1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/mm.h>
44 #include <linux/interrupt.h>
45 #include <linux/in.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/tcp.h>
49 #include <linux/udp.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/xfrm.h>
69 
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72 
73 #include "kmap_skb.h"
74 
75 static struct kmem_cache *skbuff_head_cache __read_mostly;
76 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
77 
sock_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)78 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
79 				  struct pipe_buffer *buf)
80 {
81 	put_page(buf->page);
82 }
83 
sock_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)84 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
85 				struct pipe_buffer *buf)
86 {
87 	get_page(buf->page);
88 }
89 
sock_pipe_buf_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)90 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
91 			       struct pipe_buffer *buf)
92 {
93 	return 1;
94 }
95 
96 
97 /* Pipe buffer operations for a socket. */
98 static const struct pipe_buf_operations sock_pipe_buf_ops = {
99 	.can_merge = 0,
100 	.map = generic_pipe_buf_map,
101 	.unmap = generic_pipe_buf_unmap,
102 	.confirm = generic_pipe_buf_confirm,
103 	.release = sock_pipe_buf_release,
104 	.steal = sock_pipe_buf_steal,
105 	.get = sock_pipe_buf_get,
106 };
107 
108 /*
109  *	Keep out-of-line to prevent kernel bloat.
110  *	__builtin_return_address is not used because it is not always
111  *	reliable.
112  */
113 
114 /**
115  *	skb_over_panic	- 	private function
116  *	@skb: buffer
117  *	@sz: size
118  *	@here: address
119  *
120  *	Out of line support code for skb_put(). Not user callable.
121  */
skb_over_panic(struct sk_buff * skb,int sz,void * here)122 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
123 {
124 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
125 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
126 	       here, skb->len, sz, skb->head, skb->data,
127 	       (unsigned long)skb->tail, (unsigned long)skb->end,
128 	       skb->dev ? skb->dev->name : "<NULL>");
129 	BUG();
130 }
131 
132 /**
133  *	skb_under_panic	- 	private function
134  *	@skb: buffer
135  *	@sz: size
136  *	@here: address
137  *
138  *	Out of line support code for skb_push(). Not user callable.
139  */
140 
skb_under_panic(struct sk_buff * skb,int sz,void * here)141 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
142 {
143 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
144 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
145 	       here, skb->len, sz, skb->head, skb->data,
146 	       (unsigned long)skb->tail, (unsigned long)skb->end,
147 	       skb->dev ? skb->dev->name : "<NULL>");
148 	BUG();
149 }
150 
151 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
152  *	'private' fields and also do memory statistics to find all the
153  *	[BEEP] leaks.
154  *
155  */
156 
157 /**
158  *	__alloc_skb	-	allocate a network buffer
159  *	@size: size to allocate
160  *	@gfp_mask: allocation mask
161  *	@fclone: allocate from fclone cache instead of head cache
162  *		and allocate a cloned (child) skb
163  *	@node: numa node to allocate memory on
164  *
165  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
166  *	tail room of size bytes. The object has a reference count of one.
167  *	The return is the buffer. On a failure the return is %NULL.
168  *
169  *	Buffers may only be allocated from interrupts using a @gfp_mask of
170  *	%GFP_ATOMIC.
171  */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int fclone,int node)172 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
173 			    int fclone, int node)
174 {
175 	struct kmem_cache *cache;
176 	struct skb_shared_info *shinfo;
177 	struct sk_buff *skb;
178 	u8 *data;
179 
180 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
181 
182 	/* Get the HEAD */
183 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
184 	if (!skb)
185 		goto out;
186 	prefetchw(skb);
187 
188 	/* We do our best to align skb_shared_info on a separate cache
189 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
190 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
191 	 * Both skb->head and skb_shared_info are cache line aligned.
192 	 */
193 	size = SKB_DATA_ALIGN(size);
194 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
195 	data = kmalloc_node_track_caller(size, gfp_mask, node);
196 	if (!data)
197 		goto nodata;
198 	/* kmalloc(size) might give us more room than requested.
199 	 * Put skb_shared_info exactly at the end of allocated zone,
200 	 * to allow max possible filling before reallocation.
201 	 */
202 	size = SKB_WITH_OVERHEAD(ksize(data));
203 	prefetchw(data + size);
204 
205 	/*
206 	 * Only clear those fields we need to clear, not those that we will
207 	 * actually initialise below. Hence, don't put any more fields after
208 	 * the tail pointer in struct sk_buff!
209 	 */
210 	memset(skb, 0, offsetof(struct sk_buff, tail));
211 	/* Account for allocated memory : skb + skb->head */
212 	skb->truesize = SKB_TRUESIZE(size);
213 	atomic_set(&skb->users, 1);
214 	skb->head = data;
215 	skb->data = data;
216 	skb_reset_tail_pointer(skb);
217 	skb->end = skb->tail + size;
218 #ifdef NET_SKBUFF_DATA_USES_OFFSET
219 	skb->mac_header = ~0U;
220 #endif
221 
222 	/* make sure we initialize shinfo sequentially */
223 	shinfo = skb_shinfo(skb);
224 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
225 	atomic_set(&shinfo->dataref, 1);
226 	kmemcheck_annotate_variable(shinfo->destructor_arg);
227 
228 	if (fclone) {
229 		struct sk_buff *child = skb + 1;
230 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
231 
232 		kmemcheck_annotate_bitfield(child, flags1);
233 		kmemcheck_annotate_bitfield(child, flags2);
234 		skb->fclone = SKB_FCLONE_ORIG;
235 		atomic_set(fclone_ref, 1);
236 
237 		child->fclone = SKB_FCLONE_UNAVAILABLE;
238 	}
239 out:
240 	return skb;
241 nodata:
242 	kmem_cache_free(cache, skb);
243 	skb = NULL;
244 	goto out;
245 }
246 EXPORT_SYMBOL(__alloc_skb);
247 
248 /**
249  * build_skb - build a network buffer
250  * @data: data buffer provided by caller
251  *
252  * Allocate a new &sk_buff. Caller provides space holding head and
253  * skb_shared_info. @data must have been allocated by kmalloc()
254  * The return is the new skb buffer.
255  * On a failure the return is %NULL, and @data is not freed.
256  * Notes :
257  *  Before IO, driver allocates only data buffer where NIC put incoming frame
258  *  Driver should add room at head (NET_SKB_PAD) and
259  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
260  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
261  *  before giving packet to stack.
262  *  RX rings only contains data buffers, not full skbs.
263  */
build_skb(void * data)264 struct sk_buff *build_skb(void *data)
265 {
266 	struct skb_shared_info *shinfo;
267 	struct sk_buff *skb;
268 	unsigned int size;
269 
270 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
271 	if (!skb)
272 		return NULL;
273 
274 	size = ksize(data) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
275 
276 	memset(skb, 0, offsetof(struct sk_buff, tail));
277 	skb->truesize = SKB_TRUESIZE(size);
278 	atomic_set(&skb->users, 1);
279 	skb->head = data;
280 	skb->data = data;
281 	skb_reset_tail_pointer(skb);
282 	skb->end = skb->tail + size;
283 #ifdef NET_SKBUFF_DATA_USES_OFFSET
284 	skb->mac_header = ~0U;
285 #endif
286 
287 	/* make sure we initialize shinfo sequentially */
288 	shinfo = skb_shinfo(skb);
289 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
290 	atomic_set(&shinfo->dataref, 1);
291 	kmemcheck_annotate_variable(shinfo->destructor_arg);
292 
293 	return skb;
294 }
295 EXPORT_SYMBOL(build_skb);
296 
297 /**
298  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
299  *	@dev: network device to receive on
300  *	@length: length to allocate
301  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
302  *
303  *	Allocate a new &sk_buff and assign it a usage count of one. The
304  *	buffer has unspecified headroom built in. Users should allocate
305  *	the headroom they think they need without accounting for the
306  *	built in space. The built in space is used for optimisations.
307  *
308  *	%NULL is returned if there is no free memory.
309  */
__netdev_alloc_skb(struct net_device * dev,unsigned int length,gfp_t gfp_mask)310 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
311 		unsigned int length, gfp_t gfp_mask)
312 {
313 	struct sk_buff *skb;
314 
315 	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
316 	if (likely(skb)) {
317 		skb_reserve(skb, NET_SKB_PAD);
318 		skb->dev = dev;
319 	}
320 	return skb;
321 }
322 EXPORT_SYMBOL(__netdev_alloc_skb);
323 
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)324 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
325 		     int size, unsigned int truesize)
326 {
327 	skb_fill_page_desc(skb, i, page, off, size);
328 	skb->len += size;
329 	skb->data_len += size;
330 	skb->truesize += truesize;
331 }
332 EXPORT_SYMBOL(skb_add_rx_frag);
333 
334 /**
335  *	dev_alloc_skb - allocate an skbuff for receiving
336  *	@length: length to allocate
337  *
338  *	Allocate a new &sk_buff and assign it a usage count of one. The
339  *	buffer has unspecified headroom built in. Users should allocate
340  *	the headroom they think they need without accounting for the
341  *	built in space. The built in space is used for optimisations.
342  *
343  *	%NULL is returned if there is no free memory. Although this function
344  *	allocates memory it can be called from an interrupt.
345  */
dev_alloc_skb(unsigned int length)346 struct sk_buff *dev_alloc_skb(unsigned int length)
347 {
348 	/*
349 	 * There is more code here than it seems:
350 	 * __dev_alloc_skb is an inline
351 	 */
352 	return __dev_alloc_skb(length, GFP_ATOMIC);
353 }
354 EXPORT_SYMBOL(dev_alloc_skb);
355 
skb_drop_list(struct sk_buff ** listp)356 static void skb_drop_list(struct sk_buff **listp)
357 {
358 	struct sk_buff *list = *listp;
359 
360 	*listp = NULL;
361 
362 	do {
363 		struct sk_buff *this = list;
364 		list = list->next;
365 		kfree_skb(this);
366 	} while (list);
367 }
368 
skb_drop_fraglist(struct sk_buff * skb)369 static inline void skb_drop_fraglist(struct sk_buff *skb)
370 {
371 	skb_drop_list(&skb_shinfo(skb)->frag_list);
372 }
373 
skb_clone_fraglist(struct sk_buff * skb)374 static void skb_clone_fraglist(struct sk_buff *skb)
375 {
376 	struct sk_buff *list;
377 
378 	skb_walk_frags(skb, list)
379 		skb_get(list);
380 }
381 
skb_release_data(struct sk_buff * skb)382 static void skb_release_data(struct sk_buff *skb)
383 {
384 	if (!skb->cloned ||
385 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
386 			       &skb_shinfo(skb)->dataref)) {
387 		if (skb_shinfo(skb)->nr_frags) {
388 			int i;
389 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
390 				skb_frag_unref(skb, i);
391 		}
392 
393 		/*
394 		 * If skb buf is from userspace, we need to notify the caller
395 		 * the lower device DMA has done;
396 		 */
397 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
398 			struct ubuf_info *uarg;
399 
400 			uarg = skb_shinfo(skb)->destructor_arg;
401 			if (uarg->callback)
402 				uarg->callback(uarg);
403 		}
404 
405 		if (skb_has_frag_list(skb))
406 			skb_drop_fraglist(skb);
407 
408 		kfree(skb->head);
409 	}
410 }
411 
412 /*
413  *	Free an skbuff by memory without cleaning the state.
414  */
kfree_skbmem(struct sk_buff * skb)415 static void kfree_skbmem(struct sk_buff *skb)
416 {
417 	struct sk_buff *other;
418 	atomic_t *fclone_ref;
419 
420 	switch (skb->fclone) {
421 	case SKB_FCLONE_UNAVAILABLE:
422 		kmem_cache_free(skbuff_head_cache, skb);
423 		break;
424 
425 	case SKB_FCLONE_ORIG:
426 		fclone_ref = (atomic_t *) (skb + 2);
427 		if (atomic_dec_and_test(fclone_ref))
428 			kmem_cache_free(skbuff_fclone_cache, skb);
429 		break;
430 
431 	case SKB_FCLONE_CLONE:
432 		fclone_ref = (atomic_t *) (skb + 1);
433 		other = skb - 1;
434 
435 		/* The clone portion is available for
436 		 * fast-cloning again.
437 		 */
438 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
439 
440 		if (atomic_dec_and_test(fclone_ref))
441 			kmem_cache_free(skbuff_fclone_cache, other);
442 		break;
443 	}
444 }
445 
skb_release_head_state(struct sk_buff * skb)446 static void skb_release_head_state(struct sk_buff *skb)
447 {
448 	skb_dst_drop(skb);
449 #ifdef CONFIG_XFRM
450 	secpath_put(skb->sp);
451 #endif
452 	if (skb->destructor) {
453 		WARN_ON(in_irq());
454 		skb->destructor(skb);
455 	}
456 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
457 	nf_conntrack_put(skb->nfct);
458 #endif
459 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
460 	nf_conntrack_put_reasm(skb->nfct_reasm);
461 #endif
462 #ifdef CONFIG_BRIDGE_NETFILTER
463 	nf_bridge_put(skb->nf_bridge);
464 #endif
465 /* XXX: IS this still necessary? - JHS */
466 #ifdef CONFIG_NET_SCHED
467 	skb->tc_index = 0;
468 #ifdef CONFIG_NET_CLS_ACT
469 	skb->tc_verd = 0;
470 #endif
471 #endif
472 }
473 
474 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)475 static void skb_release_all(struct sk_buff *skb)
476 {
477 	skb_release_head_state(skb);
478 	skb_release_data(skb);
479 }
480 
481 /**
482  *	__kfree_skb - private function
483  *	@skb: buffer
484  *
485  *	Free an sk_buff. Release anything attached to the buffer.
