1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
35
36 /* Don't change this without changing skb_csum_unnecessary! */
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_UNNECESSARY 1
39 #define CHECKSUM_COMPLETE 2
40 #define CHECKSUM_PARTIAL 3
41
42 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
43 ~(SMP_CACHE_BYTES - 1))
44 #define SKB_WITH_OVERHEAD(X) \
45 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
46 #define SKB_MAX_ORDER(X, ORDER) \
47 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
49 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50
51 /* return minimum truesize of one skb containing X bytes of data */
52 #define SKB_TRUESIZE(X) ((X) + \
53 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
54 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
55
56 /* A. Checksumming of received packets by device.
57 *
58 * NONE: device failed to checksum this packet.
59 * skb->csum is undefined.
60 *
61 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
62 * skb->csum is undefined.
63 * It is bad option, but, unfortunately, many of vendors do this.
64 * Apparently with secret goal to sell you new device, when you
65 * will add new protocol to your host. F.e. IPv6. 8)
66 *
67 * COMPLETE: the most generic way. Device supplied checksum of _all_
68 * the packet as seen by netif_rx in skb->csum.
69 * NOTE: Even if device supports only some protocols, but
70 * is able to produce some skb->csum, it MUST use COMPLETE,
71 * not UNNECESSARY.
72 *
73 * PARTIAL: identical to the case for output below. This may occur
74 * on a packet received directly from another Linux OS, e.g.,
75 * a virtualised Linux kernel on the same host. The packet can
76 * be treated in the same way as UNNECESSARY except that on
77 * output (i.e., forwarding) the checksum must be filled in
78 * by the OS or the hardware.
79 *
80 * B. Checksumming on output.
81 *
82 * NONE: skb is checksummed by protocol or csum is not required.
83 *
84 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
85 * from skb->csum_start to the end and to record the checksum
86 * at skb->csum_start + skb->csum_offset.
87 *
88 * Device must show its capabilities in dev->features, set
89 * at device setup time.
90 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
91 * everything.
92 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
93 * TCP/UDP over IPv4. Sigh. Vendors like this
94 * way by an unknown reason. Though, see comment above
95 * about CHECKSUM_UNNECESSARY. 8)
96 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
97 *
98 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers
99 * that do not want net to perform the checksum calculation should use
100 * this flag in their outgoing skbs.
101 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC
102 * offload. Correspondingly, the FCoE protocol driver
103 * stack should use CHECKSUM_UNNECESSARY.
104 *
105 * Any questions? No questions, good. --ANK
106 */
107
108 struct net_device;
109 struct scatterlist;
110 struct pipe_inode_info;
111
112 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
113 struct nf_conntrack {
114 atomic_t use;
115 };
116 #endif
117
118 #ifdef CONFIG_BRIDGE_NETFILTER
119 struct nf_bridge_info {
120 atomic_t use;
121 struct net_device *physindev;
122 struct net_device *physoutdev;
123 unsigned int mask;
124 unsigned long data[32 / sizeof(unsigned long)];
125 };
126 #endif
127
128 struct sk_buff_head {
129 /* These two members must be first. */
130 struct sk_buff *next;
131 struct sk_buff *prev;
132
133 __u32 qlen;
134 spinlock_t lock;
135 };
136
137 struct sk_buff;
138
139 /* To allow 64K frame to be packed as single skb without frag_list we
140 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
141 * buffers which do not start on a page boundary.
142 *
143 * Since GRO uses frags we allocate at least 16 regardless of page
144 * size.
145 */
146 #if (65536/PAGE_SIZE + 1) < 16
147 #define MAX_SKB_FRAGS 16UL
148 #else
149 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
150 #endif
151
152 typedef struct skb_frag_struct skb_frag_t;
153
154 struct skb_frag_struct {
155 struct {
156 struct page *p;
157 } page;
158 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
159 __u32 page_offset;
160 __u32 size;
161 #else
162 __u16 page_offset;
163 __u16 size;
164 #endif
165 };
166
skb_frag_size(const skb_frag_t * frag)167 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
168 {
169 return frag->size;
170 }
171
skb_frag_size_set(skb_frag_t * frag,unsigned int size)172 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
173 {
174 frag->size = size;
175 }
176
skb_frag_size_add(skb_frag_t * frag,int delta)177 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
178 {
179 frag->size += delta;
180 }
181
skb_frag_size_sub(skb_frag_t * frag,int delta)182 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
183 {
184 frag->size -= delta;
185 }
186
187 #define HAVE_HW_TIME_STAMP
188
189 /**
190 * struct skb_shared_hwtstamps - hardware time stamps
191 * @hwtstamp: hardware time stamp transformed into duration
192 * since arbitrary point in time
193 * @syststamp: hwtstamp transformed to system time base
194 *
195 * Software time stamps generated by ktime_get_real() are stored in
196 * skb->tstamp. The relation between the different kinds of time
197 * stamps is as follows:
198 *
199 * syststamp and tstamp can be compared against each other in
200 * arbitrary combinations. The accuracy of a
201 * syststamp/tstamp/"syststamp from other device" comparison is
202 * limited by the accuracy of the transformation into system time
203 * base. This depends on the device driver and its underlying
204 * hardware.
205 *
206 * hwtstamps can only be compared against other hwtstamps from
207 * the same device.
208 *
209 * This structure is attached to packets as part of the
210 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
211 */
212 struct skb_shared_hwtstamps {
213 ktime_t hwtstamp;
214 ktime_t syststamp;
215 };
216
217 /* Definitions for tx_flags in struct skb_shared_info */
218 enum {
219 /* generate hardware time stamp */
220 SKBTX_HW_TSTAMP = 1 << 0,
221
222 /* generate software time stamp */
223 SKBTX_SW_TSTAMP = 1 << 1,
224
225 /* device driver is going to provide hardware time stamp */
226 SKBTX_IN_PROGRESS = 1 << 2,
227
228 /* device driver supports TX zero-copy buffers */
229 SKBTX_DEV_ZEROCOPY = 1 << 3,
230
231 /* generate wifi status information (where possible) */
232 SKBTX_WIFI_STATUS = 1 << 4,
233 };
234
235 /*
236 * The callback notifies userspace to release buffers when skb DMA is done in
237 * lower device, the skb last reference should be 0 when calling this.
238 * The ctx field is used to track device context.
239 * The desc field is used to track userspace buffer index.
240 */
241 struct ubuf_info {
242 void (*callback)(struct ubuf_info *);
243 void *ctx;
244 unsigned long desc;
245 };
246
247 /* This data is invariant across clones and lives at
248 * the end of the header data, ie. at skb->end.
249 */
250 struct skb_shared_info {
251 unsigned char nr_frags;
252 __u8 tx_flags;
253 unsigned short gso_size;
254 /* Warning: this field is not always filled in (UFO)! */
255 unsigned short gso_segs;
256 unsigned short gso_type;
257 struct sk_buff *frag_list;
258 struct skb_shared_hwtstamps hwtstamps;
259 __be32 ip6_frag_id;
260
261 /*
262 * Warning : all fields before dataref are cleared in __alloc_skb()
263 */
264 atomic_t dataref;
265
266 /* Intermediate layers must ensure that destructor_arg
267 * remains valid until skb destructor */
268 void * destructor_arg;
269
270 /* must be last field, see pskb_expand_head() */
271 skb_frag_t frags[MAX_SKB_FRAGS];
272 };
273
274 /* We divide dataref into two halves. The higher 16 bits hold references
275 * to the payload part of skb->data. The lower 16 bits hold references to
276 * the entire skb->data. A clone of a headerless skb holds the length of
277 * the header in skb->hdr_len.
278 *
279 * All users must obey the rule that the skb->data reference count must be
280 * greater than or equal to the payload reference count.
281 *
282 * Holding a reference to the payload part means that the user does not
283 * care about modifications to the header part of skb->data.
284 */
285 #define SKB_DATAREF_SHIFT 16
286 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
287
288
289 enum {
290 SKB_FCLONE_UNAVAILABLE,
291 SKB_FCLONE_ORIG,
292 SKB_FCLONE_CLONE,
293 };
294
295 enum {
296 SKB_GSO_TCPV4 = 1 << 0,
297 SKB_GSO_UDP = 1 << 1,
298
299 /* This indicates the skb is from an untrusted source. */
300 SKB_GSO_DODGY = 1 << 2,
301
302 /* This indicates the tcp segment has CWR set. */
303 SKB_GSO_TCP_ECN = 1 << 3,
304
305 SKB_GSO_TCPV6 = 1 << 4,
306
307 SKB_GSO_FCOE = 1 << 5,
308 };
309
310 #if BITS_PER_LONG > 32
311 #define NET_SKBUFF_DATA_USES_OFFSET 1
312 #endif
313
314 #ifdef NET_SKBUFF_DATA_USES_OFFSET
315 typedef unsigned int sk_buff_data_t;
316 #else
317 typedef unsigned char *sk_buff_data_t;
318 #endif
319
320 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
321 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
322 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
323 #endif
324
325 /**
326 * struct sk_buff - socket buffer
327 * @next: Next buffer in list
328 * @prev: Previous buffer in list
329 * @tstamp: Time we arrived
330 * @sk: Socket we are owned by
331 * @dev: Device we arrived on/are leaving by
332 * @cb: Control buffer. Free for use by every layer. Put private vars here
333 * @_skb_refdst: destination entry (with norefcount bit)
334 * @sp: the security path, used for xfrm
335 * @len: Length of actual data
336 * @data_len: Data length
337 * @mac_len: Length of link layer header
338 * @hdr_len: writable header length of cloned skb
339 * @csum: Checksum (must include start/offset pair)
340 * @csum_start: Offset from skb->head where checksumming should start
341 * @csum_offset: Offset from csum_start where checksum should be stored
342 * @priority: Packet queueing priority
343 * @local_df: allow local fragmentation
344 * @cloned: Head may be cloned (check refcnt to be sure)
345 * @ip_summed: Driver fed us an IP checksum
346 * @nohdr: Payload reference only, must not modify header
347 * @nfctinfo: Relationship of this skb to the connection
348 * @pkt_type: Packet class
349 * @fclone: skbuff clone status
350 * @ipvs_property: skbuff is owned by ipvs
351 * @peeked: this packet has been seen already, so stats have been
352 * done for it, don't do them again
353 * @nf_trace: netfilter packet trace flag
354 * @protocol: Packet protocol from driver
355 * @destructor: Destruct function
356 * @nfct: Associated connection, if any
357 * @nfct_reasm: netfilter conntrack re-assembly pointer
358 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
359 * @skb_iif: ifindex of device we arrived on
360 * @tc_index: Traffic control index
361 * @tc_verd: traffic control verdict
362 * @rxhash: the packet hash computed on receive
363 * @queue_mapping: Queue mapping for multiqueue devices
364 * @ndisc_nodetype: router type (from link layer)
365 * @ooo_okay: allow the mapping of a socket to a queue to be changed
366 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
367 * ports.
