
2105 *
2106 * Return the length of an &sk_buff queue.
2107 * This variant can be used in lockless contexts.
2108 */
skb_queue_len_lockless(const struct sk_buff_head * list_)2109 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2110 {
2111 return READ_ONCE(list_->qlen);
2112 }
2113
2114 /**
2115 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2116 * @list: queue to initialize
2117 *
2118 * This initializes only the list and queue length aspects of
2119 * an sk_buff_head object. This allows to initialize the list
2120 * aspects of an sk_buff_head without reinitializing things like
2121 * the spinlock. It can also be used for on-stack sk_buff_head
2122 * objects where the spinlock is known to not be used.
2123 */
__skb_queue_head_init(struct sk_buff_head * list)2124 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2125 {
2126 list->prev = list->next = (struct sk_buff *)list;
2127 list->qlen = 0;
2128 }
2129
2130 /*
2131 * This function creates a split out lock class for each invocation;
2132 * this is needed for now since a whole lot of users of the skb-queue
2133 * infrastructure in drivers have different locking usage (in hardirq)
2134 * than the networking core (in softirq only). In the long run either the
2135 * network layer or drivers should need annotation to consolidate the
2136 * main types of usage into 3 classes.
2137 */
skb_queue_head_init(struct sk_buff_head * list)2138 static inline void skb_queue_head_init(struct sk_buff_head *list)
2139 {
2140 spin_lock_init(&list->lock);
2141 __skb_queue_head_init(list);
2142 }
2143
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)2144 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2145 struct lock_class_key *class)
2146 {
2147 skb_queue_head_init(list);
2148 lockdep_set_class(&list->lock, class);
2149 }
2150
2151 /*
2152 * Insert an sk_buff on a list.
2153 *
2154 * The "__skb_xxxx()" functions are the non-atomic ones that
2155 * can only be called with interrupts disabled.
2156 */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)2157 static inline void __skb_insert(struct sk_buff *newsk,
2158 struct sk_buff *prev, struct sk_buff *next,
2159 struct sk_buff_head *list)
2160 {
2161 /* See skb_queue_empty_lockless() and skb_peek_tail()
2162 * for the opposite READ_ONCE()
2163 */
2164 WRITE_ONCE(newsk->next, next);
2165 WRITE_ONCE(newsk->prev, prev);
2166 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2167 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2168 WRITE_ONCE(list->qlen, list->qlen + 1);
2169 }
2170
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)2171 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2172 struct sk_buff *prev,
2173 struct sk_buff *next)
2174 {
2175 struct sk_buff *first = list->next;
2176 struct sk_buff *last = list->prev;
2177
2178 WRITE_ONCE(first->prev, prev);
2179 WRITE_ONCE(prev->next, first);
2180
2181 WRITE_ONCE(last->next, next);
2182 WRITE_ONCE(next->prev, last);
2183 }
2184
2185 /**
2186 * skb_queue_splice - join two skb lists, this is designed for stacks
2187 * @list: the new list to add
2188 * @head: the place to add it in the first list
2189 */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)2190 static inline void skb_queue_splice(const struct sk_buff_head *list,
2191 struct sk_buff_head *head)
2192 {
2193 if (!skb_queue_empty(list)) {
2194 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2195 head->qlen += list->qlen;
2196 }
2197 }
2198
2199 /**
2200 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2201 * @list: the new list to add
2202 * @head: the place to add it in the first list
2203 *
2204 * The list at @list is reinitialised
2205 */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)2206 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2207 struct sk_buff_head *head)
2208 {
2209 if (!skb_queue_empty(list)) {
2210 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2211 head->qlen += list->qlen;
2212 __skb_queue_head_init(list);
2213 }
2214 }
2215
2216 /**
2217 * skb_queue_splice_tail - join two skb lists, each list being a queue
2218 * @list: the new list to add
2219 * @head: the place to add it in the first list
2220 */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)2221 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2222 struct sk_buff_head *head)
2223 {
2224 if (!skb_queue_empty(list)) {
2225 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2226 head->qlen += list->qlen;
2227 }
2228 }
2229
2230 /**
2231 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2232 * @list: the new list to add
2233 * @head: the place to add it in the first list
2234 *
2235 * Each of the lists is a queue.
2236 * The list at @list is reinitialised
2237 */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)2238 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2239 struct sk_buff_head *head)
2240 {
2241 if (!skb_queue_empty(list)) {
2242 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2243 head->qlen += list->qlen;
2244 __skb_queue_head_init(list);
2245 }
2246 }
2247
2248 /**
2249 * __skb_queue_after - queue a buffer at the list head
2250 * @list: list to use
2251 * @prev: place after this buffer
2252 * @newsk: buffer to queue
2253 *
2254 * Queue a buffer int the middle of a list. This function takes no locks
2255 * and you must therefore hold required locks before calling it.
2256 *
2257 * A buffer cannot be placed on two lists at the same time.
2258 */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2259 static inline void __skb_queue_after(struct sk_buff_head *list,
2260 struct sk_buff *prev,
2261 struct sk_buff *newsk)
2262 {
2263 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2264 }
2265
2266 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2267 struct sk_buff_head *list);
2268
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2269 static inline void __skb_queue_before(struct sk_buff_head *list,
2270 struct sk_buff *next,
2271 struct sk_buff *newsk)
2272 {
2273 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2274 }
2275
2276 /**
2277 * __skb_queue_head - queue a buffer at the list head
2278 * @list: list to use
2279 * @newsk: buffer to queue
2280 *
2281 * Queue a buffer at the start of a list. This function takes no locks
2282 * and you must therefore hold required locks before calling it.
2283 *
2284 * A buffer cannot be placed on two lists at the same time.
2285 */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2286 static inline void __skb_queue_head(struct sk_buff_head *list,
2287 struct sk_buff *newsk)
2288 {
2289 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2290 }
2291 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2292
2293 /**
2294 * __skb_queue_tail - queue a buffer at the list tail
2295 * @list: list to use
2296 * @newsk: buffer to queue
2297 *
2298 * Queue a buffer at the end of a list. This function takes no locks
2299 * and you must therefore hold required locks before calling it.
2300 *
2301 * A buffer cannot be placed on two lists at the same time.
2302 */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2303 static inline void __skb_queue_tail(struct sk_buff_head *list,
2304 struct sk_buff *newsk)
2305 {
2306 __skb_queue_before(list, (struct sk_buff *)list, newsk);
2307 }
2308 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2309
2310 /*
2311 * remove sk_buff from list. _Must_ be called atomically, and with
2312 * the list known..
2313 */
2314 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2315 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2316 {
2317 struct sk_buff *next, *prev;
2318
2319 WRITE_ONCE(list->qlen, list->qlen - 1);
2320 next = skb->next;
2321 prev = skb->prev;
2322 skb->next = skb->prev = NULL;
2323 WRITE_ONCE(next->prev, prev);
2324 WRITE_ONCE(prev->next, next);
2325 }
2326
2327 /**
2328 * __skb_dequeue - remove from the head of the queue
2329 * @list: list to dequeue from
2330 *
2331 * Remove the head of the list. This function does not take any locks
2332 * so must be used with appropriate locks held only. The head item is
2333 * returned or %NULL if the list is empty.
2334 */
__skb_dequeue(struct sk_buff_head * list)2335 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2336 {
2337 struct sk_buff *skb = skb_peek(list);
2338 if (skb)
2339 __skb_unlink(skb, list);
2340 return skb;
2341 }
2342 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2343
2344 /**
2345 * __skb_dequeue_tail - remove from the tail of the queue
2346 * @list: list to dequeue from
2347 *
2348 * Remove the tail of the list. This function does not take any locks
2349 * so must be used with appropriate locks held only. The tail item is
2350 * returned or %NULL if the list is empty.
2351 */
__skb_dequeue_tail(struct sk_buff_head * list)2352 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2353 {
2354 struct sk_buff *skb = skb_peek_tail(list);
2355 if (skb)
2356 __skb_unlink(skb, list);
2357 return skb;
2358 }
2359 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2360
2361
skb_is_nonlinear(const struct sk_buff * skb)2362 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2363 {
2364 return skb->data_len;
2365 }
2366
skb_headlen(const struct sk_buff * skb)2367 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2368 {
2369 return skb->len - skb->data_len;
2370 }
2371
__skb_pagelen(const struct sk_buff * skb)2372 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2373 {
2374 unsigned int i, len = 0;
2375
2376 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2377 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2378 return len;
2379 }
2380
skb_pagelen(const struct sk_buff * skb)2381 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2382 {
2383 return skb_headlen(skb) + __skb_pagelen(skb);
2384 }
2385
__skb_fill_page_desc_noacc(struct skb_shared_info * shinfo,int i,struct page * page,int off,int size)2386 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2387 int i, struct page *page,
2388 int off, int size)
2389 {
2390 skb_frag_t *frag = &shinfo->frags[i];
2391
2392 /*
2393 * Propagate page pfmemalloc to the skb if we can. The problem is
2394 * that not all callers have unique ownership of the page but rely
2395 * on page_is_pfmemalloc doing the right thing(tm).
2396 */
2397 frag->bv_page = page;
2398 frag->bv_offset = off;
2399 skb_frag_size_set(frag, size);
2400 }
2401
2402 /**
2403 * skb_len_add - adds a number to len fields of skb
2404 * @skb: buffer to add len to
2405 * @delta: number of bytes to add
2406 */
skb_len_add(struct sk_buff * skb,int delta)2407 static inline void skb_len_add(struct sk_buff *skb, int delta)
2408 {
2409 skb->len += delta;
2410 skb->data_len += delta;
2411 skb->truesize += delta;
2412 }
2413
2414 /**
2415 * __skb_fill_page_desc - initialise a paged fragment in an skb
2416 * @skb: buffer containing fragment to be initialised
2417 * @i: paged fragment index to initialise
2418 * @page: the page to use for this fragment
2419 * @off: the offset to the data with @page
2420 * @size: the length of the data
2421 *
2422 * Initialises the @i'th fragment of @skb to point to &size bytes at
2423 * offset @off within @page.
2424 *
2425 * Does not take any additional reference on the fragment.
2426 */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2427 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2428 struct page *page, int off, int size)
2429 {
2430 __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2431 page = compound_head(page);
2432 if (page_is_pfmemalloc(page))
2433 skb->pfmemalloc = true;
2434 }
2435
2436 /**
2437 * skb_fill_page_desc - initialise a paged fragment in an skb
2438 * @skb: buffer containing fragment to be initialised
2439 * @i: paged fragment index to initialise
2440 * @page: the page to use for this fragment
2441 * @off: the offset to the data with @page
2442 * @size: the length of the data
2443 *
2444 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2445 * @skb to point to @size bytes at offset @off within @page. In
2446 * addition updates @skb such that @i is the last fragment.
2447 *
2448 * Does not take any additional reference on the fragment.