486  *	Clean the state. This is an internal helper function. Users should
487  *	always call kfree_skb
488  */
489 
__kfree_skb(struct sk_buff * skb)490 void __kfree_skb(struct sk_buff *skb)
491 {
492 	skb_release_all(skb);
493 	kfree_skbmem(skb);
494 }
495 EXPORT_SYMBOL(__kfree_skb);
496 
497 /**
498  *	kfree_skb - free an sk_buff
499  *	@skb: buffer to free
500  *
501  *	Drop a reference to the buffer and free it if the usage count has
502  *	hit zero.
503  */
kfree_skb(struct sk_buff * skb)504 void kfree_skb(struct sk_buff *skb)
505 {
506 	if (unlikely(!skb))
507 		return;
508 	if (likely(atomic_read(&skb->users) == 1))
509 		smp_rmb();
510 	else if (likely(!atomic_dec_and_test(&skb->users)))
511 		return;
512 	trace_kfree_skb(skb, __builtin_return_address(0));
513 	__kfree_skb(skb);
514 }
515 EXPORT_SYMBOL(kfree_skb);
516 
517 /**
518  *	consume_skb - free an skbuff
519  *	@skb: buffer to free
520  *
521  *	Drop a ref to the buffer and free it if the usage count has hit zero
522  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
523  *	is being dropped after a failure and notes that
524  */
consume_skb(struct sk_buff * skb)525 void consume_skb(struct sk_buff *skb)
526 {
527 	if (unlikely(!skb))
528 		return;
529 	if (likely(atomic_read(&skb->users) == 1))
530 		smp_rmb();
531 	else if (likely(!atomic_dec_and_test(&skb->users)))
532 		return;
533 	trace_consume_skb(skb);
534 	__kfree_skb(skb);
535 }
536 EXPORT_SYMBOL(consume_skb);
537 
538 /**
539  * 	skb_recycle - clean up an skb for reuse
540  * 	@skb: buffer
541  *
542  * 	Recycles the skb to be reused as a receive buffer. This
543  * 	function does any necessary reference count dropping, and
544  * 	cleans up the skbuff as if it just came from __alloc_skb().
545  */
skb_recycle(struct sk_buff * skb)546 void skb_recycle(struct sk_buff *skb)
547 {
548 	struct skb_shared_info *shinfo;
549 
550 	skb_release_head_state(skb);
551 
552 	shinfo = skb_shinfo(skb);
553 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
554 	atomic_set(&shinfo->dataref, 1);
555 
556 	memset(skb, 0, offsetof(struct sk_buff, tail));
557 	skb->data = skb->head + NET_SKB_PAD;
558 	skb_reset_tail_pointer(skb);
559 }
560 EXPORT_SYMBOL(skb_recycle);
561 
562 /**
563  *	skb_recycle_check - check if skb can be reused for receive
564  *	@skb: buffer
565  *	@skb_size: minimum receive buffer size
566  *
567  *	Checks that the skb passed in is not shared or cloned, and
568  *	that it is linear and its head portion at least as large as
569  *	skb_size so that it can be recycled as a receive buffer.
570  *	If these conditions are met, this function does any necessary
571  *	reference count dropping and cleans up the skbuff as if it
572  *	just came from __alloc_skb().
573  */
skb_recycle_check(struct sk_buff * skb,int skb_size)574 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
575 {
576 	if (!skb_is_recycleable(skb, skb_size))
577 		return false;
578 
579 	skb_recycle(skb);
580 
581 	return true;
582 }
583 EXPORT_SYMBOL(skb_recycle_check);
584 
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)585 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
586 {
587 	new->tstamp		= old->tstamp;
588 	new->dev		= old->dev;
589 	new->transport_header	= old->transport_header;
590 	new->network_header	= old->network_header;
591 	new->mac_header		= old->mac_header;
592 	skb_dst_copy(new, old);
593 	new->rxhash		= old->rxhash;
594 	new->ooo_okay		= old->ooo_okay;
595 	new->l4_rxhash		= old->l4_rxhash;
596 	new->no_fcs		= old->no_fcs;
597 #ifdef CONFIG_XFRM
598 	new->sp			= secpath_get(old->sp);
599 #endif
600 	memcpy(new->cb, old->cb, sizeof(old->cb));
601 	new->csum		= old->csum;
602 	new->local_df		= old->local_df;
603 	new->pkt_type		= old->pkt_type;
604 	new->ip_summed		= old->ip_summed;
605 	skb_copy_queue_mapping(new, old);
606 	new->priority		= old->priority;
607 #if IS_ENABLED(CONFIG_IP_VS)
608 	new->ipvs_property	= old->ipvs_property;
609 #endif
610 	new->protocol		= old->protocol;
611 	new->mark		= old->mark;
612 	new->skb_iif		= old->skb_iif;
613 	__nf_copy(new, old);
614 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
615 	new->nf_trace		= old->nf_trace;
616 #endif
617 #ifdef CONFIG_NET_SCHED
618 	new->tc_index		= old->tc_index;
619 #ifdef CONFIG_NET_CLS_ACT
620 	new->tc_verd		= old->tc_verd;
621 #endif
622 #endif
623 	new->vlan_tci		= old->vlan_tci;
624 
625 	skb_copy_secmark(new, old);
626 }
627 
628 /*
629  * You should not add any new code to this function.  Add it to
630  * __copy_skb_header above instead.
631  */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)632 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
633 {
634 #define C(x) n->x = skb->x
635 
636 	n->next = n->prev = NULL;
637 	n->sk = NULL;
638 	__copy_skb_header(n, skb);
639 
640 	C(len);
641 	C(data_len);
642 	C(mac_len);
643 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
644 	n->cloned = 1;
645 	n->nohdr = 0;
646 	n->destructor = NULL;
647 	C(tail);
648 	C(end);
649 	C(head);
650 	C(data);
651 	C(truesize);
652 	atomic_set(&n->users, 1);
653 
654 	atomic_inc(&(skb_shinfo(skb)->dataref));
655 	skb->cloned = 1;
656 
657 	return n;
658 #undef C
659 }
660 
661 /**
662  *	skb_morph	-	morph one skb into another
663  *	@dst: the skb to receive the contents
664  *	@src: the skb to supply the contents
665  *
666  *	This is identical to skb_clone except that the target skb is
667  *	supplied by the user.
668  *
669  *	The target skb is returned upon exit.
670  */
skb_morph(struct sk_buff * dst,struct sk_buff * src)671 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
672 {
673 	skb_release_all(dst);
674 	return __skb_clone(dst, src);
675 }
676 EXPORT_SYMBOL_GPL(skb_morph);
677 
678 /*	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
679  *	@skb: the skb to modify
680  *	@gfp_mask: allocation priority
681  *
682  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
683  *	It will copy all frags into kernel and drop the reference
684  *	to userspace pages.
685  *
686  *	If this function is called from an interrupt gfp_mask() must be
687  *	%GFP_ATOMIC.
688  *
689  *	Returns 0 on success or a negative error code on failure
690  *	to allocate kernel memory to copy to.
691  */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)692 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
693 {
694 	int i;
695 	int num_frags = skb_shinfo(skb)->nr_frags;
696 	struct page *page, *head = NULL;
697 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
698 
699 	for (i = 0; i < num_frags; i++) {
700 		u8 *vaddr;
701 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
702 
703 		page = alloc_page(GFP_ATOMIC);
704 		if (!page) {
705 			while (head) {
706 				struct page *next = (struct page *)head->private;
707 				put_page(head);
708 				head = next;
709 			}
710 			return -ENOMEM;
711 		}
712 		vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
713 		memcpy(page_address(page),
714 		       vaddr + f->page_offset, skb_frag_size(f));
715 		kunmap_skb_frag(vaddr);
716 		page->private = (unsigned long)head;
717 		head = page;
718 	}
719 
720 	/* skb frags release userspace buffers */
721 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
722 		skb_frag_unref(skb, i);
723 
724 	uarg->callback(uarg);
725 
726 	/* skb frags point to kernel buffers */
727 	for (i = skb_shinfo(skb)->nr_frags; i > 0; i--) {
728 		__skb_fill_page_desc(skb, i-1, head, 0,
729 				     skb_shinfo(skb)->frags[i - 1].size);
730 		head = (struct page *)head->private;
731 	}
732 
733 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
734 	return 0;
735 }
736 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
737 
738 /**
739  *	skb_clone	-	duplicate an sk_buff
740  *	@skb: buffer to clone
741  *	@gfp_mask: allocation priority
742  *
743  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
744  *	copies share the same packet data but not structure. The new
745  *	buffer has a reference count of 1. If the allocation fails the
746  *	function returns %NULL otherwise the new buffer is returned.
747  *
748  *	If this function is called from an interrupt gfp_mask() must be
749  *	%GFP_ATOMIC.
750  */
751 
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)752 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
753 {
754 	struct sk_buff *n;
755 
756 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
757 		if (skb_copy_ubufs(skb, gfp_mask))
758 			return NULL;
759 	}
760 
761 	n = skb + 1;
762 	if (skb->fclone == SKB_FCLONE_ORIG &&
763 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
764 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
765 		n->fclone = SKB_FCLONE_CLONE;
766 		atomic_inc(fclone_ref);
767 	} else {
768 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
769 		if (!n)
770 			return NULL;
771 
772 		kmemcheck_annotate_bitfield(n, flags1);
773 		kmemcheck_annotate_bitfield(n, flags2);
774 		n->fclone = SKB_FCLONE_UNAVAILABLE;
775 	}
776 
777 	return __skb_clone(n, skb);
778 }
779 EXPORT_SYMBOL(skb_clone);
780 
copy_skb_header(struct sk_buff * new,const struct sk_buff * old)781 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
782 {
783 #ifndef NET_SKBUFF_DATA_USES_OFFSET
784 	/*
785 	 *	Shift between the two data areas in bytes
786 	 */
787 	unsigned long offset = new->data - old->data;
788 #endif
789 
790 	__copy_skb_header(new, old);
791 
792 #ifndef NET_SKBUFF_DATA_USES_OFFSET
793 	/* {transport,network,mac}_header are relative to skb->head */
794 	new->transport_header += offset;
795 	new->network_header   += offset;
796 	if (skb_mac_header_was_set(new))
797 		new->mac_header	      += offset;
798 #endif
799 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
800 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
801 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
802 }
803 
804 /**
805  *	skb_copy	-	create private copy of an sk_buff
806  *	@skb: buffer to copy
807  *	@gfp_mask: allocation priority
808  *
809  *	Make a copy of both an &sk_buff and its data. This is used when the
810  *	caller wishes to modify the data and needs a private copy of the
811  *	data to alter. Returns %NULL on failure or the pointer to the buffer
812  *	on success. The returned buffer has a reference count of 1.
813  *
814  *	As by-product this function converts non-linear &sk_buff to linear
815  *	one, so that &sk_buff becomes completely private and caller is allowed
816  *	to modify all the data of returned buffer. This means that this
817  *	function is not recommended for use in circumstances when only
818  *	header is going to be modified. Use pskb_copy() instead.
819  */
820 
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)821 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
822 {
823 	int headerlen = skb_headroom(skb);
824 	unsigned int size = skb_end_offset(skb) + skb->data_len;
825 	struct sk_buff *n = alloc_skb(size, gfp_mask);
826 
827 	if (!n)
828 		return NULL;
829 
830 	/* Set the data pointer */
831 	skb_reserve(n, headerlen);
832 	/* Set the tail pointer and length */
833 	skb_put(n, skb->len);
834 
835 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
836 		BUG();
837 
838 	copy_skb_header(n, skb);
839 	return n;
840 }
841 EXPORT_SYMBOL(skb_copy);
842 
843 /**
844  *	__pskb_copy	-	create copy of an sk_buff with private head.
845  *	@skb: buffer to copy
846  *	@headroom: headroom of new skb
847  *	@gfp_mask: allocation priority
848  *
849  *	Make a copy of both an &sk_buff and part of its data, located
850  *	in header. Fragmented data remain shared. This is used when
851  *	the caller wishes to modify only header of &sk_buff and needs
852  *	private copy of the header to alter. Returns %NULL on failure
853  *	or the pointer to the buffer on success.
854  *	The returned buffer has a reference count of 1.