368 * @wifi_acked_valid: wifi_acked was set
369 * @wifi_acked: whether frame was acked on wifi or not
370 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
371 * @dma_cookie: a cookie to one of several possible DMA operations
372 * done by skb DMA functions
373 * @secmark: security marking
374 * @mark: Generic packet mark
375 * @dropcount: total number of sk_receive_queue overflows
376 * @vlan_tci: vlan tag control information
377 * @transport_header: Transport layer header
378 * @network_header: Network layer header
379 * @mac_header: Link layer header
380 * @tail: Tail pointer
381 * @end: End pointer
382 * @head: Head of buffer
383 * @data: Data head pointer
384 * @truesize: Buffer size
385 * @users: User count - see {datagram,tcp}.c
386 */
387
388 struct sk_buff {
389 /* These two members must be first. */
390 struct sk_buff *next;
391 struct sk_buff *prev;
392
393 ktime_t tstamp;
394
395 struct sock *sk;
396 struct net_device *dev;
397
398 /*
399 * This is the control buffer. It is free to use for every
400 * layer. Please put your private variables there. If you
401 * want to keep them across layers you have to do a skb_clone()
402 * first. This is owned by whoever has the skb queued ATM.
403 */
404 char cb[48] __aligned(8);
405
406 unsigned long _skb_refdst;
407 #ifdef CONFIG_XFRM
408 struct sec_path *sp;
409 #endif
410 unsigned int len,
411 data_len;
412 __u16 mac_len,
413 hdr_len;
414 union {
415 __wsum csum;
416 struct {
417 __u16 csum_start;
418 __u16 csum_offset;
419 };
420 };
421 __u32 priority;
422 kmemcheck_bitfield_begin(flags1);
423 __u8 local_df:1,
424 cloned:1,
425 ip_summed:2,
426 nohdr:1,
427 nfctinfo:3;
428 __u8 pkt_type:3,
429 fclone:2,
430 ipvs_property:1,
431 peeked:1,
432 nf_trace:1;
433 kmemcheck_bitfield_end(flags1);
434 __be16 protocol;
435
436 void (*destructor)(struct sk_buff *skb);
437 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
438 struct nf_conntrack *nfct;
439 #endif
440 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
441 struct sk_buff *nfct_reasm;
442 #endif
443 #ifdef CONFIG_BRIDGE_NETFILTER
444 struct nf_bridge_info *nf_bridge;
445 #endif
446
447 int skb_iif;
448
449 __u32 rxhash;
450
451 __u16 vlan_tci;
452
453 #ifdef CONFIG_NET_SCHED
454 __u16 tc_index; /* traffic control index */
455 #ifdef CONFIG_NET_CLS_ACT
456 __u16 tc_verd; /* traffic control verdict */
457 #endif
458 #endif
459
460 __u16 queue_mapping;
461 kmemcheck_bitfield_begin(flags2);
462 #ifdef CONFIG_IPV6_NDISC_NODETYPE
463 __u8 ndisc_nodetype:2;
464 #endif
465 __u8 ooo_okay:1;
466 __u8 l4_rxhash:1;
467 __u8 wifi_acked_valid:1;
468 __u8 wifi_acked:1;
469 __u8 no_fcs:1;
470 /* 9/11 bit hole (depending on ndisc_nodetype presence) */
471 kmemcheck_bitfield_end(flags2);
472
473 #ifdef CONFIG_NET_DMA
474 dma_cookie_t dma_cookie;
475 #endif
476 #ifdef CONFIG_NETWORK_SECMARK
477 __u32 secmark;
478 #endif
479 union {
480 __u32 mark;
481 __u32 dropcount;
482 __u32 reserved_tailroom;
483 };
484
485 sk_buff_data_t transport_header;
486 sk_buff_data_t network_header;
487 sk_buff_data_t mac_header;
488 /* These elements must be at the end, see alloc_skb() for details. */
489 sk_buff_data_t tail;
490 sk_buff_data_t end;
491 unsigned char *head,
492 *data;
493 unsigned int truesize;
494 atomic_t users;
495 };
496
497 #ifdef __KERNEL__
498 /*
499 * Handling routines are only of interest to the kernel
500 */
501 #include <linux/slab.h>
502
503
504 /*
505 * skb might have a dst pointer attached, refcounted or not.
506 * _skb_refdst low order bit is set if refcount was _not_ taken
507 */
508 #define SKB_DST_NOREF 1UL
509 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
510
511 /**
512 * skb_dst - returns skb dst_entry
513 * @skb: buffer
514 *
515 * Returns skb dst_entry, regardless of reference taken or not.
516 */
skb_dst(const struct sk_buff * skb)517 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
518 {
519 /* If refdst was not refcounted, check we still are in a
520 * rcu_read_lock section
521 */
522 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
523 !rcu_read_lock_held() &&
524 !rcu_read_lock_bh_held());
525 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
526 }
527
528 /**
529 * skb_dst_set - sets skb dst
530 * @skb: buffer
531 * @dst: dst entry
532 *
533 * Sets skb dst, assuming a reference was taken on dst and should
534 * be released by skb_dst_drop()
535 */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)536 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
537 {
538 skb->_skb_refdst = (unsigned long)dst;
539 }
540
541 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
542
543 /**
544 * skb_dst_is_noref - Test if skb dst isn't refcounted
545 * @skb: buffer
546 */
skb_dst_is_noref(const struct sk_buff * skb)547 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
548 {
549 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
550 }
551
skb_rtable(const struct sk_buff * skb)552 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
553 {
554 return (struct rtable *)skb_dst(skb);
555 }
556
557 extern void kfree_skb(struct sk_buff *skb);
558 extern void consume_skb(struct sk_buff *skb);
559 extern void __kfree_skb(struct sk_buff *skb);
560 extern struct sk_buff *__alloc_skb(unsigned int size,
561 gfp_t priority, int fclone, int node);
562 extern struct sk_buff *build_skb(void *data);
alloc_skb(unsigned int size,gfp_t priority)563 static inline struct sk_buff *alloc_skb(unsigned int size,
564 gfp_t priority)
565 {
566 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
567 }
568
alloc_skb_fclone(unsigned int size,gfp_t priority)569 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
570 gfp_t priority)
571 {
572 return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
573 }
574
575 extern void skb_recycle(struct sk_buff *skb);
576 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
577
578 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
579 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
580 extern struct sk_buff *skb_clone(struct sk_buff *skb,
581 gfp_t priority);
582 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
583 gfp_t priority);
584 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
585 int headroom, gfp_t gfp_mask);
586
587 extern int pskb_expand_head(struct sk_buff *skb,
588 int nhead, int ntail,
589 gfp_t gfp_mask);
590 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
591 unsigned int headroom);
592 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
593 int newheadroom, int newtailroom,
594 gfp_t priority);
595 extern int skb_to_sgvec(struct sk_buff *skb,
596 struct scatterlist *sg, int offset,
597 int len);
598 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
599 struct sk_buff **trailer);
600 extern int skb_pad(struct sk_buff *skb, int pad);
601 #define dev_kfree_skb(a) consume_skb(a)
602
603 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
604 int getfrag(void *from, char *to, int offset,
605 int len,int odd, struct sk_buff *skb),
606 void *from, int length);
607
608 struct skb_seq_state {
609 __u32 lower_offset;
610 __u32 upper_offset;
611 __u32 frag_idx;
612 __u32 stepped_offset;
613 struct sk_buff *root_skb;
614 struct sk_buff *cur_skb;
615 __u8 *frag_data;
616 };
617
618 extern void skb_prepare_seq_read(struct sk_buff *skb,
619 unsigned int from, unsigned int to,
620 struct skb_seq_state *st);
621 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
622 struct skb_seq_state *st);
623 extern void skb_abort_seq_read(struct skb_seq_state *st);
624
625 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
626 unsigned int to, struct ts_config *config,
627 struct ts_state *state);
628
629 extern void __skb_get_rxhash(struct sk_buff *skb);
skb_get_rxhash(struct sk_buff * skb)630 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
631 {
632 if (!skb->rxhash)
633 __skb_get_rxhash(skb);
634
635 return skb->rxhash;
636 }
637
638 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)639 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
640 {
641 return skb->head + skb->end;
642 }
643
skb_end_offset(const struct sk_buff * skb)644 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
645 {
646 return skb->end;
647 }
648 #else
skb_end_pointer(const struct sk_buff * skb)649 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
650 {
651 return skb->end;
652 }
653
skb_end_offset(const struct sk_buff * skb)654 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
655 {
656 return skb->end - skb->head;
657 }
658 #endif
659
660 /* Internal */
661 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
662
skb_hwtstamps(struct sk_buff * skb)663 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
664 {
665 return &skb_shinfo(skb)->hwtstamps;
666 }
667
668 /**
669 * skb_queue_empty - check if a queue is empty
670 * @list: queue head
671 *
672 * Returns true if the queue is empty, false otherwise.