2449 */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2450 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2451 struct page *page, int off, int size)
2452 {
2453 __skb_fill_page_desc(skb, i, page, off, size);
2454 skb_shinfo(skb)->nr_frags = i + 1;
2455 }
2456
2457 /**
2458 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2459 * @skb: buffer containing fragment to be initialised
2460 * @i: paged fragment index to initialise
2461 * @page: the page to use for this fragment
2462 * @off: the offset to the data with @page
2463 * @size: the length of the data
2464 *
2465 * Variant of skb_fill_page_desc() which does not deal with
2466 * pfmemalloc, if page is not owned by us.
2467 */
skb_fill_page_desc_noacc(struct sk_buff * skb,int i,struct page * page,int off,int size)2468 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2469 struct page *page, int off,
2470 int size)
2471 {
2472 struct skb_shared_info *shinfo = skb_shinfo(skb);
2473
2474 __skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2475 shinfo->nr_frags = i + 1;
2476 }
2477
2478 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2479 int size, unsigned int truesize);
2480
2481 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2482 unsigned int truesize);
2483
2484 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2485
2486 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2487 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2488 {
2489 return skb->head + skb->tail;
2490 }
2491
skb_reset_tail_pointer(struct sk_buff * skb)2492 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2493 {
2494 skb->tail = skb->data - skb->head;
2495 }
2496
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2497 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2498 {
2499 skb_reset_tail_pointer(skb);
2500 skb->tail += offset;
2501 }
2502
2503 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2504 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2505 {
2506 return skb->tail;
2507 }
2508
skb_reset_tail_pointer(struct sk_buff * skb)2509 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2510 {
2511 skb->tail = skb->data;
2512 }
2513
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2514 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2515 {
2516 skb->tail = skb->data + offset;
2517 }
2518
2519 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2520
skb_assert_len(struct sk_buff * skb)2521 static inline void skb_assert_len(struct sk_buff *skb)
2522 {
2523 #ifdef CONFIG_DEBUG_NET
2524 if (WARN_ONCE(!skb->len, "%s\n", __func__))
2525 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2526 #endif /* CONFIG_DEBUG_NET */
2527 }
2528
2529 /*
2530 * Add data to an sk_buff
2531 */
2532 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2533 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2534 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2535 {
2536 void *tmp = skb_tail_pointer(skb);
2537 SKB_LINEAR_ASSERT(skb);
2538 skb->tail += len;
2539 skb->len += len;
2540 return tmp;
2541 }
2542
__skb_put_zero(struct sk_buff * skb,unsigned int len)2543 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2544 {
2545 void *tmp = __skb_put(skb, len);
2546
2547 memset(tmp, 0, len);
2548 return tmp;
2549 }
2550
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2551 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2552 unsigned int len)
2553 {
2554 void *tmp = __skb_put(skb, len);
2555
2556 memcpy(tmp, data, len);
2557 return tmp;
2558 }
2559
__skb_put_u8(struct sk_buff * skb,u8 val)2560 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2561 {
2562 *(u8 *)__skb_put(skb, 1) = val;
2563 }
2564
skb_put_zero(struct sk_buff * skb,unsigned int len)2565 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2566 {
2567 void *tmp = skb_put(skb, len);
2568
2569 memset(tmp, 0, len);
2570
2571 return tmp;
2572 }
2573
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2574 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2575 unsigned int len)
2576 {
2577 void *tmp = skb_put(skb, len);
2578
2579 memcpy(tmp, data, len);
2580
2581 return tmp;
2582 }
2583
skb_put_u8(struct sk_buff * skb,u8 val)2584 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2585 {
2586 *(u8 *)skb_put(skb, 1) = val;
2587 }
2588
2589 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2590 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2591 {
2592 skb->data -= len;
2593 skb->len += len;
2594 return skb->data;
2595 }
2596
2597 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2598 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2599 {
2600 skb->len -= len;
2601 if (unlikely(skb->len < skb->data_len)) {
2602 #if defined(CONFIG_DEBUG_NET)
2603 skb->len += len;
2604 pr_err("__skb_pull(len=%u)\n", len);
2605 skb_dump(KERN_ERR, skb, false);
2606 #endif
2607 BUG();
2608 }
2609 return skb->data += len;
2610 }
2611
skb_pull_inline(struct sk_buff * skb,unsigned int len)2612 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2613 {
2614 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2615 }
2616
2617 void *skb_pull_data(struct sk_buff *skb, size_t len);
2618
2619 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2620
pskb_may_pull(struct sk_buff * skb,unsigned int len)2621 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2622 {
2623 if (likely(len <= skb_headlen(skb)))
2624 return true;
2625 if (unlikely(len > skb->len))
2626 return false;
2627 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2628 }
2629
pskb_pull(struct sk_buff * skb,unsigned int len)2630 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2631 {
2632 if (!pskb_may_pull(skb, len))
2633 return NULL;
2634
2635 skb->len -= len;
2636 return skb->data += len;
2637 }
2638
2639 void skb_condense(struct sk_buff *skb);
2640
2641 /**
2642 * skb_headroom - bytes at buffer head
2643 * @skb: buffer to check
2644 *
2645 * Return the number of bytes of free space at the head of an &sk_buff.
2646 */
skb_headroom(const struct sk_buff * skb)2647 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2648 {
2649 return skb->data - skb->head;
2650 }
2651
2652 /**
2653 * skb_tailroom - bytes at buffer end
2654 * @skb: buffer to check
2655 *
2656 * Return the number of bytes of free space at the tail of an sk_buff
2657 */
skb_tailroom(const struct sk_buff * skb)2658 static inline int skb_tailroom(const struct sk_buff *skb)
2659 {
2660 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2661 }
2662
2663 /**
2664 * skb_availroom - bytes at buffer end
2665 * @skb: buffer to check
2666 *
2667 * Return the number of bytes of free space at the tail of an sk_buff
2668 * allocated by sk_stream_alloc()
2669 */
skb_availroom(const struct sk_buff * skb)2670 static inline int skb_availroom(const struct sk_buff *skb)
2671 {
2672 if (skb_is_nonlinear(skb))
2673 return 0;
2674
2675 return skb->end - skb->tail - skb->reserved_tailroom;
2676 }
2677
2678 /**
2679 * skb_reserve - adjust headroom
2680 * @skb: buffer to alter
2681 * @len: bytes to move
2682 *
2683 * Increase the headroom of an empty &sk_buff by reducing the tail
2684 * room. This is only allowed for an empty buffer.
2685 */
skb_reserve(struct sk_buff * skb,int len)2686 static inline void skb_reserve(struct sk_buff *skb, int len)
2687 {
2688 skb->data += len;
2689 skb->tail += len;
2690 }
2691
2692 /**
2693 * skb_tailroom_reserve - adjust reserved_tailroom
2694 * @skb: buffer to alter
2695 * @mtu: maximum amount of headlen permitted
2696 * @needed_tailroom: minimum amount of reserved_tailroom
2697 *
2698 * Set reserved_tailroom so that headlen can be as large as possible but
2699 * not larger than mtu and tailroom cannot be smaller than
2700 * needed_tailroom.
2701 * The required headroom should already have been reserved before using
2702 * this function.
2703 */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2704 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2705 unsigned int needed_tailroom)
2706 {
2707 SKB_LINEAR_ASSERT(skb);
2708 if (mtu < skb_tailroom(skb) - needed_tailroom)
2709 /* use at most mtu */
2710 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2711 else
2712 /* use up to all available space */
2713 skb->reserved_tailroom = needed_tailroom;
2714 }
2715
2716 #define ENCAP_TYPE_ETHER 0
2717 #define ENCAP_TYPE_IPPROTO 1
2718
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2719 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2720 __be16 protocol)
2721 {
2722 skb->inner_protocol = protocol;
2723 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2724 }
2725
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2726 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2727 __u8 ipproto)
2728 {
2729 skb->inner_ipproto = ipproto;
2730 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2731 }
2732
skb_reset_inner_headers(struct sk_buff * skb)2733 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2734 {
2735 skb->inner_mac_header = skb->mac_header;
2736 skb->inner_network_header = skb->network_header;
2737 skb->inner_transport_header = skb->transport_header;
2738 }
2739
skb_reset_mac_len(struct sk_buff * skb)2740 static inline void skb_reset_mac_len(struct sk_buff *skb)
2741 {
2742 skb->mac_len = skb->network_header - skb->mac_header;
2743 }
2744
skb_inner_transport_header(const struct sk_buff * skb)2745 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2746 *skb)
2747 {
2748 return skb->head + skb->inner_transport_header;
2749 }
2750
skb_inner_transport_offset(const struct sk_buff * skb)2751 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2752 {
2753 return skb_inner_transport_header(skb) - skb->data;
2754 }
2755
skb_reset_inner_transport_header(struct sk_buff * skb)2756 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2757 {
2758 skb->inner_transport_header = skb->data - skb->head;
2759 }
2760
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2761 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2762 const int offset)
2763 {
2764 skb_reset_inner_transport_header(skb);
2765 skb->inner_transport_header += offset;
2766 }
2767
skb_inner_network_header(const struct sk_buff * skb)2768 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2769 {
2770 return skb->head + skb->inner_network_header;
2771 }
2772
skb_reset_inner_network_header(struct sk_buff * skb)2773 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2774 {
2775 skb->inner_network_header = skb->data - skb->head;
2776 }
2777
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2778 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2779 const int offset)
2780 {
2781 skb_reset_inner_network_header(skb);
2782 skb->inner_network_header += offset;
2783 }
2784
skb_inner_mac_header(const struct sk_buff * skb)2785 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2786 {
2787 return skb->head + skb->inner_mac_header;
2788 }
2789
skb_reset_inner_mac_header(struct sk_buff * skb)2790 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2791 {
2792 skb->inner_mac_header = skb->data - skb->head;
2793 }
2794
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2795 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2796 const int offset)
2797 {
2798 skb_reset_inner_mac_header(skb);
2799 skb->inner_mac_header += offset;
2800 }
skb_transport_header_was_set(const struct sk_buff * skb)2801 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2802 {
2803 return skb->transport_header != (typeof(skb->transport_header))~0U;
2804 }
2805
skb_transport_header(const struct sk_buff * skb)2806 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2807 {
2808 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2809 return skb->head + skb->transport_header;
2810 }
2811
skb_reset_transport_header(struct sk_buff * skb)2812 static inline void skb_reset_transport_header(struct sk_buff *skb)
2813 {
2814 skb->transport_header = skb->data - skb->head;