855  */
856 
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)857 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
858 {
859 	unsigned int size = skb_headlen(skb) + headroom;
860 	struct sk_buff *n = alloc_skb(size, gfp_mask);
861 
862 	if (!n)
863 		goto out;
864 
865 	/* Set the data pointer */
866 	skb_reserve(n, headroom);
867 	/* Set the tail pointer and length */
868 	skb_put(n, skb_headlen(skb));
869 	/* Copy the bytes */
870 	skb_copy_from_linear_data(skb, n->data, n->len);
871 
872 	n->truesize += skb->data_len;
873 	n->data_len  = skb->data_len;
874 	n->len	     = skb->len;
875 
876 	if (skb_shinfo(skb)->nr_frags) {
877 		int i;
878 
879 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
880 			if (skb_copy_ubufs(skb, gfp_mask)) {
881 				kfree_skb(n);
882 				n = NULL;
883 				goto out;
884 			}
885 		}
886 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
887 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
888 			skb_frag_ref(skb, i);
889 		}
890 		skb_shinfo(n)->nr_frags = i;
891 	}
892 
893 	if (skb_has_frag_list(skb)) {
894 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
895 		skb_clone_fraglist(n);
896 	}
897 
898 	copy_skb_header(n, skb);
899 out:
900 	return n;
901 }
902 EXPORT_SYMBOL(__pskb_copy);
903 
904 /**
905  *	pskb_expand_head - reallocate header of &sk_buff
906  *	@skb: buffer to reallocate
907  *	@nhead: room to add at head
908  *	@ntail: room to add at tail
909  *	@gfp_mask: allocation priority
910  *
911  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
912  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
913  *	reference count of 1. Returns zero in the case of success or error,
914  *	if expansion failed. In the last case, &sk_buff is not changed.
915  *
916  *	All the pointers pointing into skb header may change and must be
917  *	reloaded after call to this function.
918  */
919 
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)920 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
921 		     gfp_t gfp_mask)
922 {
923 	int i;
924 	u8 *data;
925 	int size = nhead + skb_end_offset(skb) + ntail;
926 	long off;
927 	bool fastpath;
928 
929 	BUG_ON(nhead < 0);
930 
931 	if (skb_shared(skb))
932 		BUG();
933 
934 	size = SKB_DATA_ALIGN(size);
935 
936 	/* Check if we can avoid taking references on fragments if we own
937 	 * the last reference on skb->head. (see skb_release_data())
938 	 */
939 	if (!skb->cloned)
940 		fastpath = true;
941 	else {
942 		int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
943 		fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta;
944 	}
945 
946 	if (fastpath &&
947 	    size + sizeof(struct skb_shared_info) <= ksize(skb->head)) {
948 		memmove(skb->head + size, skb_shinfo(skb),
949 			offsetof(struct skb_shared_info,
950 				 frags[skb_shinfo(skb)->nr_frags]));
951 		memmove(skb->head + nhead, skb->head,
952 			skb_tail_pointer(skb) - skb->head);
953 		off = nhead;
954 		goto adjust_others;
955 	}
956 
957 	data = kmalloc(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
958 		       gfp_mask);
959 	if (!data)
960 		goto nodata;
961 	size = SKB_WITH_OVERHEAD(ksize(data));
962 
963 	/* Copy only real data... and, alas, header. This should be
964 	 * optimized for the cases when header is void.
965 	 */
966 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
967 
968 	memcpy((struct skb_shared_info *)(data + size),
969 	       skb_shinfo(skb),
970 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
971 
972 	if (fastpath) {
973 		kfree(skb->head);
974 	} else {
975 		/* copy this zero copy skb frags */
976 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
977 			if (skb_copy_ubufs(skb, gfp_mask))
978 				goto nofrags;
979 		}
980 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
981 			skb_frag_ref(skb, i);
982 
983 		if (skb_has_frag_list(skb))
984 			skb_clone_fraglist(skb);
985 
986 		skb_release_data(skb);
987 	}
988 	off = (data + nhead) - skb->head;
989 
990 	skb->head     = data;
991 adjust_others:
992 	skb->data    += off;
993 #ifdef NET_SKBUFF_DATA_USES_OFFSET
994 	skb->end      = size;
995 	off           = nhead;
996 #else
997 	skb->end      = skb->head + size;
998 #endif
999 	/* {transport,network,mac}_header and tail are relative to skb->head */
1000 	skb->tail	      += off;
1001 	skb->transport_header += off;
1002 	skb->network_header   += off;
1003 	if (skb_mac_header_was_set(skb))
1004 		skb->mac_header += off;
1005 	/* Only adjust this if it actually is csum_start rather than csum */
1006 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1007 		skb->csum_start += nhead;
1008 	skb->cloned   = 0;
1009 	skb->hdr_len  = 0;
1010 	skb->nohdr    = 0;
1011 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1012 	return 0;
1013 
1014 nofrags:
1015 	kfree(data);
1016 nodata:
1017 	return -ENOMEM;
1018 }
1019 EXPORT_SYMBOL(pskb_expand_head);
1020 
1021 /* Make private copy of skb with writable head and some headroom */
1022 
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1023 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1024 {
1025 	struct sk_buff *skb2;
1026 	int delta = headroom - skb_headroom(skb);
1027 
1028 	if (delta <= 0)
1029 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1030 	else {
1031 		skb2 = skb_clone(skb, GFP_ATOMIC);
1032 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1033 					     GFP_ATOMIC)) {
1034 			kfree_skb(skb2);
1035 			skb2 = NULL;
1036 		}
1037 	}
1038 	return skb2;
1039 }
1040 EXPORT_SYMBOL(skb_realloc_headroom);
1041 
1042 /**
1043  *	skb_copy_expand	-	copy and expand sk_buff
1044  *	@skb: buffer to copy
1045  *	@newheadroom: new free bytes at head
1046  *	@newtailroom: new free bytes at tail
1047  *	@gfp_mask: allocation priority
1048  *
1049  *	Make a copy of both an &sk_buff and its data and while doing so
1050  *	allocate additional space.
1051  *
1052  *	This is used when the caller wishes to modify the data and needs a
1053  *	private copy of the data to alter as well as more space for new fields.
1054  *	Returns %NULL on failure or the pointer to the buffer
1055  *	on success. The returned buffer has a reference count of 1.
1056  *
1057  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1058  *	is called from an interrupt.
1059  */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1060 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1061 				int newheadroom, int newtailroom,
1062 				gfp_t gfp_mask)
1063 {
1064 	/*
1065 	 *	Allocate the copy buffer
1066 	 */
1067 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
1068 				      gfp_mask);
1069 	int oldheadroom = skb_headroom(skb);
1070 	int head_copy_len, head_copy_off;
1071 	int off;
1072 
1073 	if (!n)
1074 		return NULL;
1075 
1076 	skb_reserve(n, newheadroom);
1077 
1078 	/* Set the tail pointer and length */
1079 	skb_put(n, skb->len);
1080 
1081 	head_copy_len = oldheadroom;
1082 	head_copy_off = 0;
1083 	if (newheadroom <= head_copy_len)
1084 		head_copy_len = newheadroom;
1085 	else
1086 		head_copy_off = newheadroom - head_copy_len;
1087 
1088 	/* Copy the linear header and data. */
1089 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1090 			  skb->len + head_copy_len))
1091 		BUG();
1092 
1093 	copy_skb_header(n, skb);
1094 
1095 	off                  = newheadroom - oldheadroom;
1096 	if (n->ip_summed == CHECKSUM_PARTIAL)
1097 		n->csum_start += off;
1098 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1099 	n->transport_header += off;
1100 	n->network_header   += off;
1101 	if (skb_mac_header_was_set(skb))
1102 		n->mac_header += off;
1103 #endif
1104 
1105 	return n;
1106 }
1107 EXPORT_SYMBOL(skb_copy_expand);
1108 
1109 /**
1110  *	skb_pad			-	zero pad the tail of an skb
1111  *	@skb: buffer to pad
1112  *	@pad: space to pad
1113  *
1114  *	Ensure that a buffer is followed by a padding area that is zero
1115  *	filled. Used by network drivers which may DMA or transfer data
1116  *	beyond the buffer end onto the wire.
1117  *
1118  *	May return error in out of memory cases. The skb is freed on error.
1119  */
1120 
skb_pad(struct sk_buff * skb,int pad)1121 int skb_pad(struct sk_buff *skb, int pad)
1122 {
1123 	int err;
1124 	int ntail;
1125 
1126 	/* If the skbuff is non linear tailroom is always zero.. */
1127 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1128 		memset(skb->data+skb->len, 0, pad);
1129 		return 0;
1130 	}
1131 
1132 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1133 	if (likely(skb_cloned(skb) || ntail > 0)) {
1134 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1135 		if (unlikely(err))
1136 			goto free_skb;
1137 	}
1138 
1139 	/* FIXME: The use of this function with non-linear skb's really needs
1140 	 * to be audited.
1141 	 */
1142 	err = skb_linearize(skb);
1143 	if (unlikely(err))
1144 		goto free_skb;
1145 
1146 	memset(skb->data + skb->len, 0, pad);
1147 	return 0;
1148 
1149 free_skb:
1150 	kfree_skb(skb);
1151 	return err;
1152 }
1153 EXPORT_SYMBOL(skb_pad);
1154 
1155 /**
1156  *	skb_put - add data to a buffer
1157  *	@skb: buffer to use
1158  *	@len: amount of data to add
1159  *
1160  *	This function extends the used data area of the buffer. If this would
1161  *	exceed the total buffer size the kernel will panic. A pointer to the
1162  *	first byte of the extra data is returned.
1163  */
skb_put(struct sk_buff * skb,unsigned int len)1164 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1165 {
1166 	unsigned char *tmp = skb_tail_pointer(skb);
1167 	SKB_LINEAR_ASSERT(skb);
1168 	skb->tail += len;
1169 	skb->len  += len;
1170 	if (unlikely(skb->tail > skb->end))
1171 		skb_over_panic(skb, len, __builtin_return_address(0));
1172 	return tmp;
1173 }
1174 EXPORT_SYMBOL(skb_put);
1175 
1176 /**
1177  *	skb_push - add data to the start of a buffer
1178  *	@skb: buffer to use
1179  *	@len: amount of data to add
1180  *
1181  *	This function extends the used data area of the buffer at the buffer
1182  *	start. If this would exceed the total buffer headroom the kernel will
1183  *	panic. A pointer to the first byte of the extra data is returned.
1184  */
skb_push(struct sk_buff * skb,unsigned int len)1185 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1186 {
1187 	skb->data -= len;
1188 	skb->len  += len;
1189 	if (unlikely(skb->data<skb->head))
1190 		skb_under_panic(skb, len, __builtin_return_address(0));
1191 	return skb->data;
1192 }
1193 EXPORT_SYMBOL(skb_push);
1194 
1195 /**
1196  *	skb_pull - remove data from the start of a buffer
1197  *	@skb: buffer to use
1198  *	@len: amount of data to remove
1199  *
1200  *	This function removes data from the start of a buffer, returning
1201  *	the memory to the headroom. A pointer to the next data in the buffer
1202  *	is returned. Once the data has been pulled future pushes will overwrite
1203  *	the old data.
1204  */
skb_pull(struct sk_buff * skb,unsigned int len)1205 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1206 {
1207 	return skb_pull_inline(skb, len);
1208 }
1209 EXPORT_SYMBOL(skb_pull);
1210 
1211 /**
1212  *	skb_trim - remove end from a buffer
1213  *	@skb: buffer to alter
1214  *	@len: new length
1215  *
1216  *	Cut the length of a buffer down by removing data from the tail. If
1217  *	the buffer is already under the length specified it is not modified.
1218  *	The skb must be linear.
1219  */
skb_trim(struct sk_buff * skb,unsigned int len)1220 void skb_trim(struct sk_buff *skb, unsigned int len)
1221 {
1222 	if (skb->len > len)
1223 		__skb_trim(skb, len);
1224 }
1225 EXPORT_SYMBOL(skb_trim);
1226 
1227 /* Trims skb to length len. It can change skb pointers.
1228  */
1229 
___pskb_trim(struct sk_buff * skb,unsigned int len)1230 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1231 {
1232 	struct sk_buff **fragp;
1233 	struct sk_buff *frag;
1234 	int offset = skb_headlen(skb);
1235 	int nfrags = skb_shinfo(skb)->nr_frags;
1236 	int i;
1237 	int err;
1238 
1239 	if (skb_cloned(skb) &&
1240 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1241 		return err;
1242 
1243 	i = 0;
1244 	if (offset >= len)
1245 		goto drop_pages;
1246 
1247 	for (; i < nfrags; i++) {
1248 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1249 
1250 		if (end < len) {
1251 			offset = end;
1252 			continue;
1253 		}
1254 
1255 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1256 
1257 drop_pages:
1258 		skb_shinfo(skb)->nr_frags = i;
1259 
1260 		for (; i < nfrags; i++)
1261 			skb_frag_unref(skb, i);
1262 
1263 		if (skb_has_frag_list(skb))
1264 			skb_drop_fraglist(skb);
1265 		goto done;
1266 	}
1267 
1268 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1269 	     fragp = &frag->next) {
1270 		int end = offset + frag->len;
1271 
1272 		if (skb_shared(frag)) {
1273 			struct sk_buff *nfrag;
1274 
1275 			nfrag = skb_clone(frag, GFP_ATOMIC);
1276 			if (unlikely(!nfrag))
1277 				return -ENOMEM;
1278 
1279 			nfrag->next = frag->next;
1280 			kfree_skb(frag);
1281 			frag = nfrag;
1282 			*fragp = frag;
1283 		}
1284 
1285 		if (end < len) {
1286 			offset = end;
1287 			continue;
1288 		}
1289 
1290 		if (end > len &&
1291 		    unlikely((err = pskb_trim(frag, len - offset))))
1292 			return err;
1293 
1294 		if (frag->next)
1295 			skb_drop_list(&frag->next);
1296 		break;
1297 	}
1298 
1299 done:
1300 	if (len > skb_headlen(skb)) {
1301 		skb->data_len -= skb->len - len;
1302 		skb->len       = len;
1303 	} else {
1304 		skb->len       = len;
1305 		skb->data_len  = 0;
1306 		skb_set_tail_pointer(skb, len);
1307 	}
1308 
1309 	return 0;
1310 }
1311 EXPORT_SYMBOL(___pskb_trim);
1312 
1313 /**
1314  *	__pskb_pull_tail - advance tail of skb header
1315  *	@skb: buffer to reallocate
1316  *	@delta: number of bytes to advance tail
1317  *
1318  *	The function makes a sense only on a fragmented &sk_buff,
1319  *	it expands header moving its tail forward and copying necessary
1320  *	data from fragmented part.