673 */
skb_queue_empty(const struct sk_buff_head * list)674 static inline int skb_queue_empty(const struct sk_buff_head *list)
675 {
676 return list->next == (struct sk_buff *)list;
677 }
678
679 /**
680 * skb_queue_is_last - check if skb is the last entry in the queue
681 * @list: queue head
682 * @skb: buffer
683 *
684 * Returns true if @skb is the last buffer on the list.
685 */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)686 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
687 const struct sk_buff *skb)
688 {
689 return skb->next == (struct sk_buff *)list;
690 }
691
692 /**
693 * skb_queue_is_first - check if skb is the first entry in the queue
694 * @list: queue head
695 * @skb: buffer
696 *
697 * Returns true if @skb is the first buffer on the list.
698 */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)699 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
700 const struct sk_buff *skb)
701 {
702 return skb->prev == (struct sk_buff *)list;
703 }
704
705 /**
706 * skb_queue_next - return the next packet in the queue
707 * @list: queue head
708 * @skb: current buffer
709 *
710 * Return the next packet in @list after @skb. It is only valid to
711 * call this if skb_queue_is_last() evaluates to false.
712 */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)713 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
714 const struct sk_buff *skb)
715 {
716 /* This BUG_ON may seem severe, but if we just return then we
717 * are going to dereference garbage.
718 */
719 BUG_ON(skb_queue_is_last(list, skb));
720 return skb->next;
721 }
722
723 /**
724 * skb_queue_prev - return the prev packet in the queue
725 * @list: queue head
726 * @skb: current buffer
727 *
728 * Return the prev packet in @list before @skb. It is only valid to
729 * call this if skb_queue_is_first() evaluates to false.
730 */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)731 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
732 const struct sk_buff *skb)
733 {
734 /* This BUG_ON may seem severe, but if we just return then we
735 * are going to dereference garbage.
736 */
737 BUG_ON(skb_queue_is_first(list, skb));
738 return skb->prev;
739 }
740
741 /**
742 * skb_get - reference buffer
743 * @skb: buffer to reference
744 *
745 * Makes another reference to a socket buffer and returns a pointer
746 * to the buffer.
747 */
skb_get(struct sk_buff * skb)748 static inline struct sk_buff *skb_get(struct sk_buff *skb)
749 {
750 atomic_inc(&skb->users);
751 return skb;
752 }
753
754 /*
755 * If users == 1, we are the only owner and are can avoid redundant
756 * atomic change.
757 */
758
759 /**
760 * skb_cloned - is the buffer a clone
761 * @skb: buffer to check
762 *
763 * Returns true if the buffer was generated with skb_clone() and is
764 * one of multiple shared copies of the buffer. Cloned buffers are
765 * shared data so must not be written to under normal circumstances.
766 */
skb_cloned(const struct sk_buff * skb)767 static inline int skb_cloned(const struct sk_buff *skb)
768 {
769 return skb->cloned &&
770 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
771 }
772
skb_unclone(struct sk_buff * skb,gfp_t pri)773 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
774 {
775 might_sleep_if(pri & __GFP_WAIT);
776
777 if (skb_cloned(skb))
778 return pskb_expand_head(skb, 0, 0, pri);
779
780 return 0;
781 }
782
783 /**
784 * skb_header_cloned - is the header a clone
785 * @skb: buffer to check
786 *
787 * Returns true if modifying the header part of the buffer requires
788 * the data to be copied.
789 */
skb_header_cloned(const struct sk_buff * skb)790 static inline int skb_header_cloned(const struct sk_buff *skb)
791 {
792 int dataref;
793
794 if (!skb->cloned)
795 return 0;
796
797 dataref = atomic_read(&skb_shinfo(skb)->dataref);
798 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
799 return dataref != 1;
800 }
801
802 /**
803 * skb_header_release - release reference to header
804 * @skb: buffer to operate on
805 *
806 * Drop a reference to the header part of the buffer. This is done
807 * by acquiring a payload reference. You must not read from the header
808 * part of skb->data after this.
809 */
skb_header_release(struct sk_buff * skb)810 static inline void skb_header_release(struct sk_buff *skb)
811 {
812 BUG_ON(skb->nohdr);
813 skb->nohdr = 1;
814 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
815 }
816
817 /**
818 * skb_shared - is the buffer shared
819 * @skb: buffer to check
820 *
821 * Returns true if more than one person has a reference to this
822 * buffer.
823 */
skb_shared(const struct sk_buff * skb)824 static inline int skb_shared(const struct sk_buff *skb)
825 {
826 return atomic_read(&skb->users) != 1;
827 }
828
829 /**
830 * skb_share_check - check if buffer is shared and if so clone it
831 * @skb: buffer to check
832 * @pri: priority for memory allocation
833 *
834 * If the buffer is shared the buffer is cloned and the old copy
835 * drops a reference. A new clone with a single reference is returned.
836 * If the buffer is not shared the original buffer is returned. When
837 * being called from interrupt status or with spinlocks held pri must
838 * be GFP_ATOMIC.
839 *
840 * NULL is returned on a memory allocation failure.
841 */
skb_share_check(struct sk_buff * skb,gfp_t pri)842 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
843 gfp_t pri)
844 {
845 might_sleep_if(pri & __GFP_WAIT);
846 if (skb_shared(skb)) {
847 struct sk_buff *nskb = skb_clone(skb, pri);
848 kfree_skb(skb);
849 skb = nskb;
850 }
851 return skb;
852 }
853
854 /*
855 * Copy shared buffers into a new sk_buff. We effectively do COW on
856 * packets to handle cases where we have a local reader and forward
857 * and a couple of other messy ones. The normal one is tcpdumping
858 * a packet thats being forwarded.
859 */
860
861 /**
862 * skb_unshare - make a copy of a shared buffer
863 * @skb: buffer to check
864 * @pri: priority for memory allocation
865 *
866 * If the socket buffer is a clone then this function creates a new
867 * copy of the data, drops a reference count on the old copy and returns
868 * the new copy with the reference count at 1. If the buffer is not a clone
869 * the original buffer is returned. When called with a spinlock held or
870 * from interrupt state @pri must be %GFP_ATOMIC
871 *
872 * %NULL is returned on a memory allocation failure.
873 */
skb_unshare(struct sk_buff * skb,gfp_t pri)874 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
875 gfp_t pri)
876 {
877 might_sleep_if(pri & __GFP_WAIT);
878 if (skb_cloned(skb)) {
879 struct sk_buff *nskb = skb_copy(skb, pri);
880 kfree_skb(skb); /* Free our shared copy */
881 skb = nskb;
882 }
883 return skb;
884 }
885
886 /**
887 * skb_peek - peek at the head of an &sk_buff_head
888 * @list_: list to peek at
889 *
890 * Peek an &sk_buff. Unlike most other operations you _MUST_
891 * be careful with this one. A peek leaves the buffer on the
892 * list and someone else may run off with it. You must hold
893 * the appropriate locks or have a private queue to do this.
894 *
895 * Returns %NULL for an empty list or a pointer to the head element.
896 * The reference count is not incremented and the reference is therefore
897 * volatile. Use with caution.
898 */
skb_peek(const struct sk_buff_head * list_)899 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
900 {
901 struct sk_buff *list = ((const struct sk_buff *)list_)->next;
902 if (list == (struct sk_buff *)list_)
903 list = NULL;
904 return list;
905 }
906
907 /**
908 * skb_peek_next - peek skb following the given one from a queue
909 * @skb: skb to start from
910 * @list_: list to peek at
911 *
912 * Returns %NULL when the end of the list is met or a pointer to the
913 * next element. The reference count is not incremented and the
914 * reference is therefore volatile. Use with caution.
915 */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)916 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
917 const struct sk_buff_head *list_)
918 {
919 struct sk_buff *next = skb->next;
920 if (next == (struct sk_buff *)list_)
921 next = NULL;
922 return next;
923 }
924
925 /**
926 * skb_peek_tail - peek at the tail of an &sk_buff_head
927 * @list_: list to peek at
928 *
929 * Peek an &sk_buff. Unlike most other operations you _MUST_
930 * be careful with this one. A peek leaves the buffer on the
931 * list and someone else may run off with it. You must hold
932 * the appropriate locks or have a private queue to do this.
933 *
934 * Returns %NULL for an empty list or a pointer to the tail element.
935 * The reference count is not incremented and the reference is therefore
936 * volatile. Use with caution.
937 */
skb_peek_tail(const struct sk_buff_head * list_)938 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
939 {
940 struct sk_buff *list = ((const struct sk_buff *)list_)->prev;
941 if (list == (struct sk_buff *)list_)
942 list = NULL;
943 return list;
944 }
945
946 /**
947 * skb_queue_len - get queue length
948 * @list_: list to measure
949 *
950 * Return the length of an &sk_buff queue.
951 */
skb_queue_len(const struct sk_buff_head * list_)952 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
953 {
954 return list_->qlen;
955 }
956
957 /**
958 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
959 * @list: queue to initialize
960 *
961 * This initializes only the list and queue length aspects of
962 * an sk_buff_head object. This allows to initialize the list
963 * aspects of an sk_buff_head without reinitializing things like
964 * the spinlock. It can also be used for on-stack sk_buff_head
965 * objects where the spinlock is known to not be used.
966 */
__skb_queue_head_init(struct sk_buff_head * list)967 static inline void __skb_queue_head_init(struct sk_buff_head *list)
968 {
969 list->prev = list->next = (struct sk_buff *)list;
970 list->qlen = 0;
971 }
972
973 /*
974 * This function creates a split out lock class for each invocation;
975 * this is needed for now since a whole lot of users of the skb-queue
976 * infrastructure in drivers have different locking usage (in hardirq)
977 * than the networking core (in softirq only). In the long run either the
978 * network layer or drivers should need annotation to consolidate the
979 * main types of usage into 3 classes.