2815 }
2816
skb_set_transport_header(struct sk_buff * skb,const int offset)2817 static inline void skb_set_transport_header(struct sk_buff *skb,
2818 const int offset)
2819 {
2820 skb_reset_transport_header(skb);
2821 skb->transport_header += offset;
2822 }
2823
skb_network_header(const struct sk_buff * skb)2824 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2825 {
2826 return skb->head + skb->network_header;
2827 }
2828
skb_reset_network_header(struct sk_buff * skb)2829 static inline void skb_reset_network_header(struct sk_buff *skb)
2830 {
2831 skb->network_header = skb->data - skb->head;
2832 }
2833
skb_set_network_header(struct sk_buff * skb,const int offset)2834 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2835 {
2836 skb_reset_network_header(skb);
2837 skb->network_header += offset;
2838 }
2839
skb_mac_header_was_set(const struct sk_buff * skb)2840 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2841 {
2842 return skb->mac_header != (typeof(skb->mac_header))~0U;
2843 }
2844
skb_mac_header(const struct sk_buff * skb)2845 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2846 {
2847 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2848 return skb->head + skb->mac_header;
2849 }
2850
skb_mac_offset(const struct sk_buff * skb)2851 static inline int skb_mac_offset(const struct sk_buff *skb)
2852 {
2853 return skb_mac_header(skb) - skb->data;
2854 }
2855
skb_mac_header_len(const struct sk_buff * skb)2856 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2857 {
2858 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2859 return skb->network_header - skb->mac_header;
2860 }
2861
skb_unset_mac_header(struct sk_buff * skb)2862 static inline void skb_unset_mac_header(struct sk_buff *skb)
2863 {
2864 skb->mac_header = (typeof(skb->mac_header))~0U;
2865 }
2866
skb_reset_mac_header(struct sk_buff * skb)2867 static inline void skb_reset_mac_header(struct sk_buff *skb)
2868 {
2869 skb->mac_header = skb->data - skb->head;
2870 }
2871
skb_set_mac_header(struct sk_buff * skb,const int offset)2872 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2873 {
2874 skb_reset_mac_header(skb);
2875 skb->mac_header += offset;
2876 }
2877
skb_pop_mac_header(struct sk_buff * skb)2878 static inline void skb_pop_mac_header(struct sk_buff *skb)
2879 {
2880 skb->mac_header = skb->network_header;
2881 }
2882
skb_probe_transport_header(struct sk_buff * skb)2883 static inline void skb_probe_transport_header(struct sk_buff *skb)
2884 {
2885 struct flow_keys_basic keys;
2886
2887 if (skb_transport_header_was_set(skb))
2888 return;
2889
2890 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2891 NULL, 0, 0, 0, 0))
2892 skb_set_transport_header(skb, keys.control.thoff);
2893 }
2894
skb_mac_header_rebuild(struct sk_buff * skb)2895 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2896 {
2897 if (skb_mac_header_was_set(skb)) {
2898 const unsigned char *old_mac = skb_mac_header(skb);
2899
2900 skb_set_mac_header(skb, -skb->mac_len);
2901 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2902 }
2903 }
2904
skb_checksum_start_offset(const struct sk_buff * skb)2905 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2906 {
2907 return skb->csum_start - skb_headroom(skb);
2908 }
2909
skb_checksum_start(const struct sk_buff * skb)2910 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2911 {
2912 return skb->head + skb->csum_start;
2913 }
2914
skb_transport_offset(const struct sk_buff * skb)2915 static inline int skb_transport_offset(const struct sk_buff *skb)
2916 {
2917 return skb_transport_header(skb) - skb->data;
2918 }
2919
skb_network_header_len(const struct sk_buff * skb)2920 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2921 {
2922 return skb->transport_header - skb->network_header;
2923 }
2924
skb_inner_network_header_len(const struct sk_buff * skb)2925 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2926 {
2927 return skb->inner_transport_header - skb->inner_network_header;
2928 }
2929
skb_network_offset(const struct sk_buff * skb)2930 static inline int skb_network_offset(const struct sk_buff *skb)
2931 {
2932 return skb_network_header(skb) - skb->data;
2933 }
2934
skb_inner_network_offset(const struct sk_buff * skb)2935 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2936 {
2937 return skb_inner_network_header(skb) - skb->data;
2938 }
2939
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)2940 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2941 {
2942 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2943 }
2944
2945 /*
2946 * CPUs often take a performance hit when accessing unaligned memory
2947 * locations. The actual performance hit varies, it can be small if the
2948 * hardware handles it or large if we have to take an exception and fix it
2949 * in software.
2950 *
2951 * Since an ethernet header is 14 bytes network drivers often end up with
2952 * the IP header at an unaligned offset. The IP header can be aligned by
2953 * shifting the start of the packet by 2 bytes. Drivers should do this
2954 * with:
2955 *
2956 * skb_reserve(skb, NET_IP_ALIGN);
2957 *
2958 * The downside to this alignment of the IP header is that the DMA is now
2959 * unaligned. On some architectures the cost of an unaligned DMA is high
2960 * and this cost outweighs the gains made by aligning the IP header.
2961 *
2962 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2963 * to be overridden.
2964 */
2965 #ifndef NET_IP_ALIGN
2966 #define NET_IP_ALIGN 2
2967 #endif
2968
2969 /*
2970 * The networking layer reserves some headroom in skb data (via
2971 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2972 * the header has to grow. In the default case, if the header has to grow
2973 * 32 bytes or less we avoid the reallocation.
2974 *
2975 * Unfortunately this headroom changes the DMA alignment of the resulting
2976 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2977 * on some architectures. An architecture can override this value,
2978 * perhaps setting it to a cacheline in size (since that will maintain
2979 * cacheline alignment of the DMA). It must be a power of 2.
2980 *
2981 * Various parts of the networking layer expect at least 32 bytes of
2982 * headroom, you should not reduce this.
2983 *
2984 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2985 * to reduce average number of cache lines per packet.
2986 * get_rps_cpu() for example only access one 64 bytes aligned block :
2987 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2988 */
2989 #ifndef NET_SKB_PAD
2990 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2991 #endif
2992
2993 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2994
__skb_set_length(struct sk_buff * skb,unsigned int len)2995 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2996 {
2997 if (WARN_ON(skb_is_nonlinear(skb)))
2998 return;
2999 skb->len = len;
3000 skb_set_tail_pointer(skb, len);
3001 }
3002
__skb_trim(struct sk_buff * skb,unsigned int len)3003 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3004 {
3005 __skb_set_length(skb, len);
3006 }
3007
3008 void skb_trim(struct sk_buff *skb, unsigned int len);
3009
__pskb_trim(struct sk_buff * skb,unsigned int len)3010 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3011 {
3012 if (skb->data_len)
3013 return ___pskb_trim(skb, len);
3014 __skb_trim(skb, len);
3015 return 0;
3016 }
3017
pskb_trim(struct sk_buff * skb,unsigned int len)3018 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3019 {
3020 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3021 }
3022
3023 /**
3024 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3025 * @skb: buffer to alter
3026 * @len: new length
3027 *
3028 * This is identical to pskb_trim except that the caller knows that
3029 * the skb is not cloned so we should never get an error due to out-
3030 * of-memory.
3031 */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)3032 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3033 {
3034 int err = pskb_trim(skb, len);
3035 BUG_ON(err);
3036 }
3037
__skb_grow(struct sk_buff * skb,unsigned int len)3038 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3039 {
3040 unsigned int diff = len - skb->len;
3041
3042 if (skb_tailroom(skb) < diff) {
3043 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3044 GFP_ATOMIC);
3045 if (ret)
3046 return ret;
3047 }
3048 __skb_set_length(skb, len);
3049 return 0;
3050 }
3051
3052 /**
3053 * skb_orphan - orphan a buffer
3054 * @skb: buffer to orphan
3055 *
3056 * If a buffer currently has an owner then we call the owner's
3057 * destructor function and make the @skb unowned. The buffer continues
3058 * to exist but is no longer charged to its former owner.
3059 */
skb_orphan(struct sk_buff * skb)3060 static inline void skb_orphan(struct sk_buff *skb)
3061 {
3062 if (skb->destructor) {
3063 skb->destructor(skb);
3064 skb->destructor = NULL;
3065 skb->sk = NULL;
3066 } else {
3067 BUG_ON(skb->sk);
3068 }
3069 }
3070
3071 /**
3072 * skb_orphan_frags - orphan the frags contained in a buffer
3073 * @skb: buffer to orphan frags from
3074 * @gfp_mask: allocation mask for replacement pages
3075 *
3076 * For each frag in the SKB which needs a destructor (i.e. has an
3077 * owner) create a copy of that frag and release the original
3078 * page by calling the destructor.
3079 */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)3080 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3081 {
3082 if (likely(!skb_zcopy(skb)))
3083 return 0;
3084 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3085 return 0;
3086 return skb_copy_ubufs(skb, gfp_mask);
3087 }
3088
3089 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)3090 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3091 {
3092 if (likely(!skb_zcopy(skb)))
3093 return 0;
3094 return skb_copy_ubufs(skb, gfp_mask);
3095 }
3096
3097 /**
3098 * __skb_queue_purge - empty a list
3099 * @list: list to empty
3100 *
3101 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3102 * the list and one reference dropped. This function does not take the
3103 * list lock and the caller must hold the relevant locks to use it.
3104 */
__skb_queue_purge(struct sk_buff_head * list)3105 static inline void __skb_queue_purge(struct sk_buff_head *list)
3106 {
3107 struct sk_buff *skb;
3108 while ((skb = __skb_dequeue(list)) != NULL)
3109 kfree_skb(skb);
3110 }
3111 void skb_queue_purge(struct sk_buff_head *list);
3112
3113 unsigned int skb_rbtree_purge(struct rb_root *root);
3114
3115 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3116
3117 /**
3118 * netdev_alloc_frag - allocate a page fragment
3119 * @fragsz: fragment size
3120 *
3121 * Allocates a frag from a page for receive buffer.
3122 * Uses GFP_ATOMIC allocations.
3123 */
netdev_alloc_frag(unsigned int fragsz)3124 static inline void *netdev_alloc_frag(unsigned int fragsz)
3125 {
3126 return __netdev_alloc_frag_align(fragsz, ~0u);
3127 }
3128
netdev_alloc_frag_align(unsigned int fragsz,unsigned int align)3129 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3130 unsigned int align)
3131 {
3132 WARN_ON_ONCE(!is_power_of_2(align));
3133 return __netdev_alloc_frag_align(fragsz, -align);
3134 }
3135
3136 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3137 gfp_t gfp_mask);
3138
3139 /**
3140 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
3141 * @dev: network device to receive on
3142 * @length: length to allocate
3143 *
3144 * Allocate a new &sk_buff and assign it a usage count of one. The
3145 * buffer has unspecified headroom built in. Users should allocate
3146 * the headroom they think they need without accounting for the
3147 * built in space. The built in space is used for optimisations.
3148 *
3149 * %NULL is returned if there is no free memory. Although this function
3150 * allocates memory it can be called from an interrupt.