1321  *
1322  *	&sk_buff MUST have reference count of 1.
1323  *
1324  *	Returns %NULL (and &sk_buff does not change) if pull failed
1325  *	or value of new tail of skb in the case of success.
1326  *
1327  *	All the pointers pointing into skb header may change and must be
1328  *	reloaded after call to this function.
1329  */
1330 
1331 /* Moves tail of skb head forward, copying data from fragmented part,
1332  * when it is necessary.
1333  * 1. It may fail due to malloc failure.
1334  * 2. It may change skb pointers.
1335  *
1336  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1337  */
__pskb_pull_tail(struct sk_buff * skb,int delta)1338 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1339 {
1340 	/* If skb has not enough free space at tail, get new one
1341 	 * plus 128 bytes for future expansions. If we have enough
1342 	 * room at tail, reallocate without expansion only if skb is cloned.
1343 	 */
1344 	int i, k, eat = (skb->tail + delta) - skb->end;
1345 
1346 	if (eat > 0 || skb_cloned(skb)) {
1347 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1348 				     GFP_ATOMIC))
1349 			return NULL;
1350 	}
1351 
1352 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1353 		BUG();
1354 
1355 	/* Optimization: no fragments, no reasons to preestimate
1356 	 * size of pulled pages. Superb.
1357 	 */
1358 	if (!skb_has_frag_list(skb))
1359 		goto pull_pages;
1360 
1361 	/* Estimate size of pulled pages. */
1362 	eat = delta;
1363 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1364 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1365 
1366 		if (size >= eat)
1367 			goto pull_pages;
1368 		eat -= size;
1369 	}
1370 
1371 	/* If we need update frag list, we are in troubles.
1372 	 * Certainly, it possible to add an offset to skb data,
1373 	 * but taking into account that pulling is expected to
1374 	 * be very rare operation, it is worth to fight against
1375 	 * further bloating skb head and crucify ourselves here instead.
1376 	 * Pure masohism, indeed. 8)8)
1377 	 */
1378 	if (eat) {
1379 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1380 		struct sk_buff *clone = NULL;
1381 		struct sk_buff *insp = NULL;
1382 
1383 		do {
1384 			BUG_ON(!list);
1385 
1386 			if (list->len <= eat) {
1387 				/* Eaten as whole. */
1388 				eat -= list->len;
1389 				list = list->next;
1390 				insp = list;
1391 			} else {
1392 				/* Eaten partially. */
1393 
1394 				if (skb_shared(list)) {
1395 					/* Sucks! We need to fork list. :-( */
1396 					clone = skb_clone(list, GFP_ATOMIC);
1397 					if (!clone)
1398 						return NULL;
1399 					insp = list->next;
1400 					list = clone;
1401 				} else {
1402 					/* This may be pulled without
1403 					 * problems. */
1404 					insp = list;
1405 				}
1406 				if (!pskb_pull(list, eat)) {
1407 					kfree_skb(clone);
1408 					return NULL;
1409 				}
1410 				break;
1411 			}
1412 		} while (eat);
1413 
1414 		/* Free pulled out fragments. */
1415 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1416 			skb_shinfo(skb)->frag_list = list->next;
1417 			kfree_skb(list);
1418 		}
1419 		/* And insert new clone at head. */
1420 		if (clone) {
1421 			clone->next = list;
1422 			skb_shinfo(skb)->frag_list = clone;
1423 		}
1424 	}
1425 	/* Success! Now we may commit changes to skb data. */
1426 
1427 pull_pages:
1428 	eat = delta;
1429 	k = 0;
1430 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1431 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1432 
1433 		if (size <= eat) {
1434 			skb_frag_unref(skb, i);
1435 			eat -= size;
1436 		} else {
1437 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1438 			if (eat) {
1439 				skb_shinfo(skb)->frags[k].page_offset += eat;
1440 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1441 				eat = 0;
1442 			}
1443 			k++;
1444 		}
1445 	}
1446 	skb_shinfo(skb)->nr_frags = k;
1447 
1448 	skb->tail     += delta;
1449 	skb->data_len -= delta;
1450 
1451 	return skb_tail_pointer(skb);
1452 }
1453 EXPORT_SYMBOL(__pskb_pull_tail);
1454 
1455 /**
1456  *	skb_copy_bits - copy bits from skb to kernel buffer
1457  *	@skb: source skb
1458  *	@offset: offset in source
1459  *	@to: destination buffer
1460  *	@len: number of bytes to copy
1461  *
1462  *	Copy the specified number of bytes from the source skb to the
1463  *	destination buffer.
1464  *
1465  *	CAUTION ! :
1466  *		If its prototype is ever changed,
1467  *		check arch/{*}/net/{*}.S files,
1468  *		since it is called from BPF assembly code.
1469  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)1470 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1471 {
1472 	int start = skb_headlen(skb);
1473 	struct sk_buff *frag_iter;
1474 	int i, copy;
1475 
1476 	if (offset > (int)skb->len - len)
1477 		goto fault;
1478 
1479 	/* Copy header. */
1480 	if ((copy = start - offset) > 0) {
1481 		if (copy > len)
1482 			copy = len;
1483 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1484 		if ((len -= copy) == 0)
1485 			return 0;
1486 		offset += copy;
1487 		to     += copy;
1488 	}
1489 
1490 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1491 		int end;
1492 
1493 		WARN_ON(start > offset + len);
1494 
1495 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1496 		if ((copy = end - offset) > 0) {
1497 			u8 *vaddr;
1498 
1499 			if (copy > len)
1500 				copy = len;
1501 
1502 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1503 			memcpy(to,
1504 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1505 			       offset - start, copy);
1506 			kunmap_skb_frag(vaddr);
1507 
1508 			if ((len -= copy) == 0)
1509 				return 0;
1510 			offset += copy;
1511 			to     += copy;
1512 		}
1513 		start = end;
1514 	}
1515 
1516 	skb_walk_frags(skb, frag_iter) {
1517 		int end;
1518 
1519 		WARN_ON(start > offset + len);
1520 
1521 		end = start + frag_iter->len;
1522 		if ((copy = end - offset) > 0) {
1523 			if (copy > len)
1524 				copy = len;
1525 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1526 				goto fault;
1527 			if ((len -= copy) == 0)
1528 				return 0;
1529 			offset += copy;
1530 			to     += copy;
1531 		}
1532 		start = end;
1533 	}
1534 
1535 	if (!len)
1536 		return 0;
1537 
1538 fault:
1539 	return -EFAULT;
1540 }
1541 EXPORT_SYMBOL(skb_copy_bits);
1542 
1543 /*
1544  * Callback from splice_to_pipe(), if we need to release some pages
1545  * at the end of the spd in case we error'ed out in filling the pipe.
1546  */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)1547 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1548 {
1549 	put_page(spd->pages[i]);
1550 }
1551 
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sk_buff * skb,struct sock * sk)1552 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1553 					  unsigned int *offset,
1554 					  struct sk_buff *skb, struct sock *sk)
1555 {
1556 	struct page *p = sk->sk_sndmsg_page;
1557 	unsigned int off;
1558 
1559 	if (!p) {
1560 new_page:
1561 		p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1562 		if (!p)
1563 			return NULL;
1564 
1565 		off = sk->sk_sndmsg_off = 0;
1566 		/* hold one ref to this page until it's full */
1567 	} else {
1568 		unsigned int mlen;
1569 
1570 		off = sk->sk_sndmsg_off;
1571 		mlen = PAGE_SIZE - off;
1572 		if (mlen < 64 && mlen < *len) {
1573 			put_page(p);
1574 			goto new_page;
1575 		}
1576 
1577 		*len = min_t(unsigned int, *len, mlen);
1578 	}
1579 
1580 	memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1581 	sk->sk_sndmsg_off += *len;
1582 	*offset = off;
1583 	get_page(p);
1584 
1585 	return p;
1586 }
1587 
1588 /*
1589  * Fill page/offset/length into spd, if it can hold more pages.
1590  */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,struct sk_buff * skb,int linear,struct sock * sk)1591 static inline int spd_fill_page(struct splice_pipe_desc *spd,
1592 				struct pipe_inode_info *pipe, struct page *page,
1593 				unsigned int *len, unsigned int offset,
1594 				struct sk_buff *skb, int linear,
1595 				struct sock *sk)
1596 {
1597 	if (unlikely(spd->nr_pages == pipe->buffers))
1598 		return 1;
1599 
1600 	if (linear) {
1601 		page = linear_to_page(page, len, &offset, skb, sk);
1602 		if (!page)
1603 			return 1;
1604 	} else
1605 		get_page(page);
1606 
1607 	spd->pages[spd->nr_pages] = page;
1608 	spd->partial[spd->nr_pages].len = *len;
1609 	spd->partial[spd->nr_pages].offset = offset;
1610 	spd->nr_pages++;
1611 
1612 	return 0;
1613 }
1614 
__segment_seek(struct page ** page,unsigned int * poff,unsigned int * plen,unsigned int off)1615 static inline void __segment_seek(struct page **page, unsigned int *poff,
1616 				  unsigned int *plen, unsigned int off)
1617 {
1618 	unsigned long n;
1619 
1620 	*poff += off;
1621 	n = *poff / PAGE_SIZE;
1622 	if (n)
1623 		*page = nth_page(*page, n);
1624 
1625 	*poff = *poff % PAGE_SIZE;
1626 	*plen -= off;
1627 }
1628 
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct sk_buff * skb,struct splice_pipe_desc * spd,int linear,struct sock * sk,struct pipe_inode_info * pipe)1629 static inline int __splice_segment(struct page *page, unsigned int poff,
1630 				   unsigned int plen, unsigned int *off,
1631 				   unsigned int *len, struct sk_buff *skb,
1632 				   struct splice_pipe_desc *spd, int linear,
1633 				   struct sock *sk,
1634 				   struct pipe_inode_info *pipe)
1635 {
1636 	if (!*len)
1637 		return 1;
1638 
1639 	/* skip this segment if already processed */
1640 	if (*off >= plen) {
1641 		*off -= plen;
1642 		return 0;
1643 	}
1644 
1645 	/* ignore any bits we already processed */
1646 	if (*off) {
1647 		__segment_seek(&page, &poff, &plen, *off);
1648 		*off = 0;
1649 	}
1650 
1651 	do {
1652 		unsigned int flen = min(*len, plen);
1653 
1654 		/* the linear region may spread across several pages  */
1655 		flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1656 
1657 		if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1658 			return 1;
1659 
1660 		__segment_seek(&page, &poff, &plen, flen);
1661 		*len -= flen;
1662 
1663 	} while (*len && plen);
1664 
1665 	return 0;
1666 }
1667 
1668 /*
1669  * Map linear and fragment data from the skb to spd. It reports failure if the
1670  * pipe is full or if we already spliced the requested length.
1671  */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)1672 static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1673 			     unsigned int *offset, unsigned int *len,
1674 			     struct splice_pipe_desc *spd, struct sock *sk)
1675 {
1676 	int seg;
1677 
1678 	/*
1679 	 * map the linear part
1680 	 */
1681 	if (__splice_segment(virt_to_page(skb->data),
1682 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1683 			     skb_headlen(skb),
1684 			     offset, len, skb, spd, 1, sk, pipe))
1685 		return 1;
1686 
1687 	/*
1688 	 * then map the fragments
1689 	 */
1690 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1691 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1692 
1693 		if (__splice_segment(skb_frag_page(f),
1694 				     f->page_offset, skb_frag_size(f),
1695 				     offset, len, skb, spd, 0, sk, pipe))
1696 			return 1;
1697 	}
1698 
1699 	return 0;
1700 }
1701 
1702 /*
1703  * Map data from the skb to a pipe. Should handle both the linear part,
1704  * the fragments, and the frag list. It does NOT handle frag lists within
1705  * the frag list, if such a thing exists. We'd probably need to recurse to
1706  * handle that cleanly.