980 */
skb_queue_head_init(struct sk_buff_head * list)981 static inline void skb_queue_head_init(struct sk_buff_head *list)
982 {
983 spin_lock_init(&list->lock);
984 __skb_queue_head_init(list);
985 }
986
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)987 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
988 struct lock_class_key *class)
989 {
990 skb_queue_head_init(list);
991 lockdep_set_class(&list->lock, class);
992 }
993
994 /*
995 * Insert an sk_buff on a list.
996 *
997 * The "__skb_xxxx()" functions are the non-atomic ones that
998 * can only be called with interrupts disabled.
999 */
1000 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)1001 static inline void __skb_insert(struct sk_buff *newsk,
1002 struct sk_buff *prev, struct sk_buff *next,
1003 struct sk_buff_head *list)
1004 {
1005 newsk->next = next;
1006 newsk->prev = prev;
1007 next->prev = prev->next = newsk;
1008 list->qlen++;
1009 }
1010
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)1011 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1012 struct sk_buff *prev,
1013 struct sk_buff *next)
1014 {
1015 struct sk_buff *first = list->next;
1016 struct sk_buff *last = list->prev;
1017
1018 first->prev = prev;
1019 prev->next = first;
1020
1021 last->next = next;
1022 next->prev = last;
1023 }
1024
1025 /**
1026 * skb_queue_splice - join two skb lists, this is designed for stacks
1027 * @list: the new list to add
1028 * @head: the place to add it in the first list
1029 */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)1030 static inline void skb_queue_splice(const struct sk_buff_head *list,
1031 struct sk_buff_head *head)
1032 {
1033 if (!skb_queue_empty(list)) {
1034 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1035 head->qlen += list->qlen;
1036 }
1037 }
1038
1039 /**
1040 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1041 * @list: the new list to add
1042 * @head: the place to add it in the first list
1043 *
1044 * The list at @list is reinitialised
1045 */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)1046 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1047 struct sk_buff_head *head)
1048 {
1049 if (!skb_queue_empty(list)) {
1050 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1051 head->qlen += list->qlen;
1052 __skb_queue_head_init(list);
1053 }
1054 }
1055
1056 /**
1057 * skb_queue_splice_tail - join two skb lists, each list being a queue
1058 * @list: the new list to add
1059 * @head: the place to add it in the first list
1060 */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)1061 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1062 struct sk_buff_head *head)
1063 {
1064 if (!skb_queue_empty(list)) {
1065 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1066 head->qlen += list->qlen;
1067 }
1068 }
1069
1070 /**
1071 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1072 * @list: the new list to add
1073 * @head: the place to add it in the first list
1074 *
1075 * Each of the lists is a queue.
1076 * The list at @list is reinitialised
1077 */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)1078 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1079 struct sk_buff_head *head)
1080 {
1081 if (!skb_queue_empty(list)) {
1082 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1083 head->qlen += list->qlen;
1084 __skb_queue_head_init(list);
1085 }
1086 }
1087
1088 /**
1089 * __skb_queue_after - queue a buffer at the list head
1090 * @list: list to use
1091 * @prev: place after this buffer
1092 * @newsk: buffer to queue
1093 *
1094 * Queue a buffer int the middle of a list. This function takes no locks
1095 * and you must therefore hold required locks before calling it.
1096 *
1097 * A buffer cannot be placed on two lists at the same time.
1098 */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)1099 static inline void __skb_queue_after(struct sk_buff_head *list,
1100 struct sk_buff *prev,
1101 struct sk_buff *newsk)
1102 {
1103 __skb_insert(newsk, prev, prev->next, list);
1104 }
1105
1106 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1107 struct sk_buff_head *list);
1108
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)1109 static inline void __skb_queue_before(struct sk_buff_head *list,
1110 struct sk_buff *next,
1111 struct sk_buff *newsk)
1112 {
1113 __skb_insert(newsk, next->prev, next, list);
1114 }
1115
1116 /**
1117 * __skb_queue_head - queue a buffer at the list head
1118 * @list: list to use
1119 * @newsk: buffer to queue
1120 *
1121 * Queue a buffer at the start of a list. This function takes no locks
1122 * and you must therefore hold required locks before calling it.
1123 *
1124 * A buffer cannot be placed on two lists at the same time.
1125 */
1126 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)1127 static inline void __skb_queue_head(struct sk_buff_head *list,
1128 struct sk_buff *newsk)
1129 {
1130 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1131 }
1132
1133 /**
1134 * __skb_queue_tail - queue a buffer at the list tail
1135 * @list: list to use
1136 * @newsk: buffer to queue
1137 *
1138 * Queue a buffer at the end of a list. This function takes no locks
1139 * and you must therefore hold required locks before calling it.
1140 *
1141 * A buffer cannot be placed on two lists at the same time.
1142 */
1143 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)1144 static inline void __skb_queue_tail(struct sk_buff_head *list,
1145 struct sk_buff *newsk)
1146 {
1147 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1148 }
1149
1150 /*
1151 * remove sk_buff from list. _Must_ be called atomically, and with
1152 * the list known..
1153 */
1154 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)1155 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1156 {
1157 struct sk_buff *next, *prev;
1158
1159 list->qlen--;
1160 next = skb->next;
1161 prev = skb->prev;
1162 skb->next = skb->prev = NULL;
1163 next->prev = prev;
1164 prev->next = next;
1165 }
1166
1167 /**
1168 * __skb_dequeue - remove from the head of the queue
1169 * @list: list to dequeue from
1170 *
1171 * Remove the head of the list. This function does not take any locks
1172 * so must be used with appropriate locks held only. The head item is
1173 * returned or %NULL if the list is empty.
1174 */
1175 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
__skb_dequeue(struct sk_buff_head * list)1176 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1177 {
1178 struct sk_buff *skb = skb_peek(list);
1179 if (skb)
1180 __skb_unlink(skb, list);
1181 return skb;
1182 }
1183
1184 /**
1185 * __skb_dequeue_tail - remove from the tail of the queue
1186 * @list: list to dequeue from
1187 *
1188 * Remove the tail of the list. This function does not take any locks
1189 * so must be used with appropriate locks held only. The tail item is
1190 * returned or %NULL if the list is empty.
1191 */
1192 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
__skb_dequeue_tail(struct sk_buff_head * list)1193 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1194 {
1195 struct sk_buff *skb = skb_peek_tail(list);
1196 if (skb)
1197 __skb_unlink(skb, list);
1198 return skb;
1199 }
1200
1201
skb_is_nonlinear(const struct sk_buff * skb)1202 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1203 {
1204 return skb->data_len;
1205 }
1206
skb_headlen(const struct sk_buff * skb)1207 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1208 {
1209 return skb->len - skb->data_len;
1210 }
1211
skb_pagelen(const struct sk_buff * skb)1212 static inline int skb_pagelen(const struct sk_buff *skb)
1213 {
1214 int i, len = 0;
1215
1216 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1217 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1218 return len + skb_headlen(skb);
1219 }
1220
skb_has_frags(const struct sk_buff * skb)1221 static inline bool skb_has_frags(const struct sk_buff *skb)
1222 {
1223 return skb_shinfo(skb)->nr_frags;
1224 }
1225
1226 /**
1227 * __skb_fill_page_desc - initialise a paged fragment in an skb
1228 * @skb: buffer containing fragment to be initialised
1229 * @i: paged fragment index to initialise
1230 * @page: the page to use for this fragment
1231 * @off: the offset to the data with @page
1232 * @size: the length of the data
1233 *
1234 * Initialises the @i'th fragment of @skb to point to &size bytes at
1235 * offset @off within @page.
1236 *
1237 * Does not take any additional reference on the fragment.
1238 */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1239 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1240 struct page *page, int off, int size)
1241 {
1242 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1243
1244 frag->page.p = page;
1245 frag->page_offset = off;
1246 skb_frag_size_set(frag, size);
1247 }
1248
1249 /**
1250 * skb_fill_page_desc - initialise a paged fragment in an skb
1251 * @skb: buffer containing fragment to be initialised
1252 * @i: paged fragment index to initialise
1253 * @page: the page to use for this fragment
1254 * @off: the offset to the data with @page
1255 * @size: the length of the data
1256 *
1257 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1258 * @skb to point to &size bytes at offset @off within @page. In
1259 * addition updates @skb such that @i is the last fragment.
1260 *
1261 * Does not take any additional reference on the fragment.
1262 */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1263 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1264 struct page *page, int off, int size)
1265 {
1266 __skb_fill_page_desc(skb, i, page, off, size);
1267 skb_shinfo(skb)->nr_frags = i + 1;
1268 }
1269
1270 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1271 int off, int size, unsigned int truesize);
1272
1273 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1274 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1275 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1276
1277 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)1278 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1279 {
1280 return skb->head + skb->tail;
1281 }
1282
skb_reset_tail_pointer(struct sk_buff * skb)1283 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1284 {
1285 skb->tail = skb->data - skb->head;
1286 }
1287
skb_set_tail_pointer(struct sk_buff * skb,const int offset)1288 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1289 {
1290 skb_reset_tail_pointer(skb);
1291 skb->tail += offset;
1292 }
1293 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)1294 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1295 {
1296 return skb->tail;
1297 }
1298
skb_reset_tail_pointer(struct sk_buff * skb)1299 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1300 {
1301 skb->tail = skb->data;
1302 }
1303
skb_set_tail_pointer(struct sk_buff * skb,const int offset)1304 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1305 {
1306 skb->tail = skb->data + offset;
1307 }
1308
1309 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1310
1311 /*
1312 * Add data to an sk_buff
1313 */
1314 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)1315 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1316 {
1317 unsigned char *tmp = skb_tail_pointer(skb);
1318 SKB_LINEAR_ASSERT(skb);
1319 skb->tail += len;
1320 skb->len += len;
1321 return tmp;
1322 }
1323
1324 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)1325 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1326 {
1327 skb->data -= len;
1328 skb->len += len;
1329 return skb->data;
1330 }
1331
1332 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)1333 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1334 {
1335 skb->len -= len;
1336 BUG_ON(skb->len < skb->data_len);
1337 return skb->data += len;
1338 }
1339
skb_pull_inline(struct sk_buff * skb,unsigned int len)1340 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1341 {
1342 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1343 }
1344
1345 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1346
__pskb_pull(struct sk_buff * skb,unsigned int len)1347 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1348 {
1349 if (len > skb_headlen(skb) &&
1350 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1351 return NULL;
1352 skb->len -= len;
1353 return skb->data += len;
1354 }
1355
pskb_pull(struct sk_buff * skb,unsigned int len)1356 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1357 {
1358 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1359 }
1360
pskb_may_pull(struct sk_buff * skb,unsigned int len)1361 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1362 {
1363 if (likely(len <= skb_headlen(skb)))
1364 return 1;
1365 if (unlikely(len > skb->len))
1366 return 0;
1367 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1368 }
1369
1370 /**
1371 * skb_headroom - bytes at buffer head
1372 * @skb: buffer to check
1373 *
1374 * Return the number of bytes of free space at the head of an &sk_buff.