3151 */
netdev_alloc_skb(struct net_device * dev,unsigned int length)3152 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3153 unsigned int length)
3154 {
3155 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3156 }
3157
3158 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)3159 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3160 gfp_t gfp_mask)
3161 {
3162 return __netdev_alloc_skb(NULL, length, gfp_mask);
3163 }
3164
3165 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)3166 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3167 {
3168 return netdev_alloc_skb(NULL, length);
3169 }
3170
3171
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)3172 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3173 unsigned int length, gfp_t gfp)
3174 {
3175 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3176
3177 if (NET_IP_ALIGN && skb)
3178 skb_reserve(skb, NET_IP_ALIGN);
3179 return skb;
3180 }
3181
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)3182 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3183 unsigned int length)
3184 {
3185 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3186 }
3187
skb_free_frag(void * addr)3188 static inline void skb_free_frag(void *addr)
3189 {
3190 page_frag_free(addr);
3191 }
3192
3193 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3194
napi_alloc_frag(unsigned int fragsz)3195 static inline void *napi_alloc_frag(unsigned int fragsz)
3196 {
3197 return __napi_alloc_frag_align(fragsz, ~0u);
3198 }
3199
napi_alloc_frag_align(unsigned int fragsz,unsigned int align)3200 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3201 unsigned int align)
3202 {
3203 WARN_ON_ONCE(!is_power_of_2(align));
3204 return __napi_alloc_frag_align(fragsz, -align);
3205 }
3206
3207 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3208 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)3209 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3210 unsigned int length)
3211 {
3212 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3213 }
3214 void napi_consume_skb(struct sk_buff *skb, int budget);
3215
3216 void napi_skb_free_stolen_head(struct sk_buff *skb);
3217 void __kfree_skb_defer(struct sk_buff *skb);
3218
3219 /**
3220 * __dev_alloc_pages - allocate page for network Rx
3221 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3222 * @order: size of the allocation
3223 *
3224 * Allocate a new page.
3225 *
3226 * %NULL is returned if there is no free memory.
3227 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)3228 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3229 unsigned int order)
3230 {
3231 /* This piece of code contains several assumptions.
3232 * 1. This is for device Rx, therefor a cold page is preferred.
3233 * 2. The expectation is the user wants a compound page.
3234 * 3. If requesting a order 0 page it will not be compound
3235 * due to the check to see if order has a value in prep_new_page
3236 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3237 * code in gfp_to_alloc_flags that should be enforcing this.
3238 */
3239 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3240
3241 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3242 }
3243
dev_alloc_pages(unsigned int order)3244 static inline struct page *dev_alloc_pages(unsigned int order)
3245 {
3246 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3247 }
3248
3249 /**
3250 * __dev_alloc_page - allocate a page for network Rx
3251 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3252 *
3253 * Allocate a new page.
3254 *
3255 * %NULL is returned if there is no free memory.
3256 */
__dev_alloc_page(gfp_t gfp_mask)3257 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3258 {
3259 return __dev_alloc_pages(gfp_mask, 0);
3260 }
3261
dev_alloc_page(void)3262 static inline struct page *dev_alloc_page(void)
3263 {
3264 return dev_alloc_pages(0);
3265 }
3266
3267 /**
3268 * dev_page_is_reusable - check whether a page can be reused for network Rx
3269 * @page: the page to test
3270 *
3271 * A page shouldn't be considered for reusing/recycling if it was allocated
3272 * under memory pressure or at a distant memory node.
3273 *
3274 * Returns false if this page should be returned to page allocator, true
3275 * otherwise.
3276 */
dev_page_is_reusable(const struct page * page)3277 static inline bool dev_page_is_reusable(const struct page *page)
3278 {
3279 return likely(page_to_nid(page) == numa_mem_id() &&
3280 !page_is_pfmemalloc(page));
3281 }
3282
3283 /**
3284 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3285 * @page: The page that was allocated from skb_alloc_page
3286 * @skb: The skb that may need pfmemalloc set
3287 */
skb_propagate_pfmemalloc(const struct page * page,struct sk_buff * skb)3288 static inline void skb_propagate_pfmemalloc(const struct page *page,
3289 struct sk_buff *skb)
3290 {
3291 if (page_is_pfmemalloc(page))
3292 skb->pfmemalloc = true;
3293 }
3294
3295 /**
3296 * skb_frag_off() - Returns the offset of a skb fragment
3297 * @frag: the paged fragment
3298 */
skb_frag_off(const skb_frag_t * frag)3299 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3300 {
3301 return frag->bv_offset;
3302 }
3303
3304 /**
3305 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3306 * @frag: skb fragment
3307 * @delta: value to add
3308 */
skb_frag_off_add(skb_frag_t * frag,int delta)3309 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3310 {
3311 frag->bv_offset += delta;
3312 }
3313
3314 /**
3315 * skb_frag_off_set() - Sets the offset of a skb fragment
3316 * @frag: skb fragment
3317 * @offset: offset of fragment
3318 */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)3319 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3320 {
3321 frag->bv_offset = offset;
3322 }
3323
3324 /**
3325 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3326 * @fragto: skb fragment where offset is set
3327 * @fragfrom: skb fragment offset is copied from
3328 */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3329 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3330 const skb_frag_t *fragfrom)
3331 {
3332 fragto->bv_offset = fragfrom->bv_offset;
3333 }
3334
3335 /**
3336 * skb_frag_page - retrieve the page referred to by a paged fragment
3337 * @frag: the paged fragment
3338 *
3339 * Returns the &struct page associated with @frag.
3340 */
skb_frag_page(const skb_frag_t * frag)3341 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3342 {
3343 return frag->bv_page;
3344 }
3345
3346 /**
3347 * __skb_frag_ref - take an addition reference on a paged fragment.
3348 * @frag: the paged fragment
3349 *
3350 * Takes an additional reference on the paged fragment @frag.
3351 */
__skb_frag_ref(skb_frag_t * frag)3352 static inline void __skb_frag_ref(skb_frag_t *frag)
3353 {
3354 get_page(skb_frag_page(frag));
3355 }
3356
3357 /**
3358 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3359 * @skb: the buffer
3360 * @f: the fragment offset.
3361 *
3362 * Takes an additional reference on the @f'th paged fragment of @skb.
3363 */
skb_frag_ref(struct sk_buff * skb,int f)3364 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3365 {
3366 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3367 }
3368
3369 /**
3370 * __skb_frag_unref - release a reference on a paged fragment.
3371 * @frag: the paged fragment
3372 * @recycle: recycle the page if allocated via page_pool
3373 *
3374 * Releases a reference on the paged fragment @frag
3375 * or recycles the page via the page_pool API.
3376 */
__skb_frag_unref(skb_frag_t * frag,bool recycle)3377 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3378 {
3379 struct page *page = skb_frag_page(frag);
3380
3381 #ifdef CONFIG_PAGE_POOL
3382 if (recycle && page_pool_return_skb_page(page))
3383 return;
3384 #endif
3385 put_page(page);
3386 }
3387
3388 /**
3389 * skb_frag_unref - release a reference on a paged fragment of an skb.
3390 * @skb: the buffer
3391 * @f: the fragment offset
3392 *
3393 * Releases a reference on the @f'th paged fragment of @skb.
3394 */
skb_frag_unref(struct sk_buff * skb,int f)3395 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3396 {
3397 struct skb_shared_info *shinfo = skb_shinfo(skb);
3398
3399 if (!skb_zcopy_managed(skb))
3400 __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3401 }
3402
3403 /**
3404 * skb_frag_address - gets the address of the data contained in a paged fragment
3405 * @frag: the paged fragment buffer
3406 *
3407 * Returns the address of the data within @frag. The page must already
3408 * be mapped.
3409 */
skb_frag_address(const skb_frag_t * frag)3410 static inline void *skb_frag_address(const skb_frag_t *frag)
3411 {
3412 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3413 }
3414
3415 /**
3416 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3417 * @frag: the paged fragment buffer
3418 *
3419 * Returns the address of the data within @frag. Checks that the page
3420 * is mapped and returns %NULL otherwise.
3421 */
skb_frag_address_safe(const skb_frag_t * frag)3422 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3423 {
3424 void *ptr = page_address(skb_frag_page(frag));
3425 if (unlikely(!ptr))
3426 return NULL;
3427
3428 return ptr + skb_frag_off(frag);
3429 }
3430
3431 /**
3432 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3433 * @fragto: skb fragment where page is set
3434 * @fragfrom: skb fragment page is copied from
3435 */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3436 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3437 const skb_frag_t *fragfrom)
3438 {
3439 fragto->bv_page = fragfrom->bv_page;
3440 }
3441
3442 /**
3443 * __skb_frag_set_page - sets the page contained in a paged fragment
3444 * @frag: the paged fragment
3445 * @page: the page to set
3446 *
3447 * Sets the fragment @frag to contain @page.
3448 */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)3449 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3450 {
3451 frag->bv_page = page;
3452 }
3453
3454 /**
3455 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3456 * @skb: the buffer
3457 * @f: the fragment offset
3458 * @page: the page to set
3459 *
3460 * Sets the @f'th fragment of @skb to contain @page.
3461 */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)3462 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3463 struct page *page)
3464 {
3465 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3466 }
3467
3468 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3469
3470 /**
3471 * skb_frag_dma_map - maps a paged fragment via the DMA API
3472 * @dev: the device to map the fragment to
3473 * @frag: the paged fragment to map
3474 * @offset: the offset within the fragment (starting at the
3475 * fragment's own offset)
3476 * @size: the number of bytes to map
3477 * @dir: the direction of the mapping (``PCI_DMA_*``)
3478 *
3479 * Maps the page associated with @frag to @device.
3480 */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3481 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3482 const skb_frag_t *frag,
3483 size_t offset, size_t size,
3484 enum dma_data_direction dir)
3485 {
3486 return dma_map_page(dev, skb_frag_page(frag),
3487 skb_frag_off(frag) + offset, size, dir);
3488 }
3489
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3490 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3491 gfp_t gfp_mask)
3492 {
3493 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3494 }
3495
3496
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3497 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3498 gfp_t gfp_mask)
3499 {
3500 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3501 }
3502
3503
3504 /**
3505 * skb_clone_writable - is the header of a clone writable
3506 * @skb: buffer to check
3507 * @len: length up to which to write
3508 *
3509 * Returns true if modifying the header part of the cloned buffer
3510 * does not requires the data to be copied.
3511 */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3512 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3513 {
3514 return !skb_header_cloned(skb) &&
3515 skb_headroom(skb) + len <= skb->hdr_len;
3516 }
3517
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3518 static inline int skb_try_make_writable(struct sk_buff *skb,
3519 unsigned int write_len)
3520 {
3521 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3522 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3523 }
3524
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3525 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3526 int cloned)
3527 {
3528 int delta = 0;
3529
3530 if (headroom > skb_headroom(skb))
3531 delta = headroom - skb_headroom(skb);
3532
3533 if (delta || cloned)
3534 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3535 GFP_ATOMIC);
3536 return 0;
3537 }
3538
3539 /**
3540 * skb_cow - copy header of skb when it is required
3541 * @skb: buffer to cow
3542 * @headroom: needed headroom
3543 *
3544 * If the skb passed lacks sufficient headroom or its data part
3545 * is shared, data is reallocated. If reallocation fails, an error
3546 * is returned and original skb is not changed.
3547 *
3548 * The result is skb with writable area skb->head...skb->tail
3549 * and at least @headroom of space at head.
3550 */
skb_cow(struct sk_buff * skb,unsigned int headroom)3551 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3552 {
3553 return __skb_cow(skb, headroom, skb_cloned(skb));
3554 }
3555
3556 /**
3557 * skb_cow_head - skb_cow but only making the head writable
3558 * @skb: buffer to cow
3559 * @headroom: needed headroom
3560 *
3561 * This function is identical to skb_cow except that we replace the
3562 * skb_cloned check by skb_header_cloned. It should be used when
3563 * you only need to push on some header and do not need to modify
3564 * the data.