1707  */
skb_splice_bits(struct sk_buff * skb,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)1708 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1709 		    struct pipe_inode_info *pipe, unsigned int tlen,
1710 		    unsigned int flags)
1711 {
1712 	struct partial_page partial[PIPE_DEF_BUFFERS];
1713 	struct page *pages[PIPE_DEF_BUFFERS];
1714 	struct splice_pipe_desc spd = {
1715 		.pages = pages,
1716 		.partial = partial,
1717 		.nr_pages_max = MAX_SKB_FRAGS,
1718 		.flags = flags,
1719 		.ops = &sock_pipe_buf_ops,
1720 		.spd_release = sock_spd_release,
1721 	};
1722 	struct sk_buff *frag_iter;
1723 	struct sock *sk = skb->sk;
1724 	int ret = 0;
1725 
1726 	if (splice_grow_spd(pipe, &spd))
1727 		return -ENOMEM;
1728 
1729 	/*
1730 	 * __skb_splice_bits() only fails if the output has no room left,
1731 	 * so no point in going over the frag_list for the error case.
1732 	 */
1733 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1734 		goto done;
1735 	else if (!tlen)
1736 		goto done;
1737 
1738 	/*
1739 	 * now see if we have a frag_list to map
1740 	 */
1741 	skb_walk_frags(skb, frag_iter) {
1742 		if (!tlen)
1743 			break;
1744 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1745 			break;
1746 	}
1747 
1748 done:
1749 	if (spd.nr_pages) {
1750 		/*
1751 		 * Drop the socket lock, otherwise we have reverse
1752 		 * locking dependencies between sk_lock and i_mutex
1753 		 * here as compared to sendfile(). We enter here
1754 		 * with the socket lock held, and splice_to_pipe() will
1755 		 * grab the pipe inode lock. For sendfile() emulation,
1756 		 * we call into ->sendpage() with the i_mutex lock held
1757 		 * and networking will grab the socket lock.
1758 		 */
1759 		release_sock(sk);
1760 		ret = splice_to_pipe(pipe, &spd);
1761 		lock_sock(sk);
1762 	}
1763 
1764 	splice_shrink_spd(&spd);
1765 	return ret;
1766 }
1767 
1768 /**
1769  *	skb_store_bits - store bits from kernel buffer to skb
1770  *	@skb: destination buffer
1771  *	@offset: offset in destination
1772  *	@from: source buffer
1773  *	@len: number of bytes to copy
1774  *
1775  *	Copy the specified number of bytes from the source buffer to the
1776  *	destination skb.  This function handles all the messy bits of
1777  *	traversing fragment lists and such.
1778  */
1779 
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)1780 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1781 {
1782 	int start = skb_headlen(skb);
1783 	struct sk_buff *frag_iter;
1784 	int i, copy;
1785 
1786 	if (offset > (int)skb->len - len)
1787 		goto fault;
1788 
1789 	if ((copy = start - offset) > 0) {
1790 		if (copy > len)
1791 			copy = len;
1792 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1793 		if ((len -= copy) == 0)
1794 			return 0;
1795 		offset += copy;
1796 		from += copy;
1797 	}
1798 
1799 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1800 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1801 		int end;
1802 
1803 		WARN_ON(start > offset + len);
1804 
1805 		end = start + skb_frag_size(frag);
1806 		if ((copy = end - offset) > 0) {
1807 			u8 *vaddr;
1808 
1809 			if (copy > len)
1810 				copy = len;
1811 
1812 			vaddr = kmap_skb_frag(frag);
1813 			memcpy(vaddr + frag->page_offset + offset - start,
1814 			       from, copy);
1815 			kunmap_skb_frag(vaddr);
1816 
1817 			if ((len -= copy) == 0)
1818 				return 0;
1819 			offset += copy;
1820 			from += copy;
1821 		}
1822 		start = end;
1823 	}
1824 
1825 	skb_walk_frags(skb, frag_iter) {
1826 		int end;
1827 
1828 		WARN_ON(start > offset + len);
1829 
1830 		end = start + frag_iter->len;
1831 		if ((copy = end - offset) > 0) {
1832 			if (copy > len)
1833 				copy = len;
1834 			if (skb_store_bits(frag_iter, offset - start,
1835 					   from, copy))
1836 				goto fault;
1837 			if ((len -= copy) == 0)
1838 				return 0;
1839 			offset += copy;
1840 			from += copy;
1841 		}
1842 		start = end;
1843 	}
1844 	if (!len)
1845 		return 0;
1846 
1847 fault:
1848 	return -EFAULT;
1849 }
1850 EXPORT_SYMBOL(skb_store_bits);
1851 
1852 /* Checksum skb data. */
1853 
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)1854 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1855 			  int len, __wsum csum)
1856 {
1857 	int start = skb_headlen(skb);
1858 	int i, copy = start - offset;
1859 	struct sk_buff *frag_iter;
1860 	int pos = 0;
1861 
1862 	/* Checksum header. */
1863 	if (copy > 0) {
1864 		if (copy > len)
1865 			copy = len;
1866 		csum = csum_partial(skb->data + offset, copy, csum);
1867 		if ((len -= copy) == 0)
1868 			return csum;
1869 		offset += copy;
1870 		pos	= copy;
1871 	}
1872 
1873 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1874 		int end;
1875 
1876 		WARN_ON(start > offset + len);
1877 
1878 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1879 		if ((copy = end - offset) > 0) {
1880 			__wsum csum2;
1881 			u8 *vaddr;
1882 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1883 
1884 			if (copy > len)
1885 				copy = len;
1886 			vaddr = kmap_skb_frag(frag);
1887 			csum2 = csum_partial(vaddr + frag->page_offset +
1888 					     offset - start, copy, 0);
1889 			kunmap_skb_frag(vaddr);
1890 			csum = csum_block_add(csum, csum2, pos);
1891 			if (!(len -= copy))
1892 				return csum;
1893 			offset += copy;
1894 			pos    += copy;
1895 		}
1896 		start = end;
1897 	}
1898 
1899 	skb_walk_frags(skb, frag_iter) {
1900 		int end;
1901 
1902 		WARN_ON(start > offset + len);
1903 
1904 		end = start + frag_iter->len;
1905 		if ((copy = end - offset) > 0) {
1906 			__wsum csum2;
1907 			if (copy > len)
1908 				copy = len;
1909 			csum2 = skb_checksum(frag_iter, offset - start,
1910 					     copy, 0);
1911 			csum = csum_block_add(csum, csum2, pos);
1912 			if ((len -= copy) == 0)
1913 				return csum;
1914 			offset += copy;
1915 			pos    += copy;
1916 		}
1917 		start = end;
1918 	}
1919 	BUG_ON(len);
1920 
1921 	return csum;
1922 }
1923 EXPORT_SYMBOL(skb_checksum);
1924 
1925 /* Both of above in one bottle. */
1926 
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len,__wsum csum)1927 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1928 				    u8 *to, int len, __wsum csum)
1929 {
1930 	int start = skb_headlen(skb);
1931 	int i, copy = start - offset;
1932 	struct sk_buff *frag_iter;
1933 	int pos = 0;
1934 
1935 	/* Copy header. */
1936 	if (copy > 0) {
1937 		if (copy > len)
1938 			copy = len;
1939 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1940 						 copy, csum);
1941 		if ((len -= copy) == 0)
1942 			return csum;
1943 		offset += copy;
1944 		to     += copy;
1945 		pos	= copy;
1946 	}
1947 
1948 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1949 		int end;
1950 
1951 		WARN_ON(start > offset + len);
1952 
1953 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1954 		if ((copy = end - offset) > 0) {
1955 			__wsum csum2;
1956 			u8 *vaddr;
1957 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1958 
1959 			if (copy > len)
1960 				copy = len;
1961 			vaddr = kmap_skb_frag(frag);
1962 			csum2 = csum_partial_copy_nocheck(vaddr +
1963 							  frag->page_offset +
1964 							  offset - start, to,
1965 							  copy, 0);
1966 			kunmap_skb_frag(vaddr);
1967 			csum = csum_block_add(csum, csum2, pos);
1968 			if (!(len -= copy))
1969 				return csum;
1970 			offset += copy;
1971 			to     += copy;
1972 			pos    += copy;
1973 		}
1974 		start = end;
1975 	}
1976 
1977 	skb_walk_frags(skb, frag_iter) {
1978 		__wsum csum2;
1979 		int end;
1980 
1981 		WARN_ON(start > offset + len);
1982 
1983 		end = start + frag_iter->len;
1984 		if ((copy = end - offset) > 0) {
1985 			if (copy > len)
1986 				copy = len;
1987 			csum2 = skb_copy_and_csum_bits(frag_iter,
1988 						       offset - start,
1989 						       to, copy, 0);
1990 			csum = csum_block_add(csum, csum2, pos);
1991 			if ((len -= copy) == 0)
1992 				return csum;
1993 			offset += copy;
1994 			to     += copy;
1995 			pos    += copy;
1996 		}
1997 		start = end;
1998 	}
1999 	BUG_ON(len);
2000 	return csum;
2001 }
2002 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2003 
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)2004 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2005 {
2006 	__wsum csum;
2007 	long csstart;
2008 
2009 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2010 		csstart = skb_checksum_start_offset(skb);
2011 	else
2012 		csstart = skb_headlen(skb);
2013 
2014 	BUG_ON(csstart > skb_headlen(skb));
2015 
2016 	skb_copy_from_linear_data(skb, to, csstart);
2017 
2018 	csum = 0;
2019 	if (csstart != skb->len)
2020 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2021 					      skb->len - csstart, 0);
2022 
2023 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2024 		long csstuff = csstart + skb->csum_offset;
2025 
2026 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2027 	}
2028 }
2029 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2030 
2031 /**
2032  *	skb_dequeue - remove from the head of the queue
2033  *	@list: list to dequeue from
2034  *
2035  *	Remove the head of the list. The list lock is taken so the function
2036  *	may be used safely with other locking list functions. The head item is
2037  *	returned or %NULL if the list is empty.
2038  */
2039 
skb_dequeue(struct sk_buff_head * list)2040 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2041 {
2042 	unsigned long flags;
2043 	struct sk_buff *result;
2044 
2045 	spin_lock_irqsave(&list->lock, flags);
2046 	result = __skb_dequeue(list);
2047 	spin_unlock_irqrestore(&list->lock, flags);
2048 	return result;
2049 }
2050 EXPORT_SYMBOL(skb_dequeue);
2051 
2052 /**
2053  *	skb_dequeue_tail - remove from the tail of the queue
2054  *	@list: list to dequeue from
2055  *
2056  *	Remove the tail of the list. The list lock is taken so the function
2057  *	may be used safely with other locking list functions. The tail item is
2058  *	returned or %NULL if the list is empty.
2059  */
skb_dequeue_tail(struct sk_buff_head * list)2060 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2061 {
2062 	unsigned long flags;
2063 	struct sk_buff *result;
2064 
2065 	spin_lock_irqsave(&list->lock, flags);
2066 	result = __skb_dequeue_tail(list);
2067 	spin_unlock_irqrestore(&list->lock, flags);
2068 	return result;
2069 }
2070 EXPORT_SYMBOL(skb_dequeue_tail);
2071 
2072 /**
2073  *	skb_queue_purge - empty a list
2074  *	@list: list to empty
2075  *
2076  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2077  *	the list and one reference dropped. This function takes the list
2078  *	lock and is atomic with respect to other list locking functions.
2079  */
skb_queue_purge(struct sk_buff_head * list)2080 void skb_queue_purge(struct sk_buff_head *list)
2081 {
2082 	struct sk_buff *skb;
2083 	while ((skb = skb_dequeue(list)) != NULL)
2084 		kfree_skb(skb);
2085 }
2086 EXPORT_SYMBOL(skb_queue_purge);
2087 
2088 /**
2089  *	skb_queue_head - queue a buffer at the list head
2090  *	@list: list to use
2091  *	@newsk: buffer to queue
2092  *
2093  *	Queue a buffer at the start of the list. This function takes the
2094  *	list lock and can be used safely with other locking &sk_buff functions
2095  *	safely.
2096  *
2097  *	A buffer cannot be placed on two lists at the same time.
2098  */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2099 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2100 {
2101 	unsigned long flags;
2102 
2103 	spin_lock_irqsave(&list->lock, flags);
2104 	__skb_queue_head(list, newsk);
2105 	spin_unlock_irqrestore(&list->lock, flags);
2106 }
2107 EXPORT_SYMBOL(skb_queue_head);
2108 
2109 /**
2110  *	skb_queue_tail - queue a buffer at the list tail
2111  *	@list: list to use
2112  *	@newsk: buffer to queue
2113  *
2114  *	Queue a buffer at the tail of the list. This function takes the
2115  *	list lock and can be used safely with other locking &sk_buff functions
2116  *	safely.
2117  *
2118  *	A buffer cannot be placed on two lists at the same time.