1375 */
skb_headroom(const struct sk_buff * skb)1376 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1377 {
1378 return skb->data - skb->head;
1379 }
1380
1381 /**
1382 * skb_tailroom - bytes at buffer end
1383 * @skb: buffer to check
1384 *
1385 * Return the number of bytes of free space at the tail of an sk_buff
1386 */
skb_tailroom(const struct sk_buff * skb)1387 static inline int skb_tailroom(const struct sk_buff *skb)
1388 {
1389 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1390 }
1391
1392 /**
1393 * skb_availroom - bytes at buffer end
1394 * @skb: buffer to check
1395 *
1396 * Return the number of bytes of free space at the tail of an sk_buff
1397 * allocated by sk_stream_alloc()
1398 */
skb_availroom(const struct sk_buff * skb)1399 static inline int skb_availroom(const struct sk_buff *skb)
1400 {
1401 if (skb_is_nonlinear(skb))
1402 return 0;
1403
1404 return skb->end - skb->tail - skb->reserved_tailroom;
1405 }
1406
1407 /**
1408 * skb_reserve - adjust headroom
1409 * @skb: buffer to alter
1410 * @len: bytes to move
1411 *
1412 * Increase the headroom of an empty &sk_buff by reducing the tail
1413 * room. This is only allowed for an empty buffer.
1414 */
skb_reserve(struct sk_buff * skb,int len)1415 static inline void skb_reserve(struct sk_buff *skb, int len)
1416 {
1417 skb->data += len;
1418 skb->tail += len;
1419 }
1420
skb_reset_mac_len(struct sk_buff * skb)1421 static inline void skb_reset_mac_len(struct sk_buff *skb)
1422 {
1423 skb->mac_len = skb->network_header - skb->mac_header;
1424 }
1425
1426 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_transport_header(const struct sk_buff * skb)1427 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1428 {
1429 return skb->head + skb->transport_header;
1430 }
1431
skb_reset_transport_header(struct sk_buff * skb)1432 static inline void skb_reset_transport_header(struct sk_buff *skb)
1433 {
1434 skb->transport_header = skb->data - skb->head;
1435 }
1436
skb_set_transport_header(struct sk_buff * skb,const int offset)1437 static inline void skb_set_transport_header(struct sk_buff *skb,
1438 const int offset)
1439 {
1440 skb_reset_transport_header(skb);
1441 skb->transport_header += offset;
1442 }
1443
skb_network_header(const struct sk_buff * skb)1444 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1445 {
1446 return skb->head + skb->network_header;
1447 }
1448
skb_reset_network_header(struct sk_buff * skb)1449 static inline void skb_reset_network_header(struct sk_buff *skb)
1450 {
1451 skb->network_header = skb->data - skb->head;
1452 }
1453
skb_set_network_header(struct sk_buff * skb,const int offset)1454 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1455 {
1456 skb_reset_network_header(skb);
1457 skb->network_header += offset;
1458 }
1459
skb_mac_header(const struct sk_buff * skb)1460 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1461 {
1462 return skb->head + skb->mac_header;
1463 }
1464
skb_mac_header_was_set(const struct sk_buff * skb)1465 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1466 {
1467 return skb->mac_header != ~0U;
1468 }
1469
skb_reset_mac_header(struct sk_buff * skb)1470 static inline void skb_reset_mac_header(struct sk_buff *skb)
1471 {
1472 skb->mac_header = skb->data - skb->head;
1473 }
1474
skb_set_mac_header(struct sk_buff * skb,const int offset)1475 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1476 {
1477 skb_reset_mac_header(skb);
1478 skb->mac_header += offset;
1479 }
1480
1481 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1482
skb_transport_header(const struct sk_buff * skb)1483 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1484 {
1485 return skb->transport_header;
1486 }
1487
skb_reset_transport_header(struct sk_buff * skb)1488 static inline void skb_reset_transport_header(struct sk_buff *skb)
1489 {
1490 skb->transport_header = skb->data;
1491 }
1492
skb_set_transport_header(struct sk_buff * skb,const int offset)1493 static inline void skb_set_transport_header(struct sk_buff *skb,
1494 const int offset)
1495 {
1496 skb->transport_header = skb->data + offset;
1497 }
1498
skb_network_header(const struct sk_buff * skb)1499 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1500 {
1501 return skb->network_header;
1502 }
1503
skb_reset_network_header(struct sk_buff * skb)1504 static inline void skb_reset_network_header(struct sk_buff *skb)
1505 {
1506 skb->network_header = skb->data;
1507 }
1508
skb_set_network_header(struct sk_buff * skb,const int offset)1509 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1510 {
1511 skb->network_header = skb->data + offset;
1512 }
1513
skb_mac_header(const struct sk_buff * skb)1514 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1515 {
1516 return skb->mac_header;
1517 }
1518
skb_mac_header_was_set(const struct sk_buff * skb)1519 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1520 {
1521 return skb->mac_header != NULL;
1522 }
1523
skb_reset_mac_header(struct sk_buff * skb)1524 static inline void skb_reset_mac_header(struct sk_buff *skb)
1525 {
1526 skb->mac_header = skb->data;
1527 }
1528
skb_set_mac_header(struct sk_buff * skb,const int offset)1529 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1530 {
1531 skb->mac_header = skb->data + offset;
1532 }
1533 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1534
skb_mac_header_rebuild(struct sk_buff * skb)1535 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1536 {
1537 if (skb_mac_header_was_set(skb)) {
1538 const unsigned char *old_mac = skb_mac_header(skb);
1539
1540 skb_set_mac_header(skb, -skb->mac_len);
1541 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1542 }
1543 }
1544
skb_checksum_start_offset(const struct sk_buff * skb)1545 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1546 {
1547 return skb->csum_start - skb_headroom(skb);
1548 }
1549
skb_transport_offset(const struct sk_buff * skb)1550 static inline int skb_transport_offset(const struct sk_buff *skb)
1551 {
1552 return skb_transport_header(skb) - skb->data;
1553 }
1554
skb_network_header_len(const struct sk_buff * skb)1555 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1556 {
1557 return skb->transport_header - skb->network_header;
1558 }
1559
skb_network_offset(const struct sk_buff * skb)1560 static inline int skb_network_offset(const struct sk_buff *skb)
1561 {
1562 return skb_network_header(skb) - skb->data;
1563 }
1564
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)1565 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1566 {
1567 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1568 }
1569
1570 /*
1571 * CPUs often take a performance hit when accessing unaligned memory
1572 * locations. The actual performance hit varies, it can be small if the
1573 * hardware handles it or large if we have to take an exception and fix it
1574 * in software.
1575 *
1576 * Since an ethernet header is 14 bytes network drivers often end up with
1577 * the IP header at an unaligned offset. The IP header can be aligned by
1578 * shifting the start of the packet by 2 bytes. Drivers should do this
1579 * with:
1580 *
1581 * skb_reserve(skb, NET_IP_ALIGN);
1582 *
1583 * The downside to this alignment of the IP header is that the DMA is now
1584 * unaligned. On some architectures the cost of an unaligned DMA is high
1585 * and this cost outweighs the gains made by aligning the IP header.
1586 *
1587 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1588 * to be overridden.
1589 */
1590 #ifndef NET_IP_ALIGN
1591 #define NET_IP_ALIGN 2
1592 #endif
1593
1594 /*
1595 * The networking layer reserves some headroom in skb data (via
1596 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1597 * the header has to grow. In the default case, if the header has to grow
1598 * 32 bytes or less we avoid the reallocation.
1599 *
1600 * Unfortunately this headroom changes the DMA alignment of the resulting
1601 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1602 * on some architectures. An architecture can override this value,
1603 * perhaps setting it to a cacheline in size (since that will maintain
1604 * cacheline alignment of the DMA). It must be a power of 2.
1605 *
1606 * Various parts of the networking layer expect at least 32 bytes of
1607 * headroom, you should not reduce this.
1608 *
1609 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1610 * to reduce average number of cache lines per packet.
1611 * get_rps_cpus() for example only access one 64 bytes aligned block :
1612 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1613 */
1614 #ifndef NET_SKB_PAD
1615 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1616 #endif
1617
1618 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1619
__skb_trim(struct sk_buff * skb,unsigned int len)1620 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1621 {
1622 if (unlikely(skb_is_nonlinear(skb))) {
1623 WARN_ON(1);
1624 return;
1625 }
1626 skb->len = len;
1627 skb_set_tail_pointer(skb, len);
1628 }
1629
1630 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1631
__pskb_trim(struct sk_buff * skb,unsigned int len)1632 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1633 {
1634 if (skb->data_len)
1635 return ___pskb_trim(skb, len);
1636 __skb_trim(skb, len);
1637 return 0;
1638 }
1639
pskb_trim(struct sk_buff * skb,unsigned int len)1640 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1641 {
1642 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1643 }
1644
1645 /**
1646 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1647 * @skb: buffer to alter
1648 * @len: new length
1649 *
1650 * This is identical to pskb_trim except that the caller knows that
1651 * the skb is not cloned so we should never get an error due to out-
1652 * of-memory.