3565 */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3566 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3567 {
3568 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3569 }
3570
3571 /**
3572 * skb_padto - pad an skbuff up to a minimal size
3573 * @skb: buffer to pad
3574 * @len: minimal length
3575 *
3576 * Pads up a buffer to ensure the trailing bytes exist and are
3577 * blanked. If the buffer already contains sufficient data it
3578 * is untouched. Otherwise it is extended. Returns zero on
3579 * success. The skb is freed on error.
3580 */
skb_padto(struct sk_buff * skb,unsigned int len)3581 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3582 {
3583 unsigned int size = skb->len;
3584 if (likely(size >= len))
3585 return 0;
3586 return skb_pad(skb, len - size);
3587 }
3588
3589 /**
3590 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3591 * @skb: buffer to pad
3592 * @len: minimal length
3593 * @free_on_error: free buffer on error
3594 *
3595 * Pads up a buffer to ensure the trailing bytes exist and are
3596 * blanked. If the buffer already contains sufficient data it
3597 * is untouched. Otherwise it is extended. Returns zero on
3598 * success. The skb is freed on error if @free_on_error is true.
3599 */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3600 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3601 unsigned int len,
3602 bool free_on_error)
3603 {
3604 unsigned int size = skb->len;
3605
3606 if (unlikely(size < len)) {
3607 len -= size;
3608 if (__skb_pad(skb, len, free_on_error))
3609 return -ENOMEM;
3610 __skb_put(skb, len);
3611 }
3612 return 0;
3613 }
3614
3615 /**
3616 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3617 * @skb: buffer to pad
3618 * @len: minimal length
3619 *
3620 * Pads up a buffer to ensure the trailing bytes exist and are
3621 * blanked. If the buffer already contains sufficient data it
3622 * is untouched. Otherwise it is extended. Returns zero on
3623 * success. The skb is freed on error.
3624 */
skb_put_padto(struct sk_buff * skb,unsigned int len)3625 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3626 {
3627 return __skb_put_padto(skb, len, true);
3628 }
3629
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3630 static inline int skb_add_data(struct sk_buff *skb,
3631 struct iov_iter *from, int copy)
3632 {
3633 const int off = skb->len;
3634
3635 if (skb->ip_summed == CHECKSUM_NONE) {
3636 __wsum csum = 0;
3637 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3638 &csum, from)) {
3639 skb->csum = csum_block_add(skb->csum, csum, off);
3640 return 0;
3641 }
3642 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3643 return 0;
3644
3645 __skb_trim(skb, off);
3646 return -EFAULT;
3647 }
3648
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3649 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3650 const struct page *page, int off)
3651 {
3652 if (skb_zcopy(skb))
3653 return false;
3654 if (i) {
3655 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3656
3657 return page == skb_frag_page(frag) &&
3658 off == skb_frag_off(frag) + skb_frag_size(frag);
3659 }
3660 return false;
3661 }
3662
__skb_linearize(struct sk_buff * skb)3663 static inline int __skb_linearize(struct sk_buff *skb)
3664 {
3665 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3666 }
3667
3668 /**
3669 * skb_linearize - convert paged skb to linear one
3670 * @skb: buffer to linarize
3671 *
3672 * If there is no free memory -ENOMEM is returned, otherwise zero
3673 * is returned and the old skb data released.
3674 */
skb_linearize(struct sk_buff * skb)3675 static inline int skb_linearize(struct sk_buff *skb)
3676 {
3677 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3678 }
3679
3680 /**
3681 * skb_has_shared_frag - can any frag be overwritten
3682 * @skb: buffer to test
3683 *
3684 * Return true if the skb has at least one frag that might be modified
3685 * by an external entity (as in vmsplice()/sendfile())
3686 */
skb_has_shared_frag(const struct sk_buff * skb)3687 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3688 {
3689 return skb_is_nonlinear(skb) &&
3690 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3691 }
3692
3693 /**
3694 * skb_linearize_cow - make sure skb is linear and writable
3695 * @skb: buffer to process
3696 *
3697 * If there is no free memory -ENOMEM is returned, otherwise zero
3698 * is returned and the old skb data released.
3699 */
skb_linearize_cow(struct sk_buff * skb)3700 static inline int skb_linearize_cow(struct sk_buff *skb)
3701 {
3702 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3703 __skb_linearize(skb) : 0;
3704 }
3705
3706 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3707 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3708 unsigned int off)
3709 {
3710 if (skb->ip_summed == CHECKSUM_COMPLETE)
3711 skb->csum = csum_block_sub(skb->csum,
3712 csum_partial(start, len, 0), off);
3713 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3714 skb_checksum_start_offset(skb) < 0)
3715 skb->ip_summed = CHECKSUM_NONE;
3716 }
3717
3718 /**
3719 * skb_postpull_rcsum - update checksum for received skb after pull
3720 * @skb: buffer to update
3721 * @start: start of data before pull
3722 * @len: length of data pulled
3723 *
3724 * After doing a pull on a received packet, you need to call this to
3725 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3726 * CHECKSUM_NONE so that it can be recomputed from scratch.
3727 */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3728 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3729 const void *start, unsigned int len)
3730 {
3731 if (skb->ip_summed == CHECKSUM_COMPLETE)
3732 skb->csum = wsum_negate(csum_partial(start, len,
3733 wsum_negate(skb->csum)));
3734 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3735 skb_checksum_start_offset(skb) < 0)
3736 skb->ip_summed = CHECKSUM_NONE;
3737 }
3738
3739 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3740 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3741 unsigned int off)
3742 {
3743 if (skb->ip_summed == CHECKSUM_COMPLETE)
3744 skb->csum = csum_block_add(skb->csum,
3745 csum_partial(start, len, 0), off);
3746 }
3747
3748 /**
3749 * skb_postpush_rcsum - update checksum for received skb after push
3750 * @skb: buffer to update
3751 * @start: start of data after push
3752 * @len: length of data pushed
3753 *
3754 * After doing a push on a received packet, you need to call this to
3755 * update the CHECKSUM_COMPLETE checksum.
3756 */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3757 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3758 const void *start, unsigned int len)
3759 {
3760 __skb_postpush_rcsum(skb, start, len, 0);
3761 }
3762
3763 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3764
3765 /**
3766 * skb_push_rcsum - push skb and update receive checksum
3767 * @skb: buffer to update
3768 * @len: length of data pulled
3769 *
3770 * This function performs an skb_push on the packet and updates
3771 * the CHECKSUM_COMPLETE checksum. It should be used on
3772 * receive path processing instead of skb_push unless you know
3773 * that the checksum difference is zero (e.g., a valid IP header)
3774 * or you are setting ip_summed to CHECKSUM_NONE.
3775 */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3776 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3777 {
3778 skb_push(skb, len);
3779 skb_postpush_rcsum(skb, skb->data, len);
3780 return skb->data;
3781 }
3782
3783 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3784 /**
3785 * pskb_trim_rcsum - trim received skb and update checksum
3786 * @skb: buffer to trim
3787 * @len: new length
3788 *
3789 * This is exactly the same as pskb_trim except that it ensures the
3790 * checksum of received packets are still valid after the operation.
3791 * It can change skb pointers.
3792 */
3793
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3794 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3795 {
3796 if (likely(len >= skb->len))
3797 return 0;
3798 return pskb_trim_rcsum_slow(skb, len);
3799 }
3800
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3801 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3802 {
3803 if (skb->ip_summed == CHECKSUM_COMPLETE)
3804 skb->ip_summed = CHECKSUM_NONE;
3805 __skb_trim(skb, len);
3806 return 0;
3807 }
3808
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3809 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3810 {
3811 if (skb->ip_summed == CHECKSUM_COMPLETE)
3812 skb->ip_summed = CHECKSUM_NONE;
3813 return __skb_grow(skb, len);
3814 }
3815
3816 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3817 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3818 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3819 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3820 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3821
3822 #define skb_queue_walk(queue, skb) \
3823 for (skb = (queue)->next; \
3824 skb != (struct sk_buff *)(queue); \
3825 skb = skb->next)
3826
3827 #define skb_queue_walk_safe(queue, skb, tmp) \
3828 for (skb = (queue)->next, tmp = skb->next; \
3829 skb != (struct sk_buff *)(queue); \
3830 skb = tmp, tmp = skb->next)
3831
3832 #define skb_queue_walk_from(queue, skb) \
3833 for (; skb != (struct sk_buff *)(queue); \
3834 skb = skb->next)
3835
3836 #define skb_rbtree_walk(skb, root) \
3837 for (skb = skb_rb_first(root); skb != NULL; \
3838 skb = skb_rb_next(skb))
3839
3840 #define skb_rbtree_walk_from(skb) \
3841 for (; skb != NULL; \
3842 skb = skb_rb_next(skb))
3843
3844 #define skb_rbtree_walk_from_safe(skb, tmp) \
3845 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3846 skb = tmp)
3847
3848 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3849 for (tmp = skb->next; \
3850 skb != (struct sk_buff *)(queue); \
3851 skb = tmp, tmp = skb->next)
3852
3853 #define skb_queue_reverse_walk(queue, skb) \
3854 for (skb = (queue)->prev; \
3855 skb != (struct sk_buff *)(queue); \
3856 skb = skb->prev)
3857
3858 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3859 for (skb = (queue)->prev, tmp = skb->prev; \
3860 skb != (struct sk_buff *)(queue); \
3861 skb = tmp, tmp = skb->prev)
3862
3863 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3864 for (tmp = skb->prev; \
3865 skb != (struct sk_buff *)(queue); \
3866 skb = tmp, tmp = skb->prev)
3867
skb_has_frag_list(const struct sk_buff * skb)3868 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3869 {
3870 return skb_shinfo(skb)->frag_list != NULL;
3871 }
3872
skb_frag_list_init(struct sk_buff * skb)3873 static inline void skb_frag_list_init(struct sk_buff *skb)
3874 {
3875 skb_shinfo(skb)->frag_list = NULL;
3876 }
3877
3878 #define skb_walk_frags(skb, iter) \
3879 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3880
3881
3882 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3883 int *err, long *timeo_p,
3884 const struct sk_buff *skb);
3885 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3886 struct sk_buff_head *queue,
3887 unsigned int flags,
3888 int *off, int *err,
3889 struct sk_buff **last);
3890 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3891 struct sk_buff_head *queue,
3892 unsigned int flags, int *off, int *err,
3893 struct sk_buff **last);
3894 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3895 struct sk_buff_head *sk_queue,
3896 unsigned int flags, int *off, int *err);
3897 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3898 __poll_t datagram_poll(struct file *file, struct socket *sock,
3899 struct poll_table_struct *wait);
3900 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3901 struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3902 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3903 struct msghdr *msg, int size)
3904 {
3905 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3906 }
3907 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3908 struct msghdr *msg);
3909 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3910 struct iov_iter *to, int len,
3911 struct ahash_request *hash);
3912 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3913 struct iov_iter *from, int len);
3914 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3915 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3916 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)3917 static inline void skb_free_datagram_locked(struct sock *sk,
3918 struct sk_buff *skb)
3919 {
3920 __skb_free_datagram_locked(sk, skb, 0);
3921 }
3922 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3923 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3924 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3925 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3926 int len);
3927 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3928 struct pipe_inode_info *pipe, unsigned int len,
3929 unsigned int flags);
3930 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3931 int len);
3932 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3933 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3934 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3935 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3936 int len, int hlen);
3937 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3938 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3939 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3940 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3941 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3942 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3943 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3944 unsigned int offset);
3945 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3946 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
3947 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3948 int skb_vlan_pop(struct sk_buff *skb);
3949 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3950 int skb_eth_pop(struct sk_buff *skb);
3951 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3952 const unsigned char *src);
3953 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3954 int mac_len, bool ethernet);
3955 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3956 bool ethernet);
3957 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3958 int skb_mpls_dec_ttl(struct sk_buff *skb);
3959 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3960 gfp_t gfp);
3961
memcpy_from_msg(void * data,struct msghdr * msg,int len)3962 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3963 {
3964 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3965 }
3966
memcpy_to_msg(struct msghdr * msg,void * data,int len)3967 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3968 {
3969 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3970 }
3971
3972 struct skb_checksum_ops {
3973 __wsum (*update)(const void *mem, int len, __wsum wsum);
3974 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3975 };
3976
3977 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3978
3979 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3980 __wsum csum, const struct skb_checksum_ops *ops);
3981 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3982 __wsum csum);
3983
3984 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,const void * data,int hlen,void * buffer)3985 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3986 const void *data, int hlen, void *buffer)
3987 {
3988 if (likely(hlen - offset >= len))
3989 return (void *)data + offset;
3990
3991 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
3992 return NULL;
3993
3994 return buffer;
3995 }
3996
3997 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)3998 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3999 {
4000 return __skb_header_pointer(skb, offset, len, skb->data,
4001 skb_headlen(skb), buffer);
4002 }
4003
4004 /**
4005 * skb_needs_linearize - check if we need to linearize a given skb
4006 * depending on the given device features.