2119  */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2120 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2121 {
2122 	unsigned long flags;
2123 
2124 	spin_lock_irqsave(&list->lock, flags);
2125 	__skb_queue_tail(list, newsk);
2126 	spin_unlock_irqrestore(&list->lock, flags);
2127 }
2128 EXPORT_SYMBOL(skb_queue_tail);
2129 
2130 /**
2131  *	skb_unlink	-	remove a buffer from a list
2132  *	@skb: buffer to remove
2133  *	@list: list to use
2134  *
2135  *	Remove a packet from a list. The list locks are taken and this
2136  *	function is atomic with respect to other list locked calls
2137  *
2138  *	You must know what list the SKB is on.
2139  */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2140 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2141 {
2142 	unsigned long flags;
2143 
2144 	spin_lock_irqsave(&list->lock, flags);
2145 	__skb_unlink(skb, list);
2146 	spin_unlock_irqrestore(&list->lock, flags);
2147 }
2148 EXPORT_SYMBOL(skb_unlink);
2149 
2150 /**
2151  *	skb_append	-	append a buffer
2152  *	@old: buffer to insert after
2153  *	@newsk: buffer to insert
2154  *	@list: list to use
2155  *
2156  *	Place a packet after a given packet in a list. The list locks are taken
2157  *	and this function is atomic with respect to other list locked calls.
2158  *	A buffer cannot be placed on two lists at the same time.
2159  */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)2160 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2161 {
2162 	unsigned long flags;
2163 
2164 	spin_lock_irqsave(&list->lock, flags);
2165 	__skb_queue_after(list, old, newsk);
2166 	spin_unlock_irqrestore(&list->lock, flags);
2167 }
2168 EXPORT_SYMBOL(skb_append);
2169 
2170 /**
2171  *	skb_insert	-	insert a buffer
2172  *	@old: buffer to insert before
2173  *	@newsk: buffer to insert
2174  *	@list: list to use
2175  *
2176  *	Place a packet before a given packet in a list. The list locks are
2177  * 	taken and this function is atomic with respect to other list locked
2178  *	calls.
2179  *
2180  *	A buffer cannot be placed on two lists at the same time.
2181  */
skb_insert(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)2182 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2183 {
2184 	unsigned long flags;
2185 
2186 	spin_lock_irqsave(&list->lock, flags);
2187 	__skb_insert(newsk, old->prev, old, list);
2188 	spin_unlock_irqrestore(&list->lock, flags);
2189 }
2190 EXPORT_SYMBOL(skb_insert);
2191 
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)2192 static inline void skb_split_inside_header(struct sk_buff *skb,
2193 					   struct sk_buff* skb1,
2194 					   const u32 len, const int pos)
2195 {
2196 	int i;
2197 
2198 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2199 					 pos - len);
2200 	/* And move data appendix as is. */
2201 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2202 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2203 
2204 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2205 	skb_shinfo(skb)->nr_frags  = 0;
2206 	skb1->data_len		   = skb->data_len;
2207 	skb1->len		   += skb1->data_len;
2208 	skb->data_len		   = 0;
2209 	skb->len		   = len;
2210 	skb_set_tail_pointer(skb, len);
2211 }
2212 
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)2213 static inline void skb_split_no_header(struct sk_buff *skb,
2214 				       struct sk_buff* skb1,
2215 				       const u32 len, int pos)
2216 {
2217 	int i, k = 0;
2218 	const int nfrags = skb_shinfo(skb)->nr_frags;
2219 
2220 	skb_shinfo(skb)->nr_frags = 0;
2221 	skb1->len		  = skb1->data_len = skb->len - len;
2222 	skb->len		  = len;
2223 	skb->data_len		  = len - pos;
2224 
2225 	for (i = 0; i < nfrags; i++) {
2226 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2227 
2228 		if (pos + size > len) {
2229 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2230 
2231 			if (pos < len) {
2232 				/* Split frag.
2233 				 * We have two variants in this case:
2234 				 * 1. Move all the frag to the second
2235 				 *    part, if it is possible. F.e.
2236 				 *    this approach is mandatory for TUX,
2237 				 *    where splitting is expensive.
2238 				 * 2. Split is accurately. We make this.
2239 				 */
2240 				skb_frag_ref(skb, i);
2241 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2242 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2243 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2244 				skb_shinfo(skb)->nr_frags++;
2245 			}
2246 			k++;
2247 		} else
2248 			skb_shinfo(skb)->nr_frags++;
2249 		pos += size;
2250 	}
2251 	skb_shinfo(skb1)->nr_frags = k;
2252 }
2253 
2254 /**
2255  * skb_split - Split fragmented skb to two parts at length len.
2256  * @skb: the buffer to split
2257  * @skb1: the buffer to receive the second part
2258  * @len: new length for skb
2259  */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)2260 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2261 {
2262 	int pos = skb_headlen(skb);
2263 
2264 	if (len < pos)	/* Split line is inside header. */
2265 		skb_split_inside_header(skb, skb1, len, pos);
2266 	else		/* Second chunk has no header, nothing to copy. */
2267 		skb_split_no_header(skb, skb1, len, pos);
2268 }
2269 EXPORT_SYMBOL(skb_split);
2270 
2271 /* Shifting from/to a cloned skb is a no-go.
2272  *
2273  * Caller cannot keep skb_shinfo related pointers past calling here!
2274  */
skb_prepare_for_shift(struct sk_buff * skb)2275 static int skb_prepare_for_shift(struct sk_buff *skb)
2276 {
2277 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2278 }
2279 
2280 /**
2281  * skb_shift - Shifts paged data partially from skb to another
2282  * @tgt: buffer into which tail data gets added
2283  * @skb: buffer from which the paged data comes from
2284  * @shiftlen: shift up to this many bytes
2285  *
2286  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2287  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2288  * It's up to caller to free skb if everything was shifted.
2289  *
2290  * If @tgt runs out of frags, the whole operation is aborted.
2291  *
2292  * Skb cannot include anything else but paged data while tgt is allowed
2293  * to have non-paged data as well.
2294  *
2295  * TODO: full sized shift could be optimized but that would need
2296  * specialized skb free'er to handle frags without up-to-date nr_frags.
2297  */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)2298 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2299 {
2300 	int from, to, merge, todo;
2301 	struct skb_frag_struct *fragfrom, *fragto;
2302 
2303 	BUG_ON(shiftlen > skb->len);
2304 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2305 
2306 	todo = shiftlen;
2307 	from = 0;
2308 	to = skb_shinfo(tgt)->nr_frags;
2309 	fragfrom = &skb_shinfo(skb)->frags[from];
2310 
2311 	/* Actual merge is delayed until the point when we know we can
2312 	 * commit all, so that we don't have to undo partial changes
2313 	 */
2314 	if (!to ||
2315 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2316 			      fragfrom->page_offset)) {
2317 		merge = -1;
2318 	} else {
2319 		merge = to - 1;
2320 
2321 		todo -= skb_frag_size(fragfrom);
2322 		if (todo < 0) {
2323 			if (skb_prepare_for_shift(skb) ||
2324 			    skb_prepare_for_shift(tgt))
2325 				return 0;
2326 
2327 			/* All previous frag pointers might be stale! */
2328 			fragfrom = &skb_shinfo(skb)->frags[from];
2329 			fragto = &skb_shinfo(tgt)->frags[merge];
2330 
2331 			skb_frag_size_add(fragto, shiftlen);
2332 			skb_frag_size_sub(fragfrom, shiftlen);
2333 			fragfrom->page_offset += shiftlen;
2334 
2335 			goto onlymerged;
2336 		}
2337 
2338 		from++;
2339 	}
2340 
2341 	/* Skip full, not-fitting skb to avoid expensive operations */
2342 	if ((shiftlen == skb->len) &&
2343 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2344 		return 0;
2345 
2346 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2347 		return 0;
2348 
2349 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2350 		if (to == MAX_SKB_FRAGS)
2351 			return 0;
2352 
2353 		fragfrom = &skb_shinfo(skb)->frags[from];
2354 		fragto = &skb_shinfo(tgt)->frags[to];
2355 
2356 		if (todo >= skb_frag_size(fragfrom)) {
2357 			*fragto = *fragfrom;
2358 			todo -= skb_frag_size(fragfrom);
2359 			from++;
2360 			to++;
2361 
2362 		} else {
2363 			__skb_frag_ref(fragfrom);
2364 			fragto->page = fragfrom->page;
2365 			fragto->page_offset = fragfrom->page_offset;
2366 			skb_frag_size_set(fragto, todo);
2367 
2368 			fragfrom->page_offset += todo;
2369 			skb_frag_size_sub(fragfrom, todo);
2370 			todo = 0;
2371 
2372 			to++;
2373 			break;
2374 		}
2375 	}
2376 
2377 	/* Ready to "commit" this state change to tgt */
2378 	skb_shinfo(tgt)->nr_frags = to;
2379 
2380 	if (merge >= 0) {
2381 		fragfrom = &skb_shinfo(skb)->frags[0];
2382 		fragto = &skb_shinfo(tgt)->frags[merge];
2383 
2384 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2385 		__skb_frag_unref(fragfrom);
2386 	}
2387 
2388 	/* Reposition in the original skb */
2389 	to = 0;
2390 	while (from < skb_shinfo(skb)->nr_frags)
2391 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2392 	skb_shinfo(skb)->nr_frags = to;
2393 
2394 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2395 
2396 onlymerged:
2397 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2398 	 * the other hand might need it if it needs to be resent
2399 	 */
2400 	tgt->ip_summed = CHECKSUM_PARTIAL;
2401 	skb->ip_summed = CHECKSUM_PARTIAL;
2402 
2403 	/* Yak, is it really working this way? Some helper please? */
2404 	skb->len -= shiftlen;
2405 	skb->data_len -= shiftlen;
2406 	skb->truesize -= shiftlen;
2407 	tgt->len += shiftlen;
2408 	tgt->data_len += shiftlen;
2409 	tgt->truesize += shiftlen;
2410 
2411 	return shiftlen;
2412 }
2413 
2414 /**
2415  * skb_prepare_seq_read - Prepare a sequential read of skb data
2416  * @skb: the buffer to read
2417  * @from: lower offset of data to be read
2418  * @to: upper offset of data to be read
2419  * @st: state variable
2420  *
2421  * Initializes the specified state variable. Must be called before
2422  * invoking skb_seq_read() for the first time.
2423  */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)2424 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2425 			  unsigned int to, struct skb_seq_state *st)
2426 {
2427 	st->lower_offset = from;
2428 	st->upper_offset = to;
2429 	st->root_skb = st->cur_skb = skb;
2430 	st->frag_idx = st->stepped_offset = 0;
2431 	st->frag_data = NULL;
2432 }
2433 EXPORT_SYMBOL(skb_prepare_seq_read);
2434 
2435 /**
2436  * skb_seq_read - Sequentially read skb data
2437  * @consumed: number of bytes consumed by the caller so far
2438  * @data: destination pointer for data to be returned
2439  * @st: state variable
2440  *
2441  * Reads a block of skb data at &consumed relative to the
2442  * lower offset specified to skb_prepare_seq_read(). Assigns
2443  * the head of the data block to &data and returns the length
2444  * of the block or 0 if the end of the skb data or the upper
2445  * offset has been reached.
2446  *
2447  * The caller is not required to consume all of the data
2448  * returned, i.e. &consumed is typically set to the number
2449  * of bytes already consumed and the next call to
2450  * skb_seq_read() will return the remaining part of the block.
2451  *
2452  * Note 1: The size of each block of data returned can be arbitrary,
2453  *       this limitation is the cost for zerocopy seqeuental
2454  *       reads of potentially non linear data.
2455  *
2456  * Note 2: Fragment lists within fragments are not implemented
2457  *       at the moment, state->root_skb could be replaced with
2458  *       a stack for this purpose.
2459  */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)2460 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2461 			  struct skb_seq_state *st)
2462 {
2463 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2464 	skb_frag_t *frag;
2465 
2466 	if (unlikely(abs_offset >= st->upper_offset))
2467 		return 0;
2468 
2469 next_skb:
2470 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2471 
2472 	if (abs_offset < block_limit && !st->frag_data) {
2473 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2474 		return block_limit - abs_offset;
2475 	}
2476 
2477 	if (st->frag_idx == 0 && !st->frag_data)
2478 		st->stepped_offset += skb_headlen(st->cur_skb);
2479 
2480 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2481 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2482 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2483 
2484 		if (abs_offset < block_limit) {
2485 			if (!st->frag_data)
2486 				st->frag_data = kmap_skb_frag(frag);
2487 
2488 			*data = (u8 *) st->frag_data + frag->page_offset +
2489 				(abs_offset - st->stepped_offset);
2490 
2491 			return block_limit - abs_offset;
2492 		}
2493 
2494 		if (st->frag_data) {
2495 			kunmap_skb_frag(st->frag_data);
2496 			st->frag_data = NULL;
2497 		}
2498 
2499 		st->frag_idx++;
2500 		st->stepped_offset += skb_frag_size(frag);
2501 	}
2502 
2503 	if (st->frag_data) {
2504 		kunmap_skb_frag(st->frag_data);
2505 		st->frag_data = NULL;
2506 	}
2507 
2508 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2509 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2510 		st->frag_idx = 0;
2511 		goto next_skb;
2512 	} else if (st->cur_skb->next) {
2513 		st->cur_skb = st->cur_skb->next;
2514 		st->frag_idx = 0;
2515 		goto next_skb;
2516 	}
2517 
2518 	return 0;
2519 }
2520 EXPORT_SYMBOL(skb_seq_read);
2521 
2522 /**
2523  * skb_abort_seq_read - Abort a sequential read of skb data
2524  * @st: state variable
2525  *
2526  * Must be called if skb_seq_read() was not called until it
2527  * returned 0.