1653 */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)1654 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1655 {
1656 int err = pskb_trim(skb, len);
1657 BUG_ON(err);
1658 }
1659
1660 /**
1661 * skb_orphan - orphan a buffer
1662 * @skb: buffer to orphan
1663 *
1664 * If a buffer currently has an owner then we call the owner's
1665 * destructor function and make the @skb unowned. The buffer continues
1666 * to exist but is no longer charged to its former owner.
1667 */
skb_orphan(struct sk_buff * skb)1668 static inline void skb_orphan(struct sk_buff *skb)
1669 {
1670 if (skb->destructor)
1671 skb->destructor(skb);
1672 skb->destructor = NULL;
1673 skb->sk = NULL;
1674 }
1675
1676 /**
1677 * skb_orphan_frags - orphan the frags contained in a buffer
1678 * @skb: buffer to orphan frags from
1679 * @gfp_mask: allocation mask for replacement pages
1680 *
1681 * For each frag in the SKB which needs a destructor (i.e. has an
1682 * owner) create a copy of that frag and release the original
1683 * page by calling the destructor.
1684 */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)1685 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
1686 {
1687 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
1688 return 0;
1689 return skb_copy_ubufs(skb, gfp_mask);
1690 }
1691
1692 /**
1693 * __skb_queue_purge - empty a list
1694 * @list: list to empty
1695 *
1696 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1697 * the list and one reference dropped. This function does not take the
1698 * list lock and the caller must hold the relevant locks to use it.
1699 */
1700 extern void skb_queue_purge(struct sk_buff_head *list);
__skb_queue_purge(struct sk_buff_head * list)1701 static inline void __skb_queue_purge(struct sk_buff_head *list)
1702 {
1703 struct sk_buff *skb;
1704 while ((skb = __skb_dequeue(list)) != NULL)
1705 kfree_skb(skb);
1706 }
1707
1708 /**
1709 * __dev_alloc_skb - allocate an skbuff for receiving
1710 * @length: length to allocate
1711 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1712 *
1713 * Allocate a new &sk_buff and assign it a usage count of one. The
1714 * buffer has unspecified headroom built in. Users should allocate
1715 * the headroom they think they need without accounting for the
1716 * built in space. The built in space is used for optimisations.
1717 *
1718 * %NULL is returned if there is no free memory.
1719 */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)1720 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1721 gfp_t gfp_mask)
1722 {
1723 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1724 if (likely(skb))
1725 skb_reserve(skb, NET_SKB_PAD);
1726 return skb;
1727 }
1728
1729 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1730
1731 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1732 unsigned int length, gfp_t gfp_mask);
1733
1734 /**
1735 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1736 * @dev: network device to receive on
1737 * @length: length to allocate
1738 *
1739 * Allocate a new &sk_buff and assign it a usage count of one. The
1740 * buffer has unspecified headroom built in. Users should allocate
1741 * the headroom they think they need without accounting for the
1742 * built in space. The built in space is used for optimisations.
1743 *
1744 * %NULL is returned if there is no free memory. Although this function
1745 * allocates memory it can be called from an interrupt.
1746 */
netdev_alloc_skb(struct net_device * dev,unsigned int length)1747 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1748 unsigned int length)
1749 {
1750 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1751 }
1752
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)1753 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1754 unsigned int length, gfp_t gfp)
1755 {
1756 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1757
1758 if (NET_IP_ALIGN && skb)
1759 skb_reserve(skb, NET_IP_ALIGN);
1760 return skb;
1761 }
1762
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)1763 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1764 unsigned int length)
1765 {
1766 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1767 }
1768
1769 /**
1770 * skb_frag_page - retrieve the page refered to by a paged fragment
1771 * @frag: the paged fragment
1772 *
1773 * Returns the &struct page associated with @frag.
1774 */
skb_frag_page(const skb_frag_t * frag)1775 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1776 {
1777 return frag->page.p;
1778 }
1779
1780 /**
1781 * __skb_frag_ref - take an addition reference on a paged fragment.
1782 * @frag: the paged fragment
1783 *
1784 * Takes an additional reference on the paged fragment @frag.
1785 */
__skb_frag_ref(skb_frag_t * frag)1786 static inline void __skb_frag_ref(skb_frag_t *frag)
1787 {
1788 get_page(skb_frag_page(frag));
1789 }
1790
1791 /**
1792 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1793 * @skb: the buffer
1794 * @f: the fragment offset.
1795 *
1796 * Takes an additional reference on the @f'th paged fragment of @skb.
1797 */
skb_frag_ref(struct sk_buff * skb,int f)1798 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1799 {
1800 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1801 }
1802
1803 /**
1804 * __skb_frag_unref - release a reference on a paged fragment.
1805 * @frag: the paged fragment
1806 *
1807 * Releases a reference on the paged fragment @frag.
1808 */
__skb_frag_unref(skb_frag_t * frag)1809 static inline void __skb_frag_unref(skb_frag_t *frag)
1810 {
1811 put_page(skb_frag_page(frag));
1812 }
1813
1814 /**
1815 * skb_frag_unref - release a reference on a paged fragment of an skb.
1816 * @skb: the buffer
1817 * @f: the fragment offset
1818 *
1819 * Releases a reference on the @f'th paged fragment of @skb.
1820 */
skb_frag_unref(struct sk_buff * skb,int f)1821 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1822 {
1823 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1824 }
1825
1826 /**
1827 * skb_frag_address - gets the address of the data contained in a paged fragment
1828 * @frag: the paged fragment buffer
1829 *
1830 * Returns the address of the data within @frag. The page must already
1831 * be mapped.
1832 */
skb_frag_address(const skb_frag_t * frag)1833 static inline void *skb_frag_address(const skb_frag_t *frag)
1834 {
1835 return page_address(skb_frag_page(frag)) + frag->page_offset;
1836 }
1837
1838 /**
1839 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1840 * @frag: the paged fragment buffer
1841 *
1842 * Returns the address of the data within @frag. Checks that the page
1843 * is mapped and returns %NULL otherwise.
1844 */
skb_frag_address_safe(const skb_frag_t * frag)1845 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1846 {
1847 void *ptr = page_address(skb_frag_page(frag));
1848 if (unlikely(!ptr))
1849 return NULL;
1850
1851 return ptr + frag->page_offset;
1852 }
1853
1854 /**
1855 * __skb_frag_set_page - sets the page contained in a paged fragment
1856 * @frag: the paged fragment
1857 * @page: the page to set
1858 *
1859 * Sets the fragment @frag to contain @page.
1860 */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)1861 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1862 {
1863 frag->page.p = page;
1864 }
1865
1866 /**
1867 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1868 * @skb: the buffer
1869 * @f: the fragment offset
1870 * @page: the page to set
1871 *
1872 * Sets the @f'th fragment of @skb to contain @page.
1873 */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)1874 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1875 struct page *page)
1876 {
1877 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1878 }
1879
1880 /**
1881 * skb_frag_dma_map - maps a paged fragment via the DMA API
1882 * @dev: the device to map the fragment to
1883 * @frag: the paged fragment to map
1884 * @offset: the offset within the fragment (starting at the
1885 * fragment's own offset)
1886 * @size: the number of bytes to map
1887 * @dir: the direction of the mapping (%PCI_DMA_*)
1888 *
1889 * Maps the page associated with @frag to @device.
1890 */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)1891 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1892 const skb_frag_t *frag,
1893 size_t offset, size_t size,
1894 enum dma_data_direction dir)
1895 {
1896 return dma_map_page(dev, skb_frag_page(frag),
1897 frag->page_offset + offset, size, dir);
1898 }
1899
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)1900 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
1901 gfp_t gfp_mask)
1902 {
1903 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
1904 }
1905
1906 /**
1907 * skb_clone_writable - is the header of a clone writable
1908 * @skb: buffer to check
1909 * @len: length up to which to write
1910 *
1911 * Returns true if modifying the header part of the cloned buffer
1912 * does not requires the data to be copied.
1913 */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)1914 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
1915 {
1916 return !skb_header_cloned(skb) &&
1917 skb_headroom(skb) + len <= skb->hdr_len;
1918 }
1919
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)1920 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1921 int cloned)
1922 {
1923 int delta = 0;
1924
1925 if (headroom > skb_headroom(skb))
1926 delta = headroom - skb_headroom(skb);
1927
1928 if (delta || cloned)
1929 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1930 GFP_ATOMIC);
1931 return 0;
1932 }
1933
1934 /**
1935 * skb_cow - copy header of skb when it is required
1936 * @skb: buffer to cow
1937 * @headroom: needed headroom
1938 *
1939 * If the skb passed lacks sufficient headroom or its data part
1940 * is shared, data is reallocated. If reallocation fails, an error
1941 * is returned and original skb is not changed.
1942 *
1943 * The result is skb with writable area skb->head...skb->tail
1944 * and at least @headroom of space at head.
1945 */
skb_cow(struct sk_buff * skb,unsigned int headroom)1946 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1947 {
1948 return __skb_cow(skb, headroom, skb_cloned(skb));
1949 }
1950
1951 /**
1952 * skb_cow_head - skb_cow but only making the head writable
1953 * @skb: buffer to cow
1954 * @headroom: needed headroom
1955 *
1956 * This function is identical to skb_cow except that we replace the
1957 * skb_cloned check by skb_header_cloned. It should be used when
1958 * you only need to push on some header and do not need to modify
1959 * the data.
1960 */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)1961 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1962 {
1963 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1964 }
1965
1966 /**
1967 * skb_padto - pad an skbuff up to a minimal size
1968 * @skb: buffer to pad
1969 * @len: minimal length
1970 *
1971 * Pads up a buffer to ensure the trailing bytes exist and are
1972 * blanked. If the buffer already contains sufficient data it
1973 * is untouched. Otherwise it is extended. Returns zero on
1974 * success. The skb is freed on error.