4007 * @skb: socket buffer to check
4008 * @features: net device features
4009 *
4010 * Returns true if either:
4011 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
4012 * 2. skb is fragmented and the device does not support SG.
4013 */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)4014 static inline bool skb_needs_linearize(struct sk_buff *skb,
4015 netdev_features_t features)
4016 {
4017 return skb_is_nonlinear(skb) &&
4018 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4019 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4020 }
4021
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)4022 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4023 void *to,
4024 const unsigned int len)
4025 {
4026 memcpy(to, skb->data, len);
4027 }
4028
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)4029 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4030 const int offset, void *to,
4031 const unsigned int len)
4032 {
4033 memcpy(to, skb->data + offset, len);
4034 }
4035
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)4036 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4037 const void *from,
4038 const unsigned int len)
4039 {
4040 memcpy(skb->data, from, len);
4041 }
4042
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)4043 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4044 const int offset,
4045 const void *from,
4046 const unsigned int len)
4047 {
4048 memcpy(skb->data + offset, from, len);
4049 }
4050
4051 void skb_init(void);
4052
skb_get_ktime(const struct sk_buff * skb)4053 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4054 {
4055 return skb->tstamp;
4056 }
4057
4058 /**
4059 * skb_get_timestamp - get timestamp from a skb
4060 * @skb: skb to get stamp from
4061 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
4062 *
4063 * Timestamps are stored in the skb as offsets to a base timestamp.
4064 * This function converts the offset back to a struct timeval and stores
4065 * it in stamp.
4066 */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)4067 static inline void skb_get_timestamp(const struct sk_buff *skb,
4068 struct __kernel_old_timeval *stamp)
4069 {
4070 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
4071 }
4072
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)4073 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4074 struct __kernel_sock_timeval *stamp)
4075 {
4076 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4077
4078 stamp->tv_sec = ts.tv_sec;
4079 stamp->tv_usec = ts.tv_nsec / 1000;
4080 }
4081
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)4082 static inline void skb_get_timestampns(const struct sk_buff *skb,
4083 struct __kernel_old_timespec *stamp)
4084 {
4085 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4086
4087 stamp->tv_sec = ts.tv_sec;
4088 stamp->tv_nsec = ts.tv_nsec;
4089 }
4090
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)4091 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4092 struct __kernel_timespec *stamp)
4093 {
4094 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4095
4096 stamp->tv_sec = ts.tv_sec;
4097 stamp->tv_nsec = ts.tv_nsec;
4098 }
4099
__net_timestamp(struct sk_buff * skb)4100 static inline void __net_timestamp(struct sk_buff *skb)
4101 {
4102 skb->tstamp = ktime_get_real();
4103 skb->mono_delivery_time = 0;
4104 }
4105
net_timedelta(ktime_t t)4106 static inline ktime_t net_timedelta(ktime_t t)
4107 {
4108 return ktime_sub(ktime_get_real(), t);
4109 }
4110
skb_set_delivery_time(struct sk_buff * skb,ktime_t kt,bool mono)4111 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4112 bool mono)
4113 {
4114 skb->tstamp = kt;
4115 skb->mono_delivery_time = kt && mono;
4116 }
4117
4118 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4119
4120 /* It is used in the ingress path to clear the delivery_time.
4121 * If needed, set the skb->tstamp to the (rcv) timestamp.
4122 */
skb_clear_delivery_time(struct sk_buff * skb)4123 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4124 {
4125 if (skb->mono_delivery_time) {
4126 skb->mono_delivery_time = 0;
4127 if (static_branch_unlikely(&netstamp_needed_key))
4128 skb->tstamp = ktime_get_real();
4129 else
4130 skb->tstamp = 0;
4131 }
4132 }
4133
skb_clear_tstamp(struct sk_buff * skb)4134 static inline void skb_clear_tstamp(struct sk_buff *skb)
4135 {
4136 if (skb->mono_delivery_time)
4137 return;
4138
4139 skb->tstamp = 0;
4140 }
4141
skb_tstamp(const struct sk_buff * skb)4142 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4143 {
4144 if (skb->mono_delivery_time)
4145 return 0;
4146
4147 return skb->tstamp;
4148 }
4149
skb_tstamp_cond(const struct sk_buff * skb,bool cond)4150 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4151 {
4152 if (!skb->mono_delivery_time && skb->tstamp)
4153 return skb->tstamp;
4154
4155 if (static_branch_unlikely(&netstamp_needed_key) || cond)
4156 return ktime_get_real();
4157
4158 return 0;
4159 }
4160
skb_metadata_len(const struct sk_buff * skb)4161 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4162 {
4163 return skb_shinfo(skb)->meta_len;
4164 }
4165
skb_metadata_end(const struct sk_buff * skb)4166 static inline void *skb_metadata_end(const struct sk_buff *skb)
4167 {
4168 return skb_mac_header(skb);
4169 }
4170
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)4171 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4172 const struct sk_buff *skb_b,
4173 u8 meta_len)
4174 {
4175 const void *a = skb_metadata_end(skb_a);
4176 const void *b = skb_metadata_end(skb_b);
4177 /* Using more efficient varaiant than plain call to memcmp(). */
4178 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4179 u64 diffs = 0;
4180
4181 switch (meta_len) {
4182 #define __it(x, op) (x -= sizeof(u##op))
4183 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4184 case 32: diffs |= __it_diff(a, b, 64);
4185 fallthrough;
4186 case 24: diffs |= __it_diff(a, b, 64);
4187 fallthrough;
4188 case 16: diffs |= __it_diff(a, b, 64);
4189 fallthrough;
4190 case 8: diffs |= __it_diff(a, b, 64);
4191 break;
4192 case 28: diffs |= __it_diff(a, b, 64);
4193 fallthrough;
4194 case 20: diffs |= __it_diff(a, b, 64);
4195 fallthrough;
4196 case 12: diffs |= __it_diff(a, b, 64);
4197 fallthrough;
4198 case 4: diffs |= __it_diff(a, b, 32);
4199 break;
4200 }
4201 return diffs;
4202 #else
4203 return memcmp(a - meta_len, b - meta_len, meta_len);
4204 #endif
4205 }
4206
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)4207 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4208 const struct sk_buff *skb_b)
4209 {
4210 u8 len_a = skb_metadata_len(skb_a);
4211 u8 len_b = skb_metadata_len(skb_b);
4212
4213 if (!(len_a | len_b))
4214 return false;
4215
4216 return len_a != len_b ?
4217 true : __skb_metadata_differs(skb_a, skb_b, len_a);
4218 }
4219
skb_metadata_set(struct sk_buff * skb,u8 meta_len)4220 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4221 {
4222 skb_shinfo(skb)->meta_len = meta_len;
4223 }
4224
skb_metadata_clear(struct sk_buff * skb)4225 static inline void skb_metadata_clear(struct sk_buff *skb)
4226 {
4227 skb_metadata_set(skb, 0);
4228 }
4229
4230 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4231
4232 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4233
4234 void skb_clone_tx_timestamp(struct sk_buff *skb);
4235 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4236
4237 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4238
skb_clone_tx_timestamp(struct sk_buff * skb)4239 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4240 {
4241 }
4242
skb_defer_rx_timestamp(struct sk_buff * skb)4243 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4244 {
4245 return false;
4246 }
4247
4248 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4249
4250 /**
4251 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4252 *
4253 * PHY drivers may accept clones of transmitted packets for
4254 * timestamping via their phy_driver.txtstamp method. These drivers
4255 * must call this function to return the skb back to the stack with a
4256 * timestamp.
4257 *
4258 * @skb: clone of the original outgoing packet
4259 * @hwtstamps: hardware time stamps
4260 *
4261 */
4262 void skb_complete_tx_timestamp(struct sk_buff *skb,
4263 struct skb_shared_hwtstamps *hwtstamps);
4264
4265 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4266 struct skb_shared_hwtstamps *hwtstamps,
4267 struct sock *sk, int tstype);
4268
4269 /**
4270 * skb_tstamp_tx - queue clone of skb with send time stamps
4271 * @orig_skb: the original outgoing packet
4272 * @hwtstamps: hardware time stamps, may be NULL if not available
4273 *
4274 * If the skb has a socket associated, then this function clones the
4275 * skb (thus sharing the actual data and optional structures), stores
4276 * the optional hardware time stamping information (if non NULL) or
4277 * generates a software time stamp (otherwise), then queues the clone
4278 * to the error queue of the socket. Errors are silently ignored.
4279 */
4280 void skb_tstamp_tx(struct sk_buff *orig_skb,
4281 struct skb_shared_hwtstamps *hwtstamps);
4282
4283 /**
4284 * skb_tx_timestamp() - Driver hook for transmit timestamping
4285 *
4286 * Ethernet MAC Drivers should call this function in their hard_xmit()
4287 * function immediately before giving the sk_buff to the MAC hardware.