2528  */
skb_abort_seq_read(struct skb_seq_state * st)2529 void skb_abort_seq_read(struct skb_seq_state *st)
2530 {
2531 	if (st->frag_data)
2532 		kunmap_skb_frag(st->frag_data);
2533 }
2534 EXPORT_SYMBOL(skb_abort_seq_read);
2535 
2536 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2537 
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)2538 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2539 					  struct ts_config *conf,
2540 					  struct ts_state *state)
2541 {
2542 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2543 }
2544 
skb_ts_finish(struct ts_config * conf,struct ts_state * state)2545 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2546 {
2547 	skb_abort_seq_read(TS_SKB_CB(state));
2548 }
2549 
2550 /**
2551  * skb_find_text - Find a text pattern in skb data
2552  * @skb: the buffer to look in
2553  * @from: search offset
2554  * @to: search limit
2555  * @config: textsearch configuration
2556  * @state: uninitialized textsearch state variable
2557  *
2558  * Finds a pattern in the skb data according to the specified
2559  * textsearch configuration. Use textsearch_next() to retrieve
2560  * subsequent occurrences of the pattern. Returns the offset
2561  * to the first occurrence or UINT_MAX if no match was found.
2562  */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config,struct ts_state * state)2563 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2564 			   unsigned int to, struct ts_config *config,
2565 			   struct ts_state *state)
2566 {
2567 	unsigned int ret;
2568 
2569 	config->get_next_block = skb_ts_get_next_block;
2570 	config->finish = skb_ts_finish;
2571 
2572 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2573 
2574 	ret = textsearch_find(config, state);
2575 	return (ret <= to - from ? ret : UINT_MAX);
2576 }
2577 EXPORT_SYMBOL(skb_find_text);
2578 
2579 /**
2580  * skb_append_datato_frags: - append the user data to a skb
2581  * @sk: sock  structure
2582  * @skb: skb structure to be appened with user data.
2583  * @getfrag: call back function to be used for getting the user data
2584  * @from: pointer to user message iov
2585  * @length: length of the iov message
2586  *
2587  * Description: This procedure append the user data in the fragment part
2588  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2589  */
skb_append_datato_frags(struct sock * sk,struct sk_buff * skb,int (* getfrag)(void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length)2590 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2591 			int (*getfrag)(void *from, char *to, int offset,
2592 					int len, int odd, struct sk_buff *skb),
2593 			void *from, int length)
2594 {
2595 	int frg_cnt = 0;
2596 	skb_frag_t *frag = NULL;
2597 	struct page *page = NULL;
2598 	int copy, left;
2599 	int offset = 0;
2600 	int ret;
2601 
2602 	do {
2603 		/* Return error if we don't have space for new frag */
2604 		frg_cnt = skb_shinfo(skb)->nr_frags;
2605 		if (frg_cnt >= MAX_SKB_FRAGS)
2606 			return -EFAULT;
2607 
2608 		/* allocate a new page for next frag */
2609 		page = alloc_pages(sk->sk_allocation, 0);
2610 
2611 		/* If alloc_page fails just return failure and caller will
2612 		 * free previous allocated pages by doing kfree_skb()
2613 		 */
2614 		if (page == NULL)
2615 			return -ENOMEM;
2616 
2617 		/* initialize the next frag */
2618 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2619 		skb->truesize += PAGE_SIZE;
2620 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2621 
2622 		/* get the new initialized frag */
2623 		frg_cnt = skb_shinfo(skb)->nr_frags;
2624 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2625 
2626 		/* copy the user data to page */
2627 		left = PAGE_SIZE - frag->page_offset;
2628 		copy = (length > left)? left : length;
2629 
2630 		ret = getfrag(from, skb_frag_address(frag) + skb_frag_size(frag),
2631 			    offset, copy, 0, skb);
2632 		if (ret < 0)
2633 			return -EFAULT;
2634 
2635 		/* copy was successful so update the size parameters */
2636 		skb_frag_size_add(frag, copy);
2637 		skb->len += copy;
2638 		skb->data_len += copy;
2639 		offset += copy;
2640 		length -= copy;
2641 
2642 	} while (length > 0);
2643 
2644 	return 0;
2645 }
2646 EXPORT_SYMBOL(skb_append_datato_frags);
2647 
2648 /**
2649  *	skb_pull_rcsum - pull skb and update receive checksum
2650  *	@skb: buffer to update
2651  *	@len: length of data pulled
2652  *
2653  *	This function performs an skb_pull on the packet and updates
2654  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2655  *	receive path processing instead of skb_pull unless you know
2656  *	that the checksum difference is zero (e.g., a valid IP header)
2657  *	or you are setting ip_summed to CHECKSUM_NONE.
2658  */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)2659 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2660 {
2661 	BUG_ON(len > skb->len);
2662 	skb->len -= len;
2663 	BUG_ON(skb->len < skb->data_len);
2664 	skb_postpull_rcsum(skb, skb->data, len);
2665 	return skb->data += len;
2666 }
2667 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2668 
2669 /**
2670  *	skb_segment - Perform protocol segmentation on skb.
2671  *	@skb: buffer to segment
2672  *	@features: features for the output path (see dev->features)
2673  *
2674  *	This function performs segmentation on the given skb.  It returns
2675  *	a pointer to the first in a list of new skbs for the segments.
2676  *	In case of error it returns ERR_PTR(err).
2677  */
skb_segment(struct sk_buff * skb,netdev_features_t features)2678 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2679 {
2680 	struct sk_buff *segs = NULL;
2681 	struct sk_buff *tail = NULL;
2682 	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2683 	unsigned int mss = skb_shinfo(skb)->gso_size;
2684 	unsigned int doffset = skb->data - skb_mac_header(skb);
2685 	unsigned int offset = doffset;
2686 	unsigned int headroom;
2687 	unsigned int len;
2688 	int sg = !!(features & NETIF_F_SG);
2689 	int nfrags = skb_shinfo(skb)->nr_frags;
2690 	int err = -ENOMEM;
2691 	int i = 0;
2692 	int pos;
2693 
2694 	__skb_push(skb, doffset);
2695 	headroom = skb_headroom(skb);
2696 	pos = skb_headlen(skb);
2697 
2698 	do {
2699 		struct sk_buff *nskb;
2700 		skb_frag_t *frag;
2701 		int hsize;
2702 		int size;
2703 
2704 		len = skb->len - offset;
2705 		if (len > mss)
2706 			len = mss;
2707 
2708 		hsize = skb_headlen(skb) - offset;
2709 		if (hsize < 0)
2710 			hsize = 0;
2711 		if (hsize > len || !sg)
2712 			hsize = len;
2713 
2714 		if (!hsize && i >= nfrags) {
2715 			BUG_ON(fskb->len != len);
2716 
2717 			pos += len;
2718 			nskb = skb_clone(fskb, GFP_ATOMIC);
2719 			fskb = fskb->next;
2720 
2721 			if (unlikely(!nskb))
2722 				goto err;
2723 
2724 			hsize = skb_end_offset(nskb);
2725 			if (skb_cow_head(nskb, doffset + headroom)) {
2726 				kfree_skb(nskb);
2727 				goto err;
2728 			}
2729 
2730 			nskb->truesize += skb_end_offset(nskb) - hsize;
2731 			skb_release_head_state(nskb);
2732 			__skb_push(nskb, doffset);
2733 		} else {
2734 			nskb = alloc_skb(hsize + doffset + headroom,
2735 					 GFP_ATOMIC);
2736 
2737 			if (unlikely(!nskb))
2738 				goto err;
2739 
2740 			skb_reserve(nskb, headroom);
2741 			__skb_put(nskb, doffset);
2742 		}
2743 
2744 		if (segs)
2745 			tail->next = nskb;
2746 		else
2747 			segs = nskb;
2748 		tail = nskb;
2749 
2750 		__copy_skb_header(nskb, skb);
2751 		nskb->mac_len = skb->mac_len;
2752 
2753 		/* nskb and skb might have different headroom */
2754 		if (nskb->ip_summed == CHECKSUM_PARTIAL)
2755 			nskb->csum_start += skb_headroom(nskb) - headroom;
2756 
2757 		skb_reset_mac_header(nskb);
2758 		skb_set_network_header(nskb, skb->mac_len);
2759 		nskb->transport_header = (nskb->network_header +
2760 					  skb_network_header_len(skb));
2761 		skb_copy_from_linear_data(skb, nskb->data, doffset);
2762 
2763 		if (fskb != skb_shinfo(skb)->frag_list)
2764 			continue;
2765 
2766 		if (!sg) {
2767 			nskb->ip_summed = CHECKSUM_NONE;
2768 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2769 							    skb_put(nskb, len),
2770 							    len, 0);
2771 			continue;
2772 		}
2773 
2774 		frag = skb_shinfo(nskb)->frags;
2775 
2776 		skb_copy_from_linear_data_offset(skb, offset,
2777 						 skb_put(nskb, hsize), hsize);
2778 
2779 		while (pos < offset + len && i < nfrags) {
2780 			if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
2781 				goto err;
2782 
2783 			*frag = skb_shinfo(skb)->frags[i];
2784 			__skb_frag_ref(frag);
2785 			size = skb_frag_size(frag);
2786 
2787 			if (pos < offset) {
2788 				frag->page_offset += offset - pos;
2789 				skb_frag_size_sub(frag, offset - pos);
2790 			}
2791 
2792 			skb_shinfo(nskb)->nr_frags++;
2793 
2794 			if (pos + size <= offset + len) {
2795 				i++;
2796 				pos += size;
2797 			} else {
2798 				skb_frag_size_sub(frag, pos + size - (offset + len));
2799 				goto skip_fraglist;
2800 			}
2801 
2802 			frag++;
2803 		}
2804 
2805 		if (pos < offset + len) {
2806 			struct sk_buff *fskb2 = fskb;
2807 
2808 			BUG_ON(pos + fskb->len != offset + len);
2809 
2810 			pos += fskb->len;
2811 			fskb = fskb->next;
2812 
2813 			if (fskb2->next) {
2814 				fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2815 				if (!fskb2)
2816 					goto err;
2817 			} else
2818 				skb_get(fskb2);
2819 
2820 			SKB_FRAG_ASSERT(nskb);
2821 			skb_shinfo(nskb)->frag_list = fskb2;
2822 		}
2823 
2824 skip_fraglist:
2825 		nskb->data_len = len - hsize;
2826 		nskb->len += nskb->data_len;
2827 		nskb->truesize += nskb->data_len;
2828 	} while ((offset += len) < skb->len);
2829 
2830 	return segs;
2831 
2832 err:
2833 	while ((skb = segs)) {
2834 		segs = skb->next;
2835 		kfree_skb(skb);
2836 	}
2837 	return ERR_PTR(err);
2838 }
2839 EXPORT_SYMBOL_GPL(skb_segment);
2840 
skb_gro_receive(struct sk_buff ** head,struct sk_buff * skb)2841 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2842 {
2843 	struct sk_buff *p = *head;
2844 	struct sk_buff *nskb;
2845 	struct skb_shared_info *skbinfo = skb_shinfo(skb);
2846 	struct skb_shared_info *pinfo = skb_shinfo(p);
2847 	unsigned int headroom;
2848 	unsigned int len = skb_gro_len(skb);
2849 	unsigned int offset = skb_gro_offset(skb);
2850 	unsigned int headlen = skb_headlen(skb);
2851 
2852 	if (p->len + len >= 65536)
2853 		return -E2BIG;
2854 
2855 	if (pinfo->frag_list)
2856 		goto merge;
2857 	else if (headlen <= offset) {
2858 		skb_frag_t *frag;
2859 		skb_frag_t *frag2;
2860 		int i = skbinfo->nr_frags;
2861 		int nr_frags = pinfo->nr_frags + i;
2862 
2863 		offset -= headlen;
2864 
2865 		if (nr_frags > MAX_SKB_FRAGS)
2866 			return -E2BIG;
2867 
2868 		pinfo->nr_frags = nr_frags;
2869 		skbinfo->nr_frags = 0;
2870 
2871 		frag = pinfo->frags + nr_frags;
2872 		frag2 = skbinfo->frags + i;
2873 		do {
2874 			*--frag = *--frag2;
2875 		} while (--i);
2876 
2877 		frag->page_offset += offset;
2878 		skb_frag_size_sub(frag, offset);
2879 
2880 		skb->truesize -= skb->data_len;
2881 		skb->len -= skb->data_len;
2882 		skb->data_len = 0;
2883 
2884 		NAPI_GRO_CB(skb)->free = 1;
2885 		goto done;
2886 	} else if (skb_gro_len(p) != pinfo->gso_size)
2887 		return -E2BIG;
2888 
2889 	headroom = skb_headroom(p);
2890 	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2891 	if (unlikely(!nskb))
2892 		return -ENOMEM;
2893 
2894 	__copy_skb_header(nskb, p);
2895 	nskb->mac_len = p->mac_len;
2896 
2897 	skb_reserve(nskb, headroom);
2898 	__skb_put(nskb, skb_gro_offset(p));
2899 
2900 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2901 	skb_set_network_header(nskb, skb_network_offset(p));
2902 	skb_set_transport_header(nskb, skb_transport_offset(p));
2903 
2904 	__skb_pull(p, skb_gro_offset(p));
2905 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
2906 	       p->data - skb_mac_header(p));
2907 
2908 	*NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2909 	skb_shinfo(nskb)->frag_list = p;
2910 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2911 	pinfo->gso_size = 0;
2912 	skb_header_release(p);
2913 	nskb->prev = p;
2914 
2915 	nskb->data_len += p->len;
2916 	nskb->truesize += p->truesize;
2917 	nskb->len += p->len;
2918 
2919 	*head = nskb;
2920 	nskb->next = p->next;
2921 	p->next = NULL;
2922 
2923 	p = nskb;
2924 
2925 merge:
2926 	p->truesize += skb->truesize - len;
2927 	if (offset > headlen) {
2928 		unsigned int eat = offset - headlen;
2929 
2930 		skbinfo->frags[0].page_offset += eat;
2931 		skb_frag_size_sub(&skbinfo->frags[0], eat);
2932 		skb->data_len -= eat;
2933 		skb->len -= eat;
2934 		offset = headlen;
2935 	}
2936 
2937 	__skb_pull(skb, offset);
2938 
2939 	p->prev->next = skb;
2940 	p->prev = skb;
2941 	skb_header_release(skb);
2942 
2943 done:
2944 	NAPI_GRO_CB(p)->count++;
2945 	p->data_len += len;
2946 	p->truesize += len;
2947 	p->len += len;
2948 
2949 	NAPI_GRO_CB(skb)->same_flow = 1;
2950 	return 0;
2951 }
2952 EXPORT_SYMBOL_GPL(skb_gro_receive);
2953 
skb_init(void)2954 void __init skb_init(void)
2955 {
2956 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2957 					      sizeof(struct sk_buff),
2958 					      0,
2959 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2960 					      NULL);
2961 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2962 						(2*sizeof(struct sk_buff)) +
2963 						sizeof(atomic_t),
2964 						0,
2965 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2966 						NULL);
2967 }
2968 
2969 /**
2970  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2971  *	@skb: Socket buffer containing the buffers to be mapped
2972  *	@sg: The scatter-gather list to map into
2973  *	@offset: The offset into the buffer's contents to start mapping
2974  *	@len: Length of buffer space to be mapped
2975  *
2976  *	Fill the specified scatter-gather list with mappings/pointers into a
2977  *	region of the buffer space attached to a socket buffer.