1975 */
1976
skb_padto(struct sk_buff * skb,unsigned int len)1977 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1978 {
1979 unsigned int size = skb->len;
1980 if (likely(size >= len))
1981 return 0;
1982 return skb_pad(skb, len - size);
1983 }
1984
skb_add_data(struct sk_buff * skb,char __user * from,int copy)1985 static inline int skb_add_data(struct sk_buff *skb,
1986 char __user *from, int copy)
1987 {
1988 const int off = skb->len;
1989
1990 if (skb->ip_summed == CHECKSUM_NONE) {
1991 int err = 0;
1992 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1993 copy, 0, &err);
1994 if (!err) {
1995 skb->csum = csum_block_add(skb->csum, csum, off);
1996 return 0;
1997 }
1998 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1999 return 0;
2000
2001 __skb_trim(skb, off);
2002 return -EFAULT;
2003 }
2004
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)2005 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
2006 const struct page *page, int off)
2007 {
2008 if (i) {
2009 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2010
2011 return page == skb_frag_page(frag) &&
2012 off == frag->page_offset + skb_frag_size(frag);
2013 }
2014 return 0;
2015 }
2016
__skb_linearize(struct sk_buff * skb)2017 static inline int __skb_linearize(struct sk_buff *skb)
2018 {
2019 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2020 }
2021
2022 /**
2023 * skb_linearize - convert paged skb to linear one
2024 * @skb: buffer to linarize
2025 *
2026 * If there is no free memory -ENOMEM is returned, otherwise zero
2027 * is returned and the old skb data released.
2028 */
skb_linearize(struct sk_buff * skb)2029 static inline int skb_linearize(struct sk_buff *skb)
2030 {
2031 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2032 }
2033
2034 /**
2035 * skb_linearize_cow - make sure skb is linear and writable
2036 * @skb: buffer to process
2037 *
2038 * If there is no free memory -ENOMEM is returned, otherwise zero
2039 * is returned and the old skb data released.
2040 */
skb_linearize_cow(struct sk_buff * skb)2041 static inline int skb_linearize_cow(struct sk_buff *skb)
2042 {
2043 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2044 __skb_linearize(skb) : 0;
2045 }
2046
2047 /**
2048 * skb_postpull_rcsum - update checksum for received skb after pull
2049 * @skb: buffer to update
2050 * @start: start of data before pull
2051 * @len: length of data pulled
2052 *
2053 * After doing a pull on a received packet, you need to call this to
2054 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2055 * CHECKSUM_NONE so that it can be recomputed from scratch.
2056 */
2057
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2058 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2059 const void *start, unsigned int len)
2060 {
2061 if (skb->ip_summed == CHECKSUM_COMPLETE)
2062 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2063 }
2064
2065 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2066
2067 /**
2068 * pskb_trim_rcsum - trim received skb and update checksum
2069 * @skb: buffer to trim
2070 * @len: new length
2071 *
2072 * This is exactly the same as pskb_trim except that it ensures the
2073 * checksum of received packets are still valid after the operation.
2074 */
2075
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)2076 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2077 {
2078 if (likely(len >= skb->len))
2079 return 0;
2080 if (skb->ip_summed == CHECKSUM_COMPLETE)
2081 skb->ip_summed = CHECKSUM_NONE;
2082 return __pskb_trim(skb, len);
2083 }
2084
2085 #define skb_queue_walk(queue, skb) \
2086 for (skb = (queue)->next; \
2087 skb != (struct sk_buff *)(queue); \
2088 skb = skb->next)
2089
2090 #define skb_queue_walk_safe(queue, skb, tmp) \
2091 for (skb = (queue)->next, tmp = skb->next; \
2092 skb != (struct sk_buff *)(queue); \
2093 skb = tmp, tmp = skb->next)
2094
2095 #define skb_queue_walk_from(queue, skb) \
2096 for (; skb != (struct sk_buff *)(queue); \
2097 skb = skb->next)
2098
2099 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2100 for (tmp = skb->next; \
2101 skb != (struct sk_buff *)(queue); \
2102 skb = tmp, tmp = skb->next)
2103
2104 #define skb_queue_reverse_walk(queue, skb) \
2105 for (skb = (queue)->prev; \
2106 skb != (struct sk_buff *)(queue); \
2107 skb = skb->prev)
2108
2109 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2110 for (skb = (queue)->prev, tmp = skb->prev; \
2111 skb != (struct sk_buff *)(queue); \
2112 skb = tmp, tmp = skb->prev)
2113
2114 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2115 for (tmp = skb->prev; \
2116 skb != (struct sk_buff *)(queue); \
2117 skb = tmp, tmp = skb->prev)
2118
skb_has_frag_list(const struct sk_buff * skb)2119 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2120 {
2121 return skb_shinfo(skb)->frag_list != NULL;
2122 }
2123
skb_frag_list_init(struct sk_buff * skb)2124 static inline void skb_frag_list_init(struct sk_buff *skb)
2125 {
2126 skb_shinfo(skb)->frag_list = NULL;
2127 }
2128
skb_frag_add_head(struct sk_buff * skb,struct sk_buff * frag)2129 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2130 {
2131 frag->next = skb_shinfo(skb)->frag_list;
2132 skb_shinfo(skb)->frag_list = frag;
2133 }
2134
2135 #define skb_walk_frags(skb, iter) \
2136 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2137
2138 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2139 int *peeked, int *off, int *err);
2140 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2141 int noblock, int *err);
2142 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
2143 struct poll_table_struct *wait);
2144 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
2145 int offset, struct iovec *to,
2146 int size);
2147 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2148 int hlen,
2149 struct iovec *iov);
2150 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
2151 int offset,
2152 const struct iovec *from,
2153 int from_offset,
2154 int len);
2155 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
2156 int offset,
2157 const struct iovec *to,
2158 int to_offset,
2159 int size);
2160 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2161 extern void skb_free_datagram_locked(struct sock *sk,
2162 struct sk_buff *skb);
2163 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2164 unsigned int flags);
2165 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
2166 int len, __wsum csum);
2167 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
2168 void *to, int len);
2169 extern int skb_store_bits(struct sk_buff *skb, int offset,
2170 const void *from, int len);
2171 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
2172 int offset, u8 *to, int len,
2173 __wsum csum);
2174 extern int skb_splice_bits(struct sk_buff *skb,
2175 unsigned int offset,
2176 struct pipe_inode_info *pipe,
2177 unsigned int len,
2178 unsigned int flags);
2179 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2180 extern void skb_split(struct sk_buff *skb,
2181 struct sk_buff *skb1, const u32 len);
2182 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2183 int shiftlen);
2184
2185 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2186 netdev_features_t features);
2187
2188 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2189
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)2190 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2191 int len, void *buffer)
2192 {
2193 int hlen = skb_headlen(skb);
2194
2195 if (hlen - offset >= len)
2196 return skb->data + offset;
2197
2198 if (skb_copy_bits(skb, offset, buffer, len) < 0)
2199 return NULL;
2200
2201 return buffer;
2202 }
2203
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)2204 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2205 void *to,
2206 const unsigned int len)
2207 {
2208 memcpy(to, skb->data, len);
2209 }
2210
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)2211 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2212 const int offset, void *to,
2213 const unsigned int len)
2214 {
2215 memcpy(to, skb->data + offset, len);
2216 }
2217
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)2218 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2219 const void *from,
2220 const unsigned int len)
2221 {
2222 memcpy(skb->data, from, len);
2223 }
2224
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)2225 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2226 const int offset,
2227 const void *from,
2228 const unsigned int len)
2229 {
2230 memcpy(skb->data + offset, from, len);
2231 }
2232
2233 extern void skb_init(void);
2234
skb_get_ktime(const struct sk_buff * skb)2235 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2236 {
2237 return skb->tstamp;
2238 }
2239
2240 /**
2241 * skb_get_timestamp - get timestamp from a skb
2242 * @skb: skb to get stamp from
2243 * @stamp: pointer to struct timeval to store stamp in
2244 *
2245 * Timestamps are stored in the skb as offsets to a base timestamp.
2246 * This function converts the offset back to a struct timeval and stores
2247 * it in stamp.
2248 */
skb_get_timestamp(const struct sk_buff * skb,struct timeval * stamp)2249 static inline void skb_get_timestamp(const struct sk_buff *skb,
2250 struct timeval *stamp)
2251 {
2252 *stamp = ktime_to_timeval(skb->tstamp);
2253 }
2254
skb_get_timestampns(const struct sk_buff * skb,struct timespec * stamp)2255 static inline void skb_get_timestampns(const struct sk_buff *skb,
2256 struct timespec *stamp)
2257 {
2258 *stamp = ktime_to_timespec(skb->tstamp);
2259 }
2260
__net_timestamp(struct sk_buff * skb)2261 static inline void __net_timestamp(struct sk_buff *skb)
2262 {
2263 skb->tstamp = ktime_get_real();
2264 }
2265
net_timedelta(ktime_t t)2266 static inline ktime_t net_timedelta(ktime_t t)
2267 {
2268 return ktime_sub(ktime_get_real(), t);
2269 }
2270
net_invalid_timestamp(void)2271 static inline ktime_t net_invalid_timestamp(void)
2272 {
2273 return ktime_set(0, 0);
2274 }
2275
2276 extern void skb_timestamping_init(void);
2277
2278 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2279
2280 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2281 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2282
2283 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2284
skb_clone_tx_timestamp(struct sk_buff * skb)2285 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2286 {
2287 }
2288
skb_defer_rx_timestamp(struct sk_buff * skb)2289 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2290 {
2291 return false;
2292 }
2293
2294 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2295
2296 /**
2297 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2298 *
2299 * PHY drivers may accept clones of transmitted packets for
2300 * timestamping via their phy_driver.txtstamp method. These drivers
2301 * must call this function to return the skb back to the stack, with
2302 * or without a timestamp.