4288 *
4289 * Specifically, one should make absolutely sure that this function is
4290 * called before TX completion of this packet can trigger. Otherwise
4291 * the packet could potentially already be freed.
4292 *
4293 * @skb: A socket buffer.
4294 */
skb_tx_timestamp(struct sk_buff * skb)4295 static inline void skb_tx_timestamp(struct sk_buff *skb)
4296 {
4297 skb_clone_tx_timestamp(skb);
4298 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4299 skb_tstamp_tx(skb, NULL);
4300 }
4301
4302 /**
4303 * skb_complete_wifi_ack - deliver skb with wifi status
4304 *
4305 * @skb: the original outgoing packet
4306 * @acked: ack status
4307 *
4308 */
4309 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4310
4311 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4312 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4313
skb_csum_unnecessary(const struct sk_buff * skb)4314 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4315 {
4316 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4317 skb->csum_valid ||
4318 (skb->ip_summed == CHECKSUM_PARTIAL &&
4319 skb_checksum_start_offset(skb) >= 0));
4320 }
4321
4322 /**
4323 * skb_checksum_complete - Calculate checksum of an entire packet
4324 * @skb: packet to process
4325 *
4326 * This function calculates the checksum over the entire packet plus
4327 * the value of skb->csum. The latter can be used to supply the
4328 * checksum of a pseudo header as used by TCP/UDP. It returns the
4329 * checksum.
4330 *
4331 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
4332 * this function can be used to verify that checksum on received
4333 * packets. In that case the function should return zero if the
4334 * checksum is correct. In particular, this function will return zero
4335 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4336 * hardware has already verified the correctness of the checksum.
4337 */
skb_checksum_complete(struct sk_buff * skb)4338 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4339 {
4340 return skb_csum_unnecessary(skb) ?
4341 0 : __skb_checksum_complete(skb);
4342 }
4343
__skb_decr_checksum_unnecessary(struct sk_buff * skb)4344 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4345 {
4346 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4347 if (skb->csum_level == 0)
4348 skb->ip_summed = CHECKSUM_NONE;
4349 else
4350 skb->csum_level--;
4351 }
4352 }
4353
__skb_incr_checksum_unnecessary(struct sk_buff * skb)4354 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4355 {
4356 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4357 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4358 skb->csum_level++;
4359 } else if (skb->ip_summed == CHECKSUM_NONE) {
4360 skb->ip_summed = CHECKSUM_UNNECESSARY;
4361 skb->csum_level = 0;
4362 }
4363 }
4364
__skb_reset_checksum_unnecessary(struct sk_buff * skb)4365 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4366 {
4367 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4368 skb->ip_summed = CHECKSUM_NONE;
4369 skb->csum_level = 0;
4370 }
4371 }
4372
4373 /* Check if we need to perform checksum complete validation.
4374 *
4375 * Returns true if checksum complete is needed, false otherwise
4376 * (either checksum is unnecessary or zero checksum is allowed).
4377 */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)4378 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4379 bool zero_okay,
4380 __sum16 check)
4381 {
4382 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4383 skb->csum_valid = 1;
4384 __skb_decr_checksum_unnecessary(skb);
4385 return false;
4386 }
4387
4388 return true;
4389 }
4390
4391 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4392 * in checksum_init.
4393 */
4394 #define CHECKSUM_BREAK 76
4395
4396 /* Unset checksum-complete
4397 *
4398 * Unset checksum complete can be done when packet is being modified
4399 * (uncompressed for instance) and checksum-complete value is
4400 * invalidated.
4401 */
skb_checksum_complete_unset(struct sk_buff * skb)4402 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4403 {
4404 if (skb->ip_summed == CHECKSUM_COMPLETE)
4405 skb->ip_summed = CHECKSUM_NONE;
4406 }
4407
4408 /* Validate (init) checksum based on checksum complete.
4409 *
4410 * Return values:
4411 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
4412 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4413 * checksum is stored in skb->csum for use in __skb_checksum_complete
4414 * non-zero: value of invalid checksum
4415 *
4416 */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4417 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4418 bool complete,
4419 __wsum psum)
4420 {
4421 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4422 if (!csum_fold(csum_add(psum, skb->csum))) {
4423 skb->csum_valid = 1;
4424 return 0;
4425 }
4426 }
4427
4428 skb->csum = psum;
4429
4430 if (complete || skb->len <= CHECKSUM_BREAK) {
4431 __sum16 csum;
4432
4433 csum = __skb_checksum_complete(skb);
4434 skb->csum_valid = !csum;
4435 return csum;
4436 }
4437
4438 return 0;
4439 }
4440
null_compute_pseudo(struct sk_buff * skb,int proto)4441 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4442 {
4443 return 0;
4444 }
4445
4446 /* Perform checksum validate (init). Note that this is a macro since we only
4447 * want to calculate the pseudo header which is an input function if necessary.
4448 * First we try to validate without any computation (checksum unnecessary) and
4449 * then calculate based on checksum complete calling the function to compute
4450 * pseudo header.
4451 *
4452 * Return values:
4453 * 0: checksum is validated or try to in skb_checksum_complete
4454 * non-zero: value of invalid checksum
4455 */
4456 #define __skb_checksum_validate(skb, proto, complete, \
4457 zero_okay, check, compute_pseudo) \
4458 ({ \
4459 __sum16 __ret = 0; \
4460 skb->csum_valid = 0; \
4461 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4462 __ret = __skb_checksum_validate_complete(skb, \
4463 complete, compute_pseudo(skb, proto)); \
4464 __ret; \
4465 })
4466
4467 #define skb_checksum_init(skb, proto, compute_pseudo) \
4468 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4469
4470 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4471 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4472
4473 #define skb_checksum_validate(skb, proto, compute_pseudo) \
4474 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4475
4476 #define skb_checksum_validate_zero_check(skb, proto, check, \
4477 compute_pseudo) \
4478 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4479
4480 #define skb_checksum_simple_validate(skb) \
4481 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4482
__skb_checksum_convert_check(struct sk_buff * skb)4483 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4484 {
4485 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4486 }
4487
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4488 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4489 {
4490 skb->csum = ~pseudo;
4491 skb->ip_summed = CHECKSUM_COMPLETE;
4492 }
4493
4494 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \
4495 do { \
4496 if (__skb_checksum_convert_check(skb)) \
4497 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4498 } while (0)
4499
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4500 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4501 u16 start, u16 offset)
4502 {
4503 skb->ip_summed = CHECKSUM_PARTIAL;
4504 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4505 skb->csum_offset = offset - start;
4506 }
4507
4508 /* Update skbuf and packet to reflect the remote checksum offload operation.
4509 * When called, ptr indicates the starting point for skb->csum when
4510 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4511 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4512 */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4513 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4514 int start, int offset, bool nopartial)
4515 {
4516 __wsum delta;
4517
4518 if (!nopartial) {
4519 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4520 return;
4521 }
4522
4523 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4524 __skb_checksum_complete(skb);
4525 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4526 }
4527
4528 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4529
4530 /* Adjust skb->csum since we changed the packet */
4531 skb->csum = csum_add(skb->csum, delta);
4532 }
4533
skb_nfct(const struct sk_buff * skb)4534 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4535 {
4536 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4537 return (void *)(skb->_nfct & NFCT_PTRMASK);
4538 #else
4539 return NULL;
4540 #endif
4541 }
4542
skb_get_nfct(const struct sk_buff * skb)4543 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4544 {
4545 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4546 return skb->_nfct;
4547 #else
4548 return 0UL;
4549 #endif
4550 }
4551
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4552 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4553 {
4554 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4555 skb->slow_gro |= !!nfct;
4556 skb->_nfct = nfct;
4557 #endif
4558 }
4559
4560 #ifdef CONFIG_SKB_EXTENSIONS
4561 enum skb_ext_id {
4562 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4563 SKB_EXT_BRIDGE_NF,
4564 #endif
4565 #ifdef CONFIG_XFRM
4566 SKB_EXT_SEC_PATH,
4567 #endif
4568 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4569 TC_SKB_EXT,
4570 #endif
4571 #if IS_ENABLED(CONFIG_MPTCP)
4572 SKB_EXT_MPTCP,
4573 #endif
4574 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4575 SKB_EXT_MCTP,
4576 #endif
4577 SKB_EXT_NUM, /* must be last */
4578 };
4579
4580 /**
4581 * struct skb_ext - sk_buff extensions
4582 * @refcnt: 1 on allocation, deallocated on 0
4583 * @offset: offset to add to @data to obtain extension address
4584 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4585 * @data: start of extension data, variable sized
4586 *
4587 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4588 * to use 'u8' types while allowing up to 2kb worth of extension data.