2978  */
2979 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)2980 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2981 {
2982 	int start = skb_headlen(skb);
2983 	int i, copy = start - offset;
2984 	struct sk_buff *frag_iter;
2985 	int elt = 0;
2986 
2987 	if (copy > 0) {
2988 		if (copy > len)
2989 			copy = len;
2990 		sg_set_buf(sg, skb->data + offset, copy);
2991 		elt++;
2992 		if ((len -= copy) == 0)
2993 			return elt;
2994 		offset += copy;
2995 	}
2996 
2997 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2998 		int end;
2999 
3000 		WARN_ON(start > offset + len);
3001 
3002 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3003 		if ((copy = end - offset) > 0) {
3004 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3005 
3006 			if (copy > len)
3007 				copy = len;
3008 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3009 					frag->page_offset+offset-start);
3010 			elt++;
3011 			if (!(len -= copy))
3012 				return elt;
3013 			offset += copy;
3014 		}
3015 		start = end;
3016 	}
3017 
3018 	skb_walk_frags(skb, frag_iter) {
3019 		int end;
3020 
3021 		WARN_ON(start > offset + len);
3022 
3023 		end = start + frag_iter->len;
3024 		if ((copy = end - offset) > 0) {
3025 			if (copy > len)
3026 				copy = len;
3027 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3028 					      copy);
3029 			if ((len -= copy) == 0)
3030 				return elt;
3031 			offset += copy;
3032 		}
3033 		start = end;
3034 	}
3035 	BUG_ON(len);
3036 	return elt;
3037 }
3038 
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)3039 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3040 {
3041 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3042 
3043 	sg_mark_end(&sg[nsg - 1]);
3044 
3045 	return nsg;
3046 }
3047 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3048 
3049 /**
3050  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3051  *	@skb: The socket buffer to check.
3052  *	@tailbits: Amount of trailing space to be added
3053  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3054  *
3055  *	Make sure that the data buffers attached to a socket buffer are
3056  *	writable. If they are not, private copies are made of the data buffers
3057  *	and the socket buffer is set to use these instead.
3058  *
3059  *	If @tailbits is given, make sure that there is space to write @tailbits
3060  *	bytes of data beyond current end of socket buffer.  @trailer will be
3061  *	set to point to the skb in which this space begins.
3062  *
3063  *	The number of scatterlist elements required to completely map the
3064  *	COW'd and extended socket buffer will be returned.
3065  */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)3066 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3067 {
3068 	int copyflag;
3069 	int elt;
3070 	struct sk_buff *skb1, **skb_p;
3071 
3072 	/* If skb is cloned or its head is paged, reallocate
3073 	 * head pulling out all the pages (pages are considered not writable
3074 	 * at the moment even if they are anonymous).
3075 	 */
3076 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3077 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3078 		return -ENOMEM;
3079 
3080 	/* Easy case. Most of packets will go this way. */
3081 	if (!skb_has_frag_list(skb)) {
3082 		/* A little of trouble, not enough of space for trailer.
3083 		 * This should not happen, when stack is tuned to generate
3084 		 * good frames. OK, on miss we reallocate and reserve even more
3085 		 * space, 128 bytes is fair. */
3086 
3087 		if (skb_tailroom(skb) < tailbits &&
3088 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3089 			return -ENOMEM;
3090 
3091 		/* Voila! */
3092 		*trailer = skb;
3093 		return 1;
3094 	}
3095 
3096 	/* Misery. We are in troubles, going to mincer fragments... */
3097 
3098 	elt = 1;
3099 	skb_p = &skb_shinfo(skb)->frag_list;
3100 	copyflag = 0;
3101 
3102 	while ((skb1 = *skb_p) != NULL) {
3103 		int ntail = 0;
3104 
3105 		/* The fragment is partially pulled by someone,
3106 		 * this can happen on input. Copy it and everything
3107 		 * after it. */
3108 
3109 		if (skb_shared(skb1))
3110 			copyflag = 1;
3111 
3112 		/* If the skb is the last, worry about trailer. */
3113 
3114 		if (skb1->next == NULL && tailbits) {
3115 			if (skb_shinfo(skb1)->nr_frags ||
3116 			    skb_has_frag_list(skb1) ||
3117 			    skb_tailroom(skb1) < tailbits)
3118 				ntail = tailbits + 128;
3119 		}
3120 
3121 		if (copyflag ||
3122 		    skb_cloned(skb1) ||
3123 		    ntail ||
3124 		    skb_shinfo(skb1)->nr_frags ||
3125 		    skb_has_frag_list(skb1)) {
3126 			struct sk_buff *skb2;
3127 
3128 			/* Fuck, we are miserable poor guys... */
3129 			if (ntail == 0)
3130 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3131 			else
3132 				skb2 = skb_copy_expand(skb1,
3133 						       skb_headroom(skb1),
3134 						       ntail,
3135 						       GFP_ATOMIC);
3136 			if (unlikely(skb2 == NULL))
3137 				return -ENOMEM;
3138 
3139 			if (skb1->sk)
3140 				skb_set_owner_w(skb2, skb1->sk);
3141 
3142 			/* Looking around. Are we still alive?
3143 			 * OK, link new skb, drop old one */
3144 
3145 			skb2->next = skb1->next;
3146 			*skb_p = skb2;
3147 			kfree_skb(skb1);
3148 			skb1 = skb2;
3149 		}
3150 		elt++;
3151 		*trailer = skb1;
3152 		skb_p = &skb1->next;
3153 	}
3154 
3155 	return elt;
3156 }
3157 EXPORT_SYMBOL_GPL(skb_cow_data);
3158 
sock_rmem_free(struct sk_buff * skb)3159 static void sock_rmem_free(struct sk_buff *skb)
3160 {
3161 	struct sock *sk = skb->sk;
3162 
3163 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3164 }
3165 
3166 /*
3167  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3168  */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)3169 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3170 {
3171 	int len = skb->len;
3172 
3173 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3174 	    (unsigned)sk->sk_rcvbuf)
3175 		return -ENOMEM;
3176 
3177 	skb_orphan(skb);
3178 	skb->sk = sk;
3179 	skb->destructor = sock_rmem_free;
3180 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3181 
3182 	/* before exiting rcu section, make sure dst is refcounted */
3183 	skb_dst_force(skb);
3184 
3185 	skb_queue_tail(&sk->sk_error_queue, skb);
3186 	if (!sock_flag(sk, SOCK_DEAD))
3187 		sk->sk_data_ready(sk, len);
3188 	return 0;
3189 }
3190 EXPORT_SYMBOL(sock_queue_err_skb);
3191 
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)3192 void skb_tstamp_tx(struct sk_buff *orig_skb,
3193 		struct skb_shared_hwtstamps *hwtstamps)
3194 {
3195 	struct sock *sk = orig_skb->sk;
3196 	struct sock_exterr_skb *serr;
3197 	struct sk_buff *skb;
3198 	int err;
3199 
3200 	if (!sk)
3201 		return;
3202 
3203 	skb = skb_clone(orig_skb, GFP_ATOMIC);
3204 	if (!skb)
3205 		return;
3206 
3207 	if (hwtstamps) {
3208 		*skb_hwtstamps(skb) =
3209 			*hwtstamps;
3210 	} else {
3211 		/*
3212 		 * no hardware time stamps available,
3213 		 * so keep the shared tx_flags and only
3214 		 * store software time stamp
3215 		 */
3216 		skb->tstamp = ktime_get_real();
3217 	}
3218 
3219 	serr = SKB_EXT_ERR(skb);
3220 	memset(serr, 0, sizeof(*serr));
3221 	serr->ee.ee_errno = ENOMSG;
3222 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3223 
3224 	err = sock_queue_err_skb(sk, skb);
3225 
3226 	if (err)
3227 		kfree_skb(skb);
3228 }
3229 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3230 
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)3231 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3232 {
3233 	struct sock *sk = skb->sk;
3234 	struct sock_exterr_skb *serr;
3235 	int err;
3236 
3237 	skb->wifi_acked_valid = 1;
3238 	skb->wifi_acked = acked;
3239 
3240 	serr = SKB_EXT_ERR(skb);
3241 	memset(serr, 0, sizeof(*serr));
3242 	serr->ee.ee_errno = ENOMSG;
3243 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3244 
3245 	err = sock_queue_err_skb(sk, skb);
3246 	if (err)
3247 		kfree_skb(skb);
3248 }
3249 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3250 
3251 
3252 /**
3253  * skb_partial_csum_set - set up and verify partial csum values for packet
3254  * @skb: the skb to set
3255  * @start: the number of bytes after skb->data to start checksumming.
3256  * @off: the offset from start to place the checksum.
3257  *
3258  * For untrusted partially-checksummed packets, we need to make sure the values
3259  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3260  *
3261  * This function checks and sets those values and skb->ip_summed: if this
3262  * returns false you should drop the packet.
3263  */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)3264 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3265 {
3266 	if (unlikely(start > skb_headlen(skb)) ||
3267 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3268 		if (net_ratelimit())
3269 			printk(KERN_WARNING
3270 			       "bad partial csum: csum=%u/%u len=%u\n",
3271 			       start, off, skb_headlen(skb));
3272 		return false;
3273 	}
3274 	skb->ip_summed = CHECKSUM_PARTIAL;
3275 	skb->csum_start = skb_headroom(skb) + start;
3276 	skb->csum_offset = off;
3277 	return true;
3278 }
3279 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3280 
__skb_warn_lro_forwarding(const struct sk_buff * skb)3281 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3282 {
3283 	if (net_ratelimit())
3284 		pr_warning("%s: received packets cannot be forwarded"
3285 			   " while LRO is enabled\n", skb->dev->name);
3286 }
3287 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3288 
3289 /**
3290  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
3291  *
3292  * @skb: GSO skb
3293  *
3294  * skb_gso_transport_seglen is used to determine the real size of the
3295  * individual segments, including Layer4 headers (TCP/UDP).
3296  *
3297  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
3298  */
skb_gso_transport_seglen(const struct sk_buff * skb)3299 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
3300 {
3301 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3302 
3303 	if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3304 		return tcp_hdrlen(skb) + shinfo->gso_size;
3305 
3306 	/* UFO sets gso_size to the size of the fragmentation
3307 	 * payload, i.e. the size of the L4 (UDP) header is already
3308 	 * accounted for.
3309 	 */
3310 	return shinfo->gso_size;
3311 }
3312 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
3313