2303 *
2304 * @skb: clone of the the original outgoing packet
2305 * @hwtstamps: hardware time stamps, may be NULL if not available
2306 *
2307 */
2308 void skb_complete_tx_timestamp(struct sk_buff *skb,
2309 struct skb_shared_hwtstamps *hwtstamps);
2310
2311 /**
2312 * skb_tstamp_tx - queue clone of skb with send time stamps
2313 * @orig_skb: the original outgoing packet
2314 * @hwtstamps: hardware time stamps, may be NULL if not available
2315 *
2316 * If the skb has a socket associated, then this function clones the
2317 * skb (thus sharing the actual data and optional structures), stores
2318 * the optional hardware time stamping information (if non NULL) or
2319 * generates a software time stamp (otherwise), then queues the clone
2320 * to the error queue of the socket. Errors are silently ignored.
2321 */
2322 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2323 struct skb_shared_hwtstamps *hwtstamps);
2324
sw_tx_timestamp(struct sk_buff * skb)2325 static inline void sw_tx_timestamp(struct sk_buff *skb)
2326 {
2327 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2328 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2329 skb_tstamp_tx(skb, NULL);
2330 }
2331
2332 /**
2333 * skb_tx_timestamp() - Driver hook for transmit timestamping
2334 *
2335 * Ethernet MAC Drivers should call this function in their hard_xmit()
2336 * function immediately before giving the sk_buff to the MAC hardware.
2337 *
2338 * @skb: A socket buffer.
2339 */
skb_tx_timestamp(struct sk_buff * skb)2340 static inline void skb_tx_timestamp(struct sk_buff *skb)
2341 {
2342 skb_clone_tx_timestamp(skb);
2343 sw_tx_timestamp(skb);
2344 }
2345
2346 /**
2347 * skb_complete_wifi_ack - deliver skb with wifi status
2348 *
2349 * @skb: the original outgoing packet
2350 * @acked: ack status
2351 *
2352 */
2353 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2354
2355 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2356 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2357
skb_csum_unnecessary(const struct sk_buff * skb)2358 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2359 {
2360 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2361 }
2362
2363 /**
2364 * skb_checksum_complete - Calculate checksum of an entire packet
2365 * @skb: packet to process
2366 *
2367 * This function calculates the checksum over the entire packet plus
2368 * the value of skb->csum. The latter can be used to supply the
2369 * checksum of a pseudo header as used by TCP/UDP. It returns the
2370 * checksum.
2371 *
2372 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2373 * this function can be used to verify that checksum on received
2374 * packets. In that case the function should return zero if the
2375 * checksum is correct. In particular, this function will return zero
2376 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2377 * hardware has already verified the correctness of the checksum.
2378 */
skb_checksum_complete(struct sk_buff * skb)2379 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2380 {
2381 return skb_csum_unnecessary(skb) ?
2382 0 : __skb_checksum_complete(skb);
2383 }
2384
2385 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2386 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
nf_conntrack_put(struct nf_conntrack * nfct)2387 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2388 {
2389 if (nfct && atomic_dec_and_test(&nfct->use))
2390 nf_conntrack_destroy(nfct);
2391 }
nf_conntrack_get(struct nf_conntrack * nfct)2392 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2393 {
2394 if (nfct)
2395 atomic_inc(&nfct->use);
2396 }
2397 #endif
2398 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
nf_conntrack_get_reasm(struct sk_buff * skb)2399 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2400 {
2401 if (skb)
2402 atomic_inc(&skb->users);
2403 }
nf_conntrack_put_reasm(struct sk_buff * skb)2404 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2405 {
2406 if (skb)
2407 kfree_skb(skb);
2408 }
2409 #endif
2410 #ifdef CONFIG_BRIDGE_NETFILTER
nf_bridge_put(struct nf_bridge_info * nf_bridge)2411 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2412 {
2413 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2414 kfree(nf_bridge);
2415 }
nf_bridge_get(struct nf_bridge_info * nf_bridge)2416 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2417 {
2418 if (nf_bridge)
2419 atomic_inc(&nf_bridge->use);
2420 }
2421 #endif /* CONFIG_BRIDGE_NETFILTER */
nf_reset(struct sk_buff * skb)2422 static inline void nf_reset(struct sk_buff *skb)
2423 {
2424 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2425 nf_conntrack_put(skb->nfct);
2426 skb->nfct = NULL;
2427 #endif
2428 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2429 nf_conntrack_put_reasm(skb->nfct_reasm);
2430 skb->nfct_reasm = NULL;
2431 #endif
2432 #ifdef CONFIG_BRIDGE_NETFILTER
2433 nf_bridge_put(skb->nf_bridge);
2434 skb->nf_bridge = NULL;
2435 #endif
2436 }
2437
nf_reset_trace(struct sk_buff * skb)2438 static inline void nf_reset_trace(struct sk_buff *skb)
2439 {
2440 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
2441 skb->nf_trace = 0;
2442 #endif
2443 }
2444
2445 /* Note: This doesn't put any conntrack and bridge info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src)2446 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2447 {
2448 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2449 dst->nfct = src->nfct;
2450 nf_conntrack_get(src->nfct);
2451 dst->nfctinfo = src->nfctinfo;
2452 #endif
2453 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2454 dst->nfct_reasm = src->nfct_reasm;
2455 nf_conntrack_get_reasm(src->nfct_reasm);
2456 #endif
2457 #ifdef CONFIG_BRIDGE_NETFILTER
2458 dst->nf_bridge = src->nf_bridge;
2459 nf_bridge_get(src->nf_bridge);
2460 #endif
2461 }
2462
nf_copy(struct sk_buff * dst,const struct sk_buff * src)2463 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2464 {
2465 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2466 nf_conntrack_put(dst->nfct);
2467 #endif
2468 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2469 nf_conntrack_put_reasm(dst->nfct_reasm);
2470 #endif
2471 #ifdef CONFIG_BRIDGE_NETFILTER
2472 nf_bridge_put(dst->nf_bridge);
2473 #endif
2474 __nf_copy(dst, src);
2475 }
2476
2477 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)2478 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2479 {
2480 to->secmark = from->secmark;
2481 }
2482
skb_init_secmark(struct sk_buff * skb)2483 static inline void skb_init_secmark(struct sk_buff *skb)
2484 {
2485 skb->secmark = 0;
2486 }
2487 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)2488 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2489 { }
2490
skb_init_secmark(struct sk_buff * skb)2491 static inline void skb_init_secmark(struct sk_buff *skb)
2492 { }
2493 #endif
2494
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)2495 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2496 {
2497 skb->queue_mapping = queue_mapping;
2498 }
2499
skb_get_queue_mapping(const struct sk_buff * skb)2500 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2501 {
2502 return skb->queue_mapping;
2503 }
2504
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)2505 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2506 {
2507 to->queue_mapping = from->queue_mapping;
2508 }
2509
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)2510 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2511 {
2512 skb->queue_mapping = rx_queue + 1;
2513 }
2514
skb_get_rx_queue(const struct sk_buff * skb)2515 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2516 {
2517 return skb->queue_mapping - 1;
2518 }
2519
skb_rx_queue_recorded(const struct sk_buff * skb)2520 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2521 {
2522 return skb->queue_mapping != 0;
2523 }
2524
2525 extern u16 __skb_tx_hash(const struct net_device *dev,
2526 const struct sk_buff *skb,
2527 unsigned int num_tx_queues);
2528
2529 #ifdef CONFIG_XFRM
skb_sec_path(struct sk_buff * skb)2530 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2531 {
2532 return skb->sp;
2533 }
2534 #else
skb_sec_path(struct sk_buff * skb)2535 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2536 {
2537 return NULL;
2538 }
2539 #endif
2540
skb_is_gso(const struct sk_buff * skb)2541 static inline bool skb_is_gso(const struct sk_buff *skb)
2542 {
2543 return skb_shinfo(skb)->gso_size;
2544 }
2545
skb_is_gso_v6(const struct sk_buff * skb)2546 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2547 {
2548 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2549 }
2550
2551 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2552
skb_warn_if_lro(const struct sk_buff * skb)2553 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2554 {
2555 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2556 * wanted then gso_type will be set. */
2557 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2558
2559 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2560 unlikely(shinfo->gso_type == 0)) {
2561 __skb_warn_lro_forwarding(skb);
2562 return true;
2563 }
2564 return false;
2565 }
2566
skb_forward_csum(struct sk_buff * skb)2567 static inline void skb_forward_csum(struct sk_buff *skb)
2568 {
2569 /* Unfortunately we don't support this one. Any brave souls? */
2570 if (skb->ip_summed == CHECKSUM_COMPLETE)
2571 skb->ip_summed = CHECKSUM_NONE;
2572 }
2573
2574 /**
2575 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2576 * @skb: skb to check
2577 *
2578 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2579 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2580 * use this helper, to document places where we make this assertion.
2581 */
skb_checksum_none_assert(const struct sk_buff * skb)2582 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2583 {
2584 #ifdef DEBUG
2585 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2586 #endif
2587 }
2588
2589 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2590
skb_is_recycleable(const struct sk_buff * skb,int skb_size)2591 static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
2592 {
2593 if (irqs_disabled())
2594 return false;
2595
2596 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
2597 return false;
2598
2599 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
2600 return false;
2601
2602 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
2603 if (skb_end_offset(skb) < skb_size)
2604 return false;
2605
2606 if (skb_shared(skb) || skb_cloned(skb))
2607 return false;
2608
2609 return true;
2610 }
2611
2612 /**
2613 * skb_gso_network_seglen - Return length of individual segments of a gso packet
2614 *
2615 * @skb: GSO skb
2616 *
2617 * skb_gso_network_seglen is used to determine the real size of the
2618 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
2619 *
2620 * The MAC/L2 header is not accounted for.
2621 */
skb_gso_network_seglen(const struct sk_buff * skb)2622 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
2623 {
2624 unsigned int hdr_len = skb_transport_header(skb) -
2625 skb_network_header(skb);
2626 return hdr_len + skb_gso_transport_seglen(skb);
2627 }
2628 #endif /* __KERNEL__ */
2629 #endif /* _LINUX_SKBUFF_H */
2630