4589 */
4590 struct skb_ext {
4591 refcount_t refcnt;
4592 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4593 u8 chunks; /* same */
4594 char data[] __aligned(8);
4595 };
4596
4597 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4598 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4599 struct skb_ext *ext);
4600 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4601 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4602 void __skb_ext_put(struct skb_ext *ext);
4603
skb_ext_put(struct sk_buff * skb)4604 static inline void skb_ext_put(struct sk_buff *skb)
4605 {
4606 if (skb->active_extensions)
4607 __skb_ext_put(skb->extensions);
4608 }
4609
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4610 static inline void __skb_ext_copy(struct sk_buff *dst,
4611 const struct sk_buff *src)
4612 {
4613 dst->active_extensions = src->active_extensions;
4614
4615 if (src->active_extensions) {
4616 struct skb_ext *ext = src->extensions;
4617
4618 refcount_inc(&ext->refcnt);
4619 dst->extensions = ext;
4620 }
4621 }
4622
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4623 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4624 {
4625 skb_ext_put(dst);
4626 __skb_ext_copy(dst, src);
4627 }
4628
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4629 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4630 {
4631 return !!ext->offset[i];
4632 }
4633
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4634 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4635 {
4636 return skb->active_extensions & (1 << id);
4637 }
4638
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4639 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4640 {
4641 if (skb_ext_exist(skb, id))
4642 __skb_ext_del(skb, id);
4643 }
4644
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4645 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4646 {
4647 if (skb_ext_exist(skb, id)) {
4648 struct skb_ext *ext = skb->extensions;
4649
4650 return (void *)ext + (ext->offset[id] << 3);
4651 }
4652
4653 return NULL;
4654 }
4655
skb_ext_reset(struct sk_buff * skb)4656 static inline void skb_ext_reset(struct sk_buff *skb)
4657 {
4658 if (unlikely(skb->active_extensions)) {
4659 __skb_ext_put(skb->extensions);
4660 skb->active_extensions = 0;
4661 }
4662 }
4663
skb_has_extensions(struct sk_buff * skb)4664 static inline bool skb_has_extensions(struct sk_buff *skb)
4665 {
4666 return unlikely(skb->active_extensions);
4667 }
4668 #else
skb_ext_put(struct sk_buff * skb)4669 static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4670 static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4671 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4672 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4673 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4674 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4675 #endif /* CONFIG_SKB_EXTENSIONS */
4676
nf_reset_ct(struct sk_buff * skb)4677 static inline void nf_reset_ct(struct sk_buff *skb)
4678 {
4679 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4680 nf_conntrack_put(skb_nfct(skb));
4681 skb->_nfct = 0;
4682 #endif
4683 }
4684
nf_reset_trace(struct sk_buff * skb)4685 static inline void nf_reset_trace(struct sk_buff *skb)
4686 {
4687 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4688 skb->nf_trace = 0;
4689 #endif
4690 }
4691
ipvs_reset(struct sk_buff * skb)4692 static inline void ipvs_reset(struct sk_buff *skb)
4693 {
4694 #if IS_ENABLED(CONFIG_IP_VS)
4695 skb->ipvs_property = 0;
4696 #endif
4697 }
4698
4699 /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4700 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4701 bool copy)
4702 {
4703 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4704 dst->_nfct = src->_nfct;
4705 nf_conntrack_get(skb_nfct(src));
4706 #endif
4707 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4708 if (copy)
4709 dst->nf_trace = src->nf_trace;
4710 #endif
4711 }
4712
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4713 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4714 {
4715 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4716 nf_conntrack_put(skb_nfct(dst));
4717 #endif
4718 dst->slow_gro = src->slow_gro;
4719 __nf_copy(dst, src, true);
4720 }
4721
4722 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4723 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4724 {
4725 to->secmark = from->secmark;
4726 }
4727
skb_init_secmark(struct sk_buff * skb)4728 static inline void skb_init_secmark(struct sk_buff *skb)
4729 {
4730 skb->secmark = 0;
4731 }
4732 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4733 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4734 { }
4735
skb_init_secmark(struct sk_buff * skb)4736 static inline void skb_init_secmark(struct sk_buff *skb)
4737 { }
4738 #endif
4739
secpath_exists(const struct sk_buff * skb)4740 static inline int secpath_exists(const struct sk_buff *skb)
4741 {
4742 #ifdef CONFIG_XFRM
4743 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4744 #else
4745 return 0;
4746 #endif
4747 }
4748
skb_irq_freeable(const struct sk_buff * skb)4749 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4750 {
4751 return !skb->destructor &&
4752 !secpath_exists(skb) &&
4753 !skb_nfct(skb) &&
4754 !skb->_skb_refdst &&
4755 !skb_has_frag_list(skb);
4756 }
4757
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)4758 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4759 {
4760 skb->queue_mapping = queue_mapping;
4761 }
4762
skb_get_queue_mapping(const struct sk_buff * skb)4763 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4764 {
4765 return skb->queue_mapping;
4766 }
4767
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)4768 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4769 {
4770 to->queue_mapping = from->queue_mapping;
4771 }
4772
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4773 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4774 {
4775 skb->queue_mapping = rx_queue + 1;
4776 }
4777
skb_get_rx_queue(const struct sk_buff * skb)4778 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4779 {
4780 return skb->queue_mapping - 1;
4781 }
4782
skb_rx_queue_recorded(const struct sk_buff * skb)4783 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4784 {
4785 return skb->queue_mapping != 0;
4786 }
4787
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4788 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4789 {
4790 skb->dst_pending_confirm = val;
4791 }
4792
skb_get_dst_pending_confirm(const struct sk_buff * skb)4793 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4794 {
4795 return skb->dst_pending_confirm != 0;
4796 }
4797
skb_sec_path(const struct sk_buff * skb)4798 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4799 {
4800 #ifdef CONFIG_XFRM
4801 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4802 #else
4803 return NULL;
4804 #endif
4805 }
4806
4807 /* Keeps track of mac header offset relative to skb->head.
4808 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4809 * For non-tunnel skb it points to skb_mac_header() and for
4810 * tunnel skb it points to outer mac header.
4811 * Keeps track of level of encapsulation of network headers.
4812 */
4813 struct skb_gso_cb {
4814 union {
4815 int mac_offset;
4816 int data_offset;
4817 };
4818 int encap_level;
4819 __wsum csum;
4820 __u16 csum_start;
4821 };
4822 #define SKB_GSO_CB_OFFSET 32
4823 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4824
skb_tnl_header_len(const struct sk_buff * inner_skb)4825 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4826 {
4827 return (skb_mac_header(inner_skb) - inner_skb->head) -
4828 SKB_GSO_CB(inner_skb)->mac_offset;
4829 }
4830
gso_pskb_expand_head(struct sk_buff * skb,int extra)4831 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4832 {
4833 int new_headroom, headroom;
4834 int ret;
4835
4836 headroom = skb_headroom(skb);
4837 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4838 if (ret)
4839 return ret;
4840
4841 new_headroom = skb_headroom(skb);
4842 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4843 return 0;
4844 }
4845
gso_reset_checksum(struct sk_buff * skb,__wsum res)4846 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4847 {
4848 /* Do not update partial checksums if remote checksum is enabled. */
4849 if (skb->remcsum_offload)
4850 return;
4851
4852 SKB_GSO_CB(skb)->csum = res;
4853 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4854 }
4855
4856 /* Compute the checksum for a gso segment. First compute the checksum value
4857 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4858 * then add in skb->csum (checksum from csum_start to end of packet).
4859 * skb->csum and csum_start are then updated to reflect the checksum of the
4860 * resultant packet starting from the transport header-- the resultant checksum
4861 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4862 * header.
4863 */
gso_make_checksum(struct sk_buff * skb,__wsum res)4864 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4865 {
4866 unsigned char *csum_start = skb_transport_header(skb);
4867 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4868 __wsum partial = SKB_GSO_CB(skb)->csum;
4869
4870 SKB_GSO_CB(skb)->csum = res;
4871 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4872
4873 return csum_fold(csum_partial(csum_start, plen, partial));
4874 }
4875
skb_is_gso(const struct sk_buff * skb)4876 static inline bool skb_is_gso(const struct sk_buff *skb)
4877 {
4878 return skb_shinfo(skb)->gso_size;
4879 }
4880
4881 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4882 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4883 {
4884 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4885 }
4886
4887 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4888 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4889 {
4890 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4891 }
4892
4893 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)4894 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4895 {
4896 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4897 }
4898
skb_gso_reset(struct sk_buff * skb)4899 static inline void skb_gso_reset(struct sk_buff *skb)
4900 {
4901 skb_shinfo(skb)->gso_size = 0;
4902 skb_shinfo(skb)->gso_segs = 0;
4903 skb_shinfo(skb)->gso_type = 0;
4904 }
4905
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4906 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4907 u16 increment)
4908 {
4909 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4910 return;
4911 shinfo->gso_size += increment;
4912 }
4913
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4914 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4915 u16 decrement)
4916 {
4917 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4918 return;
4919 shinfo->gso_size -= decrement;
4920 }
4921
4922 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4923
skb_warn_if_lro(const struct sk_buff * skb)4924 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4925 {
4926 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4927 * wanted then gso_type will be set. */
4928 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4929
4930 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4931 unlikely(shinfo->gso_type == 0)) {
4932 __skb_warn_lro_forwarding(skb);
4933 return true;
4934 }
4935 return false;
4936 }
4937
skb_forward_csum(struct sk_buff * skb)4938 static inline void skb_forward_csum(struct sk_buff *skb)
4939 {
4940 /* Unfortunately we don't support this one. Any brave souls? */
4941 if (skb->ip_summed == CHECKSUM_COMPLETE)
4942 skb->ip_summed = CHECKSUM_NONE;
4943 }
4944
4945 /**
4946 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4947 * @skb: skb to check
4948 *
4949 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4950 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4951 * use this helper, to document places where we make this assertion.
4952 */
skb_checksum_none_assert(const struct sk_buff * skb)4953 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4954 {
4955 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4956 }
4957
4958 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4959
4960 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4961 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4962 unsigned int transport_len,
4963 __sum16(*skb_chkf)(struct sk_buff *skb));
4964
4965 /**
4966 * skb_head_is_locked - Determine if the skb->head is locked down
4967 * @skb: skb to check
4968 *
4969 * The head on skbs build around a head frag can be removed if they are
4970 * not cloned. This function returns true if the skb head is locked down
4971 * due to either being allocated via kmalloc, or by being a clone with
4972 * multiple references to the head.
4973 */
skb_head_is_locked(const struct sk_buff * skb)4974 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4975 {
4976 return !skb->head_frag || skb_cloned(skb);
4977 }
4978
4979 /* Local Checksum Offload.
4980 * Compute outer checksum based on the assumption that the
4981 * inner checksum will be offloaded later.
4982 * See Documentation/networking/checksum-offloads.rst for
4983 * explanation of how this works.
4984 * Fill in outer checksum adjustment (e.g. with sum of outer
4985 * pseudo-header) before calling.
4986 * Also ensure that inner checksum is in linear data area.
4987 */
lco_csum(struct sk_buff * skb)4988 static inline __wsum lco_csum(struct sk_buff *skb)
4989 {
4990 unsigned char *csum_start = skb_checksum_start(skb);
4991 unsigned char *l4_hdr = skb_transport_header(skb);
4992 __wsum partial;
4993
4994 /* Start with complement of inner checksum adjustment */
4995 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4996 skb->csum_offset));
4997
4998 /* Add in checksum of our headers (incl. outer checksum
4999 * adjustment filled in by caller) and return result.
5000 */
5001 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5002 }
5003
skb_is_redirected(const struct sk_buff * skb)5004 static inline bool skb_is_redirected(const struct sk_buff *skb)
5005 {
5006 return skb->redirected;
5007 }
5008
skb_set_redirected(struct sk_buff * skb,bool from_ingress)5009 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5010 {
5011 skb->redirected = 1;
5012 #ifdef CONFIG_NET_REDIRECT
5013 skb->from_ingress = from_ingress;
5014 if (skb->from_ingress)
5015 skb_clear_tstamp(skb);
5016 #endif
5017 }
5018
skb_reset_redirect(struct sk_buff * skb)5019 static inline void skb_reset_redirect(struct sk_buff *skb)
5020 {
5021 skb->redirected = 0;
5022 }
5023
skb_csum_is_sctp(struct sk_buff * skb)5024 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5025 {
5026 return skb->csum_not_inet;
5027 }
5028
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)5029 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5030 const u64 kcov_handle)
5031 {
5032 #ifdef CONFIG_KCOV
5033 skb->kcov_handle = kcov_handle;
5034 #endif
5035 }
5036
skb_get_kcov_handle(struct sk_buff * skb)5037 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5038 {
5039 #ifdef CONFIG_KCOV
5040 return skb->kcov_handle;
5041 #else
5042 return 0;
5043 #endif
5044 }
5045
5046 #ifdef CONFIG_PAGE_POOL
skb_mark_for_recycle(struct sk_buff * skb)5047 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5048 {
5049 skb->pp_recycle = 1;
5050 }
5051 #endif
5052
skb_pp_recycle(struct sk_buff * skb,void * data)5053 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
5054 {
5055 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
5056 return false;
5057 return page_pool_return_skb_page(virt_to_page(data));
5058 }
5059
5060 #endif /* __KERNEL__ */
5061 #endif /* _LINUX_SKBUFF_H */
5062